
Introduction to Cryptology Concepts II

Introduction to the Tutorial

Navigation

Navigating through the tutorial is easy:
Use the Next and Previous buttons to move forward and backward through the 

tutorial. 
Use the Menu button to return to the tutorial menu.
If you'd like to tell us what you think, use the Feedback button. 
If you need help with the tutorial, use the Help button.

Who is this tutorial for?

This tutorial (and its predecessor) is aimed at programmers who would like to 
familiarize themselves with cryptology, its techniques, its mathematical and conceptual 
basis, and its lingo. Most users of this tutorial will have encountered various 
descriptions of cryptographic systems, and general claims about the security or 
insecurity of particular software and systems, but without entirely understanding the 
background of these descriptions and claims. Additionally, many users of this tutorial 
will be programmers and systems analysts whose employers have plans to develop or 
implement cryptographic systems and protocols (perhaps assigning such obligations to 
the very people who will benefit from this tutorial). 

The focus of this second part of a two part tutorial is to introduce readers to 
intermediate cryptographic concepts. The first part introduced the very basic concepts 
of cryptography, such as what encryption is and what keys are. As well, the first part 
covered the basic notions of cryptanalysis -- at least enough to know what it is to break 
a protocol and what some typical attacks are. Users of this tutorial should feel 
comfortable with these introductory notions (the first part is a good starting point for 
those not already familiar with these matters). 

The tutorial in front of you addresses cryptographic algorithms and protocols as such. 
The goal of this tutorial is not to cover the coding and detailed workings of specific 
algorithms and protocols, but rather to lead users through the conceptual background 
necessary to understand and construct cryptographic algorithms and protocols. After 
you finish this tutorial you will have most of the building blocks you need to think about 
cryptography. 

What tools use cryptography?

Some form of cryptography is nearly everywhere in computer technology. Popular 
standalone programs, like PGP and GPG, aid in securing communications. Web 
browsers and other networks client programs implement cryptographic layers in their 
channels. Drivers and programs exist to secure files on disk, and control access thereto. 
Some commercial programs use cryptographic mechanisms to limit where they may be 
installed and how they may be used. Basically, every time you find a need to control the 
access and usage of computer programs or digital data, cryptographic algorithms wind 
up constituting important parts of the protocol for use of these programs/data. 



Protocols and Algorithms

One particular introductory notion introduced in the first part of this tutorial is worth 
emphasizing again before we get underway. It is important to make the distinction 
between protocols and algorithms. 

A protocol is a specification of the complete set of steps involved in carrying out a 
cryptographic activity, including explicit specification of how to proceed in every 
contingency. An algorithm is the much narrower procedure involved in transforming 
some digital data into some other digital data. Cryptographic protocols inevitably 
involve using one or more cryptographic algorithms, but security (and other 
cryptographic goals) is a product of a total protocol. 

Clearly, using an strong and appropriate algorithm is an important element of creating a 
strong protocol, but it is not sufficient by itself. The first sections of this tutorial will 
mostly address how cryptographic algorithms work; the later sections will take a look at 
the use of some algorithms in actual protocols, particularly protocols combining 
multiple algorithms to accomplish complex goals. 

Block Ciphers and Stream Ciphers

Encryption algorithms can be divided into block ciphers and stream ciphers. Stream 
ciphers are able to take plaintext input one bit (or one byte) at a time, and output a 
corresponding ciphertext bit (byte) right away. The manner in which a bit (byte) is 
encrypted will depend both upon the key used and upon the previous plaintext stream 
encrypted leading up to this bit (byte). 

In contrast to stream ciphers, block ciphers require an entire block of input plaintext 
before they can perform any encryption (typically blocks are 64-bits or more). In 
addition, given an identical input plaintext block, and an identical key, a block cipher 
will product the same ciphertext no matter where in an input stream it is encountered. 

Although stream ciphers have some advantages where immediate responses are 
required, for example on a socket, the large majority of widely-used modern encryption 
algorithms are block ciphers. In this tutorial, whenever symmetric encryption algorithms 
are discussed generically, the user should assume the tutorial is referring to block 
ciphers. 

Contact

David Mertz is a writer, a programmer, and a teacher, who always endeavors to 
improve his communication to readers (and tutorial takers). He welcomes any 
comments, please direct them to <mertz@gnosis.cx>. 

Symmetric Encryption Algorithms

Getting Started

The popular symmetric encryption algorithms in use today have a lot more in common, 
at a conceptual level, than they have differences between them. A certain set of basic 
operations and frameworks are known to stand on solid mathematic ground, and have 
withstood years of cryptanalysis. As such, all the general remarks of this section will 
apply almost equally well to every symmetric algorithm you might find yourself working 



apply almost equally well to every symmetric algorithm you might find yourself working 
with. The specific details can be found in the documentation associated with a specific 
algorithm. 

Of using the right basic operations and frameworks does not guarantee you a strong 
algorithm. There are many subtle ways to put things together in ways that introduce 
significant weakness to attacks. Understanding this tutorial is not enough to invent your 
own strong algorithm. However, "rolling your own" is not a useful goal for most 
programmers anyway. There are so many well-tested algorithms out there that you are 
almost surely better off starting with them and worrying only about implementation. 
This tutorial will show you enough to understand the logic behind what you are 
implementing 

Diffusion and Substitution: General

Every modern symmetric encryption algorithm finds ways to work in two basic 
operations: diffusion and substitution. That is, the content of a ciphertext both replaces 
the bits and bytes of the plaintext with different bits and bytes (substitution), and moves 
those replaced bits and bytes to different locations in the ciphertext. 

Unlike with old-fashioned hand-calculated ciphers, modern algorithms inevitably 
operate at a bit level in the main. Modern algorithms usually do involve some 
transforms at the nibble, byte, word, or block level; but these larger transforms usually 
break down and rearrange the bits within these blocks in other parts of the algorithm. 

Most modern algorithms produce ciphertexts of exactly the same size as was the 
original plaintext. Maybe a bit or two here and there is added for identification or error 
correction, but overall, bits of plaintext have a one-to-one relationship with bits of 
ciphertext. 

What makes algorithms good is that it is entirely key dependent whether 1's in the 
plaintext are represented by 0's or by 1's in the ciphertext. And on top of that, one 
cannot quite tell where in the ciphertext one would find a particular diffused plaintext 
bit (except by knowing the key, and thereby figuring out just where bits are pushed to). 

Diffusion and Substitution: Gnosis Cipher

Let's have some fun by developing a very simple algorithm that utilizes diffusion and 
substitution. It won't be all that strong, but we can understand it easily. After the name 
of my company, let us call it the "Gnosis cipher" (because most anyone with a real 
interest in breaking it will be able to "know" all the plaintext encrypted with it). For 
pedagogical convenience, the Gnosis Cipher will operate on characters rather than one 
bits. This cipher would not be difficult to encode and decode with pencil and paper. An 
honorable mention will be given to the tutorial taker who emails me the most clear, 
interesting, or clever "crack" of the Gnosis cipher. 

The Gnosis cipher combines a simple substitution cipher with diffusion over a block. In 
fact, the cipher performs two stages, the first for substitution, the second for diffusion 
(good ciphers mix them together much more). The first stage simple substitutes each 
alphabetic character with a different character according to a keyed table (in honor of 
the Caesar cipher it owes a debt to, it is restricted to Latin-style uppercase characters 
with no punctuation). The substitution table can be represented by a string of 26 letters, 
with no repetitions; implicit in the table is a top row of ordered letter, for example: 

    Plaintext letter: ABCDEFGHIJKLMNOPQRSTUVWXYZ



    Plaintext letter: ABCDEFGHIJKLMNOPQRSTUVWXYZ
    Substitution key: BNHULVDZIXKYFMCJEWQOSARPGT    

The substitution stage simply replaces each letter in the plaintext with a different one in 
the keyed table. The diffusion stage operates on the intermediate "substitution-text" in 
10-character blocks. Each indexed position in a substitution-text block moves to a 
different position in the ciphertext block. Basically, we just use the same kind of table as 
with the substitution stage, for example: 

    Starting Index: 0123456789
    Diffused Index: 5136097482    

In each substitution-text block, just look at an index position, and record the character 
found there in the corresponding position indicated by the keyed diffusion table. Of 
course, an encryption will usually involve performing diffusion on multiple sequential 
blocks. 

Reversing the algorithm is simple, just use the tables in the opposite order. A key for the 
algorithm consists of 26 letters followed by 10 digits, with no value repetitions of either 
(more compact representations of the key are easily possible). Every key will encode the 
same plaintext to a different ciphertext, which is our goal. 

The Gnosis cipher is not a good algorithm, as they go (although it is not terrible for 
pencil-and-paper ones). But the nice thing about it is the the Gnosis cipher already 
implements the most important concepts involved in algorithms that actually are strong. 

All praise XOR

One of the most widely used and useful operations in cryptographic algorithms is XOR. 
It is worth understanding just why XOR is such a helpful operation. XOR, in the sense 
it is used in cryptography, is a bitwise numeric function with a domain of a bit pair, and 
the range of a result bit (it has a slightly different, but isomorphic, use in formal logic). 
Probably tutorial takers are already familiar with XOR's result table, but let us take a 
look at it as a reminder: 

    XOR(1, 1) --> 0
    XOR(1, 0) --> 1
    XOR(0, 1) --> 1
    XOR(0, 0) --> 0    

We write the XOR function in the above table in a prefix notation, but most 
programming languages use an infix form. Don't worry about the notation, the above 
just helps illustrate the functional nature of XOR. Also, in most programming 
languages, the operation called XOR (or more accurately "bitwise XOR") does more 
than the above table shows, but only as a generalization. That is, an operation like C, 
Perl and Python "^" is actually the Boolean XOR of each corresponding bit in two 
bit-fields (or ASCII characters, integers, etc. considered as bit-fields). In principle, a 
language with only a single-bit XOR could simulate the bit-field XOR behavior by 
looping through each bit position (but computational efficiency benefits greatly from the 
compound bit-field XOR). 

So just what is so special about XOR? First, suppose that we want to perform a 
cryptographic substitution of a plaintext bit. We'd like an attacker not to be able to 
make any prediction (even statistical) about what the transformed value of our plaintext 
bit will be. With XOR, a plaintext zero bit might become either a ciphertext one or zero, 
depending on whether a zero or one is used as the "encryption bit" (just the second bit 



depending on whether a zero or one is used as the "encryption bit" (just the second bit 
in the domain pair). Likewise for a plaintext one. Complete lack of predictability of the 
transformation (unless you have access to the encryption bit) is ideal for cryptography. 

The other crucial feature of XOR is that it is lossless . In fact, XOR is directly 
reversible. That is, if we have Cb = Pb XOR  Kb, then we automatically know that Pb =  

Cb XOR Kb. That is, a reapplication of XOR to result of a first XOR operation will 
return to original (plaintext) bit if (and only if) the same encryption bit is used both 
times. Contrast this with the behavior of a different Boolean operation: 

    AND(1, 1) --> 1
    AND(1, 0) --> 0
    AND(0, 1) --> 0
    AND(0, 0) --> 0    

In performing an AND, we lose information. Suppose that we know 0 = Pb AND  Kb. 
It is true enough that we cannot reconstruct Pb without the encryption bit. However, if 
Kb happens to be 0, we cannot reconstruct Pb  even with the encryption bit! We have 
simply lost any way of getting Pb back. 

Snake-Oil Warning #1

As nice as XOR is in its behavior, it is not quite as nice as some folks naively (or 
maliciously) claim. A surprising number of real-world applications use an encryption 
that consists of nothing other than XOR. Mind you, there is one perfectly good case 
where this works: a one-time pad (OTP). If you happen to have as much key material 
available as plaintext to encrypt, XOR is provably perfect encryption (assuming key 
material is truly stochastic, i.e. it has an entropy equal to its length, and therefore a 
rate-of-language of 1). 

What a lot of flawed algorithms do is take a fairly small amount of key material, and 
XOR each plaintext block with a block of key, and call that result the ciphertext. This 
works fine for one block (for that long, it is a OTP). But as soon as you start reusing 
this same key block to encrypt multiple ciphertext, things fall apart. 

Just how does naive XOR "encryption" show its weaknesses? Basically, this 
"encryption" does very little to thwart frequency analysis. Suppose we use 8 byte blocks 
of plaintext and a corresponding 8 byte long encryption key (it doesn't make much 
difference if blocks are longer, the same argument applies, although requires more 
known ciphertext). Find some ciphertext, and simply temporarily ignore everything 
except bytes 1, 9, 17, etc. of the ciphertext. 

This plaintext corresponding to this first-of-each-block ciphertext will still have the 
same frequency regularities as the whole plaintext. And each identical plaintext byte will  
be transformed into the same ciphertext byte. So by knowing the the letter 'E' makes up 
about 13% of plaintext (assuming it is English prose), all we need do is look for a 
ciphertext byte value occurring at this same frequency (we simplify here by ignoring 
case and punctuation, but this is not important for the concept). Once we find these 
corresponding plaintext and ciphertext bytes, the key byte is given instantly by: KB = PB  

XOR CB. Or in the example: KB = 'E' XOR  'q' . And once we know this key bytes, we 
can decipher all the ciphertext values whose plaintext is not an 'E' without further work. 
Repeat the procedure for ciphertext bytes [2,10,18,...] and [3,11,19,...] and so on. 

Sub-algorithm Rounds



Almost all modern symmetric encryption algorithms consist of multiple "rounds" of a 
similar sub-algorithm. Sometimes they have special operations at the beginning and/or 
end of the process, but most of the work consists of repeated iteration of more-or-less 
the same simpler sub-algorithm. Each round performs a bit of encryption all by itself, 
but the bits typically become even more diffuse with repeated application of the 
sub-algorithm. In some cases, rounds are slightly different from each other in the sense 
of being indexed by different key-derived values or the like. But usually the gist of the 
sub-algorithm remains the same. 

Often cryptanalysts begin attacks on an algorithm by attacking a "simplified" version of 
the algorithm that has fewer rounds. Well-tested algorithms have a very carefully chosen 
number of rounds. It is rare that adding more rounds will weaken a initially plausibly 
strong algorithms. But one thing that adding extra rounds always does is add more 
computational burden to performing the encryption. In practical uses, you always want 
a faster algorithm rather than slower one, all other things being equal. So the goal in 
designing an algorithm is to have enough rounds to make it secure while having as few 
rounds as possible  to keep it fast. 

Of course, extra rounds added to a bad starting algorithm will have limited effect. For 
example, the Gnosis cipher presented above has a rather undesirable property when it 
comes to rounds. Performing multiple rounds of the Gnosis cipher is completely 
equivalent to performing just one round using a different initial key. Adding rounds has 
no effect whatsoever on the strength. If this is not immediately obvious, it is worthwhile 
for the tutorial user to page back and review the Gnosis cipher to understand why this 
happens. The effect is similar to, but simpler than, problems and limitations encountered 
by earnest attempts at creating encryption algorithms. 

S-Boxes

A typical, although not quite universal, feature of sub-algorithms in symmetric 
encryption algorithms is the use of "S-boxes" (the 'S' stands for 'substitution'). S-boxes 
are in fact just functions. Rather than simply operating on individual bits (as XOR does), 
and S-box takes N-bits of input and produce an N-bits of output. At their heart, 
S-boxes must be one-to-one functions because reversibility is required for decryption; 
but see the next panel for some complicating details. Each bit still gets transformed to a 
new value, but its transformation depends on the bits around it. 

Actually, once we start to look at S-boxes the notion of tracing a specific bit as it 
travels through an algorithm breaks down somewhat. It is not so much that bit-one of 
an S-box input corresponds to bit-one of its output; rather, the whole output block 
corresponds (a one-to-one relation) with the whole input block. But whether each 
individual bit is substituted, moved, both or neither is fuzzy. But as long as the 
correspondence is one-to-one, we can reverse the operation during decryption. 

The advantage of S-boxes is that they can be hand-tuned to maximize non-linearity of 
diffusion. Linear relations between inputs and outputs tend to make an attackers project 
easier. Most basic algebraic operations one might perform on a block fail to break up 
linearity in input/output relations (but some ciphers, like IDEA, nonetheless utilize 
solely algebraic operations, and get their strength via more rounds and other strategies). 

A limitation of S-boxes is basically the same as their strength. Since S-boxes are 
hand-tuned, they must be performed via lookups to tables rather than as fundamental 
operations. Practical constraints on both design costs and implementation requirements 



operations. Practical constraints on both design costs and implementation requirements 
(i.e. memory usage) proscribe that S-boxes operate on comparatively small input 
blocks. A lookup table with 2^6 entries or even 2^12 entries is not bad, but a lookup 
table with 2^32 entries is unworkable. Therefore, a number of S-boxes typically 
transform sub-blocks of a round input in a parallel fashion. The outputs of the collection 
of S-boxes is then combines and mixed using other operations. 

Avalanche Effects

This panel partially takes back two simplifying descriptions made in previous panels. 
Details are always messier. 

The idea of an avalanche effect is that we would like every bit in a cipher output to 
depend, not just on the key, but also on every bit of the plaintext input. Two plaintexts 
that differ by a single bit should nonetheless produce ciphertexts with no predictable 
similarity, even though encrypted with the same key. To accomplish this goal, 
encryption algorithms need to recruit input bits to serve a key-like role within the 
algorithm. But each input bit needs to serve this key-like role in a manner that is 
diffused throughout the entire ciphertext, not just in those ciphertext bits that are nearby 
or that have some other simple relation to the key-like input bits. 

The first caveat avalanche effects raises is as to our earlier style of talking about 
particular plaintext bits jumping around to specific new positions in the ciphertext. This 
simplification is not really right. The information in one individual bit of plaintext input 
is not simply moved to a new location in the ciphertext, but rather that one bit of 
information is diffused into the entire ciphertext. In a very real sense, each bit of 
ciphertext contains, e.g., 1/64th-of-a-bit of information about bit-one of the plaintext. It 
may seem odd to talk about less that one bit of information, but that is fundamentally 
what we have with cryptographic diffusion. 

The second caveat raised by avalanche effects is about S-boxes. The tutorial described 
S-boxes as having the same input- and output-block sizes to preserve a one-to-one 
relation between inputs and outputs. Well, that description is basically true, but may not 
be how you see S-boxes described elsewhere. For example, DES uses S-boxes that are 
often described as taking 6-bit inputs and producing 4-bit outputs. On the face of it, 
anything that does that is necessarily not fully reversible (so no decryption). But the 
lookup table for DES S-boxes really does have 64 (2^6) entries, and really does only 
have 4-bit outputs listed for each entry! 

How does DES actually manage to work? The trick is that DES' S-boxes do not, in a 
logical sense, have 6-bit input blocks. Logically, DES' S-boxes take 4-bit input values; 
but they also accept two extra bits that index which of four possible S-box functions to 
use for the transform. 4-bits are transformed into a different 4-bits, but the manner in 
which they are transformed depends two other key-like bits in the lookup table. We 
maintain reversibility, just so long as we are able to find those same two index bits on 
our way back through the decryption. 

Where do DES' S-box index bits come from, one may wonder. One possibility would be 
to derive these index bits from the key; and such would not be unreasonable in 
algorithm design. But what DES does instead is borrow copies of the bits in neighboring 
input blocks to the same round of parallel S-boxes, and use those as index bits. The 
wonderful side effect of this element of DES' design is that it creates a very strong 
avalanche effect when round input bits are allowed to affect the transformations other 
input bits undergo. 



Feistel Networks

A majority of serious modern encryption algorithms use a structure called Feistel 
networks. This structure allows each round of an algorithm to introduce new key 
material, provide additional plaintext diffusion, and assures that the overall algorithm 
remains reversible across multiple rounds (in fact, across as many rounds as you want). 
It is actually quite a remarkable accomplishment of a very simple structure. 

In a Feistel network algorithm, the round input text of each round (including the 
original plaintext) is divided into two equal pieces. Each round swaps the left and right 
half of the current block around, while introducing keyed XOR substitution in just one 
of the directions. That is, the output the ith round of a Feistel network is determined 
from the output of the i-1 round by: 

    L{i} = R{i-1}
    R{i} = L{i-1} XOR f(R{i-1},K{i})    

The right-side output moves to the left-side with no transformation at this stage. The 
left-side, however, moves back to the right after an XOR with some function f. All that 
f is constrained by is that its domain is the pair of the last right-side output and some 
key material (the ith sub-key, derived from the key in some manner). The design of f is 
where the real work of the cipher goes on. For example, in the case of DES, f includes 
all the S-box transformations and a few other operations. 

Why is a Feistel network reversible? Clearly, R{i-1}  can be obtained from L{i} with 
no work at all. How do we get L{i-1}? That is straightforward also, by the nature of 
XOR: 

    L{i-1} = L{i-1} XOR f(R{i-1},K{i}) XOR f(R{i-1},K{i}    

Or, simplifying:

    L{i-1} = R{i} XOR f(L{i},K{i})    

As long as we can still construct the ith sub-key (which we should have no problem 
with if we have the key), we have accomplished the reverse algorithm of a Feistel 
network. 

Public-Key Encryption

Getting Started

In 1975 Whitfield Diffie and Martin Hellman proposed a different sort of relation 
between encryption and decryption keys. What if encryption and decryption were 
performed using two different, but related, keys? The consequences turn out to be quite 
radical. What we get is what is known as "public-key" or "asymmetric" algorithms. 

The previous part of this tutorial discusses the general concept of public-key encryption 
a bit more. In this one, we will hop right in to a look at some actual public-key 
algorithms. 

The most popular public-key algorithm by a large margin is called RSA, after its 
creators Rivest, Shamir and Aldeman. The only real hindrance to RSA's even more 
widespread use was its patent status; however, that patent has recently expired, and the 
algorithm is now public-domain (the author, like others, always had concerns about the 



algorithm is now public-domain (the author, like others, always had concerns about the 
propriety of granting a patent for pure math; but it is moot now). The El Gamal scheme 
runs a somewhat distant second, and is based on the difficulty of calculating discrete 
logarithms in a finite field. RSA is based on the difficulty of factoring, and will be the 
only public-key algorithm discussed in greater detail in this tutorial. 

How RSA Works I

The first thing to know about RSA is that no one knows for certain that it is secure. Or 
more specifically, no one knows for sure that factoring is a hard problem, which is the 
assumption that RSA rests on. Actually, no one knows for sure that breaking RSA does 
not have a shortcut other than factoring either. Then again, no one knows for sure 
whether P = NP, which largely amounts to the same thing. As unproven theorems go, 
RSA rests on about the most widely believed ones held by a consensus of serious 
mathematicians. But still, it is unproven. 

The actual operations involved in RSA are remarkably simple, and are elementary 
("elementary" in mathematics refers to methods or proofs that use only integers). To 
generate an RSA key pair, first select two primes, p and q of the same approximate 
magnitude. In practice, these primes are selected by choosing random large odd 
numbers, and eliminating composites by iterating probabilistic primality tests. Several 
such tests exist that will, on each iteration have an X% probability of detecting a 
composite number (the better tests have X > 80%). Repeating the test numerous times 
can eliminate composites with an arbitrarily good guarantee of correctness. The basic 
math of RSA does not depend on the size of p and q, but to make it secure practically, 
you want p and q to both be 100-200 digits long, or longer even. 

Several calculations are made once p and q are chosen. Schneier (see Resources) or 
another more extended treatment will explain the mathematical grounds in more detail; 
for now we just show what is calculated. First we calculate n = p * q. Next we select 
an exponent e that is relatively prime to (p-1) * (q-1). Common choices for e are 3, 17, 
and 2^16+1, i.e. 65537 (each of these has only two 1 digits in their binary 
representation, which speeds exponentiation in practice). After this, we create a 
decryption key d such that: 

    (e * d) mod ((p-1)*(q-1)) = 1 

Or, in other words:

    d = e^-1 mod ((p-1)*(q-1))
    

How RSA Works II

Once d and n are calculated, as shown in the previous panel, and e is chosen, p and q 
themselves are not used, and their all trace of their values should be removed to prevent 
unintended revelation. 

Encryption and decryption are performed as follows. In the below equations, M is a 
number less than n (an entire message may need to be broken into multiple such M's, 
each one encrypted as a block). Ciphertext is denoted as 'C', as per usual:

    C = M^e mod n
    M = C^d mod n    

The public-key in this system consists of n and e. We will call this key '[e, n]'. You can 



The public-key in this system consists of n and e. We will call this key '[e, n]'. You can 
tell all the world these values. The private-key consists of d. Keep this value to yourself, 
or else everyone will be able to decrypt the private messages sent to you. 

You might wonder why an attacker cannot simply calculate d herself, since you have 
already given her  n = p * q and e. Surely that is enough to reconstruct d with a little 
work! Actually, we have given away little of value. Even though an attacker has p * q, 
she does not have (p-1)*(q-1) , which is what she really needs. Unless she can factor 
n, there is no known easy way of deriving the latter from the former. And factoring n is 
believed to be computationally infeasable when n is a few hundred digits long. By the 
way, key lengths of RSA keys are often or usually described by their number of bits 
rather than their number of decimal digits (so you may need to divide or multiply by 
about three-and-a-half to convert between these ways of describing keys). 

The lovely effect of this arrangement is that you need not worry at all about the security 
of your public-key, you can send it in unsecured email, or publish it in the newspaper. 
Anyone who sees your public-key can encrypt a message that you alone can decrypt 
(not even the sender can decrypt it; although the sender could, of course, keep the 
pre-encrypted original). 

An RSA Example

Let us look at an example of RSA in action, albeit one with numbers far too small to 
resist factoring. For this example, I borrow directly from Schneier (see Resources). 

Let p = 47 and q = 71. We calculate, n = p * q = 3337. The encryption exponent e 
must have no factors in common with:

    (p-1)*(q-1) = 46 * 70 = 3220    

We may therefore choose e = 79 (we could have used other values equally well). We 
now calculate:

    d = 79^-1 mod 3220 = 1019

Publish [e, n], keep d secret, and discard p and q. Each message we can encrypt in the 
example must be a number smaller than 3337. In other words, we might divide an actual 
plaintext into 11-bit blocks and encrypt each block in the same manner. The ciphertext 
simply concatenates the encrypted blocks (maybe padding to 12-bits to include every 
ciphertext possible). 

For example, suppose that one of our correspondent's 11-bit blocks is "01010110000"; 
in decimal this is 688. Our correspondent creates a ciphertext block by calculating:

    C = 688^79 mod 3337 = 1570 = "011000100010"

Our correspondent sends us this message, "011000100010", and we can decrypt it by 
calculating:

    M = 1570^1019 mod 3337 = 688 = "01010110000"
    

Of course, it hardly need be said that factoring 3337 is hardly an insurmountable 
obstacle for a determined attacker with a couple pages of scratch paper and a pencil. By 
using keys hundreds of time this long, we set the bar higher than even attackers with 
millions of MIP-years can surmount (or so it is believed) 



Signatures

An observant tutorial user will have noticed something peculiar and useful about our 
RSA encryption and decryption algorithms. Remember these equations? 

    C = M^e mod n
    M = C^d mod n

M is what we have thought of as plaintext, and C is what we have thought of as 
ciphertext. But mathematically, both M and C are just numbers between zero and n. 
Therefore, we could equally well write the equations: 

    M = C^e mod n
    C = M^d mod n

Here we get a whole new concept, just by switching around C and M. Suppose Alice 
holds the private-key d and wishes to assure Bob that the message M was really from 
her, rather than from some imposter, Mallory. All Alice needs to do is calculate C = 
M^d mod n, and send C to Bob. 

Mallory can easily intercept C, and "decrypt" it using the public-key [e,n] (that everyone 
knows because it has been published). But with this interception, all Mallory can do is 
determine M, the same thing Bob can do. Alice makes no secret of the fact she created 
M, in fact she is trying to prove she did so. Suppose Mallory also substitutes a phony C' 
before forwarding C' to Bob, to try to pass it off as Alice's message. Bob might well be 
fooled upon initial receipt, but once he tries decrypting it, Bob will not find it plausible 
that C' originated with Alice. 

The problem for Mallory is that she has no way of creating a ciphertext C' that decrypts 
to a plausible false message. She can easily create an arbitrary, random C', but this 
arbitrary C' will generally decrypt to gibberish (for widely-used key lengths, the chance 
of getting non-gibberish with a random C' are miniscule). And Mallory wants to 
substitute a specific false message (e.g. Mallory wants to replace Alice's message "I 
agree to the contract" with the false message "I refuse to sign the contract"). Without 
having d, Mallory has no way to create a C' that will decrypt to the desired false 
message, nore even to any non-gibberish message at all. Once Bob decrypts the note 
that (purportedly) comes from Alice to something meaningful (and even topical), he can 
be assured it comes from Alice (or at least from someone who knows d, this alone 
cannot assure that Mallory has not managed to steal d by some other means). 

At its heart, what Alice has done, is "digitally sign" her message. Real protocols provide 
additional features and improve efficiency. But RSA-in-reverse is identical in concept to 
all digital signature procedures. 

An Email Security Protocol I

RSA is an extremely useful algorithm; however, a full fledged messaging protocol will 
generally involve a number of elements beyond RSA itself. Popular programs like PGP, 
GPG, and Lotus-Notes combine a number algorithms to form a total email security 
system. In outline, the programs mentioned have pretty much the same elements. Let us 
take a look at what these elements are, and at how we might hypothetically build our 
own email security protocol. 

One important thing we have not yet mentioned about RSA is that it is quite slow in 
practice. As a mathematical abstraction, RSA looks like a good way to encrypt a 



practice. As a mathematical abstraction, RSA looks like a good way to encrypt a 
message, but in real-life applications, we just do not have the CPU time to spare for 
RSA. Directly encrypting a message with RSA is likely to be approximately 100 times 
as slow in software as is encrypting with DES (and DES is not a particulary speedy 
algorithm). By combining bits and pieces of several algorithms, we can create a practical 
program with desirable performance and security characteristics. 

Just what would we like to accomplish with an email security protocol? Let us list some 
goals: 

We would like to enable correspondents to send private messages to us without 
requiring separate security procedures for key-exchange (and we would like to 
write back to such correspondents with the same ease).
We would like to allow correspondents to "sign" messages and thereby provide a 

reasonable assurance about the true origin of messages.
As a correlary of the first goal, we would like to have a reasonable assurance that 

the keys we believe to correspond with a certain person really are associated with 
that person (no spoofing of identities).
We would like the whole protocol to make as limited computational demands as 

possible while obtaining the other goals.
We would like the whole application or system that implements our protocol to be 

transparent and user-friendly.

The last goal falls outside the scope of this tutorial, but it is not something to ignore 
when one gets to the actual programming and design. 

An Email Security Protocol II

How shall we accomplish our collection of goals? We have seen all the building blocks 
in this tutorial, let us put them together. 

Suppose for a start that Alice wishes to send a private message to Bob, and that she has 
optained Bob's public-key in a way that reliably links Bob to that key. Let us call Bob's 
public-key PUB_B. Further, let us refer to RSA encyption by the name E_RSA, and to 
our favorite fast and secure symmetric key algorithms as E_SYM. While we are at it, let 
us call our favorite pseudo-random number generator as PRN. For Alice's message M 
that she wishes to send to Bob, she calculates and sends: 

    [ E_RSA{PUB_B}(PRN), E_SYM{PRN}(M) ]    

That is to say, Alice (1) Generates a pseudo-random "session key", which is of a 
moderate length (e.g. 64-, or 96- or 128-bits); (2) Encrypts the moderate sized session 
key using (slow) RSA encryption and Bob's public-key; (3) Encrypts the longer 
plaintext M using a fast symmetric algorithm. Only a little bit of encryption with RSA is 
necessary: Bob is able to recover the session key because he has his own private-key for 
RSA; and Bob is able to recover M because the protocol specifies the symmetric 
algorithm used to encrypt it one the session key is known. 

We obtain the advantage of RSA in avoiding a requirement for externally secured key 
exchange; and we also obtain the speed advantages of symmetric algorithms. 

An Email Security Protocol III

What about if Alice wants to sign a message to Bob, so that Bob knows with reasonable 
confidence that the message is genuinely from Alice. We have already seen that Alice, in 
principle, could encrypt the whole message with her RSA private-key. But this is also 



principle, could encrypt the whole message with her RSA private-key. But this is also 
uneccesarily CPU intensive. Alice has an easier way to go. 

Let H refer to our favorite cryptographic hash. And as before, let E_RSA refer to RSA 
encryption. Here we can refer to Alice's RSA private-key as PRIV_A, and her 
public-key as PUB_A. To send a signed message M to Bob, Alice calculates and sends: 

    [ M, S = E_RSA{PRIV_A}(H(M)) ]    

Notice that the first part of what Alice sends is simply the plaintext message itself with 
no transformation peformed whatsoever. The message itself becomes resistant to 
tampering by virtue of what follows it. The "signature" to M is calculated with two 
operations. First, a cryptographic hash is calculated on the message. Alice need not send 
this hash itself to Bob, since he can calculate it equally well himself. Second, the hash is 
encrypted using Alice's RSA private-key. The hash is of moderate length, e.g. 128- or 
192-bits, so does not take to much work to RSA encrypt. An attacker Mallory could 
invent a false message M'; and Mallory can also easily calculate H(M'). But what 
Mallory cannot do is compute the RSA encryption of H(M') with Alice's private-key. 
Suppose Mallory substitutes the message [M', S'] for Alice's message [M, S]. When Bob 
decrypts S' using Alice's RSA public-key, he will get a value that is not equal to H(M'); 
and Bob will know the whole message [M', S'] was not authentically signed by Alice 
(this alone does not distinguish an attack from a signal corruption, but at least it shows 
something is not right). 

Suppose, while we are at it, that Alice wants to keep her signed message to Bob private 
as well. No problem. All  Alice needs to do is substitute [M, S] for M in the above 
described encryption protocol. In other words: 

    [ E_RSA{PUB_B}(PRN), E_SYM{PRN}([M,E_RSA{PRIV_A}(H(M))]) ]
    

An Email Security Protocol IV

In the earlier parts of our email security protocol, we have simply assumed that Alice 
and Bob have a trustworthy way of knowing each others RSA public keys, PUB_A and 
PUB_B, respectively. But a channel over which PUB_A or PUB_B might be 
transmitted is potentially subject to falsification. Let us suppose that the protocol were 
to start by Alice sending an unsecured email message to Bob that said, "Hi Bob, My 
RSA public-key is PUB_A, Alice." Assuming Mallory can insert his own false substitute 
into the channel, he can send the message "Hi Bob, My RSA public-key is PUB_M, 
Alice" (Mallory would here also delete Alice's genuine message). 

Next time Bob sends a "private" message to Alice, Mallory can intercept and read it at 
will.  In fact, if Mallory has also thought to send a message to Alice that says, "Hi Alice, 
My RSA public-key is PUB_M, Bob." If Mallory has done this, he can stay in the 
middle of the channel, decrypt messages from both Alice and Bob, then re-encrypt them 
using his own private-key and/or Bob and Alice's public-keys, then send re-encrypted 
false messages along (either altered, or with the same M Alice or Bob wrote). Notice 
that Mallory knows both PUB_A and PUB_B, while all Bob and Alice know is 
PUB_M, even though they falsely believe PUB_M to be one of the former things. 

One thing Alice and Bob could do to make sure they exchange genuine public-keys is to 
meet face-to-face (and uncoerced into deceiving while face-to-face), and tell each other 
their public-keys. Or Alice and Bob might have a previous secure channel already 
established (but if so, why do they need our protocol?). However, face-to-face meetings 



established (but if so, why do they need our protocol?). However, face-to-face meetings 
are likely to be inconvenient. Fortunately, Alice and Bob have another option. They can 
rely on a trusted intermediary, Trent. In real-life transactions, notary publics, banks, 
escrow lawyers, police, and others play this kind of role. For our protocol, we need 
some sort of authenticatable contact with Trent also (and we need to trust Trent). In 
"public-key infrastructure" talk, Trent is known as a "key certifying authority." 

What Trent does is have a face-to-face meeting with Alice, and exchange PUB_A and 
PUB_T. Trent also has a similar meeting with Bob (obviously, Trent need not be a 
literal human individual). In order to reliably obtain Bob's public-key, Alice encrypts 
(but need not sign) the following message with PUB_T: "Hi Trent, what is Bob's 
public-key?" Trent responds with a message signed with PRIV_T: "Bob's public-key is 
PUB_B." In fact, Trent probably will not send this message to Alice personally, but will 
make it public knowledge via Trent's website, newspaper, etc. Mallory can easily get 
PUB_B this way, but that is fine, Mallory is welcome to have PUB_B. Since Trent's 
message is signed with PRIV_T, everyone can determine the message really comes from 
Trent (assuming everyone knows they have a genuine copy of PUB_T, hence the 
face-to-face meetings with Trent). 

Protocols like PGP actually distribute Trent's role in a "web-of-trust" rather than with a 
hierarchical authority. With a web-of-trust you can find that a lot of people whom you 
trust at least a little bit have vouched for Bob's public-key. If you have had a 
face-to-face (or other secure) contact with any of these vouchers, you can trust PUB_B. 

Resources

Further Reading

The nearly definitive beginning book for cryptological topics is Bruce Schneier's 
Applied Cryptography (Wiley). I could not have written this tutorial without my copy 
of Schneier on my lap to make sure I got everything just right. 

Online, a good place to start in cryptology is the  Cryptography FAQ. 

To keep up on current issues and discussions, I recommend subscribing to the Usenet 
group sci.crypt. 


