Introduction to Cryptology Conceptsl|

| ntroduction to the Tutorial

Navigation

Navigating through the tutorial is easy:
e Use the Next and Previous buttons to move forwardoacward.
e Use the Menu button to return to the tutoranu.
e If you'd like to tell us what you think, use the Feedbawatton.
¢ If you need help with the tutorial, use the Hbigton.

Isthistutorial right for you?

This tutorial (and its follow-up) targets programmeishing to familiarize themselves
with cryptology, itstechniques, its mathematical and conceptual basis, dimjasThe
ideal user of this tutorial will have encountekeatious descriptions of cryptographic
systems and generehims about the security or insecurity of particslaitware and
systems, but without entirely understandinglibekground of these descriptions anc
claims.Additionally, many users will be programmers and systems analysts whose
employers have plans to develop or implement cryptograysiems and protocols
(perhaps assigning such obligationsite very people who will benefit from this
tutorial).

This tutorial does not contain much in the way of spepiftgramming code for
cryptographic protocols, nor even mwspecificity in precise algorithminstead, it will
familiarize its users with a broad range of cryptologocaicepts and protocolgpon
completion, a user will feel &ase with discussions of cryptographic designs, and t
readyto explore the details of particular algorithms and protoetfs a comfortable
familiarity of their underlying concepts.

Just what is cryptology anyway?

Read this tutorial for the long answer. The slaogwer is that cryptology is made ug
cryptography andcryptanalysis. The first, cryptography, is thectual securing,
control, and identification of digital dat@he second, cryptanalysis, is made up of a
the attempts onmight develop to undermine, circumvent, and/or break whdirgte
part, cryptography, is attempting to accomplish.

The focus of Part | of a two-part tutorial is to introdueaders to general concepts
address cryptanalysis irsamewhat greater deptRart Il addresses cryptographic
algorithms and protocols in more detail.

Cryptanalysis is absolutely essential to cryptograplieit in a somewhat negative
senseThat is, the only thinghat tells you that your cryptographic steps are worthw
is the fact that cryptanalysis has failed, despitdahgstanding efforts of smart and
knowledgeableryptanalystsThink of this in the same way as automolilash tests.
To test the safety of a car, an essemtx@rcise is to run a few of them into some bri
walls to segust where the failure points arise (using crash-test dunasipgoxies in
our analogy for test, rather than productidata).

You will not be a cryptanalyst after finishing thigorial. To do that, you will need



many years omathematical study, a good mind for a certain wahioking, and a
considerable number of failed attemptsrptanalysisNonetheless, having a genera
concept of whatryptanalysis does is an essential part of understandingtwnedns
to create cryptographic prograny®u might not beable to demonstrate that your
protocols are secure, butlaast you will know what it means to demonstrate that t
are not (after this tutorial).

What tools use cryptography?

Some form of cryptography is nearly everywhere in comgatémologyPopular
standalone programs, like PGP and G&i@ jn securing communicationg/eb
browsers and othgrrograms implement cryptographic layers in their chanbeigers
and programs exist to secure files on disk @mutrol access theretS8ome commercia
programs useryptographic mechanisms to limit where their installaiod use may
occur.Basically, every time you find a needdontrol the access and usage of
computer programs or digitdhta, cryptographic algorithms wind up constituting
importantparts of the protocol for use of these programs/data.

Contact

David Mertz is a writer, a programmer, and a teacher,allvays endeavors to
improve his communication to readers (amirial takers). He welcomes any
comments; please direttem to<mertz@gnosis.cx>.

Basic Concepts

Alice and Bob

Cryptologists like to talk about a familiar pantheortloaracters in their cryptographi
dramas. This tutorial willliscuss these folks a bit; if you read past this tutohale
and Bob and their friends (or enemies) will become ygtage acquaintances. Say he
to our friends! (They oftego by their initials in cryptologists' shorthand).

From The Jargorfile: Bruce Schneier's definitive introductdgxt "Applied
Cryptography" (2nd ed., 1996, John Wiley & SASBN 0-471-11709-9) introduces
table of dramatis personheaded by Alice and Bob. Others include Carol (a partici
in three- and four-party protocols), Dave (a participant in four-gadiocols), Eve (a
eavesdropper), Mallory (a malicious actattacker), Trent (a trusted arbitrator), Wa
(a warden)Peggy (a prover), and Victor (a verifiehhese names faoples are either
already standard or, given the wiglepularity of the book, may quickly become so.

Encryption and Decryption |

When discussing encryption, there are a few terms of winiatshould be familiaThe
"message" is the actual data émr concern, also frequently referred to as "plaintex
(denoted as "M")Although referred to as plaintext, Mnst literally ASCII text,
necessarily; it might be any typé unencrypted datdt is "plain” just in the sense that
does not require decryption prior to uee encrypteanessage is "ciphertext"
(denoted as "C").

Mathematically, encryption is simply a function from th@main of M into the range o
C; decryption is just theeverse function of encryption. In practice, the donaaid



range of most cryptography functions are the samelgitaar byte sequences). We
denote encryption witlt = E(M ', and decryption wittM = D(C) . In order for
encryption andlecryption to do anything useful, the equality: D(E(M ) will
automatically hold (otherwisee do not have a way of getting plaintext back out of
ciphertext).

Encryption and Decryption 1|

In real-life cryptography, we are not usually concenvét individual encryption and
decryption functions, butither with classes of functions indexed by a ke

E{k} (M "and'M = D{k} (C) 'denotes thesé&or keyed functions, our corresponding
automatic equality is1 = D{ k} (E{k} (M) . With different key indexes to our function
classes, we do nekpect equalities like the above (in fact, finding them waoslaally
indicate bad algorithmsy ! = D{k1} (E{k2} (M) . This inequality works outicely
since all the folks without access to the key K wilt know which decryption functior
to use in deciphering C.

There are lots of details in the design of specifyiptographic algorithms, but the bas
mathematics are asmple as their portrayal in these panels.

Authentication, Integrity, Non-repudiation

Folks who know just a little bit about cryptography oftieimk of cryptography as
methods of hiding data from pryimyes. While this function—encryption—is indeed
important part of cryptography, there are many other thongscan do that are equal
important. Here are a few thatlate more tgroving things about a message ttihay
do to hiding a message.

Authentication: Prove that a message actually originates with its claimed originator.
Suppose Peggy wishas prove she sent a message. Peggy may prove to Victdndt
message comes from her by performing a transformatidineomessage that Victor
knows only Peggy knows how to perfo(mg., because only Peggy, and maybe Vic
knows the key)Peggy may send the transformation either instead ofamdition to
M, depending on the protocol.

Integrity: Prove that a message has not been altered in unauthorized ways. There are
a number of wayby which Peggy might demonstrate the integrity of a mes3dge.
most common means is by using a cryptographic {@isbussed laterAnyone may
perform a cryptographic hastansformation, in the general case, but Peggy may te
measures to publish the hash on a channel less subjactgering than the message
channel.

Non-repudiation: Prevent an originator from denying credit (or blame) for creating

or sending a message. Protocols for accomplishing this goal are a bit complicdiat,
the traditional non-digital world has familiar meanaofomplishing the same goal
through signatures, notarizatiand presentation of picture ID. Non-repudiation ha
manysimilarities to authentication, but there are also sutiierences.

Protocolsand Algorithms |

When considering cryptology, it is important to makedistinction between protocol
and algorithms. This isspecially important in light of the misleading claisasnetimes
made by cryptographic product makers (eitherabwiarelessness or



misrepréseh;[atian): Forlexample, a mahight claim: "If you use our product, your
data is secursince it would take a million years for the fastest computitebseak our
encryption!" The claim can be true, but stitit make for a very good product.

A protocol is a specification of the complete set of skepsived in carrying out a
cryptographic activity, includingxplicit specification of how to proceed in every
contingencyAn algorithm is the much more narrow procedure involvetdainsforming
some digital data into some other digital d&eyptographic protocols inevitably
involve using one or moreryptographic algorithms, but security (and other
cryptographigoals) is the product of a total protocol.

Protocolsand Algorithms 1

It is worth thinking about a very simple example ati@ng algorithm built into a wea
protocol.Consider arencryption product designed to allow Alice to sendfidential
messages to Bob in emaluppose that thgroduct utilizes the "unbreakable" algoritl
E. Even againghe "unbreakable" algorithm, Mallory has many waymtercept
Alice's plaintext, if the rest of the protocoMgak.For example, Mallory might have
ways of interceptinghe key, making the "unbreakable" encryption irrelevantKéye
might not be stored securely, or might be transmiktigidout itself having adequate
security).Or, the plaintexmight not travel the whole way as ciphertext, but rather
travel as vulnerable plaintext for part of its trip (say fréslee's workstation to her ma
server).Or, once decryptefbr before being encrypted in the first place), the messe
might be stored insecurelyo use a cliche, Mallory neetbt attack the "unbreakable’
algorithm if the other links ithe chain are weaker.

Symmetric and Asymmetric Encryption |

There are actually two rather different categoriesnafryption algorithmdn a
previous panel, you saw thaistpossible to index encryption and decryption functic
by akey. In such a case, we get the equality D{k1} (E{k1}(M). That s, both the
encryption and decryption functions use "k this equality holds, the algorithm is a
"symmetric."

In 1975, Whitfield Diffie and Martin Hellman proposediifferent sort of relation
between encryption and decryptikeys. What if we performed encryption and
decryption usindwo different, but related, keys? The consequences turno teat quite
radical. What we get is what is known"asiblic-key" or "asymmetric" algorithms. Fo
reasongliscussed in the next panel, we refer to the encryption ki dpublic-key"
and the decryption key as th@ivate-key" in these related-key pairs.

Symmetric and Asymmetric Encryption I1

Actually, there is one extra condition requiredpablic-key cryptography. It must als
happen that there i®© computationally feasible way of deriving the private-keyn
the public-key. The reasons are straightforward:

Let k-priv be the "private-key."
Let k-pub be the "public-key."
Let X() be a conputationally feasible
transformation of any public-key into a private-key.
Let D{k-priv}() be the decryption function
correspondi ng to encryption function E{k-pub}().



By definition,
M = D{k-priv{E{k-pub}(M))
We may define, trivially,
D'{k-pub} = D{X(k-pub)}() = D{k-priv}()
Therefore,
M = D'{k-pub}(E{k-pub}(M))
By using D'(), we have reduced the protocol to standard
symmetric encryption!

The computational feasibility question is importantdfivation of the private-key frol
the public-key ispossible, but notfeasible, then we can decrypt usitige public-key in
mathematical abstraction, but we cannotiggbne in the real world.

The radical result of Diffie's and Hellman's idea @ass of algorithms where we can
tell the whole world goublic-key to use, but rest in the assurance that eporyption
of a message with this public-key, only th@ders of the private-key can decryptite
can sendgecret messages without needing to share secrets Keg), &ith our
correspondents.

One-way Functions

There are two related types of functions that argheshselves encryption functions,
but that are very importatd many cryptographic algorithms and protocols. These
one-way functions and (cryptographic) hashes.

One-way functions: It is believed there are mafynctions which are computationall
easy to compute, babmputationally infeasible to reverse. In the physicalld, we
notice that it is a lot harder to get ttoothpaste back in the tube than it was to get
out. Ora lot easier to burn a sheet of paper than it is to redtdeden smoke and
ashes. Similarly, it seems a lot eastemultiply together some large primes than it is
factorthe product. The scandalous fact, however, is that the@ rigorous
mathematical proof that any one-way functians really as hard to reverse as we
believe they are. Stilryptographic one-way functions are ones that we know hov
perform in milliseconds on computers, lbetieve it would take these same compute
millions of years to reverdgiven only the result, of course, without allowing cheati
by looking at the original input).

The nice thing about one-way functions is that theydetmake abstract claims abot
messages without actualigvealing the messages themselves. For example, suppt
that Alice has written the greatest haiku el#rderstandably, she is protective of he
poem and does natant anyone else claiming false credit for it (and Malkmely
would do so to promote his own poetic reputati@mfortunately, publishers being a
they are, Alice's press taking a while deciding on the right typeset fonthie
meantime, Alice can still do something to prove ¢iaim. She can run her haiku
through a one-way functidffter all, to the computer it is just a big binary numiaeg
publish the result in thidew York Times personahds. Should Mallory manage to
somehow steal Alice's firgoem, she can still prove she had written it befordiimes
publication date by running Mallory's stoleopy through the one-way function as a
demonstration to theeading public.

Cryptographic Hashes

A hash is similar to a one-way function, but rather thaing a total function (one
whose inverse is also a function)hash takes an lona message and produces a



comparativelyshort output. Error-checking codes (ECC), such as CRC32,tgpe of
hash. A CRC32 hash islikely to match anessage that is a slight corruption of the
correct messag&CCs are great for detecting line noise, but cryptograpdsbes
make a more stringent demand. With a cryptogralpash it is (believed to be)
computationally infeasible tiind a message producing a given hash, except by
possessinghe message that first produced the hash. Typiaalptographic hashes
have outputs that are 128-bits or lon@mrite a bit more than the 32-bits of CRC32)
Cryptographichashes are also sometimes known as "message digistggprints,"
"cryptographic checksums," or "messaggegrity checks.'For most cryptographic
hashes, the inpaian be a message of any length. It should be easy tmseglice
could use a cryptographic hash in the alssanario: she can get by with publishing
128- or160-bits (this is especially helpful if she wrdliee Great American Novel rather
than a haiku).

In some cases, cryptographic hashes will be keyed, asiahe encryption functions.
such a case, only someonbo possesses the key can verify the hash accuracy. In
practical terms, it is generally possible to create a kbgstl function by simply
prepending or appending a key otite message M prior to hashing it (i'g¢k+M ).
However, some keyed hashes utilize a key value in a deagy integrated way withi
the algorithm.

What makes a cryptographic protocol " strong” ?

Passphrase, Password, and Key |

This tutorial describes the use of a "key" in mangptographic functions and
algorithms. You have probabéiso encountered the related concepts "passphrase
"password" in various contexts. The differences are wortlerstanding.

Password and passphrase are terms with only a hmrydary between them. In
general, a passphrase is lontfem a password; but particular descriptions maty
make a precise distinction. Either a passphrasgassword is usually something an
end user actually typasto an interface to gain certain permissions or privilegesy
carry out specific restricted actions. Thkey used by the actual cryptographic algorit
is somehow deriveftom the password or passphrase.

Passphrase, Password, and Key ||

Passwords (versus passphrases) are typically ratherandgirone to several attacks
In the very worst oflesigns (but these worst designs are quite comordartunately),
a password is simply used directly as a k&yr.example, an algorithm might allow fo
64-bit key, andhe application designer decides to get this 64-bitsawyng a user typs
in 8 characters (and using theoncatenated ASCII values as the key). Much of the
strengthof the algorithm is likely to depend on an attackerkmatwing which of the
264 possible keys are in use. Howeviee, set of passphrases a person is likely to-
(andremember) in 8 characters is a tiny subset of all the aft@dable keys. A lot of
ASCII values are hard to getthrough keyboard entry, and people tend to favor
commonwords and letters in predictable patterns. This protodikely to be
orders-magnitude-weaker than the algoriitsalf might suggest. Even if using a
"seed," "whitening," oother transformation to compute the final key, the range of
passwords people will tend to type in will inherently lithi¢ strength.



A passphrase, typically, might allow a user to type irb2Qor 100 characters. Even
though each character is splobabilistically constrained, there are a lot more of the
to start with, so an attacker has many more possible passptoasesy about.
Usually, applying a cryptographic hash vgénerate a key from a passphrade hash
gives us a fixedength outputWidely used cryptographic hashes have soioe
properties whereby it is possible to sample justhideded number of bits from the ha
without losing generalitpr uniformity in the resultant keyBor example, a
cryptographic hash like SHA produces 160-bit outputs, bubseslittle by simply
using the first 64 of those bits agey to our encryption algorithm.

Security versus Obscurity

Cryptologists have a mantrégecurity is not obtainethrough obscurity.Given how
persuasive and pervasive thssertion is, it is remarkable how many well- or
ill-meaningnovices (and product advocates) fail to get it.

What often happens is that people become convinceththatan enhance the secur
of their protocol, algorithnor application by not letting on to the public just how the
thing works. This specious reasoning concludes that bhaldeguys (maybe meaning
"competitors") do not learn thaetails of how a protocol/algorithm/application work:
theywill not be able to break it. Or maybe the naive folks flaistk that their whiz-ban
new algorithm is so novel artilliant that they don't want anyone to steal their idee
Either way, security-through-obscurity ranks up there wikielief in the tooth fairy in
terms of scientific merit.

It is easy to spin wild scenarios of how some system rhighdthetically remain safe |
remaining secret. Indeed, sowfethese scenarios will keep your office mates or eve
your casual end users from breaking into systems. But regaggeeering, loosening
lips, and black box analysis just aret difficult or rare enough to trust serious secur
concerns against.

The security of serious protocols and algorithms cdnoes the inherent mathematic:
strength of their workingsnd in the quality and integrity of the keys used by the
protocols. Keep your keys secret (and do a very goodfjtbs secrecy); make your
algorithms public to the world!

Key Lengths and Brute-Force Attacks |

A "brute-force attack” is one attack available for angptographic algorithm that use
keys.It's only occasionally the best attack possible on an algorithmprdocol), but it
always sets an upper-bound on how goodlgarithm can beA brute-force attack is
nothing more thaan attempt tguess every possible key that might beuse.For
example, Mallory might intercept an encryptadssage and wish to determine its
plaintext.To do this,Mallory tries decrypting using key index one, then tries W
index two, and so orOf course, Mallory needs tietermine when he has hit upon tr
correct decryption keythere are things the encryptor Alice can do to make Mallory
job in this determination more difficult, but basically nost systems, Mallory will not
have too much trouble knowinvghen he has guessed the right key.

Key Lengthsand Brute-Force Attacks ||

One convenient fact about brute-force attacks is tliggiite easy to make firm



mathematical statements about th&or. example, we know, in quite simple terms, 1
the DataEncryption Standard's (DES) 56-bit key is computatiori@igakable by brute
force on current computers (aadpecially with distributed networks of current
computers)Trying all 2"56 keys only takes on the order of hours, dayaieeks on
high-end machines (or on networks of hundredsofe ordinary cooperating
machines). We are a little fuzoy the exact times, but we can see why that doesn’
matter.

Suppose, pessimistically, that Mallory's TLA (three ledigency) can break a DES
message by brute-force attack orkity in one hour on their supercomputer. Now
suppose thallice decides to start using a DES-like algorithm, but thia¢ has 64-bit
keys (DES-like in the sense that performintgst decryption takes about the same
amount of time). W&now by simple arithmetic that Mallory will now need aroa"&
hours to mount a brute-force attack on the messagelaBory's TLA needs to exper
10 days of its supercomputelnsgoMIPS to break Alice's message (by this means)
ratherthan just an hour.

Key Lengthsand Brute-Force Attacks |11

Alice feels much more secure with her 64-bit keys andalgarithm (mutatis
mutandis). But still, 10 days for attack is not completely unrealistic if she has an
importantenough message to send. So suppose that Alice now decid€©&6dit
algorithm (otherwise DES-like in decryption timB)y brute-force Mallory and his TL/
will need 2”40 hours tonount a brute-force attack on the message; in other word:
Alice's message appears safe (against this particular dttad25 million years.
Sounds pretty good, huh?

Alice's message is indeed fairly secure against brute-ftt@eks. But maybe ngtite
as safe as we hagepposed above. When we start thinking about yedmutdé-force
attack, we really need to think about Mootessv in the package. Moore's Law clain
(roughly) thatcomputing power doubles every 18 months. For each d&shd0 years
people have declared an imminent terminatibMoore's Law, but let's suppose it
continues on cours@hat means that 30 years from now, the TLA (and the elderly
Mallory) will have a million times the computing power theyw do. So using the
supercomputers of 2030, Aliceteessage can be brute-forced in just 125 years. Stil
probably not too much cause for Alice to worry, but watadut the supercomputers
2045 that will be able to breadice's message in only a monthAfice nonetheless will
not likely worry all that much about this brute-force attdmltt it is noteworthy that 4¢
years is quite a bit shortéran 125 million years.

Dictionary Attacks on Passwords

Although the DES key was too short as designed (proltlaisiyvas predictable even
the mid-1970s), todayalgorithms with 128-bit keys are effectively invulneratue
brute-force attacks in perpetuity.

Unfortunately (or fortunately, depending on yperspective), a lot of attacks work ¢
lot faster tharbrute-force One simple attack is a "dictionary attackhe idea in a
dictionary attack is that selectiongdssword, passphrase or key might not have be
a way thamakes different keys equally probalilethe typical (andvorst) case, users
may select their own memorable passwolis. surprisingly, users find it a lot easiel
remembemords in a dictionary than they do "random" stringstwdractersBut it



takes a modern computer only secondgwen milliseconds, to try out all the words
a 100,000 wordenglish dictionaryAnd if the password is limited to, s&/characters,
that even cuts out some of those woidsereare less than 2°17 words in a large
dictionary, whichprovides awfully poor coverage of a 264 (8 charadteyspace.
Attackers can also search dictionaries in a fumayner, albeit in more timéfter
attempting the actudictionary words, an attacker can start trying combosatteat
almost dictionary words, with only a charactertaro changedThe quality of keys anc
passwords is verynportant in a complete cryptosystem, and weak keys undeemin
strong algorithm.

Cryptanalysis

Weak-key Attacks

More subtle problems can create dictionary-like attatés.For example, say that
some pseudo-random algorithrather than human users select the k&g is likely to
be an improvement, but maybe not enough of AitackerMallory might decide to
cryptanalyze the key-generatiafyorithm rather than the encryption perAdess than
adequate key generator might produce all kinds of statistigalarities in the keys it
createslt would be aramazingly bad algorithm that only produced 100,000 possik
keys (as humans might); but a less than perfect key genemgturvery well, for
example, produce significantly more omeven-index key bits than zeros in those
same positionsA few statistical regularities in generated keys can kiseelkeral orders
of magnitude off Mallory's required efforts guessing keysviaking a key generator
weak does not requitlat it will never generate the key K—it snough to know that
K is significantly more or less likely toccur than other key#.is not good enough foi
a protocolko be secure "some of the time."

Entropy, Rate-of-L anguage, Unicity Distance

Plaintext messages often have properties thatrgmtanalysis. For the purpose of
explanation, considenessages written in English and encoded in ASCII text files
(other file types have other regularities). A few concaptsgeneral and important in
understanding plaintexegularities. The significance of these concepts isstiatistical
regularities in plaintexts are nearly as helfpdulcryptanalysts as would be actually
knowing the exaamnessages in question.

Entropy: The amount of underlying information content of a message. For tutorial
users familiar wittcompression programs, we can mention that if a message is
(losslessly) compressible,ifiso facto has arentropy less than its bit-lengthake a
simple example of message with less entropy than its length might suggeppose
we create a database field called "sex" and hasteré six ASCII characterblowever,
"male” and "female" areestrictions of the allowable valueghis database fieldontains
just one bit of entropy, even though it occupie$ of storage space (assuming 8-
bytes and so on).

Rate-of-language: The amount of underlying information added by each successive
letter of a message. English prose, for example, turns out to contain somettked..3
bits of entropy (information) per lettéFhis might seem seem outrageous to
claim—after all there armore than 2(1.3) letters in EnglisBut the problem ishat
some letters occur a lot more than others, and (@igsaphs) and triplets (trigraphs)



letters clustetogether alsoThe rate of Engiish doesn't 'dep;end jus'tlmal\phabét, bt
on the patterns in the whole teXte lowrate of English prose is what makes it suc
goodcompression candidate.

Unicity distance: The length of cyphertext necessary for an attacker to determine
whether a guessed decryption key unlocks a uniquely coherent message. For example,
if Alice encrypts the single letter "A," attackiallory might try various keys and win
up with possiblanessages "Q," "Z," "W.With this little plaintext, Malloryhas no way
of knowing whether he has come across the dgbtyption key. However, he is pret
safe in assuminthat "Launch rockets at 7 p.m." is a real message, idilés|*(dk883
sl001234 >" is an unsuccessful decryption. @bkial mathematics of unicity distanc
depend on key-lengthut for DES and English prose as plaintext, unicity dist&nce
about 8 characters of text.

Schematic of Basic Attacks

There are a number of approaches an attacker might thkeaking a protocol. The
protocol itself—and also theonsistency with which it is followed—will affect which
attacks are possible in a given case. The attacks desar#datl most relevant to
encryption protocols as such, amaly indirect to other sorts of protocols that might
compromised (e.g., digital signatures, online secure be#tirigentication, secret
sharing; some of these other protoauight still involve regular encryption in some ¢
their steps). This tutorial will not attempt to detail just heach of these attacks migl
proceed (it depends on too mamyn-general issues); but in a general way, the few
anglesfor attacks a protocol leaves open, the more securékieig to be.

Ciphertext-only: This attack is almost always openan attacker. The idea is that
based solely on thencrypted message, an attacker tries to deduce the plaintext.
Brute-force attack on the key is one example of this bfdtack.

Known-plaintext: In some cases, an attacker mighow some or all of the encrypte
plaintext. Thisknowledge might make it easier for the attacker to deterthankey
and/or decipher other messages using the protogpical examples of
known-plaintext exposure come whenadtacker knows that encrypted content
consists of file typethat contain standard headers, or when an attacker knows th
message concerns a hamed subject. In other casespegsages might get leaked |
means other than a break of #reryption, thus helping an attacker break other
messages.

Chosen-plaintext: An attacker might have a way iokerting specially selected
plaintext into messages pritar their encryption. Initially, this might seem unlikely to
occur; but let us give a plausible example. Suppose Alitg a mail server that filters
out suspected email virusésirthermore, Alice forwards an encrypted copy of susj
emails to virus expert Bob. Attacker Mallory cadeliberately mail a virus (or just
something that resemblese) to Alice, knowing that its specific content will appiear
a message from Alice to Bob.

Schematic of " Exotic" Attacks

A few less commonly available attacks can add significaotiallory's chances of
success.

Adaptive-chosen-plaintext: This attack is just enore specialized version of a gener



chosen-plaintexattack. Each time Mallory inserts one chosen plaintexirgedcepts
its encrypted version, he determines satadistical property of the encryption.
Selection of latechosen-plaintexts are chosen in order to exercise diffpreperties
of the encryption.

Chosen-key: An attacker might have a meanseotrypting messages using a specif
key. Or the specifielley might only have certain desired properties. For exaifjple,
key is indirectly derived from a different part of gii@tocol, an attacker might be abl
to hack that other padf the protocol, creating utilizable key properties.

Chosen-ciphertext: An attacker might be able tietermine how selected ciphertexts
get decrypted. Faexample, Mallory might spoof an encrypted message from Bob
Alice. Upon attempting to decrypt the message, Alicewitid up with gibberish. But
Alice might then mail thigjibberish back to Bob and/or store it in an insecure Bgqy.
choosing ciphertexts (or really pseudo-ciphertexts) detsired properties, Mallory
might gain insight into thactual decryption.

Rubber-hose Cryptanalysis

There are attacks on ciphers, and then thereoanpr omises of ciphers. There are
many ways obreaking a protocol that have little to do with analygithe
mathematical behavior of its algorithms.

The greatest vulnerability of actual encryption systamslly comes down to human
factors. One colorful term fauch human vulnerabilities is "rubber-hose cryptanaly:
That is, people can be tortured, threatened, harassetieowise coerced into
revealing keys and secrets. Anothelorful term emphasizing a different style of hur
factorvulnerabilities is "purchase-key attack." People cabriteed, cajoled, and
tempted.

Of course, still other human factor vulnerabilities amseeal-world encryption. You
can search people's drawéws passwords on scribble notes. You can look over
someone'shoulder while they read confidential messages or typedret passwords.
You can call people and pretend todmeneone who has a legitimate reason to nee
secretgKevin Mitchnik, the [in]famous hacker has called thisman engineering”). Ir
a lot of cases it is enough justask people what their passwords are!

Other Non-Cryptanalytic Attacks

Technical, but non-cryptological, means are also avaitaldetermined attackerSor
example, workstations that needprotect truly high-level secrets should have
TEMPEST shielding.Remote detection devices can pull off tiaracters and images
displayed on a computer scraambeknownst to its useiWlaybe you do not need to
worry about an attacker having this level of technology for yettier to your aunt
Jane; but if you are in the businessaninching bombs (or even just protecting
gigadollars of bankransactions), it is worth considering.

Any cryptographic system is only as good as its wedikgst

Unconditional Security, Computational Security

Implicit in much of this tutorial is the concept@dmputational feasibility. Some attac
on cryptographi@rotocols can be done on computers, while others exceed the



capabilities that improving computers will obtain. €irse, just because one line of
attack is computationallyfeasible does not mean that a whole protocol, or even
algorithm involved, is secure. Attackers can try approactiess than those you prote
yourself against.

We refer to a protocol that is computationally infeasiblattack (by any style of
attack) as "computationalsecure.'Keep in mind that "human factor" approaches a
really properly described as "compromises" rather thattasks per se (especially in
this context) However, itturns out that we can do even better tbamputational
security. Let's take a look in the next panel.

One-Time Pads

A "one-time pad (OTP)" is an encryption technique gravably produces
unconditional security. An OTP haseveral distinguishing properties. (1) The key
used in OTRencryption/decryption must be as long as the message en¢dd&te
key used in OTP encryption musttpbaly random data; (3) Each bit of an OTP key i
used to encode orit of the message, typically by XOR'ing theviathematically, (3)
is not strictly necessary—there artber ways to do it right—but practically, inventin
other variants just invites design mistak&dot of "snake-oil" cryptographers claim tc
avoid requirement (2Pon't trust themUsing pseudo-random data (includiagything
you can generate on a determinate state machina tkenputer CPU) makes the
encryption less thannconditionally securdt comes down to entropyf.you can
specify how to generate N bits of key using M < N bitprogram code, ipso facto, tl
key contains less than Ibits of entropy.

It is actually quite easy to see why an OTRBrisonditionally secure. Suppose Mallor
intercepts a&iphertext C and wants to decrypt it (say by brute-fattack). However,
for any possible decryption M, Mallogan attempt using a key K such that C xor

K. Mallory can attempt decryption until the end of time, leihas no way, based on-
known ciphertext and unknown ke, determine if he has hit upon the correct key.

Endgame

How to Break a Substitution Cipher |

For a very simple exercise in cryptanalysis, let uss@eone would go about breakir
a "Caesar cipher" (aencryption technique apparently in use during ancient Rome;
hence the name). The idea is to create a table of Settexs and target letters, eact
letter occurring exactly ondga each column. The encryption program (Caesar's roy
scribe) takes the plaintext message letter by letter, laplkesach letter in the source
column, and transcribes therresponding target letter onto the ciphertext tablet.

Cryptanalysis of the Caesar cipher is not nearly asdsmhieaking any modern ciphe
but many of the sam@rinciples apply to both. Let us do some simple statidtitsrns
out that the letters of English (or Latin) oceuth quite different frequency from eac!
other. Thistutorial has a lot more "E's" in it than it does "QEtitrypting a message
with a Caesar cipher does not chatigestatistical distribution of letters in a messag
it just makes different letters occupy the same frequenidied.is, if a particular Caes
cipher key transposes EsQ's, you'll find the encrypted version of this tutohas
exactly as many Q's as the original did E's.



Fair enough, but how does an attacker know how manyédfesin the original messa
without knowing the message? Hees not need to know this informatiexactly; it is
enough to know that E's make up a whopping 13% of ndemglish prose (not
including punctuation and spaces; jiesters). Any letter that occurs in 13% of the
ciphertext is extremely likely to represent arSkmilarly, the most common remaining
letters in theciphertext probably represent "T's" and "N'Hils is thelow entropy
(rate-of-language) of English coming backtunt us. All you need to do is use up ¢
the lettersmake sure the message looks like a message, and you are done!

How to Break a Substitution Cipher 11
(¢}

Tutorial users who enjoy a simple little game can tryfdlewing. Refer to this Englis|
letter frequency tabléhttp://gnosis.cx/download/letterfrequency)ghddecipher the
message:

SEVRAQF, EBZNAF, PBHACELZRA, YRAQ ZR LBHE RNEF!

The best answer emailed to the tutorial authornedkive future honorable mention i
a forum to be determined!

Further Reading

The nearly definitive beginning book for cryptologitapics is Bruce Schneier's
Applied Cryptography (Wiley). | could not have written this tutorial without ragpy
of Schneier on my lap to make sure | got everythingrjght.

Online, a good place to start in cryptology is fGeyptographyFAQ.

To keep up on current issues and discussions, | recomsabsdribing to the Usenet
groupsci.crypt.



