
David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 1

david.mertz@seiu.org
www.seiu.org

Heuristic matching is frequently needed to identify the 
individual people who are (imperfectly) described by 
data records.

I developed several algorithms, each having different 
performance characteristics, for the Ada software 
system.

Welcome

http://www.seiu.org/


David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 2

mertz@gnosis.cx
gnosis.cx/cleaning

Many of the concepts addressed in this talk are 
also discussed in my Cleaning Data book, which 
may be read and downloaded at the link below.

About Me

mailto:mertz@gnosis.cx


David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 3

About SEIU

SEIU is a labor union representing 2 
million workers in the United States, 
Puerto Rico, and Canada, founded in 
1921.

We fight for a just society where all 
workers are valued and all people 
respected—no matter where we come 
from or what color we are; where all 
families and communities can thrive; 
and where we leave a better and 
more equitable world for generations 
to come.



David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 4

About Ada

A computer system, named after 19th 
century computer pioneer Ada 
Lovelace, processes and enhances 
membership data provided by the 
150+ union locals of SEIU.

As with all data, ours is partial, often 
flawed, sometimes inconsistent, and 
absolutely necessary for our union’s 
political lobbying and organization 
drives. Watercolor portrait of Ada King, 

Countess of Lovelace, c. 1840, possibly 
by Alfred Edward Chalon 

Public domain

https://en.wikipedia.org/wiki/ 
File:Ada_Lovelace_portrait.jpg

https://en.wikipedia.org/wiki/


David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 5

A Secure Identifier

First fuzzy match: Ada assigns an ID to a person 
without leaking information about their identity.

SELECT substr(raw_hash, 1, 8) AS raw_hash, 
       substr(canonical, 1, 9) AS canonical, 
       field_names 
FROM identifiers LIMIT 8;

raw_hash|canonical|field_names
5cccc2ee|5cccc2ee2|first_middle,lastname,dob,external_id,affiliate
6c6efb90|5cccc2ee2|first_middle,lastname,dob,external_id
7f6faa8d|5cccc2ee2|first_middle,lastname,dob,affiliate
230b75a9|5cccc2ee2|first_middle,lastname,external_id,affiliate
ccf08fa8|5cccc2ee2|first_middle,dob,external_id,affiliate
4fb45087|5cccc2ee2|lastname,dob,external_id,affiliate
f2e1b668|f2e1b6687|first_middle,lastname,dob,external_id,affiliate
be9e2564|f2e1b6687|first_middle,lastname,dob,external_id



David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 6

A Secure Identifier

Three operations are performed:

● Subsetting fields 
● Normalization of field values
● Cryptographic hash

raw_hash|canonical|field_names
5cccc2ee|5cccc2ee2|first_middle,lastname,dob,external_id,affiliate
6c6efb90|5cccc2ee2|first_middle,lastname,dob,external_id
7f6faa8d|5cccc2ee2|first_middle,lastname,dob,affiliate
230b75a9|5cccc2ee2|first_middle,lastname,external_id,affiliate



David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 7

A Secure Identifier

Field values are never stored in the table shown, but 
hypothetically, the rows we’ve seen could have had:

raw_hash|canonical|field_values
5cccc2ee|5cccc2ee2|DAVIDQ,MERTZ,1964-09-12,abc123,seiu-iu
6c6efb90|5cccc2ee2|DAVIDQ,MERTZ,1964-09-12,abc123
7f6faa8d|5cccc2ee2|DAVIDQ,MERTZ,1964-09-12,seiu-iu
230b75a9|5cccc2ee2|DAVIDQ,MERTZ,abc123,seiu-iu

Each subset of fields has a cryptographic hash mapping 
it to the first-encountered representation of that 
individual person.

Generation/lookup of an ID occurs at (much) better than 
1,000 rows per second and deterministically generates 
an identical ID from row data alone.



David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 8

Fast Subsetting

The core operation takes a powerset of the available 
fields for a given record, with a threshold for enough 
data.

from itertools import chain, combinations
def powerset(iterable, min_length=0):
    """

Return a powerset of an iterable.

    Powerset([1,2,3])  () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)⇾
    Powerset([1,2,3], 2)  (1,2) (1,3) (2,3) (1,2,3)⇾
    """
    s = list(iterable)
    return chain.from_iterable(
        combinations(s, r) for r in range(min_length, len(s) + 1)
    )



David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 9

Typical Typos

Second fuzzy match: Spelling variation in employer 
names.

Acme Products, Incorporated, Acme Products Inc., Acme 
Products, and (misspelled) Acma Products, Incorperated 
might all intend to represent the same entity.

● Normalization of field values
● Phonetic similarity with Jaro-Winkler or Levenshtein
● Adjust score based on supplemental information



David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 10

Typical Typos

A DataFrame has company names and relevant 
“metadata.” 

The same employer tends to be in the same city and 
state, and have members from the same affiliate.

def with_metaphones(df):
  return pd.DataFrame({
    "employer": df.employer.astype(str),
    "affiliate": df.affiliate.str.strip().str.upper(),
    "city": df.city.str.strip().str.upper(),
    "state": df.state.str.strip().str.upper(),
    "metaphones": df.employer.apply(doublemetaphone)
  })



David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 11

Typical Typos

The Pandas-style normalization is commonplace (but 
helpful).  The interesting part is the metaphones.

>>> from metaphone import doublemetaphone
>>> doublemetaphone("East 70th Street")
('ASTTT0STRT', 'ASTTTTSTRT')
>>> doublemetaphone("West 4th Street")
('ASTT0STRT', 'FSTTTSTRT')
>>> doublemetaphone("East 7th Street")
('ASTT0STRT', 'ASTTTSTRT')

We do not always get multiple options:

>>> doublemetaphone("Acme Products, Incorporated")
('AKMPRTKTSSNKRPRTT', '')
>>> doublemetaphone("Acma Products, Incorperated")
('AKMPRTKTSSNKRPRTT', '')



David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 12

Typical Typos

Phoneticization with metaphone (or soundex) helps.

String similarity is the next step. Jaro-Winkler is 
somewhat more useful than Levenshtein in 
overweighting prefixes.

>>> from itertools import combinations
>>> from Levenshtein import jaro_winkler
>>> street_phonemes = ['ASTTTTSTRT', 'ASTT0STRT', 'FSTTTSTRT']
>>> for a, b in combinations(street_phonemes, 2):
...     print(f"{a:<10s} {b:<10s} {jaro_winkler(a, b):0.3f}")

ASTTTTSTRT ASTT0STRT  0.913
ASTTTTSTRT FSTTTSTRT  0.813
ASTT0STRT  FSTTTSTRT  0.757



David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 13

Typical Typos

Actual heuristic matching of company names uses 
phoneticization and string distance as a baseline.

For additional score adjustments, we utilize the other 
fields seen previously to tweak scores.  Is it the same 
city? Did we get the company name from the same 
union local?

Using tweaked scores, we can decide the “best guess” 
about which entity is the best attribution for the data we 
actually see.



David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 14

Talking Complexity

Let’s reflect on the computational complexity of the first 
two matchers.

Create/locate an ID is an O(n log m) operation. Where n is the 
number of records being processed, and m is the number of 
previously stored rows.  

Storage might be two orders of magnitude larger than current 
record set, but is not unbounded.

● For each of the N records being processed:
 Generate a fixed number of subsets: O(1)
 Perform a cryptographic hash on each subset: O(1)
 Search an indexed table for existing match: O(log m)
 If record is not matched, insert subset records: O(1)



David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 15

Talking Complexity

Let’s reflect on the computational complexity of the first 
two matchers.

Fuzzy matching a name (with scoring metadata) is an O(n2) 
operation… or O(n×m) if the current record set is considered 
separately from previously canonicalized initial records.

● For each of the N records being processed:
 Generate a canonical representation: O(1)
 Compare the edit distance of each phoneticized version to 

each stored version: O(m)
 Compare each canonicalized metadata field to stored versions: 

O(m)



David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 16

Third fuzzy match: Enhance political and demographic 
information based on an external data provider.

A vendor we work with has data about nearly all U.S. 
persons (over 300M), with a focus on demographic data, 
voting history, and political sentiment models.

The vendor will perform their own fuzzy matching based 
on some basic information—using algorithms and 
procedures that are confidential to them—but generally 
utilizing fields like name, birth date, address.

Querying Larger Data



David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 17

Our vendor will perform matching for us, but we also 
have a copy of their raw data if we wish to query it. 

A tentative implementation of our own entity resolution 
has been created.

Essentially, the problem is to match batches of tens of 
thousands of person records against a database where 
essentially any specific identifying feature might be 
wrong or missing in our data.

This is a pretty standard and common database task. 

Querying Larger Data



David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 18

There are a few fuzzing techniques that we have found 
useful.  One common variation in data about persons is 
that they go by various nicknames.

The Python library nicknames is based on genealogy 
information from the Center for African American 
Research, Inc.

This library, as good as it is mostly centers on English 
language names, and will be of less use for names of 
other linguistic origins (but English has borrowed quite a 
bit from many sources).

Querying Larger Data



David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 19

from nicknames import NickNamer
def nicknames(name: str) -> set:
    """Get nicknames for a list of names.

    NOTE: connections among nicknames and canonical names forms a graph.
    The exact "shape" of this graph is not clear; we do not know
    whether it forms a reasonable number of equivalence classes by
    Recursive vertex contraction.

    As a practical heuristic,examine a small depth for direct nicknames,
    and for the nicknames of canonical names.  This will create a
    Reasonably sized collection of plausible nicknames.
    """
    nn = NickNamer()
    nicknames = nn.nicknames_of(name)
    for canonical in nn.canonicals_of(name):
        nicknames.add(canonical)
        nicknames |= nn.nicknames_of(canonical)
    return {n.upper() for n in nicknames}

Querying Larger Data



David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 20

The technique used creates different, but sometimes 
overlapping, expansions for related names.

It does a pretty good job of providing a good range of 
values to use in an SQL “WHERE name IN (nicknames)” 
query.

>>> nicknames("david")
{'DAVEY', 'DAY', 'DAVE'}
>>> nicknames("dave")
{'DAVID', 'DAVEY', 'DAY', 'DAVE'}
>>> nicknames("abigail")
{'GAIL', 'NABBY', 'ABBI', 'ABBE', 'ABBEY', 'ABBY', 'ABBIE'}
>>> nicknames("esther")
{'HETTY', 'HESTER', 'HESSY', 'ESSIE', 'ESTHER'}
>>> nicknames("chimezie")
set()

Querying Larger Data



David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 21

A few other techniques are used to “pre-fuzz” some data 
in records.  

Last names can be divided on spaces and hyphens, and 
their components chosen as alternatives.

For postal addresses, the Python library usaddress-
scourgify normalizes and pulls out components… of 
course, the format conventions are very US-specific.

Pandas can usually do a good job of normalizing dates to 
a needed format.

Querying Larger Data



David Mertz, Ph.D. Service Employees International Union

A Tale of Three Fuzzy Matchers

page 22

david.mertz@seiu.org
www.seiu.org

In designing a fuzzy string matcher:

● The “feel” of the data being searched

● The size of the dataset and match space

● Performance characteristics & compromises

Wrapping Up

http://www.seiu.org/

