Introduction to Cryptology Concepts||

| ntroduction to the Tutorial

Navigation

Navigating through the tutorial is easy:
e Use the Next and Previous buttons to move forwardoaciward through the
tutorial.
e Use the Menu button to return to the tutorradnu.
¢ If you'd like to tell us what you think, use the Feedbawatton.
¢ If you need help with the tutorial, use the Hbigton.

Who isthistutorial for?

This tutorial (and its predecessor) is aimed at progranwigssvould like to
familiarize themselves with cryptology, tischniques, its mathematical and concepti
basis, and itingo. Most users of this tutorial will have encountevedious
descriptions of cryptographic systems, and gerstaths about the security or
insecurity of particular softwar@nd systems, but without entirely understanding the
backgroundf these descriptions and claimglditionally, many users dhis tutorial
will be programmers and systems analysts wieoggloyers have plans to develop or
implement cryptographisystems and protocols (perhaps assigning such obligadior
the very people who will benefit from this tutorial).

The focus of this second part of a two part tutorial isttmduce readers to
intermediate cryptographic conceptée first part introduced the very basic concef
of cryptography, such as what encryption is and what key#aneell, the first part
covered the basic notions afyptanalysis -- at least enough to know what it is to br
a protocol and what some typical attacks bisers of thigutorial should feel
comfortable with these introductongtions (the first part is a good starting point fol
thosenot already familiar with these matters).

The tutorial in front of you addresses cryptograghgorithms and protocols as such
The goal of this tutoriak not to cover the coding and detailed workings of specific
algorithms and protocols, but rather to lead users thrthegbonceptual background
necessary to understand armhstruct cryptographic algorithms and protocalser

youfinish this tutorial you will have most of the buildibépcks you need to think abo

cryptography.

What tools use cryptography?

Some form of cryptography is nearly everywhere in comgatémologyPopular
standalone programs, like PGP and G&i@ jn securing communicationg/eb
browsers and otheretworks client programs implement cryptographic layetkair
channelsDrivers and programs exist to secure fidsdisk, and control access there
Some commercial programse cryptographic mechanisms to limit where they may
installed and how they may be usBdsically, every timgou find a need to control th
access and usage of compuyteygrams or digital data, cryptographic algorithms wii
up constituting important parts of the protocol for use of thegrams/data.

Protocols and Algorithms

One particular introductory notion introduced in the first part of thistutorial isworth
emphasizing again before we get underway. It isimportant to make the distinction
between protocols and algorithms.

A protocol is aspecification of the complete set of stepsinvolved in carrying out a
cryptographic activity, including explicit specification of how to proceed in every
contingency. An algorithm is the much narrower procedure involved in transforming
some digital datainto some other digital data. Cryptographic protocols inevitably
involve using one or more cryptographic algorithms, but security (and other
cryptographic goals) is a product of atotal protocol.

Clearly, using an strong and appropriate algorithm is an important el ement of creating a
strong protocol, but it is not sufficient by itself. The first sections of this tutorial will
mostly address how cryptographic algorithms work; the later sections will take alook at
the use of some algorithmsin actual protocols, particularly protocols combining
multiple algorithms to accomplish complex goals.

Block Ciphersand Stream Ciphers

Encryption algorithms can be divided into block ciphers and stream ciphers. Stream
ciphers are able to take plaintext input one bit (or one byte) at atime, and output a
corresponding ciphertext bit (byte) right away. The manner in which abit (byte) is
encrypted will depend both upon the key used and upon the previous plaintext stream
encrypted leading up to this bit (byte).

In contrast to stream ciphers, block ciphers require an entire block of input plaintext
before they can perform any encryption (typically blocks are 64-bits or more). In
addition, given an identical input plaintext block, and an identical key, ablock cipher
will product the same ciphertext no matter where in an input stream it is encountered.

Although stream ciphers have some advantages where immediate responses are
required, for example on a socket, the large majority of widely-used modern encryption
algorithms are block ciphers. In thistutorial, whenever symmetric encryption agorithms
are discussed generically, the user should assume the tutorial isreferring to block
ciphers.

Contact

David Mertz isawriter, a programmer, and a teacher, who always endeavors to
improve his communication to readers (and tutorial takers). He welcomes any
comments, please direct them to <mertz@gnosis.cx>.

Symmetric Encryption Algorithms

Getting Started

The popular symmetric encryption algorithmsin use today have alot more in common,
at aconceptual level, than they have differences between them. A certain set of basic
operations and frameworks are known to stand on solid mathematic ground, and have
withstood years of cryptanalysis. As such, al the general remarks of this section will
apply amost equally well to every symmetric algorithm you might find yourself working

with. The speci'fic details can thieund in the documentation associated with a spe(ﬁ
algorithm.

Of using the right basic operations and frameworks doeguarantee you a strong
algorithm.There are many subtieays to put things together in ways that introduce
significant weakness to attack#nderstanding this tutorig not enough to invent yot
own strong algorithmHowever,"rolling your own" is not a useful goal for most
programmersnyway.There are so many well-tested algorithms out theaeyou are
almost surely better off starting with them amokrrying only about implementation.
This tutorial will showyou enough to understand the logic behind what you are
implementing

Diffusion and Substitution: General

Every modern symmetric encryption algorithm finds waysaok in two basic
operationsdiffusion and substitutiofThat is, the content of a ciphertext both replac
the bitsand bytes of the plaintext with different bits and bysesstitution), and move
those replaced bits and bytegliffierent locations in the ciphertext.

Unlike with old-fashioned hand-calculated ciphers, moaégarithms inevitably
operate at a bit level in the maModern algorithms usually do involve some
transforms at thaibble, byte, word, or block level; but these largansforms usually
break down and rearrange the bits witthiese blocks in other parts of the algorithm

Most modern algorithms produce ciphertexts of exacths#me size as was the
original plaintextMaybe a bit or twdere and there is added for identification or er
correction, but overall, bits of plaintext have a one-to+efaionship with bits of
ciphertext.

What makes algorithms good is that it is entirely #ependent whether 1's in the
plaintext are represented by Otsby 1's in the ciphertexAnd on top of that, one
cannotquite tell where in the ciphertext one would findaaticular diffused plaintext
bit (except by knowing the kegnd thereby figuring out just where bits are pushed

Diffusion and Substitution: Gnosis Cipher

Let's have some fun by developing a very simple algortianutilizes diffusion and
substitutionlt won't be allthat strong, but we can understand it eagiffer the name
of my company, let us call it the "Gnosis cipher" (becamsst anyone with a real
interest in breaking it will be abte "know" all the plaintext encrypted with i§or
pedagogical convenience, the Gnosis Cipher will operatdharacters rather than on
bits. This cipher would not bdifficult to encode and decode with pencil and pagar.
honorable mention will be given to the tutorial taker vehaails me the most clear,
interesting, or clever "crack" die Gnosis cipher.

The Gnosis cipher combines a simple substitution cipitardiffusion over a blockin
fact, the cipher performsvo stages, the first for substitution, the secondliifusion
(good ciphers mix them together much moféjefirst stage simple substitutes each
alphabetic charactevith a different character according to a keyed tablédgimor of
the Caesar cipher it owes a debt to, restricted to Latin-style uppercase charactel
with no punctuation)The substitution table can be represented biring of 26 letters
with no repetitions; implicit in th&able is a top row of ordered letter, for example:

Pl ai ntext |etter: ABCDEFGH JKLMNOPORSTUVWKYZ

Substitution key: BNHULVDZI XKYFMCJ EV\!IBARPGT

The substitution stage simply replaces each letter ipl#iatext with a different one ir
the keyed tableThe diffusion stage operates on the intermediatdstitution-text" in
10-character block&ach indexegbosition in a substitution-text block moves to a
differentposition in the ciphertext blocRasically, we just usthe same kind of table
with the substitution stage, fexample:

Starting Index: 0123456789
D ffused | ndex: 5136097482

In each substitution-text block, just look at an ingesition, and record the characte
found there in theorresponding position indicated by the keyed diffusadaie. Of
course, an encryption will usually involperforming diffusion on multiple sequential
blocks.

Reversing the algorithm is simple, just use the tabléseimpposite ordeA key for the
algorithm consists of 2etters followed by 10 digits, with no value repetitiongidher
(more compact representations of the key are gasdgible) Every key will encode th
same plaintext to different ciphertext, which is our goal.

The Gnosis cipher is notgmod algorithm, as thego (although it is not terrible for
pencil-and-paper oned}ut the nice thing about it is the the Gnosis cipher already
implements the most important concepts involved in algorithatsactually are strong

All praise XOR

One of the most widely used and useful operatiomsyiptographic algorithms is XOF
It is worth understandingist why XOR is such a helpful operatiofOR, in the sense
it is used in cryptography, is a bitwise numeric functiotin a domain of a bit pair, ant
the range of a result it has a slightly different, but isomorphic, use in forihogic).
Probably tutorial takers are already familiar Wi@R's result table, but let us take a
look at it as aeminder:

XOR(1, 1) --> 0
XOR(1, 0) --> 1
XOR(0, 1) --> 1
XOR(0, 0) --> 0

We write the XOR function in the above table in a prafixation, but most
programming languages use an infix fowon't worry about the notation, the above
just helpdllustrate the functional nature of XORIso, in mostprogramming
languages, the operation called XOR (or maeurately "bitwise XOR") does more
than the above tabkhows, but only as a generalizatidhat is, an operatiolike C,
Perl and Python "" is actually the Boolean XOReath corresponding bit in two
bit-fields (or ASCII charactersntegers, etc. considered as bit-fields)principle, a
language with only a single-bit XOR could simulateltfidield XOR behavior by
looping through each bit positidbut computational efficiency benefits greatly from
compound bit-field XOR).

So just what is so special about XOR? First, supposevihatant to perform a
cryptographic substitution off@aintext bit.We'd like an attacker not to be able to
makeany prediction (even statistical) about what the transfonaee of our plaintexi
bit will be. With XOR, a plaintextzero bit might become either a ciphertext one or :
depending on whether a zero or one is used as the "encrigfitigust the second bit

in the domain pair).ikewise fora plaintext oneComplete lack ofvpredictability of the
transformation (unless you have access to the encryptias 8al for cryptography.

The other crucial feature of XOR is that itassess. In fact, XOR is directly
reversible. That is,if we haveCb = Pb XOR Kb, then we automaticallynow thatPb =
Cb XOR Kb. That is, areapplication of XOR to result of a first XOR operation will
return to original (plaintext) bit if (and only if) the samcryption bit is used both
times.Contrast this with theehavior of a different Boolean operation:

AND(1, 1) --
AND(1, 0) --
AND(O, 1) --
AND(O, 0) --

VVVYV
[eNeNok o]

In performing an AND, wéose infor mation. Supposehat we knowo = Pb AND Kb.
It is true enoughhat we cannot reconstruct Pb without the encryptiorHaitvever, if
Kb happens to be 0, we cannot reconstruceiAm with the encryption bit! We have
simply lost any wayf getting Pb back.

Snake-Oil Warning #1

As nice as XOR is in its behavior, it is not quite as agsome folks naively (or
maliciously) claim A surprisingnumber of real-world applications use an encryptior
thatconsists of nothing other than XORind you, there is onperfectly good case
where this worksa one-time pad (OTPIf you happen to have as much key materiz
available aplaintext to encrypt, XOR is provably perfect encrypijassuming key
material is truly stochastic, i.e. it haseamtropy equal to its length, and therefore a
rate-of-languagef 1).

What a lot of flawed algorithms do is take a fairly sraafiount of key material, and
XOR each plaintext block withlalock of key, and call that result the ciphert&tis
works fine for one block (for that long, it is a OTBut as soon as you start reusing
this same key block to encrymiultiple ciphertext, things fall apart.

Just how does naive XOR "encryption" show its weakne&asi@ally, this
"encryption” does very little to thwaltequency analysiSuppose we use 8 byte bloc
of plaintext and a corresponding 8 byte long encryption kelo@gsn't make much
difference if blocks are longer, the saargument applies, although requires more
known ciphertext)Find some ciphertext, and simply temporarily igneverything
except bytes 1, 9, 17, etc. of the ciphertext.

This plaintext corresponding to this first-of-each-blogshertext will still have the
same frequency regularitias the whole plaintexind each identical plaintext bytell
be transformed into the same ciphertext b$tebyknowing the the letter 'E' makes t
about 13% of plaintetassuming it is English prose), all we need do is loolafor
ciphertext byte value occurring at this same frequencys{mplify here by ignoring
case and punctuation, but thiswat important for the concepnce we find these
corresponding plaintext and ciphertext bytes, the keyibyjwen instantly byks = PB
XOR CB. Or inthe examplekB ='E'XOR 'g' . And once we knowhis key bytes, we
can decipher all the ciphertext valwaisose plaintext is not an 'E' without further wo
Repeathe procedure for ciphertext bytes [2,10,18,...] @#1,19,...] and so on.

Sub-algorithm Rounds

Almost all modern symmetric encryption algorithms corsishultiple "rounds” of a
similar sub-algorithmSometimeshey have special operations at the beginning and
end ofthe process, but most of the work consists of repettiedion of more-or-less
the same simpler sub-algorithBach round performs a bit of encryption all by itself,
butthe bits typically become even more diffuse with repeagpgdication of the
sub-algorithmIn some cases, rounds atightly different from each other in the sen:
of beingindexed by different key-derived values or the IRat usually the gist of the
sub-algorithm remains the same.

Often cryptanalysts begin attacks on an algorithrattacking a "simplified” version o
the algorithm that hafewer roundsWell-tested algorithms have a very carefuhoser
number of rounddt is rare that adding more rounadl weaken a initially plausibly
strong algorithmsBut onething that adding extra roundkvays does is add more
computational burden to performing the encryptiarpractical uses, you always war
a faster algorithm rathéinan slower one, all other things being eg8althe goain
designing an algorithm is to haesough roundsto make it secure while havirag few
rounds as possible to keep it fast.

Of course, extra rounds added to a bad starting algowitlimmave limited effectFor
example, the Gnosis cipheresented above has a rather undesirable property whe
comes to round$erforming multiple rounds of the Gnosipher is completely
equivalent to performing just one rounsing a different initial key. Adding rounds ha
no effect whatsoever on the strengttthis is notimmediately obvious, it is worthwhil
for the tutorial useto page back and review the Gnosis cipher to understanthighy
happensThe effect is similar to, but simpler thgrpblems and limitations encounter
by earnest attempts ateating encryption algorithms.

S-Boxes

A typical, although not quite universal, featuresab-algorithms in symmetric
encryption algorithms is the usé"S-boxes" (the 'S' stands for 'substitutioB-boxes
are in fact just functions. Rather than simply operatingndividual bits (as XOR does
and S-box takes N-bits @iput and produce an N-bits of outpAt.their heart,
S-boxes must be one-to-one functions because reversibitgquired for decryption;
but see the next panel for sonmmplicating detailsEach bit still gets transformed to
new value, but its transformation depends on the bits aiitund

Actually, once we start to look at S-boxes the notiotmaufing a specific bit as it
travels through an algorithbreaks down somewhat.is not so much that bit-one of
anS-box input corresponds to bit-one of its output; rattierwhole output block
corresponds (a one-to-one relationdh the whole input blockBut whether each
individual bitis substituted, moved, both or neither is fuByt as longas the
correspondence is one-to-one, we can reversepigation during decryption.

The advantage of S-boxes is that they can be hand-tomeaximize non-linearity of
diffusion. Linear relationdetween inputs and outputs tend to make an attackers p
easier Most basic algebraic operations one might perfoma block fail to break up
linearity in input/outputelations (but some ciphers, like IDEA, nonetheless utilize
solely algebraic operations, and get their strength via noorels and other strategie

A limitation of S-boxes is basically the same as tegngth Since S-boxes are
hand-tuned, they must Iperformed via lookups to tables rather than as fundamen
operationsPractical constraints on both design costsiampdementation requirement

(i.e. memory usage) proscribieat S-boxes operate on comparatively small input
blocks.A lookup table with 26 entries or even 2"12 entries ishaot but a lookup
table with 2*32 entries is unworkableherefore, a number of S-boxes typically
transform sub-blocksf a round input in a parallel fashiorhe outputs of theollection
of S-boxes is then combines and mixed using aiperations.

Avalanche Effects

This panel partially takes back two simplifyidgscriptions made in previous panels.
Details are alwaymessier.

The idea of an avalanche effect is that we wouldéiery bit in a cipher output to
depend, not just on the kdyyt also on every bit of the plaintext inplitvo plaintexts
that differ by a single bit should nonethelpssduce ciphertexts with no predictable
similarity, eventhough encrypted with the same k&p. accomplish this goal,
encryption algorithms need to recruit input bits to serkeyalike role within the
algorithm.But each input biheeds to serve this key-like role in a manner that is
diffused throughout the entire ciphertext, not just in thadygkertext bits that are near
or that have some othsimple relation to the key-like input bits.

The first caveat avalanche effects raises is as teanlier style of talking about
particular plaintext bitfjumping around to specific new positions in the cipher{Exis
simplification is not really rightThe information irone individual bit of plaintext input
is not simply moved ta new location in the ciphertext, but rather that one bit of
information is diffused into the entire ciphertextavery real sense, each bit of
ciphertext contains, e.dl/64th-of-a-bit of information about bit-one of thiintext.|t
may seem odd to talk about less that onefaitformation, but that is fundamentally
what we have witleryptographic diffusion.

The second caveat raised by avalanche effects is S8HomtesThe tutorial described
S-boxes as having the samput- and output-block sizes to preserve a one-to-one
relation between inputs and outputgell, that descriptioris basically true, but may nc
be how you see S-boxdsscribed elsewherBor example, DES uses S-boxes that :
often described as taking 6-bit inputs and producing dthijiuts.On the face of it,
anything that does that iecessarily not fully reversible (so no decryptioBut the
lookup table for DES S-boxesally does have64 (2"'6) entries, anckally does only
have 4-bitoutputs listed for each entry!

How does DES actually manage to work? The trick isif®' S-boxes do naty a
logical sense, have 6-biinput blocksLogically, DES' S-boxes take 4-bit inpdlues;
but they also accept two extra bits thatex which of four possible S-box functions t
use for thdaransform4-bits are transformed into a different 4-blisf the manner in
which they are transformed depends btleer key-like bits in the lookup tabM/e
maintainreversibility, just so long as we are able to find those saméndex bits on
our way back through the decryption.

Where do DES' S-box index bits come from, one may woe.possibility would b
to derive these index bits from tkey; and such would not be unreasonable in
algorithm designBut what DES does insteadlsrrow copies of the bitg1 neighboring
input blocks to the same round of paraBeboxes, and use those as index Bite
wonderful sideeffect of this element of DES' design is that it createsra strong
avalanche effect when round input bits altewed to affect the transformations othe
input bitsundergo.

Feistel Networks

A majority of serious modern encryption algorithms usé&acture called Feistel
networks.This structure allowsach round of an algorithm to introduce new key
material,provide additional plaintext diffusion, and assures tiimatoverall algorithm
remains reversible across multipnds (in fact, across as many rounds as you we
It is actually quite a remarkable accomplishment of a very sistpleture.

In a Feistel network algorithm, the round input texea€h round (including the
original plaintext) is dividedhto two equal piecegkach round swaps the left and rigl
half of the current block around, while introducing key&aR substitution in just one
of the directionsThat is,the output the ith round of a Feistel network is determine:
from the output of the i-1 round by:

L{i}

R{i}
The right-side output moves to the left-side withtramsformation at this stagéhe
left-side, however, movdsack to the right after an XOR with some functfoAll that
f is constrained by is that its domairthe pair of the last right-side output and some
key materialthe ith sub-key, derived from the key in some manfiém. design of is
where the real work of the ciphgoes onFor example, in the case of DEShcludes
all the S-box transformations and a few other operations.

R{i-1}
L{i-1} XOR f(R{i-1},K{i})

Why is a Feistel network reversible? Cleary, - 1} can be obtained fromyi } with
no workat all. How do we get{i - 1} ? That isstraightforward also, by the nature of
XOR:

L{i-1)

L{i-1} XOR f(R{i-1},K{i}) XOR f(R{i-1},K{i}
Or, simplifying:
L{i-1} = R{i} XOR f(L{i},K{i})

As long as we can still construct the ith sub-key (wkvehshould have no problem
with if we have the key), we haaecomplished the reverse algorithm of a Feistel
network.

Public-Key Encryption

Getting Started

In 1975 Whitfield Diffie and Martin Hellman proposed i#ferent sort of relation
between encryption and decryptikeys.What if encryption and decryption were
performed usingwo different, but related, keys? The consequences tuitio ¢t quite
radical.What we get is what is known gzublic-key" or "asymmetric" algorithms.

The previous part of this tutorial discusses the geweratept of public-key encryptio
a bit moreln this onewe will hop right in to a look at some actual public-key
algorithms.

The most popular public-key algorithm by a large maigjitalled RSA, after its
creators Rivest, Shamir and Aldemdhe only real hindrance to RSA's even more
widespread us@as its patent status; however, that patent has re@xpired, and the
alaorithm is now public-domain (the authtike others. alwavs had concerns about"

algorithm is now public-domain (the authbike others, always had concerns about"
propriety ofgranting a patent for pure math; but it is moot nokie El Gamal scheme
runs a somewhat distant second, and is baselde difficulty of calculating discrete
logarithms in dinite field. RSA is based on the difficulty of factoringnd will be the
only public-key algorithm discussedgneater detail in this tutorial.

How RSA Worksl

The first thing to know about RSA is that no one knowséstain that it is secur@r
more specifically, no onkenows for sure that factoring is a hard problem, which is t
assumption that RSA rests dxctually, no one knows fasure that breaking RSA do
not have a shortcut other thiattoring eitherThen again, no one knows for sure
whetherP = NP, which largely amounts to the same thiAg.unproven theorems go,
RSA rests on about the most widélglieved ones held by a consensus of serious
mathematiciandBut still, it is unproven.

The actual operations involved in RSA are remarkaiohple, and are elementary
("elementary"” in mathematiesfers to methods or proofs that use only integ@is).
generate an RSA key pair, first select two prinpesndq of the same approximate
magnitudeln practice these primes are selected by choosing random large odd
numbers, and eliminating composites by iterapirgpabilistic primality testsSeveral
such tests exighat will, on each iteration have an X% probabilitydetecting a
composite number (the better tests have X > 8B%peating the test numerous time
can eliminate compositegth an arbitrarily good guarantee of correctn@$g basic
math of RSA does not depend on the sizp afdq, but to make it secure practically
you wantp andq to both be 100-200 digits long, lmnger even.

Several calculations are made opcandq are choserSchneier (see Resources) or
another more extenddskatment will explain the mathematical grounds in more de:
for now we just show what is calculatédrst we calculate = p * g. Next we select
an exponeng that is relatively prime t@p-1) * (g-1). Common choices fag are 3, 17,
and 2716+1, i.e65537 (each of these has only two 1 digits in their binary
representation, which speeds exponentiation in pracA&ey. this, we create a
decryption keyd such that:

(e * d) nod ((p-1)*(g-1)) =1
Or, in othemwords:

d =e*1 nmod ((p-1)*(g-1))

How RSA Worksl |

Onced andn are calculated, as showntire previous panel, argis chosenp andq
themselves are not used, and their all tradbaif values should be removed to prev
unintendedevelation.

Encryption and decryption are performed as follawshe below equations, M is a
number less than n (an entiressage may need to be broken into multiple such M’
eachone encrypted as a blocK)iphertext is denoted as 'C', jz&r usual:

C = Me nbd n
M= C\d nod n

Than tniilalla loal: i dlaila AliAmbAmimn mamrmAaimb bl in Al e VWATA il ARl dliAa oA s ITA W 2IN A AaAA

The public-key in this system consistsnodinde. We will call this key '[e, n]"You can
tell all the world these value$he private-key consists df Keep this value to yourse
or else everyone will be able decrypt the private messages sent to you.

You might wonder why an attacker cannot simply calcuddterself, since you have
already given hern = p * g ande. Surely that is enough teconstruct with a little
work! Actually, we havegiven away little of valueEven though an attacker has q,
she does not haye- 1) *(g- 1) , which is what she really needsnless she cafactor
n, there is no known easy way of deriving thter from the formerAnd factoringn is
believedto be computationally infeasable wheis a fewhundred digits longBy the
way, key lengths of RSA keyse often or usually described by their number of bits
rather than their number of decimal digits (so you may tedivide or multiply by
about three-and-a-half to convedtween these ways of describing keys).

The lovely effect of this arrangement is that you ne&dvorry at all about the securi
of your public-key, yowcan send it in unsecured email, or publish it inrteespaper.
Anyone who sees your public-key can encryptessage that you alone can decrypt
(not even the sender cdecrypt it; although the sender could, of course, keep the
pre-encrypted original).

An RSA Example

Let us look at an example of RSA in action, albeitwite numbers far too small to
resist factoringFor thisexample, | borrow directly from Schneier (see Resources).

Letp = 47 andg = 71. Wecalculaten = p * g = 3337. The encryptiorexponene
must have no factors in commuiith:

(p-1)*(g-1) = 46 * 70 = 3220

We may therefore choose= 79 (we couldhave used other values equally wallje
now calculate:

d = 79%-1 nod 3220 = 1019

Publish [e, n], keep secret, and discamlandq. Each message we can encrypt in tl
examplemust be a number smaller than 33B7other words, wenight divide an actue
plaintext into 11-bit blocks anghcrypt each block in the same maniiéwe ciphertext
simply concatenates the encrypted blocks (maybe paddijhds to include every
ciphertext possible).

For example, suppose that one of our correspondenty blocks is "01010110000"
in decimal this is 6880ur correspondent creates a ciphertext blockdlgulating:

C = 688779 nod 3337 = 1570 = "011000100010"

Our correspondent sends us this message, "01100010@010Xe can decrypt it by
calculating:

M = 157071019 nod 3337 = 688 = "01010110000"

Of course, it hardly need be said that factoring 338aidly an insurmountable
obstacle for a determined attackéth a couple pages of scratch paper and a péc
usingkeys hundreds of time this long, we set the bar higherahan attackers with
millions of MIP-years can surmount (so it is believed)

Signatures

An observant tutorial user will have noticed somethgaguliar and useful about our
RSA encryption and decryptiaigorithms.Remember these equations?

C = Me nbd n
M= C\d nod n

M is what we have thought of as plaintext, and C is wieahave thought of as
ciphertext.But mathematically, boti and C are just numbers between zero and n
Therefore, wesould equally well write the equations:

M= C'e nod n
C = Md nod n

Here we get a whole new concept, just by switching ar@add M.Suppose Alice
holds the private-kegl andwishes to assure Bob that the message M was really fr
her,rather than from some imposter, MalloAll Alice needs tado is calculate =

Md mod n, and send C tBob.

Mallory can easily intercept C, and "decrypt" it usihg public-key [e,n] (that everyol
knows because it hdieen publishedBut with this interception, all Mallorgan do is
determine M, the same thing Bob can Alice makes no secret of the fact she creal
M, in fact she igrying to prove she did soSuppose Mallory alssubstitutes a phony (
before forwarding C' to Bob, to ttg pass it off as Alice's messagmb might well be
fooledupon initial receipt, but once he tries decrypting it, Bdlbnot find it plausible
that C' originated with Alice.

The problem for Mallory is that she has no waygmfating a ciphertext C' that decryy
to a plausible falsmmessageShe can easily create an arbitrary, random Cthimut
arbitrary C' will generally decrypt to gibberish (feidely-used key lengths, the chanc
of getting non-gibberistvith a random C' are minisculédnd Mallory wants to
substitute apecific false message (e.g. Mallomants to replace Alice's message "
agree to the contractith the false message "l refuse to sign the contrasfithout
havingd, Mallory has no way to create at@at will decrypt to the desired false
message, nore evenday non-gibberish message at @hce Bob decrypts theote
that (purportedly) comes from Alice to somethinganingful (and even topical), he ¢
be assured it comésm Alice (or at least from someone who knadyshis alone
cannot assure that Mallory has not managesigald by some other means).

At its heart, what Alice has done, is "digitally sigrér messagdreal protocols provid
additional features arithprove efficiencyBut RSA-in-reverse is identical toncept tc
all digital signature procedures.

An Email Security Protocol |

RSA is an extremely useful algorithm; however, affatiged messaging protocol will
generally involve a numberf elements beyond RSA itsefopular programs like PGF
GPG, and Lotus-Notes combine a number algorithms to fadotabemail security
systemln outline, the programmentioned have pretty much the same eleméeetaus
take alook at what these elements are, and at how we rhigidthetically build our
own email security protocol.

One important thing we have not yet mentioned about R$at it is quite slow in

Nnrantina Ac a mathamatiradhetrantinn DQA Innle lika a nnnd \wiavr tn ancnmt a

practice As a mathematicalbstraction, RSA looks like a good way to encrypt a
messagehut in real-life applications, we just do not have the GiRig to spare for
RSA. Directly encrypting a message WREA is likely to be approximately 100 times
as slow insoftware as is encrypting with DES (and DES is npariculary speedy
algorithm).By combining bits and pieced several algorithms, we can create a prac
programwith desirable performance and security characteristics.

Just what would we like to accomplish with an ersadurity protocol®et us list some
goals:

e We would like to enable correspondents to send privagsages to us without
requiring separate security procedui@skey-exchange (and we would like to
write back to sucleorrespondents with the samase).

e We would like to allow correspondents to "sign" messageisthereby provide a
reasonable assurance about the dmgin of messages.

e As a correlary of the first goal, we would like to haeeasonable assurance th
the keys we believe toorrespond with a certain person really are associated v
that person (no spoofing afentities).

e We would like the whole protocol to make as limitanputational demands as
possible while obtaining the othgoals.

e We would like the whole application or system tingplements our protocol to b
transparent andser-friendly.

The last goal falls outside the scope of this tutobiad,it is not something to ignore
when one gets to thectual programming and design.

An Email Security Protocol |1

How shall we accomplish our collection of goals? We ts@ean all the building blocks
in this tutorial, let us puhem together.

Suppose for a start that Alice wishes to send a primatsage to Bob, and that she
optained Bob's public-keip a way that reliably links Bob to that kdyet us callBob's

public-key PUB_BFurther, let us refer to RSéncyption by the name E_RSA, and
our favorite fast andecure symmetric key algorithms as E_SYNhile we are att, let
us call our favorite pseudo-random number geneest®RN For Alice's message M
that she wishes to sendBob, she calculates and sends:

[E.RSA{PUB B} (PRN), E_SYMPRN} (M]

That is to say, Alice (1) Generates a pseudo-ran@gession key", which is of a
moderate length (e.g. 64-, 8- or 128-bits); (2) Encrypts the moderate sized ses:
key using (slow) RSA encryption and Bob's public-keyHBrypts the longer
plaintext M using a fast symmetrgorithm.Only a little bit of encryption with RSA i
necessary: Bob is able to recover the session key bduatses his own private-key f
RSA,; and Bob is able teecover M because the protocol specifies the symmetric
algorithm used to encrypt it one the session key is known.

We obtain the advantage of RSA in avoiding a requireoemxternally secured key
exchange; and we also obtain #peed advantages of symmetric algorithms.

An Email Security Protocol |11

What about if Alice wants to sign a message to BolthabBob knows with reasonat
confidence that the messageenuinely from AliceWe have already seen that Aliae

principle, could encrypt the whole message with her R®/ate-key But this is also
uneccesarily CPU intensivalice has an easier way to go.

Let H refer to our favorite cryptographic hagimd asbefore, let E_RSA refer to RS/
encryption.Here we camefer to Alice's RSA private-key as PRIV_A, and her
public-key as PUB_ATo send a signed message M to B#éli;e calculates and send

[M S =ERSAPRIV. A (HM)]

Notice that the first part of what Alice sends is sintply plaintext message itself witt
no transformation peformeaghatsoeverThe message itself becomes resistant to
tampering by virtue of what follows it.he "signature" toM is calculated with two
operationsFirst, a cryptographibash is calculated on the messag&e need not sen
this hash itself to Bob, since he can calculate it equally kuelself. Second, the hash i
encrypted using Alice's RSprivate-key. The hash is of moderate length, e.g. 128-
192-bits, so does not take to much work to RSA encAmtattacker Mallory could
invent a false message M'; aidllory can also easily calculate H(MBut what
Mallory cannot do is compute the RSA encryption of H(M") witite's private-key.
Suppose Mallory substitutes theessage [M', S'] for Alice's message [M, When Bok
decrypts S' using Alice's RSA public-key, he will gettue that isot equal to H(M');
and Bob will knowthe whole message [M', Sl was not authentically signedlibg
(this alone does not distinguish an attack frosigaal corruption, but at least it show
something is natight).

Suppose, while we are at it, that Alice wants to keeigaed message to Bob prive
as well.No problemAll Alice needs to do is substitute [M, S] for M in the above
described encryption protocoh other words:

[E.RSA{PUB B} (PRN), E_SYMPRN}([M E_RSA{PRIV_A}(H(M)]) 1

An Email Security Protocol |V

In the earlier parts of our email security protocol,hage simply assumed that Alice
and Bob have a trustworthyay of knowing each others RSA public keys, PUB_A i
PUB_B,respectivelyBut a channel over which PUB_A or PUB_B migpet
transmitted is potentially subject to falsificatidnet us suppose that the protocol wel
to start by Alice sendingn unsecured email message to Bob that said, "Hi Bob, M
RSA public-key is PUB_A, Alice.’Assuming Mallory can insehis own false substitu
into the channel, he can send thessage "Hi Bob, My RSA public-key is PUB_M,
Alice" (Mallory would here also delete Alice's genuine message).

Next time Bob sends a "private" message to Alice, Maltary intercept and read it a
will. In fact, if Mallory hasalso thought to send a message to Alice that says, "Hi A
My RSA public-key is PUB_M, Bob.If Mallory has done thidhe can stay in the
middle of the channel, decrypt messafges both Alice and Bob, then re-encrypt th:
using his owrprivate-key and/or Bob and Alice's public-keys, then serehcrypted
false messages along (either altered, or thithsame M Alice or Bob wrote)otice
that Mallory knowsboth PUB_A and PUB_B, while all Bob and Alice know is
PUB_M, even though they falsely believe PUB_M to be one ofdheer things.

One thing Alice and Bob could do to make sure #weghange genuine public-keys is
meet face-to-face (anghcoerced into deceiving while face-to-face), and tell etobr
their public-keysOr Alice and Bob might have@evious secure channel already

actahlichad rhiit if en whn thev nead ninir nrotnenlM™nwaevar fare-tn-fara meetin

established (but if so, wido they need our protocolPlowever, face-to-face meetin
are likely to be inconvenienortunately, Alice and Bobave another optiofhey can
rely on a trustethtermediary, Trentln real-life transactions, notapublics, banks,
escrow lawyers, police, and others play kil of role.For our protocol, we need
some sort oauthenticatable contact with Trent also (and we neé&disb Trent).In
"public-key infrastructure” talk, Trems known as a "key certifying authority."

What Trent does is have a face-to-face meeting with Adicd,exchange PUB_A and
PUB_T.Trent also has a similaneeting with Bob (obviously, Trent need not be a
literal human individual)In order to reliably obtain Bobfaublic-key, Alice encrypts
(but need not sign) the followingessage with PUB_T: "Hi Trent, what is Bob's
public-key?"Trent responds with a message signed with PRIV_T: "Buatisc-key is
PUB_B."In fact, Trent probably will not serttlis message to Alice personally, but v
make it publicknowledge via Trent's website, newspaper, Mtdlory caneasily get
PUB_B this way, but that is fine, Mallorywgelcome to have PUB_Egince Trent's
message is signedth PRIV_T, everyone can determine the message really doome
Trent (assuming everyone knows they have a genuineafdpyB_T, hence the
face-to-face meetings with Trent).

Protocols like PGP actually distribute Trent's role fwab-of-trust” rather than with i
hierarchical authorityWith a web-of-trust you can find that a lot of people whamu
trust at least a little bit have vouched for Bqhiblic-key.If you have had a
face-to-face (or other securentact with any of these vouchers, you can trust PU

Resour ces

Further Reading

The nearly definitive beginning book for cryptologitapics is Bruce Schneier's
Applied Cryptography (Wiley). | could not have written this tutorial without nappy
of Schneier on my lap to make sure | got everythingrjght.

Online, a good place to start in cryptology is fGeyptographyFAQ.

To keep up on current issues and discussions, | recomsnbsdribing to the Usenet
groupsci.crypt.

