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Preface
In order for something to become clean, something else must become dirty.
–Imbesi’s Law of the Conservation of Filth

Doing the Other 80% of the Work
It is something of a truism in data science, data analysis, or machine learning that 
most of the effort needed to achieve your actual purpose lies in cleaning your data. 
The subtitle of this work alludes to a commonly assigned percentage. A keynote 
speaker I listened to at a data science conference a few years ago made a joke—
perhaps one already widely repeated by the time he told it—about talking with a 
colleague of his. The colleague complained of data cleaning taking up half of her 
time, in response to which the speaker expressed astonishment that it could be so 
little as 50%.

Without worrying too much about assigning a precise percentage, in my experience 
working as a technologist and data scientist, I have found that the bulk of what 
I do is preparing my data for the statistical analyses, machine learning models, 
or nuanced visualizations that I would like to utilize it for. Although hopeful 
executives, or technical managers a bit removed from the daily work, tend to have 
an eternal optimism that the next set of data the organization acquires will be clean 
and easy to work with, I have yet to find that to be true in my concrete experience.

Certainly, some data is better and some is worse. But all data is dirty, at least within 
a very small margin of error in the tally. Even datasets that have been published, 
carefully studied, and that are widely distributed as canonical examples for statistics 
textbooks or software libraries, generally have a moderate number of data integrity 
problems. Even after our best pre-processing, a more attainable goal should be to 
make our data less dirty; making it clean remains unduly utopian in aspiration.
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By all means we should distinguish data quality from data utility. These descriptions 
are roughly orthogonal to each other. Data can be dirty (up to a point) but still 
be enormously useful. Data can be (relatively) clean but have little purpose, or at 
least not be fit for purpose. Concerns about the choice of measurements to collect, 
or about possible selection bias, or other methodological or scientific questions 
are mostly outside the scope of this book. However, a fair number of techniques 
I present can aid in evaluating the utility of data, but there is often no mechanical 
method of remedying systemic issues. For example, statistics and other analyses 
may reveal—or at least strongly suggest—the unreliability of a certain data field. 
But the techniques in this book cannot generally automatically fix that unreliable 
data or collect better data.

The code shown throughout this book is freely available. However, the purpose 
of this book is not learning to use the particular tools used for illustration, but to 
understand the underlying purpose of data quality. The concepts presented should 
be applicable in any programming language used for data processing and machine 
learning. I hope it will be easy to adapt the techniques I show to your own favorite 
collection of tools and programming languages.

Types of Grime
There are roughly two families of problems we find in datasets. Not every problem 
neatly divides into these families, or at least it is not always evident which side 
something falls on without knowing the root cause. But in a general way, we can 
think of structural problems in the formatting of data versus content problems in 
the actual values recorded. On the structural branch a format used to encode a 
dataset might simply “put values in the wrong place” in one way or another. On 
the content side, the data format itself is correct, but implausible or wrong values 
have snuck in via flawed instruments, transcription errors, numeric overflows, or 
through other pitfalls of the recording process.

The several early chapters that discuss “data ingestion” are much more focused on 
structural problems in data sources, and less on numeric or content problems. It is 
not always cleanly possible to separate these issues, but as a question of emphasis 
it makes sense for the ingestion chapters to look at structural matters, and for later 
chapters on anomalies, data quality, feature engineering, value imputation, and 
model-based cleaning to direct attention to content issues.

In the case of structural problems, we almost always need manual remediation of the 
data. Exactly where the bytes that make up the data go wrong can vary enormously, 
and usually does not follow a pattern that lends itself to a single high-level 
description. Often we have a somewhat easier time with the content problems, but at 
the same time they are more likely to be irremediable even with manual work. 
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Consider this small comma-separated value (CSV) data source, describing a 6th 
grade class:

Student#,Last Name,First Name,Favorite Color,Age
1,Johnson,Mia,periwinkle,12
2,Lopez,Liam,blue,green,13
3,Lee,Isabella,,11
4,Fisher,Mason,gray,-1
5,Gupta,Olivia,9,102
6,,Robinson,,Sophia,,blue,,12

In a friendly way, we have a header line that indicates reasonable field names and 
provides a hint as to the meaning of each column. Programmatically, we may not 
wish to work with the punctuation marks and spaces inside some field names, but 
that is a matter of tool convenience that we can address with the APIs (application 
programming interfaces; the functions and methods of a library) that data processing 
tools give us (perhaps by renaming them).

Let us think about each record in turn. Mia Johnson, student 1, seems to have a 
problem-free record. Her row has five values separated by four commas, and each 
data value meets our intuitive expectations about the data type and value domain. 
The problems start hereafter.

Liam Lopez has too many fields in his row. However, both columns 4 and 5 seem 
clearly to be in the lexicon of color names. Perhaps a duplicate entry occurred or the 
compound color “blue-green” was intended. Structurally the row has issues, but 
several plausible remediations suggest themselves.

Isabella Lee is perhaps no problem at all. One of her fields is empty, meaning no 
favorite color is available. But structurally, this row is perfectly fine for CSV format. 
We will need to use some domain or problem knowledge to decide how to handle 
the missing value.

Mason Fisher is perhaps similar to Isabella. The recorded age of -1 makes no sense 
in the nature of “age” as a data field, at least as we usually understand it (but maybe 
the encoding intends something different). On the other hand, -1 is one of several 
placeholder values used very commonly to represent missing data. We need to know 
our specific problem to know whether we can process the data with a missing age, 
but many times we can handle that. However, we still need to be careful not to treat 
the -1 as a plain value; for example, the mean, minimum, or standard deviation of 
ages might be thrown off by that.
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Olivia Gupta starts to present a trickier problem. Structurally her row looks perfect. 
But “9” is probably not a string in our lexicon of color names. And under our 
understanding of the data concerning a 6th grade class, we don’t expect 102 year 
old students to be in it. To solve this row, we really need to know more about the 
collection procedure and the intention of the data. Perhaps a separate mapping of 
numbers to colors exists somewhere. Perhaps an age of 12 was mistranscribed as 102; 
but also perhaps a 102 year old serves as a teaching assistant in this class and not 
only students are recorded.

Sophia Robinson returns us to what looks like an obvious structural error. The row, 
upon visual inspection, contains perfectly good and plausible values, but they are 
separated by duplicate commas. Somehow, presumably, a mechanical error resulted 
in the line being formatted wrongly. However, most high-level tools are likely to 
choke on the row in an uninformative way, and we will probably need to remediate 
the issue more manually.

We have a pretty good idea what to do with these six rows of data, and even re-
entering them from scratch would not be difficult. If we had a million rows instead, 
the difficulty would grow greatly, and would require considerable effort before we 
arrived at usable data.

Nomenclature
In this book I will use the terms feature, field, measurement, column, and 
occasionally variable more-or-less interchangeably. Likewise, the terms row, 
record, observation, and sample are also near synonyms. Tuple is used for the same 
concept when discussing databases (especially academically). In different academic 
or business fields, different ones of these terms are more prominent; and likewise 
different software tools choose among these.

Conceptually, most data can be thought of as a number of occasions on which we 
measure various attributes of a common underlying thing. In most tools, it is usually 
convenient to put these observations/samples each in a row; and correspondingly to 
store each of the measurements/features/fields pertaining to that thing in a column 
containing corresponding data for other comparable things.

Inasmuch as I vary the use of these roughly equivalent terms, it is simply better 
to fit with the domain under discussion and to make readers familiar with all the 
terms, which they are likely to encounter in various places for a similar intention. 
The choice among near synonyms is also guided by the predominant use within 
the particular tool, library, or programming community that is currently being 
discussed.
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In many cases, a general concept has a strong overlap with the particular name 
a tool or library uses to implement or express that concept. Where relevant, I 
attempt to use the small typographic distinctions in the names to indicate focus. For 
example, I discuss data frames as a general paradigm for manipulating data, but refer 
to DataFrame when discussing Pandas or other libraries that use that spelling for the 
specific class used. Likewise, R’s data.frame object is a specific implementation of 
the paradigm, and capitalization and punctuation will be adjusted for context. 

Typography
As with most programming books, code literals will be set in a fixed width font, 
whether as excerpts inline or as blocks of code between paragraphs. For example, 
a code snippet, often a name, will appear as sklearn.pipeline.Pipeline. As a block, 
it would appear as:

scaler = sklearn.preprocessing.RobustScaler()
scaler.fit(X)
X_scaled = scaler.transform(X_train)

Input and output within a shell will be displayed like this:

sqlite> CREATE TABLE mytable(a SMALLINT, b VARCHAR(10), c REAL);
sqlite> INSERT INTO mytable(a, b, c) VALUES('123', 456, 789);

Names of software libraries, tools, and terms that are used in a special or distinctive 
sense within data science are shown with a dotted underline if they’re defined in 
the Glossary. If not, these terms will be shown in boldface on first, or early, mention, 
but generally in the default typeface as common nouns elsewhere. Italics are used in 
places in the main text simply for emphasis of words or clauses in prose. In electronic 
versions of this book, underline will show that there is an embedded link to an 
external resource.

The names of software tools and libraries is a bit of a challenge to orthography 
(i.e. spelling). Capitalization, or lack thereof, is often used in a stylized way, and 
moreover sometimes these bits of software are rendered differently in different 
contexts. For example Python is a good proper name for a programming language, 
but the actual executable that launches a Python script is python in lower case. Tools 
or libraries that will usually be typed in literal form, at a command line or as a name 
in code, will be set in fixed width.

Still other tools have both an informal and a literal name. For example scikit-learn is 
stylized in lowercase, but is not the actual imported name of the library, which 
is sklearn. Moreover, the informal name would look out of place when referring to 
subpackages such as sklearn.preprocessing. 
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In general, the names of software libraries are actually pretty intuitive, but the 
Glossary lists the name variants used in slightly different contexts in this book.

Taxonomy
Throughout this book, but especially in the first few chapters, I mention a large 
number of software tools and libraries that you might encounter in your work as a 
data scientist, developer, data analyst, or in another job title. The examples in the 
code of this book only use a relatively small fraction of those tools, mostly Python, 
and R, and a few libraries for those languages.

There are a much larger number of tools which you are fairly likely to encounter, 
and to need to use during your work. While this book does not specifically attempt 
to document the tools themselves, not even those tools that occur in many examples, 
I think it is valuable for readers to understand the general role of tools they may 
require in their specific tasks. When mentioning tools, I try to provide a general 
conceptual framework for what kind of thing that tool is, and point in the direction 
of the section or chapter that discusses purposes and tools most similar to it. 
You most certainly do not need to be familiar with any large number of the tools 
mentioned—potentially with none of them at all, not even the main programming 
languages used in examples.

The main lesson is “Don’t Panic!”, as Douglas Adams famously admonishes. You 
do not need to learn any specific tool discussed, but neither is any something 
you cannot learn when you need to or wish to. The Glossary of this book provides 
brief comments and definitions of terms and names used throughout this book, as 
well.

aside

Sometimes, additional information or commentary is presented in 
asides that look like this, with superscripts in the text to mark their 
intended contexts. 

Other times, tips, rules of thumb, and other things to remember look 
like this. 
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Included Code
In this book, I will primarily use Python and associated tools, such as Pandas, 
sklearn.preprocessing, and scipy.stats, to solve the data cleaning problems 
presented. R, and its Tidyverse tools, will often be shown as code alternatives. 
Some code samples will simply use Bash and the many text/data command-line 
processing tools available. Examples from other programming languages are 
occasionally mentioned, where relevant.

Quite a few additional libraries and tools are mentioned throughout this text, either 
only to introduce them briefly or even only to indicate they exist. Depending on your 
specific workplace, codebase, and colleagues, you may need to use some or all of 
these, even if they are not the main tools shown in this book. The Glossary describes 
(almost) all libraries mentioned, with brief descriptions of their purpose.

All of the code in this book is released to the Public Domain, or as Creative 
Commons CC0 if your jurisdiction lacks a clear mechanism for placing content in the 
Public Domain. The URL https://github.com/PacktPublishing/Cleaning-Data-for-
Effective-Data-Science contains the code directly printed in this book, and small 
modules or libraries supporting the techniques demonstrated, under the same terms. 
All of the datasets utilized are provided at the author’s website at https://www.
gnosis.cx/cleaning/. Some datasets may have different license terms, but only ones 
with reasonably open terms for use and modification are utilized. Because datasets 
are often large, this book will only reproduce directly very small datasets; I will often 
show a few representative sections of larger data in the text.

Running the Book
This book is itself written using Jupyter notebooks. This manner of creation allows 
for (almost) all the code within the book to be actively run before publication. The 
repository given above provides instructions and configuration files for creating a 
similar working environment. Code samples shown will usually be accompanied 
by the actual output of running them. For example, Python code:

from src.intro_students import data, cleaned
print(data)

Student#,Last Name,First Name,Favorite Color,Age
1,Johnson,Mia,periwinkle,12
2,Lopez,Liam,blue,green,13
3,Lee,Isabella,,11
4,Fisher,Mason,gray,-1

https://creativecommons.org/share-your-work/public-domain/cc0/
https://github.com/PacktPublishing/Cleaning-Data-for-Effective-Data-Science
https://github.com/PacktPublishing/Cleaning-Data-for-Effective-Data-Science
https://www.gnosis.cx/cleaning/
https://www.gnosis.cx/cleaning/
https://jupyter.org/
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5,Gupta,Olivia,9,102
6,,Robinson,,Sophia,,blue,,12

cleaned

Student_No   Last_Name   First_Name   Favorite_Color    Age
         1     Johnson          Mia       periwinkle   12.0
         2       Lopez         Liam       blue-green   13.0
         3         Lee     Isabella        <missing>   11.0
         4      Fisher        Mason             gray    NaN
         5       Gupta       Olivia            sepia    NaN
         6    Robinson       Sophia             blue   12.0

Likewise in this configuration, I can run R code equally well. At times the code 
samples will show data being transferred between the R and Python kernels.

%load_ext rpy2.ipython

%%R -i cleaned
library('tibble')
# Select and rename columns
tibble(First=cleaned$First_Name, 
       Last=cleaned$Last_Name, 
       Age=cleaned$Age)

# A tibble: 6 x 3
  First    Last       Age
  <chr>    <chr>    <dbl>
1 Mia      Johnson     12
2 Liam     Lopez       13
3 Isabella Lee         11
4 Mason    Fisher     NaN
5 Olivia   Gupta      NaN
6 Sophia   Robinson    12

Command-line tools will also be shown within code cells, for example:

%%bash
sed s/,,/,/g data/students.csv |
    cut -f2,3 -d, |
    tail -n +2 |
    tr , ' ' |
    sort
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Fisher Mason
Gupta Olivia
Johnson Mia
Lee Isabella
Lopez Liam
Robinson Sophia

The code in this book was run using the following versions of the main 
programming languages used (Python and R). Other tools like Bash, shell utilities, 
or Scala in one section, are also used, but the first two are very stable across versions 
and should not vary in behavior. The large majority of the code shown will work at 
least a few versions back for the main languages; most likely the code will continue 
to work for several versions forward (but the future is unwritten). Specific libraries 
used, and the number touched on is numerous, may possibly change behaviors.

import sys
sys.version

'3.9.0 | packaged by conda-forge | (default, Oct 14 2020, 22:59:50) 
\n[GCC 7.5.0]'

%%R
R.version.string

[1] "R version 4.0.3 (2020-10-10)"

Using this Book
Slovenliness is no part of data science...cleanliness is indeed next to godliness.
–cf. John Wesley

This book is intended to be suitable for use either by a self-directed reader or 
in more structured academic, training, or certification courses. Each chapter is 
accompanied by exercises at the bottom that ask readers or students to complete 
tasks related to what they just learned in the preceding material. The book 
repository contains additional discussion of some exercises, but will avoid 
presenting explicit solutions for mere copy-paste.

Instructors are encouraged to contact the author if they wish to plan course material 
around this book. Under a consulting arrangement, I am happy to provide solution 
code, suggestions on use of the exercises and other content, and so on.
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The datasets and supporting materials for this book are available at the repository 
described above, and will be needed to engage fully with some of the more open 
ended problems presented. These extra materials will allow more interactive use of 
the book, and accompanying materials, than reading only would allow. However, 
sufficient explanation to understand the content based on the written material only 
will also be provided in the text.

Throughout this book I am strongly opinionated about a number of technical 
questions. I do not believe it will be difficult to distinguish my opinions from 
the mere facts I also present. I have worked in this area for a number of years, and 
I hope to share with readers the conclusions I have reached. Of course, even book 
authors are fallible beings, and if you decide to disagree with claims I make, I hope 
and wish that you will gain great benefit both from what you learn anew and what 
you are able to reformulate in strengthening your own opinions and conclusions.

This book does not use heavy mathematics or statistics, but there are references 
to concepts therein from time to time. Some concepts are described briefly in 
the Glossary. Readers who want to brush up on these concepts might consider these 
books:

•	 Think Stats: Exploratory Data Analysis in Python, Allen B. Downey, 2014 
(O’Reilly Media; available both in free PDF and HTML versions, and as a 
printed book).

•	 All of Statistics: A Concise Course in Statistical Inference, Larry Wasserman, 
2004 (Springer).

This book is also not focused on the ethics of data visualization, but I have tried to 
be conscientious in using plots, which I use throughout the text. Good texts that 
consider these issues include:

•	 Data Visualization: A practical introduction, Kieran Healy, 2018 (Princeton 
University Press; a non-final draft is available free online).

•	 The Visual Display of Quantitative Information, Edward Tufte, 2001 (Graphics 
Press; all four of Tufte’s visualization books are canonical in the field).

Data Hygiene
Throughout this book, I show you a variety of ways to modify datasets from the 
original versions you receive. Sometimes these transformations are between data 
formats or in-memory representations. At other times we impute, massage, sample, 
aggregate, or collate data. 

https://greenteapress.com/thinkstats2/thinkstats2.pdf
https://socviz.co/index.html
https://www.edwardtufte.com/tufte/books_be
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Every time some transformation is made on data, we bring in certain assumptions or 
goals of our own; these may well be—and ideally should be—well motivated by task 
purpose or numeric and statistical analysis. However, they remain assumptions that 
could be wrong.

It is crucial to good practice of data science to version datasets as we work with 
them. When we draw some conclusion, or even simply when we prepare for the 
next transformation step, it is important to indicate which version of the data 
this action is based on. There are several different ways in which datasets may be 
versioned.

If a dataset is of moderate size, and if the transformations made are not themselves 
greatly time consuming, versioning within program flow is a good choice. For 
example, in Python-like pseudo-code:

data1 = read_format(raw_data)
data2 = transformation_1(data1)
data3 = transformation_2(data2)
# ... etc ...

When you use any version, anywhere else in a large program, it is clear from the 
variable name (or lookup key, etc.) which version is involved, and problems can be 
more easily diagnosed.

If a dataset is somewhat larger in size—to the point where keeping a number of near-
copies in memory is a resource constraint—it is possible instead to track changes 
simply as metadata on the working dataset. This does not allow simultaneous access 
to multiple versions in code, but is still very useful for debugging and analysis. 
Again, in pseudo-code:

data = Annotated(read_format(raw_data))
inplace_transform_1(data)
data.version = "Transformed by step 1"
# ... actions on data ...
inplace_transform_2(data)
data.version = "Transformed by step 2"
# ... etc ...

At any part of an overall program, you can at least verify the version (or other 
metadata) associated with the dataset.
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For transformations that you wish to persist longer than the run of a single program, 
use of version control systems (VCSs) is highly desirable. Most VCSs allow a 
concept of a branch where different versions of files can be maintained in parallel. If 
available, use of this capability is often desirable. Even if your dataset versions are 
strictly linear, it is possible to revert to a particular earlier version if necessary. Using 
accurate and descriptive commit messages is a great benefit to data versioning.

Most VCSs are intelligent about storing as few bytes as possible to describe 
changes. It is often possible for them to calculate a “minimal change set” to describe 
a transformation rather than simply storing an entirely new near-copy for each 
version. Whether or not your VCS does this with the formats you work with, 
data integrity and data provenance should be a more prominent concern than the 
potential need to allocate more disk space. Of late, Git is the most popular VCS; 
but the advice here can equally be followed using Apache Subversion, Mercurial, 
Perforce, Microsoft Visual SourceSafe, IBM Rational ClearCase, or any other modern 
VCS. Indeed, an older system like Concurrent Versions System (CVS) suffices for this 
purpose.

Exercises
None of the exercises throughout this book depend on using any specific 
programming language. In the discussion, Python is used most frequently, followed 
by R, with occasional use of other programming languages. But all exercises simply 
present one or more datasets and ask you to perform some task with that. Achieving 
those goals using the programming language of your choice is wonderful (subject to 
any constraints your instructor may provide if this book is used in formal pedagogy).

The toy tabular data on students given as an example is available at:

https://www.gnosis.cx/cleaning/students.csv

For this exercise, create a cleaned up version of the data following the assumptions 
illustrated in the code samples shown. Use your favorite programming language 
and tools, but the goal has these elements:

•	 Consistent doubled commas should be read as a single delimiter.
•	 Missing data in the Favorite Color field should be substituted with the 

string <missing>.
•	 Student ages should be between 9 and 14, and all other values are considered 

missing data.

https://www.gnosis.cx/cleaning/students.csv
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•	 Some colors are numerically coded, but should be unaliased. The mapping is:

Number Color Number Color
1 beige 6 alabaster
2 eggshell 7 sandcastle
3 seafoam 8 chartreuse
4 mint 9 sepia
5 cream 10 lemon

Using the small test dataset is a good way to test your code. But try also manually 
adding more rows with similar, or different, problems in them, and see how well 
your code produces a reasonable result. We have not discussed tools to accomplish 
this exercise yet, although you likely have used a programming language capable 
of solving it. Try to solve it now, but you can come back to this after later chapters 
if you prefer.

***

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/
PacktPublishing/Cleaning-Data-for-Effective-Data-Science. We also have other 
code bundles from our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams 
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801071291_ColorImages.pdf.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book’s title in 
the subject of your message. If you have questions about any aspect of this book, 
please email us at questions@packtpub.com.

https://github.com/PacktPublishing/Cleaning-Data-for-Effective-Data-Science
https://github.com/PacktPublishing/Cleaning-Data-for-Effective-Data-Science
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801071291_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801071291_ColorImages.pdf
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Errata: Although we have taken every care to ensure the accuracy of our content, 
mistakes do happen. If you have found a mistake in this book we would be grateful 
if you would report this to us. Please visit http://www.packtpub.com/submit-errata, 
selecting your book, clicking on the Errata Submission Form link, and entering the 
details.

Piracy: If you come across any illegal copies of our works in any form on the 
Internet, we would be grateful if you would provide us with the location address 
or website name. Please contact us at copyright@packtpub.com with a link to the 
material.

If you are interested in becoming an author: If there is a topic that you have 
expertise in and you are interested in either writing or contributing to a book, 
please visit http://authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a 
review on the site that you purchased it from? Potential readers can then see and 
use your unbiased opinion to make purchase decisions, we at Packt can understand 
what you think about our products, and our authors can see your feedback on their 
book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://packtpub.com


PART I

Data Ingestion





[ 3 ]

1
Tabular Formats

Tidy datasets are all alike, but every messy dataset is messy in its own way.
–Hadley Wickham (cf. Leo Tolstoy)

A great deal of data both does and should live in tabular formats; to put it flatly, this 
means formats that have rows and columns. In a theoretical sense, it is possible to 
represent every collection of structured data in terms of multiple “flat” or “tabular” 
collections if we also have a concept of relations. Relational database management 
systems (RDBMSs) have had a great deal of success since 1970, and a very large 
part of all the world’s data lives in RDBMSs. Another large share lives in formats that 
are not relational as such, but that are nonetheless tabular, wherein relationships may 
be imputed in an ad hoc, but uncumbersome, way.

As the Preface mentioned, the data ingestion chapters will concern themselves 
chiefly with structural or mechanical problems that make data dirty. Later in the 
book we will focus more on content or numerical issues in data.

This chapter discusses tabular formats including CSV, spreadsheets, SQL databases, 
and scientific array storage formats. The last sections look at some general concepts 
around data frames, which will typically be how data scientists manipulate tabular 
data. Much of this chapter is concerned with the actual mechanics of ingesting 
and working with a variety of data formats, using several different tools and 
programming languages. The Preface discusses why I wish to remain language-
agnostic—or multilingual—in my choices. Where each format is prone to particular 
kinds of data integrity problems, special attention is drawn to that. Actually 
remediating those characteristic problems is largely left until later chapters; detecting 
them is the focus of our attention here.
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As The Hitchhiker’s Guide to the Galaxy is humorously inscribed: “Don’t Panic!”. We 
will explain in much more detail the concepts mentioned here.

***

We run the setup code that will be standard throughout this book. As the Preface 
mentions, each chapter can be run in full, assuming available configuration files 
have been utilized. Although it is not usually best practice in Python to use import *, 
we do so here to bring in many names without a long block of imports:

from src.setup import *
%load_ext rpy2.ipython

%%R
library(tidyverse)

With our various Python and R libraries now available, let us utilize them to start 
cleaning data.

Tidying Up
After every war someone has to tidy up.
–Maria Wisława Anna Szymborska

Concepts:

•	 Tidiness and database normalization
•	 Rows versus columns
•	 Labels versus values

Hadley Wickham and Garrett Grolemund, in their excellent and freely available 
book R for Data Science, promote the concept of “tidy data.” The Tidyverse collection 
of R packages attempt to realize this concept in concrete libraries. Wickham and 
Grolemund’s idea of tidy data has a very close intellectual forebear in the concept of 
database normalization, which is a large topic addressed in depth neither by them 
nor in this current book. The canonical reference on database normalization is C. 
J. Date’s An Introduction to Database Systems (Addison Wesley; 1975 and numerous 
subsequent editions).

https://r4ds.had.co.nz/
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In brief, tidy data carefully separates variables (the columns of a table, also called 
features or fields) from observations (the rows of a table, also called samples). At 
the intersection of these two, we find values, one data item (datum) in each cell. 
Unfortunately, the data we encounter is often not arranged in this useful way, and 
it requires normalization. In particular, what are really values are often represented 
either as columns or as rows instead. To demonstrate what this means, let us 
consider an example.

Returning to the small elementary school class we presented in the Preface, we 
might encounter data looking like this:

students = pd.read_csv('data/students-scores.csv')
students

    Last Name   First Name   4th Grade   5th Grade   6th Grade
0     Johnson          Mia           A          B+          A-
1       Lopez         Liam           B           B          A+
2         Lee     Isabella           C          C-          B-
3      Fisher        Mason           B          B-          C+
4       Gupta       Olivia           B          A+           A
5    Robinson       Sophia          A+          B-           A

This view of the data is easy for humans to read. We can see trends in the scores 
each student received over several years of education. Moreover, this format might 
lend itself to useful visualizations fairly easily:

# Generic conversion of letter grades to numbers
def num_score(x):
    to_num = {'A+': 4.3, 'A': 4, 'A-': 3.7,
              'B+': 3.3, 'B': 3, 'B-': 2.7,
              'C+': 2.3, 'C': 2, 'C-': 1.7}
    return x.map(lambda x: to_num.get(x, x))

This next cell uses a “fluent” programming style that may look unfamiliar to some 
Python programmers. I discuss this style in the section below on data frames. The 
fluent style is used in many data science tools and languages. 
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For example, this is typical Pandas code that plots the students’ scores by year:

(students
     .set_index('Last Name')
     .drop('First Name', axis=1)
     .apply(num_score)
     .T
     .plot(title="Student score by year")
     .legend(bbox_to_anchor=(1, .75))
);

Figure 1.1: Student scores by year

This data layout exposes its limitations once the class advances to 7th grade, or if 
we were to obtain 3rd grade information. To accommodate such additional data, 
we would need to change the number and position of columns, not simply add 
additional rows. It is natural to make new observations or identify new samples 
(rows) but usually awkward to change the underlying variables (columns).

The particular class level (e.g. 4th grade) that a letter grade pertains to is, at heart, 
a value, not a variable. Another way to think of this is in terms of independent 
variables versus dependent variables, or in machine learning terms, features versus 
target. In some ways, the class level might correlate with or influence the resulting 
letter grade; perhaps the teachers at the different levels have different biases, or 
children of a certain age lose or gain interest in schoolwork, for example.
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For most analytic purposes, this data would be more useful if we made it tidy 
(normalized) before further processing. In Pandas, the DataFrame.melt() method 
can perform this tidying. We pin some of the columns as id_vars, and we set a name 
for the combined columns as a variable and the letter grade as a single new column. 
This Pandas method is slightly magical and takes some practice to get used to. The 
key thing is that it preserves data, simply moving it between column labels and 
data values:

students.melt(
    id_vars=["Last Name", "First Name"], 
    var_name="Level",
    value_name="Score"
).set_index(['First Name', 'Last Name', 'Level'])

First Name      Last Name      Level      Score
       Mia        Johnson  4th Grade          A
      Liam          Lopez  4th Grade          B
  Isabella            Lee  4th Grade          C
     Mason         Fisher  4th Grade          B
       ...            ...        ...        ...
  Isabella            Lee  6th Grade         B-
     Mason         Fisher  6th Grade         C+
    Olivia          Gupta  6th Grade          A
    Sophia       Robinson  6th Grade          A
18 rows × 1 columns

In the R Tidyverse, the procedure is similar. A tibble, which we see here, is simply a 
kind of data frame that is preferred in the Tidyverse:

%%R
library('tidyverse')

studentsR <- read_csv('data/students-scores.csv')
studentsR

── Column specification ───────────────────────────────────────────────
cols(
  'Last Name' = col_character(),
  'First Name' = col_character(),
  '4th Grade' = col_character(),
  '5th Grade' = col_character(),
  '6th Grade' = col_character()
)
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# A tibble: 6 x 5
  'Last Name' 'First Name' '4th Grade' '5th Grade' '6th Grade'
  <chr>       <chr>        <chr>       <chr>       <chr>      
1 Johnson     Mia          A           B+          A-         
2 Lopez       Liam         B           B           A+         
3 Lee         Isabella     C           C-          B-         
4 Fisher      Mason        B           B-          C+         
5 Gupta       Olivia       B           A+          A          
6 Robinson    Sophia       A+          B-          A          

Within the Tidyverse, specifically within the tidyr package, there is a function 
pivot_longer() that is similar to Pandas’ .melt(). The aggregation names and values 
have parameters spelled names_to and values_to, but the operation is the same:

%%R
studentsR <- read_csv('data/students-scores.csv')
studentsR %>% 
  pivot_longer(c('4th Grade', '5th Grade', '6th Grade'), 
               names_to = "Level", 
               values_to = "Score")

── Column specification ───────────────────────────────────────────────
cols(
  'Last Name' = col_character(),
  'First Name' = col_character(),
  '4th Grade' = col_character(),
  '5th Grade' = col_character(),
  '6th Grade' = col_character()
)

# A tibble: 18 x 4
   'Last Name' 'First Name' Level     Score
   <chr>       <chr>        <chr>     <chr>
 1 Johnson     Mia          4th Grade A    
 2 Johnson     Mia          5th Grade B+   
 3 Johnson     Mia          6th Grade A-   
 4 Lopez       Liam         4th Grade B    
 5 Lopez       Liam         5th Grade B    
 6 Lopez       Liam         6th Grade A+   
 7 Lee         Isabella     4th Grade C    
 8 Lee         Isabella     5th Grade C-   
 9 Lee         Isabella     6th Grade B-   
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10 Fisher      Mason        4th Grade B    
11 Fisher      Mason        5th Grade B-   
12 Fisher      Mason        6th Grade C+   
13 Gupta       Olivia       4th Grade B    
14 Gupta       Olivia       5th Grade A+   
15 Gupta       Olivia       6th Grade A    
16 Robinson    Sophia       4th Grade A+   
17 Robinson    Sophia       5th Grade B-   
18 Robinson    Sophia       6th Grade A    

The simple example above gives you a first feel for tidying tabular data. To 
reverse the tidying operation that moves variables (columns) to values (rows), the 
pivot_wider() function in tidyr can be used. In Pandas there are several related 
methods on DataFrames, including .pivot(), .pivot_table(), and .groupby() 
combined with .unstack(), which can create columns from rows (and do many 
other things too).

Having looked at the idea of tidiness as a general goal for tabular, let us begin looking 
at specific data formats, starting with comma-separated values and fixed-width files.

CSV
Speech sounds cannot be understood, delimited, classified and explained except in the 
light of the tasks which they perform in language.
–Roman Jakobson

Concepts:

•	 Delimited and fixed-width data
•	 Parsing problems
•	 Heuristics and “eyeballing”
•	 Inferring data types
•	 Escaping special characters
•	 Families of related CSV files

Delimited text files, especially comma-separated values (CSV) files, are ubiquitous. 
These are text files that put multiple values on each line and separate those values 
with some semi-reserved character, such as a comma. They are almost always the 
exchange format used to transport data between other tabular representations, but 
a great deal of data both starts and ends life as CSV, perhaps never passing through 
other formats. 
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Reading delimited files is not the fastest way of reading from disk into RAM 
memory, but it is also not the slowest. Of course, that concern only matters for 
large-ish datasets, not for the small datasets that make up most of our work as data 
scientists (small nowadays means roughly “fewer than 100k rows”).

There are a great number of deficits in CSV files, but also some notable strengths. 
CSV files are the format second most susceptible to structural problems. All formats 
are generally equally prone to content problems, which are not tied to the format 
itself. Spreadsheets like Excel are, of course, by a very large margin, the worst format 
for every kind of data integrity concern.

At the same time, delimited formats—or fixed-width text formats—are also almost 
the only ones you can easily open and make sense of in a text editor or easily 
manipulate using command-line tools for text processing. Thereby delimited files 
are pretty much the only ones you can fix fully manually without specialized readers 
and libraries. Of course, formats that rigorously enforce structural constraints do 
avoid some of the need to do this. Later in this chapter, and in the next two chapters, a 
number of formats that enforce structure more are discussed.

One issue that you could encounter in reading CSV or other textual files is that the 
actual character set encoding may not be the one you expect, or the default on your 
current system. In this age of Unicode, this concern is diminishing, but only slowly, 
and archival files continue to exist. This topic is discussed in Chapter 3, Repurposing 
Data Sources, in the section Custom Text Formats.

Sanity Checks
As a quick example, suppose you have just received a medium-sized CSV file, and 
you want to perform a quick sanity check on it. At this stage, we are concerned about 
whether the file is formatted correctly at all. We can do this with command-line tools, 
even if most libraries are likely to choke on them (such as shown in the next code 
cell). Of course, we could also use Python, R, or another general-purpose language if 
we just consider the lines as text initially:

# Use try/except to avoid full traceback in example
try:
    pd.read_csv('data/big-random.csv')
except Exception as err:
    print_err(err)

ParserError
Error tokenizing data. C error: Expected 6 fields in line 75, saw 8
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What went wrong there? Let us check.

%%bash
# What is the general size/shape of this file?
wc data/big-random.csv

 100000  100000 4335846 data/big-random.csv

Great! 100,000 rows; but there is some sort of problem on line 75 according to Pandas 
(and perhaps on other lines as well). Using a single piped Bash command that counts 
commas per line might provide insight. We could absolutely perform this same 
analysis in Python, R, or other languages; however, being familiar with command-
line tools is a benefit to data scientists in performing one-off analyses like this:

%%bash
cat data/big-random.csv | 
    tr -d -c ',\n' | 
    awk '{ print length; }' | 
    sort | 
    uniq -c

     46 3
  99909 5
     45 7

So we have figured out already that 99,909 of the lines have the expected 5 commas. 
But 46 have a deficit and 45 a surplus. Perhaps we will simply discard the bad lines, 
but that is not altogether too many to consider fixing by hand, even in a text editor. 
We need to make a judgement, on a per problem basis, about both the relative effort 
and reliability of automation of fixes versus manual approaches. Let us take a look 
at a few of the problem rows:

%%bash
grep -C1 -nP '^([^,]+,){7}' data/big-random.csv | head

74-squarcerai,45,quiescenze,12,scuoieremo,70
75:fantasmagorici,28,immischiavate,44,schiavizzammo,97,sfilzarono,49
76-interagiste,50,repentagli,72,attendato,95
--
712-resettando,58,strisciato,46,insaldai,62
713:aspirasse,15,imbozzimatrici,70,incanalante,93,succhieremo,41
714-saccarometriche,18,stremaste,12,hindi,19
--
8096-squincio,16,biascicona,93,solisti,70
8097:rinegoziante,50,circoncidiamo,83,stringavate,79,stipularono,34



Tabular Formats

[ 12 ]

Looking at these lists of Italian words and integers of slightly varying numbers of 
fields does not immediately illuminate the nature of the problem. We likely need 
more domain or problem knowledge. However, given that fewer than 1% of rows 
are a problem, perhaps we should simply discard them for now. If you do decide 
to make a modification such as removing rows, then versioning the data, with 
accompanying documentation of change history and reasons, becomes crucial to 
good data and process provenance.

The next cell uses a regular expression to filter the lines in the “almost CSV” file. 
The pattern may appear confusing, but regular expressions provide a compact way 
of describing patterns in text. The match in pat indicates that from the beginning of 
a line (^) until the end of that line ($) there are exactly five repetitions of character 
sequences that do not include commas, each followed by one comma ([^,]+,):

import re
pat = re.compile(r'^([^,]+,){5}[^,]*$')
with open('data/big-random.csv') as fh:
    lines = [l.strip().split(',') 
             for l in fh if re.match(pat, l)] 
pd.DataFrame(lines)

                   0     1                2     3              4    5
    0      infilaste    21        esemplava    15     stabaccavo   73
    1      abbadaste    50        enartrosi    85          iella   54
    2       frustulo    77        temporale    83     scoppianti   91
    3     gavocciolo    84  postelegrafiche    93  inglesizzanti   63
  ...            ...   ...              ...   ...            ...  ...
99905     notareschi    60         paganico    64    esecutavamo   20
99906  rispranghiamo    11       schioccano    44    imbozzarono   80
99907        compone    85   disfronderebbe    19    vaporizzavo   54
99908      ritardata    29         scordare    43   appuntirebbe   24
99909 rows × 6 columns

In the code we managed, within Python, to read all rows without formatting problems. 
We could also have used the pd.read_csv() parameter error_bad_lines=False to 
achieve the same effect, but walking through it in plain Python and Bash gives you a 
better picture of why they are excluded. 
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The Good, the Bad, and the Textual Data
Let us return to some virtues and deficits of CSV files. Here when we mention 
CSV, we really mean any kind of delimited file. And specifically, text files that store 
tabular data nearly always use a single character for a delimiter, and end rows/
records with a newline (or carriage return and newline in legacy formats). Other 
than commas, probably the most common delimiters you will encounter are tabs 
and the pipe character, |. However, nearly all tools are more than happy to use an 
arbitrary character.

Fixed-width files are similar to delimited ones. Technically they are different in 
that, although they are line-oriented, they put each field of data in specific character 
positions within each line. An example is used in the next code cell below. Decades 
ago, when Fortran and Cobol were more popular, fixed-width formats were more 
prevalent; my perception is that their use has diminished in favor of delimited 
files. In any case, fixed-width textual data files have most of the same pitfalls and 
strengths as do delimited ones.

The Bad
Columns in delimited or flat files do not carry a data type, being simply text values. 
Many tools will (optionally) make guesses about the data type, but these are subject 
to pitfalls. Moreover, even where the tools accurately guess the broad type category 
(i.e. string vs. integer vs. real number), they cannot guess the specific bit length 
desired, where that matters.

Likewise, the representation used for “real” numbers is not encoded—most systems 
deal with IEEE-754 floating-point numbers of some length, but occasionally decimals 
of some specific length are more appropriate for a purpose.

The most typical way that type inference goes wrong is where the initial records 
in some dataset have an apparent pattern, but later records deviate from this. The 
software library may infer one data type but later encounter strings that cannot be 
cast as such. “Earlier” and “later” here can have several different meanings.
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For out-of-core data frame libraries like Vaex and Dask (Python libraries) that read 
lazily, type heuristics might be applied to a first few records (and perhaps some 
other sampling) but will not see those strings that do not follow the assumed pattern. 
However, later might also mean months later, when new data arrives.partnum

Most data frame libraries are greedy about inferring data types—although all will 
allow manual specification to shortcut inference.

For many layouts, data frame libraries can guess a fixed-width format and infer 
column positions and data types (where it cannot guess, we could manually specify). 
But the guesses about data types can go wrong. For example, viewing the raw text, 
we see a fixed-width layout in parts.fwf:

%%bash
cat data/parts.fwf

Part_No  Description              Maker               Price (USD)
12345    Wankle rotary engine     Acme Corporation    555.55
67890    Sousaphone               Marching Inc.       333.33
2468     Feather Duster           Sweeps Bros         22.22
A9922    Area 51 metal fragment   No Such Agency      9999.99

Reading this with Pandas correctly infers the intended column positions for the 
fields:

df = pd.read_fwf('data/parts.fwf', nrows=3)
df

     Part_No           Description             Maker   Price (USD)
0      12345  Wankle rotary engine  Acme Corporation        555.55
1      67890            Sousaphone     Marching Inc.        333.33
2       2468        Feather Duster       Sweeps Bros         22.22

df.dtypes

partnum

For example, in a former job of mine, we received client data about 
commercial products that had a “part number.” That number was 
an actual integer, for many months, until it was not; it became a 
string that sometimes mixed letters with numerals. Unfortunately, 
other tooling had already made a wrong assumption about the 
undocumented data type (in this case an SQL schema, but it could 
be other code as well). 
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Part_No          int64
Description     object
Maker           object
Price (USD)    float64
dtype: object

We deliberately only read the start of the parts.fwf file. From those first few rows, 
Pandas made a type inference of int64 for the Part_No column.

Let us read the entire file. Pandas does the “right thing” here: Part_No becomes 
a generic object, i.e. string. However, if we had a million rows instead, and the 
heuristics Pandas uses, for speed and memory efficiency, happened to limit 
inference to the first 100,000 rows, we might not be so lucky:

df = pd.read_fwf('data/parts.fwf')
df

   Part_No             Description               Maker    Price (USD)
0    12345    Wankle rotary engine    Acme Corporation         555.55
1    67890              Sousaphone       Marching Inc.         333.33
2     2468          Feather Duster         Sweeps Bros          22.22
3    A9922  Area 51 metal fragment      No Such Agency        9999.99

df.dtypes  # type of 'Part_No' changed

Part_No         object
Description     object
Maker           object
Price (USD)    float64
dtype: object

R tibbles behave the same as Pandas, with the minor difference that data type 
imputation always uses 1,000 rows and will discard values if inconsistencies occur 
thereafter. Pandas can be configured to read all rows for inference, but by default 
reads a dynamically determined number. Pandas will sample more rows than R 
does, but still only approximately tens of thousands. The R collections data.frame 
and data.table are likewise similar. Let us read in the same file as above using R:

%%R
read_table('data/parts.fwf')

── Column specification ───────────────────────────────────────────────
cols(
  Part_No = col_character(),
  Description = col_character(),
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  Maker = col_character(),
  'Price (USD)' = col_double()
)
# A tibble: 4 x 4
  Part_No Description            Maker            'Price (USD)'
  <chr>   <chr>                  <chr>                    <dbl>
1 12345   Wankle rotary engine   Acme Corporation         556. 
2 67890   Sousaphone             Marching Inc.            333. 
3 2468    Feather Duster         Sweeps Bros               22.2
4 A9922   Area 51 metal fragment No Such Agency         10000. 

Again, the first three rows are consistent with an integer data type, although this is 
inaccurate for later rows:

%%R
read_table('data/parts.fwf', 
           n_max = 3, 
           col_types = cols("i", "-", "f", "n"))

# A tibble: 3 x 3
  Part_No Maker            'Price (USD)'
    <int> <fct>                    <dbl>
1   12345 Acme Corporation         556. 
2   67890 Marching Inc.            333. 
3    2468 Sweeps Bros               22.2

***

Delimited files—but not so much fixed-width files—are prone to escaping issues. 
In particular, CSVs specifically often contain descriptive fields that sometimes 
contain commas within the value itself. When done right, this comma should be 
escaped. It is often not done right in practice.

CSV is actually a family of different dialects, mostly varying in their escaping 
conventions. Sometimes, spacing before or after commas is treated differently across 
dialects as well. One approach to escaping is to put quotes around either every 
string value, or every value of any kind, or perhaps only those values that contain 
the prohibited comma. This varies by tool and by the version of the tool. Of course, 
if you quote fields, there is potentially a need to escape those quotes; usually, this is 
done by placing a backslash before the quote character when it is part of the value. 
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An alternate approach is to place a backslash before those commas that are not 
intended as a delimiter but rather as part of a string value (or a numeric value 
that might be formatted, e.g. $1,234.56). Guessing the variant can be a mess, and 
even single files are not necessarily self-consistent between rows, in practice (often 
different tools or versions of tools have touched the data).

Tab-separated and pipe-separated formats are often chosen with the hope of 
avoiding escaping issues. This works to an extent. Both tabs and pipe symbols 
are far less common in ordinary prose. But both still wind up occurring in text 
occasionally, and all the escaping issues come back. Moreover, in the face of 
escaping, the simplest tools sometimes fail. For example, the Bash command cut -d, 
will not work in these cases, nor will Python’s str.split(','). A more custom 
parser becomes necessary, albeit a simple one compared to full-fledged grammars. 
Python’s standard library csv module is one such custom parser. 

The corresponding danger for fixed-width files, in contrast to delimited ones, is 
that values become too long. Within a certain line position range you can have any 
codepoints whatsoever (other than newlines). But once the description or name 
that someone thought would never be longer than, say, 20 characters becomes 21 
characters, the format fails.

***

A special consideration arises around reading datetime formats. Data frame libraries 
that read datetime values typically have an optional switch to parse certain columns 
as datetime formats. Libraries such as Pandas support heuristic guessing of datetime 
formats; the problem here is that applying a heuristic to each of millions of rows can 
be exceedingly slow. Where a date format is uniform, using a manual format specifier 
can make it several orders of magnitude faster to read. Of course, where the format 
varies, heuristics are practically magic; and perhaps we should simply marvel that 
the dog can talk at all rather than criticize its grammar. Let us look at a Pandas 
attempt to guess datetimes for each row of a tab-separated file:

%%bash
# Notice many date formats
cat data/parts.tsv

Part_No      Description                  Date   Price (USD)
  12345    Wankle rotary   2020-04-12T15:53:21        555.55
  67890       Sousaphone        April 12, 2020        333.33
   2468   Feather Duster             4/12/2020         22.22
  A9922    Area 51 metal              04/12/20       9999.99

# Let Pandas make guesses for each row
# VERY SLOW for large tables
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parts = pd.read_csv('data/parts.tsv', 
            sep='\t', parse_dates=['Date'])
parts

    Part_No      Description                  Date   Price (USD)
0     12345    Wankle rotary   2020-04-12 15:53:21        555.55
1     67890       Sousaphone   2020-04-12 00:00:00        333.33
2      2468   Feather Duster   2020-04-12 00:00:00         22.22
3     A9922    Area 51 metal   2020-04-12 00:00:00       9999.99

We can verify that the dates are genuinely a datetime data type within the 
DataFrame:

parts.dtypes

Part_No                object
Description            object
Date           datetime64[ns]
Price (USD)           float64
dtype: object

We have looked at some challenges and limitations of delimited and fixed-width 
formats; let us look at their considerable advantages as well. 

The Good
The biggest strength of CSV files, and their delimited or fixed-width cousins, is the 
ubiquity of tools to read and write them. Every library dealing with data frames or 
arrays, across every programming language, knows how to handle them. Most of 
the time the libraries parse the quirky cases pretty well. Every spreadsheet program 
imports and exports as CSV. Every RDBMS—and most non-relational databases 
as well—imports and exports as CSV. Most programmers’ text editors even have 
facilities to make editing CSV easier. Python has a standard library module called 
csv that processes many dialects of CSV (or other delimited formats) as a line-by-line 
record reader.

The fact that so very many structurally flawed CSV files live in the wild shows that 
not every tool handles them entirely correctly. In part, that is probably because the 
format is simple enough to almost work without custom tools at all. I have myself, in 
a “throw-away script,” written print(",".join([1,2,3,4]), file=csv) countless 
times; that works well, until it doesn’t. Of course, throw-away scripts become fixed 
standard procedures for data flow far too often.

***
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The lack of type specification is often a strength rather than a weakness. For example, 
the part numbers mentioned a few pages ago may have started out always being 
integers as an actual business intention, but later on a need arose to use non-integer 
“numbers.” With formats that have a formal type specifier, we generally have to 
perform a migration and copy to move old data into a new format that follows the 
loosened or revised constraints.

One particular case where a data type change happens especially often, in my 
experience, is with finite-width character fields. Initially, some field is specified as 
needing 5, or 15, or 100 characters for its maximum length, but then a need for a 
longer string is encountered later, and a fixed table structure or SQL database needs 
to be modified to accommodate the longer length. Even more often—especially with 
databases—the requirement is under-documented, and we wind up with a dataset 
filled with truncated strings that are of little utility (and perhaps permanently 
lost data).

Text formats in general are usually flexible in this regard. Delimited files—but not 
fixed-width files—will happily contain fields of arbitrary length. This is similarly 
true of JSON data, YAML data,config XML data, log files, and some other formats that 
simply utilize text, often with line-oriented records. In all of this, data typing is very 
loose and only genuinely exists in the data processing steps. That is often a great 
virtue.

***

A related “looseness” of CSV and similar formats is that we often indefinitely 
aggregate multiple CSV files that follow the same informal schema. Writing a 
different CSV file for each day, or each hour, or each month, of some ongoing data 
collection is very commonplace. Many tools, such as Dask and Spark, will seamlessly 
treat collections of CSV files (matching a glob pattern on the file system) as a single 
dataset. Of course, in tools that do not directly support this, manual concatenation 
is still not difficult. But under the model of having a directory that contains an 
indefinite number of related CSV snapshots, presenting it as a single common object 
is helpful.

config

YAML usually contains relatively short configuration information 
rather than data in the prototypic sense. TOML is a similar format 
in this regard, as is the older INI format. All of these are really 
intended for hand editing, and hence are usually of small size, even 
though good APIs for reading and writing their data are common. 
While you could put a million records into any of these formats, 
you will rarely or never encounter that in practice. 
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The libraries that handle families of CSV files seamlessly are generally lazy and 
distributed. That is, with these tools, you do not typically read in all the CSV files at 
once, or at least not into the main memory of a single machine. Rather, various cores 
or various nodes in a cluster will each obtain file handles to individual files, and the 
schema information will be inferred from only one or a few of the files, with actual 
processing deferred until a specific (parallel) computation is launched. Splitting 
processing of an individual CSV file across cores is not easily tractable, since a reader 
can only determine where a new record begins by scanning until it finds a newline.

While details of the specific APIs of libraries for distributed data frames is outside 
the scope of this book, the fact that parallelism is easily possible given an initial 
division of data into many files is a significant strength for CSV as a format. 
Dask in particular works by creating many Pandas DataFrames and coordinating 
computation upon all of them (or those needed for a given result) with an API that 
exactly copies the same methods of individual Pandas objects:

# Generated data files with random values
from glob import glob
# Use glob() function to identify files matching pattern
glob('data/multicsv/2000-*.csv')[:8] # ... and more

['data/multicsv/2000-01-27.csv',
 'data/multicsv/2000-01-26.csv',
 'data/multicsv/2000-01-06.csv',
 'data/multicsv/2000-01-20.csv',
 'data/multicsv/2000-01-13.csv',
 'data/multicsv/2000-01-22.csv',
 'data/multicsv/2000-01-21.csv',
 'data/multicsv/2000-01-24.csv']

We read this family of CSV files into one virtualized DataFrame that acts like a Pandas 
DataFrame, even if loading it with Pandas would require more memory than our local 
system allows. In this specific example, the collection of CSV files is not genuinely too 
large for a modern workstation to read into memory; but when it becomes so, using 
some distributed or out-of-core system like Dask is necessary to proceed at all:

import dask.dataframe as dd
df = dd.read_csv('data/multicsv/2000-*-*.csv', 
                 parse_dates=['timestamp'])
print("Total rows:", len(df))
df.head()
Total rows: 2592000

             Timestamp     id    name          x          y
0  2000-01-01 00:00:00    979   Zelda   0.802163   0.166619
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1  2000-01-01 00:00:01   1019  Ingrid  -0.349999   0.704687
2  2000-01-01 00:00:02   1007  Hannah  -0.169853  -0.050842
3  2000-01-01 00:00:03   1034  Ursula   0.868090  -0.190783
4  2000-01-01 00:00:04   1024  Ingrid   0.083798   0.109101

When we require some summary to be computed, Dask will coordinate workers 
to aggregate on each individual DataFrame, then aggregate those aggregations. 
There are more nuanced issues of which operations can be reframed in this “map-
reduce” style and which cannot, but that is the general idea (and the Dask or Spark 
developers have thought about this for you so you do not have to):

df.mean().compute()

id    999.965606
x       0.000096
y       0.000081
dtype: float64

Having looked at some pros and cons of working with CSV data, let us turn to 
another format where a great deal of data is stored. Unfortunately, for spreadsheets, 
there are almost exclusively cons.

Spreadsheets Considered Harmful
Drugs are bad, m’kay. You shouldn’t do drugs, m’kay. If you do them you’re bad, 
because drugs are bad, m’kay. It’s a bad thing to do drugs, so don’t be bad by doing 
drugs, m’kay.
–Mr. Mackay (South Park)

Concepts:

•	 Non-enforced field/column identity
•	 Computational opacity
•	 Semi-tabular data
•	 Non-contiguous data
•	 Invisible data and data type discrepancies
•	 User interface as attractive nuisance

Edward Tufte, that brilliant doyen of information visualization, wrote an essay 
called The Cognitive Style of PowerPoint: Pitching Out Corrupts Within. Among his 
observations is that the manner in which slide presentations, and PowerPoint 
specifically, hides important information more than it reveals it was a major or even 
main cause of the 2003 Columbia space shuttle disaster. PowerPoint is anathema to 
clear presentation of information.

https://www.edwardtufte.com/tufte/powerpoint
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To no less of a degree, spreadsheets in general, and Excel in particular, are anathema 
to effective data science. While perhaps not as much as in CSV files, a great share 
of the world’s data lives in Excel spreadsheets. There are numerous kinds of data 
corruption that are the special realm of spreadsheets. As a bonus, data science 
tools read spreadsheets much more slowly than they do every other format, while 
spreadsheets also have hard limits on the amount of data they can contain that other 
formats do not impose.

Most of what spreadsheets do to make themselves convenient for their users makes 
them bad for scientific reproducibility, data science, statistics, data analysis, and 
related areas.computation Spreadsheets have apparent rows and columns in them, but 
nothing enforces consistent use of them, even within a single sheet. Some particular 
feature often lives in column F for some rows, but the equivalent thing is in column 
H for other rows, for example. Contrast this with a CSV file or an SQL table; for these 
latter formats, while all the data in a column is not necessarily good data, it generally 
must pertain to the same feature.

computation

Another danger of spreadsheets is not around data ingestion, per 
se, at all. Computation within spreadsheets is spread among many 
cells in no obvious or easily inspectable order, leading to numerous 
large-scale disastrous consequences (loss of billions in financial 
transactions; a worldwide economic planning debacle; a massive 
failure of Covid-19 contact tracing in the UK). The European 
Spreadsheet Risks Interest Group is an entire organization devoted 
to chronicling such errors. They present a number of lovely quotes, 
including this one: 

There is a literature on denial, which focuses on illness 
and the fact that many people with terminal illnesses 
deny the seriousness of their condition or the need to take 
action. Apparently, what is very difficult and unpleasant 
to do is difficult to contemplate. Although denial has only 
been studied extensively in the medical literature, it is 
likely to appear whenever required actions are difficult or 
onerous. Given the effortful nature of spreadsheet testing, 
developers may be victims of denial, which may manifest 
itself in the form of overconfidence in accuracy so that 
extensive testing will not be needed. 
–Ray Panko, 2003  

https://www.businessinsider.com/excel-partly-to-blame-for-trading-loss-2013-2
https://www.businessinsider.com/excel-partly-to-blame-for-trading-loss-2013-2
https://theconversation.com/the-reinhart-rogoff-error-or-how-not-to-excel-at-economics-13646
https://www.bbc.com/news/technology-54423988
https://www.bbc.com/news/technology-54423988
http://www.eusprig.org/
http://www.eusprig.org/
https://arxiv.org/abs/0804.0941
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Moreover, every cell in a spreadsheet can have a different data type. Usually, the 
type is assigned by heuristic guesses within the spreadsheet interface. These are 
highly sensitive to the exact keystrokes used, the order cells are entered, whether 
data is copy/pasted between blocks, and numerous other things that are both hard 
to predict and that change between every version of every spreadsheet software 
program. Infamously, for example, Excel interprets the gene name SEPT2 (Septin 
2) as a date (at least in a wide range of versions). Compounding the problem, 
the interfaces of spreadsheets make determining the data type for a given cell 
uncomfortably difficult.

Let us start with an example. The screenshot below is of a commonplace and 
ordinary-looking spreadsheet. Yes, some values are not aligned in their cells exactly 
consistently, but that is purely an aesthetic issue. The first problem that jumps out 
at us is the fact that one sheet is being used to represent two different (in this case 
related) tables of data. Already this is going to be difficult to make tidy:

Figure 1.2: Excel pitfalls

In procedural programming (including object-oriented 
programming), actions flow sequentially through code, with 
clear locations for branches or function calls; even in functional 
paradigms, compositions are explicitly stated. In spreadsheets it 
is anyone’s guess what computation depends on what else, and 
what data ranges are actually included. Errors can occasionally be 
found accidentally, but program analysis and debugging are nearly 
impossible. Users who know only, or mostly, spreadsheets will 
likely object that some tools exist to identify dependencies within 
a spreadsheet; this is technically true in the same sense as that 
many goods transported by freight train could also be carried on 
a wheelbarrow.
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If we simply tell Pandas (or specifically the supporting openpyxl library) to try 
to make sense of this file, it makes a sincere effort and applies fairly intelligent 
heuristics. It does not crash, to its credit. Other DataFrame libraries will be similar, 
with different quirks you will need to learn. But what went wrong that we can see 
initially?

# Default engine 'xlrd' might have bug in Python 3.9
pd.read_excel('data/Excel-Pitfalls.xlsx',
              sheet_name="Dask Sample", engine="openpyxl")

             Timestamp      id     name          x
0  2000-01-01 00:00:00     979    Zelda   0.802163
1   2000-01-01 0:00:01  1019.5   Ingrid  -0.349999
2  2000-01-01 00:00:02    1007   Hannah  -0.169853
3  2000-01-01 00:00:03    1034   Ursula    0.86809
4            timestamp      id     name          y
5  2000-01-01 00:00:02    1007   Hannah  -0.050842
6  2000-01-01 00:00:03    1034   Ursula  -0.190783
7  2000-01-01 00:00:04    1024   Ingrid   0.109101

Right away we can notice that the id column contains a value 1019.5 that was 
invisible in the spreadsheet display. Whether that column is intended as a floating-
point or an integer is not obvious at this point. Moreover, notice that visually the 
date on that same row looks slightly wrong. We will come back to this.

As a first step, we can, with laborious manual intervention, pull out the two separate 
tables we actually care about. Pandas is actually a little bit too smart here—it will, by 
default, ignore the data typing actually in the spreadsheet and do inference similar to 
what it does with a CSV file. For this purpose, we tell it to use the data type actually 
stored by Excel. Pandas’ inference is not a panacea, but it is a useful option at times 
(it can fix some, but not all, of the issues we note below; however, other things are 
made worse). For the next few paragraphs, we wish to see the raw data types stored 
in the spreadsheet itself:

df1 = pd.read_excel('data/Excel-Pitfalls.xlsx', 
                    nrows=5, dtype=object, engine="openpyxl")
df1.loc[:2]	# Just look at first few rows

             Timestamp       id     name          x
0  2000-01-01 00:00:00      979    Zelda   0.802163
1  2000-01-01 00:00:01   1019.5   Ingrid  -0.349999
2  2000-01-01 00:00:02     1007   Hannah  -0.169853
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We can read the second implicit table as well by using the pd.read_excel() 
parameter skiprows:

pd.read_excel('data/Excel-Pitfalls.xlsx', skiprows=7, 
engine="openpyxl")

               Timestamp    id    name          y
0    2000-01-01 00:00:02  1007  Hannah  -0.050842
1    2000-01-01 00:00:03  1034  Ursula  -0.190783
2    2000-01-01 00:00:04  1024  Ingrid   0.109101

If we look at the data types read in, we will see they are all Python objects to preserve 
the various cell types. But let us look more closely at what we actually have:

df1.dtypes

timestamp    datetime64[ns]
id                   object
name                 object
x                    object
dtype: object

The timestamps in this particular small example are all reasonable to parse with 
Pandas. But real-life spreadsheets often provide something much more ambiguous, 
often impossible to parse as dates. Look above at Figure 1.2 to notice that the data 
type is invisible in the spreadsheet itself. We can find the Python data type of the 
generic object stored in each cell:

# Look at the stored data type of each cell
tss = df1.loc[:2, 'timestamp']
for i, ts in enumerate(tss):
    print(f"TS {i}: {ts}\t{ts.__class__.__name__}")

TS 0: 2000-01-01 00:00:00       Timestamp
TS 1: 2000-01-01 00:00:01       Timestamp
TS 2: 2000-01-01 00:00:02       Timestamp
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The Pandas to_datetime() function is idempotentidempotent and would have run if we 
had not specifically disabled it by using dtype=object in the pd.read_excel() call. 
However, many spreadsheets are far messier, and the conversion will simply not 
succeed, producing an object column in any case. Particular cells in a column might 
contain numbers, formulae, or strings looking nothing like dates (or sometimes 
strings looking just enough like date string that a human, but not a machine, might 
guess the intent; say “Decc 23,, 201.9”).

Let’s look at using pd.to_datetime():

pd.to_datetime(tss)

0   2000-01-01 00:00:00
1   2000-01-01 00:00:01
2   2000-01-01 00:00:02
Name: timestamp, dtype: datetime64[ns]

Other columns pose a similar difficulty. The values that look identical in the 
spreadsheet view of the id column are actually a mixture of integers, floating-point 
numbers, and strings. It is conceivable that such was the intention, but in practice it 
is almost always an accidental result of the ways that spreadsheets hide information 
from their users. By the time these datasets arrive on your data science desk, they 
are merely messy, and the causes are lost in the sands of time. Let us look at the 
data types in the id column:

# Look at the stored data type of each cell
ids = df1.loc[:3, 'id']
for i, id_ in enumerate(ids):
    print(f"id {i}: {id_}\t{id_.__class__.__name__}")

idempotent

The word and concept idempotent is a useful one in mathematics, 
computer science, and programming in general. It means that 
calling the same function again on its own output will continue 
to produce the same answer. This is related to the even fancier 
concept in mathematics of an attractor. In ordinary programming 
terms, this means that you do not have to worry as much about 
potentially modifying a value repeatedly in an idempotent way, 
which may emerge from the vicissitudes of program flow. In other 
words, whatever the initial x is, you know that: python pd.to_
datetime(x) == pd.to_datetime(pd.to_datetime(x))
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id 0: 979       int
id 1: 1019.5  float
id 2: 1007      int
id 3: 1034      str

Of course, tools like Pandas can type cast values after reading them, but we require 
domain-specific knowledge of the dataset to know what cast is appropriate. Let us 
cast data using the .astype() method:

ids.astype(int)

0     979
1    1019
2    1007
3    1034
Name: id, dtype: int64

Putting together the cleanup we mention, we might carefully type our data in a 
manner similar to the following:

# Only rows through index '3' are useful
# We are casting to more specific data types 
#   based on domain and problem knowledge
df1 = df1.loc[0:3].astype(
    {'id': np.uint16, 
     'name': pd.StringDtype(), 
     'x': float})
# datetimes require conversion function, not just type
df1['timestamp'] = pd.to_datetime(df1.timestamp)
print(df1.dtypes)

timestamp    datetime64[ns]
id                   uint16
name                 string
x                   float64
dtype: object

df1.set_index('timestamp')

          timestamp       id     name          x
2000-01-01 00:00:00      979    Zelda   0.802163
2000-01-01 00:00:01     1019   Ingrid  -0.349999
2000-01-01 00:00:02     1007   Hannah  -0.169853
2000-01-01 00:00:03     1034   Ursula   0.868090
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What makes spreadsheets harmful is not principally their underlying data formats. 
Non-ancient versions of Excel (.xlsx), LibreOffice (OpenDocument, .ods), and 
Gnumeric (.gnm) have all adopted a similar format at the byte level. That is, they all 
store their data in XML formats, then compress those to save space. As I mentioned, 
this is slower than other approaches, but that concern is secondary.

If one of these spreadsheet formats were used purely as an exchange format among 
structured tools, they would be perfectly suitable to preserve and represent data. It 
is instead the social and user interface (UI) elements of spreadsheets that make them 
dangerous. The “tabular” format of Excel combines the worst elements of untyped 
CSV and strongly typed SQL databases. Rather than assigning a data type by 
column/feature, it allows type assignments per cell.

Per-cell typing is almost always the wrong thing to do for any data science purpose. 
It neither allows flexible decisions by programming tools (either using inference or 
type declaration APIs) nor does it enforce consistency of different values that should 
belong to the same feature at the time data is stored. Moreover, the relatively free-
form style of entry in the UIs of spreadsheets does nothing to guide users away from 
numerous kinds of entry errors (not only data typing, but also various misalignments 
within the grid, accidental deletions or insertions, and so on). Metaphorically, the 
danger posed by spreadsheet UIs resembles the concept in tort law of an “attractive 
nuisance”—they do not directly create the harm, but they make harm exceedingly 
likely with minor inattention.

Unfortunately, there do not currently exist any general-purpose data entry tools 
in widespread use. Database entry forms could serve the purpose of enforcing 
structure on data entry, but they are limited for non-programmatic data exploration. 
Moreover, the use of structured forms, whatever the format where the data might be 
subsequently stored, currently requires at least a modicum of software development 
effort, and many general users of spreadsheets lack this ability. Something similar to 
a spreadsheet, but that allowed locking data type constraints on columns, would be 
a welcome addition to the world. Perhaps one or several of my readers will create 
and popularize such tools.

For now, the reality is that many users will create spreadsheets that you will need to 
extract data from as a data scientist. This will inevitably be more work for you than 
if you were provided a different format. But think carefully about the block regions 
and tabs/sheets that are of actual relevance, about the problem-required data types 
for casts, and about how to clean unprocessable values. With effort the data will 
enter your data pipelines.

We can turn now to well structured and carefully date typed formats; those stored in 
relational databases.
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SQL RDBMS
At the time, Nixon was normalizing relations with China. I figured that if he could 
normalize relations, then so could I.
–E. F. Codd (inventor of relational database theory)

Concepts:

•	 Python DB-API and SQL drivers
•	 Data type impedance mismatches
•	 Manually casting to exact data types
•	 Truncation and overflow
•	 Wrapping versus clipping

Relational database management systems (RDBMSs) are enormously powerful and 
versatile. For the most part, their requirement of strict column typing and frequent 
use of formal foreign keys and constraints is a great boon for data science. While 
specific RDBMSs vary greatly in how well normalized, indexed, and designed they 
are—not every organization has or utilizes a database engineer specifically—even 
somewhat informally assembled databases have many desirable properties for data 
science. Not all relational databases are tidy, but they all take you several large steps 
in that direction.

Working with relational databases requires some knowledge of Structured Query 
Language (SQL). For small data, and perhaps for medium-sized data, you can get 
by with reading entire tables into memory as data frames. Operations like filtering, 
sorting, grouping, and even joins can be performed with data frame libraries. 
However, it is much more efficient if you are able to do these kinds of operations 
directly at the database level; it is an absolute necessity when working with big 
data. A database that has millions or billions of records, distributed across tens or 
hundreds of related tables, can itself quickly produce the hundreds of thousands of 
rows (tuples) that you need for the task at hand. But loading all of these rows into 
memory is either unnecessary or simply impossible.

There are many excellent books and tutorials on SQL. I do not have a specific one to 
recommend over others, but finding a suitable text to get up to speed—if you are not 
already—is not difficult. The general concepts of GROUP BY, JOIN, and WHERE clauses 
are the main things you should know as a data scientist. 
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If you have a bit more control over the database you pull data from, knowing 
something about how to intelligently index tables, and optimize slow queries by 
reformulation and looking at EXPLAIN output, is helpful. However, it is quite likely 
that you, as a data scientist, will not have full access to database administration. If 
you do have such access: be careful!

For this book, I use a local PostgreSQL server to illustrate APIs. I find that 
PostgreSQL is vastly better at query optimization than is its main open source 
competitor, MySQL. Both behave equally well with careful index tuning, but 
generally PostgreSQL is much faster for queries that must be optimized on an ad 
hoc basis by the query planner. In general, almost all of the APIs I show will be 
nearly identical across drivers in Python or in R (and in most other languages) 
whether you use PostgreSQL, MySQL, Oracle DB, DB2, SQL Server, or any other 
RDBMS. The Python DB-API, in particular, is well standardized across drivers. 
Even the single-file RDBMS SQLite3, which is included in the Python standard 
library, is almost DB-API compliant (and .sqlite is a very good storage format).

Within the setup.py module that is loaded by each chapter and is available 
within the source code repository, some database setup is performed. If you run 
some of the functions contained therein, you will be able to create generally the 
same configuration on your system as I have on the one where I am writing this. 
Actual installation of an RDBMS is not addressed in this book; see the instructions 
accompanying your database software. But a key and simple step is creating a 
connection to the database:

# Similar with adapter other than psycopg2
con = psycopg2.connect(database=db, host=host, 
              user=user, password=pwd)

This connection object will be used in subsequent code in this book. We also create 
an engine object that is an SQLAlchemy wrapper around a connection that adds 
some enhancements. Some libraries like Pandas require using an engine rather 
than only a connection. We can create that as follows:

engine = create_engine(
      f'postgresql://{user}:{pwd}@{host}:{port}/{db}')

Massaging Data Types
I used the Dask data created earlier in this chapter to populate a table with the 
following schema. These metadata values are defined in the RDBMS itself. Within 
this section, we will work with the elaborate and precise data types that relational 
databases provide:
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Column Data Type Data Width
index integer 32
timestamp timestamp without time zone None
id smallint 16
name character 10
x numeric 6
y real 24

This is the same data structure created in the previous Dask discussion, but I have 
somewhat arbitrarily imposed more specific data types on the fields. The PostgreSQL 
“data width” shown is a bit odd; it mixes bit length with byte length depending on 
the type. Moreover, for the floating-point y, it shows the bit length of the mantissa, 
not of the entire 32-bit memory word. But in general we can see that different 
columns have different specific types.

When designing tables, database engineers generally try to choose data widths that 
are sufficient for the purpose, but also as small as the requirement allows. If you 
need to store billions of person ages, for example, a 256-bit integer could certainly 
hold those numbers, but an 8-bit integer can also hold all the values that can occur, 
using 1/32 as much storage space. 

Using the Python DB-API loses some data type information. It does pretty well, 
but Python does not have a full range of native types. The fractional numbers are 
accurately stored as either Decimal or native floating-point, but the specific bit 
lengths are lost. Likewise, the integer is a Python integer of unbounded size. The 
name strings are always 10 characters long, but for most purposes we probably want 
to apply str.rstrip() (strip whitespace at right end) to take off the surrounding 
whitespace:

# Function connect_local() spelled out in Chapter 4 (Anomaly Detection)
con, engine = connect_local()
cur = con.cursor()
cur.execute("SELECT * FROM dask_sample")
pprint(cur.fetchmany(2))

[(3456,
  datetime.datetime(2000, 1, 2, 0, 57, 36),
  941,
  'Alice     ',
  Decimal('-0.612'),
  -0.636485),
 (3457,
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  datetime.datetime(2000, 1, 2, 0, 57, 37),
  1004,
  'Victor    ',
  Decimal('0.450'),
  -0.687718)]

Unfortunately, we lose even more data type information using Pandas (at least as 
of Pandas 1.0.1 and SQLAlchemy 1.3.13, current as of this writing). Pandas is able 
to use the full type system of NumPy, and even adds a few more custom types 
of its own. This richness is comparable to—but not necessarily identical to—the 
type systems provided by RDBMSs (which, in fact, vary from each other as well, 
especially in extension types). However, the translation layer only casts to basic 
string, float, int, and date types.

Let us read a PostgreSQL table into Pandas, and then examine what native data types 
were utilized to approximate that SQL data:

df = pd.read_sql('dask_sample', engine, index_col='index')
df.tail(3)

index            timestamp    id      name       x         y
 5676  2000-01-02 01:34:36  1041   Charlie  -0.587  0.206869
 5677  2000-01-02 01:34:37  1017       Ray   0.311  0.256218
 5678  2000-01-02 01:34:38  1036    Yvonne   0.409  0.535841

The specific dtypes within the DataFrame are: 

df.dtypes

timestamp    datetime64[ns]
id                    int64
name                 object
x                   float64
y                   float64
dtype: object

Although it is a bit more laborious, we can combine these techniques and still work 
with our data within a friendly data frame, but using more closely matched types 
(albeit not perfectly matched to the database). The two drawbacks here are:

•	 We need to make manual decisions about the best type for each column
•	 Operations in Pandas will be much slower with object columns
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Let us endeavor to choose better data types for our data frame. We probably need 
to determine the precise types from the documentation of our RDBMS, since few 
people have the PostgreSQL type codes memorized. The DB-API cursor object has 
a .description attribute that contains column type codes:

cur.execute("SELECT * FROM dask_sample")
cur.description

(Column(name='index', type_code=23),
 Column(name='timestamp', type_code=1114),
 Column(name='id', type_code=21),
 Column(name='name', type_code=1042),
 Column(name='x', type_code=1700),
 Column(name='y', type_code=700))

We can introspect to see the Python types used in the results. Of course, these do not 
carry the bit lengths of the database with them, so we will need to manually choose 
them. Datetime is straightforward enough to put into Pandas’ datetime64[ns] type:

rows = cur.fetchall()
[type(v) for v in rows[0]]

[int, datetime.datetime, int, str, decimal.Decimal, float]

Working with Decimal numbers is tricker than other types. Python’s standard library 
decimal module complies with IBM’s General Decimal Arithmetic Specification; 
unfortunately, databases do not. In particular, the IBM 1981 spec (with numerous 
updates) allows each operation to be performed within some chosen “decimal 
context” that gives precision, rounding rules, and other things. This is simply 
different from having a decimal precision per column, with no specific control of 
rounding rules. We can usually ignore these nuances; but when they bite us, they can 
bite hard. The issues arise more in civil engineering and banking/finance than they 
do with data science as such, but these are concerns to be aware of.

In the next cell, we cast several columns to specific numeric data types with specific 
bit widths:

# Read the data with no imposed data types
df = pd.DataFrame(rows, 
                  columns=[col.name for col in cur.description],
                  dtype=object)

# Assign specific int or float lengths to some fields
types = {'index': np.int32, 'id': np.int16, 'y': np.float32}
df = df.astype(types)

http://speleotrove.com/decimal/
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# Cast the Python datetime to a Pandas datetime
df['timestamp'] = pd.to_datetime(df.timestamp)
df.set_index('index').head(3)

index            timestamp    id    name       x          y
 3456  2000-01-02 00:57:36   941   Alice  -0.612  -0.636485
 3457  2000-01-02 00:57:37  1004  Victor   0.450  -0.687718
 3458  2000-01-02 00:57:38   980   Quinn   0.552   0.454158

We can verify those data types are used.

df.dtypes

index                 int32
timestamp    datetime64[ns]
id                    int16
name                 object
x                    object
y                   float32
dtype: object

The Pandas “object” type hides the differences of the underlying classes of the 
Python objects stored. We can look at those more specifically:

pprint({repr(x): x.__class__.__name__ 
        for x in df.reset_index().iloc[0]})

{"'Alice     '": 'str',
 '-0.636485': 'float32',
 '0': 'int64',
 '3456': 'int32',
 '941': 'int16',
 "Decimal('-0.612')": 'Decimal',
 "Timestamp('2000-01-02 00:57:36')": 'Timestamp'}

Repeating in R
For the most part, the steps for reading in SQL data in R are similar to those in 
Python. And so are the pitfalls around getting data types just right. We can see that 
the data types are the same rough approximations of the actual database types as 
Pandas produced. Obviously, in real code you should not specify passwords as 
literal values in the source code but use some tool for secrets management:
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%%R
require("RPostgreSQL")
drv <- dbDriver("PostgreSQL")
con <- dbConnect(drv, dbname = "dirty",
                 host = "localhost", port = 5432,
                 user = "cleaning", password = "data")
sql <- "SELECT id, name, x, y FROM dask_sample LIMIT 3"
data <- tibble(dbGetQuery(con, sql))
data

# A tibble: 3 x 4
     id name              x      y
  <int> <chr>         <dbl>  <dbl>
1   941 "Alice     " -0.612 -0.636
2  1004 "Victor    "  0.45  -0.688
3   980 "Quinn     "  0.552  0.454

What is interesting to look at is that we might produce data frames that are not 
directly database tables (nor simply the first few rows, as in examples here), but 
rather some more complex manipulation or combination of that data. Joins are 
probably the most interesting case here since they take data from multiple tables. 
But grouping and aggregation is also frequently useful, and might reduce a million 
rows to a thousand summary descriptions, for example, which might be our goal:

%%R
sql <- "SELECT max(x) AS max_x, max(y) AS max_y, 
               name, count(name) 
        FROM dask_sample 
        WHERE id > 1050 
        GROUP BY name 
        ORDER BY count(name) DESC
        LIMIT 12;"
# Here we simply retrieve a data.frame 
# rather than convert to tibble 
dbGetQuery(con, sql)

   max_x     max_y       name   count
1  0.733  0.768558     Hannah      10
2  0.469  0.849384    Norbert      10
3  0.961  0.735508      Wendy       9
4  0.950  0.673037      Quinn       8
5  0.892  0.853494    Michael       7
6  0.772  0.989233     Yvonne       7
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7  0.958  0.859792   Patricia       6
8  0.953  0.865918     Ingrid       6
9  0.998  0.980781     Oliver       6
10 0.050  0.501860      Laura       6
11 0.399  0.808572      Alice       5
12 0.604  0.826401      Kevin       5

Where SQL Goes Wrong (and How to Notice It)
For the following example, I started with a dataset that described Amtrak train 
stations in 2012. Many of the fields initially present were discarded, but some 
others were manipulated to illustrate some points. Think of this as “fake data” 
even though it is derived from a genuine dataset. In particular, the column Visitors 
is invented whole cloth; I have never seen visitor count data, nor do I know if it is 
collected anywhere. It is just numbers that will have a pattern:

amtrak = pd.read_sql('bad_amtrak', engine)
amtrak.head()

    Code         StationName          City    State    Visitors
0    ABB    Abbotsford-Colby         Colby       WI       18631
1    ABE            Aberdeen      Aberdeen       MD       12286
2    ABN             Absecon       Absecon       NJ        5031
3    ABQ         Albuquerque   Albuquerque       NM       14285
4    ACA   Antioch-Pittsburg       Antioch       CA       16282

On the face of it—other than the telling name of the table we read in—nothing looks 
out of place. Let us look for problems. Notice that the tests below will, in a way, be 
anomaly detection, which is discussed in a later chapter. However, the anomalies we 
find are specific to SQL data typing.

String fields in RDBMSs are prone to truncation if specific character lengths are 
given. Modern database systems also have a VARCHAR or TEXT type for unlimited 
length strings, but often specific lengths are used in practice. To a certain degree, 
database operations can be more efficient with known text lengths, so the choice is 
not simple foolishness. But whatever the reason, you will find such fixed lengths 
frequently in practice. In particular, the StationName column is defined as CHAR(20). 
The question is: is that a problem?
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Knowing the character length will not automatically answer the question we care 
about. Perhaps Amtrak regulation requires a certain length of all station names. This 
is domain-specific knowledge that you may not have as a data scientist. In fact, the 
domain experts may not have it either, because it has not been analyzed or because 
rules have changed over time. Let us analyze the data itself.

Moreover, even if a database field is currently variable length or very long, it is quite 
possible that a column was altered over the life of a database, or that a migration 
occurred. Unfortunately, multiple generations of old data that may each have been 
corrupted in their own ways can obscure detection.

One place you may encounter this problem data history is with dates in older 
datasets where two-digit years were used. The “Y2K” issue had to be addressed two 
decades ago for active database systems—for example, I spent the calendar year of 
1998 predominantly concerned with this issue—but there remain some infrequently 
accessed legacy data stores that will fail on this ambiguity. If the character string '34' 
is stored in a column named YEAR, does it refer to something that happened in the 
20th century or an anticipated future event a decade after this book is being written? 
Some domain knowledge is needed to answer this.

Some rather concise Pandas code can tell us something useful. A first step is cleaning 
the padding in the fixed-length character field. The whitespace padding is not 
generally useful in our code. After that we can look at the length of each value, count 
the number of records per length, and sort by those lengths, to produce a histogram:

amtrak['StationName'] = amtrak.StationName.str.strip()
hist = amtrak.StationName.str.len().value_counts().sort_index()
hist

4      15
5      46
6     100
7     114
     ... 
17     15
18     17
19     27
20    116
Name: StationName, Length: 17, dtype: int64
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The pattern is even more striking if we visualize it. Clearly station names bump up 
against that 20 character width. This is not quite yet a smoking gun, but it is very 
suggestive:

hist.plot(kind='bar', 
          title="Lengths of Station Names");

Figure 1.3: Histogram showing lengths of station names

We want to be careful not to attribute an underlying phenomenon as a data artifact. 
For example, in preparing this section, I started analyzing a collection of Twitter 
2015 tweets. Those naturally form a similar pattern of “bumping up” against 
140 characters—but I realized that they do this because of a limit in the accurate 
underlying data, not as a data artifact. However, the Twitter histogram curve looks 
similar to that for station names. I am aware that Twitter doubled its limit in 2018; I 
would expect an aggregated collection over time to show asymptotes at both 140 and 
280, but as a “natural” phenomenon.

If the character width limit changed over the history of our data, we might see a 
pattern of multiple soft limits. These are likely to be harder to discern, especially 
if those limits are significantly larger than 20 characters to start with. Before we 
absolutely conclude that we have a data artifact rather than, for example, an Amtrak 
naming rule, let us look at the concrete data. 
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This is not impractical when we start with a thousand rows, but it becomes more 
difficult with a million rows. Using Pandas’ .sample() method is often a good way to 
view a random subset of rows matching some filter, but here we just display the first 
and last few:

amtrak[amtrak.StationName.str.len() == 20]

    Code            StationName                     City   State   Visitors
28   ARI   Astoria (Shell Stati                  Astoria      OR      27872
31   ART   Astoria (Transit Cen                  Astoria      OR      22116
42   BAL   Baltimore (Penn Stat                Baltimore      MD      19953
50   BCA   Baltimore (Camden St                Baltimore      MD      32767
...  ...                    ...                      ...     ...        ...
965  YOC   Yosemite - Curry Vil   Yosemite National Park      CA      28352
966  YOF   Yosemite - Crane Fla   Yosemite National Park      CA      32767
969  YOV   Yosemite - Visitor C   Yosemite National Park      CA      29119
970  YOW   Yosemite - White Wol   Yosemite National Park      CA      16718
116 rows × 5 columns

It is reasonable to conclude from our examined data that truncation is an authentic 
problem here. Many of the samples have words terminated in their middle at 
character length. Remediating it is another decision and more effort. Perhaps we can 
obtain the full texts as a followup; if we are lucky the prefixes will uniquely match 
full strings. Of course, quite likely, the real data is just lost. If we only care about 
uniqueness, this is likely not to be a big problem (the three-letter codes are already 
unique). However, if our analysis concerns the missing data itself we may not be 
able to proceed at all. Perhaps we can decide in a problem-specific way that prefixes 
nonetheless are a representative sample of what we are analyzing.

***

A similar issue arises with numbers of fixed lengths. Floating-point numbers might 
lose desired precision, but integers might wrap and/or clip. We can examine the 
Visitors column and determine that it stores a 16-bit SMALLINT. Which is to say, it 
cannot represent values greater than 32,767. Perhaps that is more visitors than any 
single station will plausibly have. 
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Or perhaps we will see data corruption:

max_ = amtrak.Visitors.max()
amtrak.Visitors.plot(
        kind='hist', bins=20, 
        title=f"Visitors per station (max {max_})");

Figure 1.4: Histogram showing visitors per station

In this case, the bumping against the limit is a strong signal. An extra hint here is 
the specific limit reached. It is one of those special numbers you should learn to 
recognize. Signed integers of bit-length N range from -2N-1 up to 2N-1-1. Unsigned 
integers range from 0 to 2N. 32,767 is 216-1. However, for various programming 
reasons, numbers one (or a few) shy of a data type bound also frequently occur. 
In general, if you ever see a measurement that is exactly one of these bounds, you 
should take a second look and think about whether it might be an artifactual number 
rather than a genuine value. This is a good rule even outside the context of databases.

A possibly more difficult issue to address is when values wrap instead. Depending 
on the tools you use, large positive integers might wrap around to negative integers. 
Many RDBMSs—including PostgreSQL—will simply refuse transactions with 
unacceptable values rather than allowing them to occur. But different systems vary. 
Wrapping on sign is obvious in the case of counts that are non-zero by their nature, 
but for values where both positive and negative numbers make sense, detection is 
harder.
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For example, in this Pandas Series example, which is cast to a short integer type, we 
see values around positive and negative 15 thousand, both as genuine elements and 
as artifacts of a type cast:

ints = pd.Series(
    [100, 200, 15_000, 50_000, -15_000, -50_000])
ints.astype(np.int16)

0      100
1      200
2    15000
3   -15536
4   -15000
5    15536
dtype: int16

In a case like this, we simply need to acquire enough domain expertise to 
know whether the out-of-bounds values that might wrap can ever be sensible 
measurements. I.e. is 50,000 reasonable for this hypothetical measure? If all 
reasonable observations are of numbers in the hundreds, wrapping at 32,000 is 
not a large concern. It is conceivable that some reasonable value got there as a wrap 
from an unreasonable one; but wrong values can occur for a vast array of reasons, 
and this would not be an unduly large concern.

Note that integers and floating-point numbers only come, on widespread 
computer architectures, in sizes of 8, 16, 32, 64, and 128 bits. For integers those 
might be signed or unsigned, which would halve or double the maximum number 
representable. These maximum values representable within these different bit 
widths are starkly different from each other. A rule of thumb, if you can choose the 
integer representation, is to leave an order-of-magnitude padding from the largest 
magnitude you expect to occur. However, sometimes even an order of magnitude 
does not set a good bound on unexpected (but accurate) values.

For example, in our hypothetical visitor count, perhaps a maximum of around 
20,000 was reasonably anticipated, but over the years, that got as high as 35,000, 
leading to the effect we see in the Figure 1.4 plot (of hypothetical data). Allowing 
for 9,223,372,036,854,775,807 (263-1) visitors to a station might have seemed like 
unnecessary overhead to the initial database engineers. However, a 32-bit integer, 
with a maximum of 2,147,483,647 (231-1), would have been a better choice, even 
though the actual maximum remains far larger than will ever be observed.

Let us turn now to some other data formats you are likely to work with, generally 
binary data formats, often used for scientific requirements.
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Other Formats
Let a hundred flowers bloom; let a hundred schools of thought contend.
–Confucian saying

Concepts:

•	 Binary columnar data files
•	 Hierarchical array data
•	 Single-file RDBMS

A variety of data formats that you may encounter can be used for holding tabular 
data. For the most part these do not introduce any special new cleanliness concerns 
that we have not addressed in earlier sections. Properties of the data themselves are 
discussed in later chapters. The data type options vary between storage formats, but 
the same kinds of general concerns that we discussed with RDBMSs apply to all of 
them. In the main, from the perspective of this book, these formats simply require 
somewhat different APIs to get at their underlying data, but all provide data types 
per column. The formats addressed herein are not an exhaustive list, and clearly 
new ones may arise or increase in significance after the time of this writing. But 
the principles of access should be similar for formats not discussed.

The closely related formats HDF5 and NetCDF (discussed below) are largely 
interoperable, and both provide ways of storing multiple arrays, each with metadata 
associated and also allowing highly dimensional data, not simply tabular 2-D 
arrays. Unlike with the data frame model, arrays within these scientific formats are 
of homogeneous type throughout. That is, there is no mechanism (by design) to 
store a text column and a numeric column within the same object, nor even numeric 
columns of different bit-widths. However, since they allow multiple arrays in the 
same file, full generality is available, just in a different way than within the SQL 
or data frame model.

SQLite (discussed below) is a file format that provides a relational database, 
consisting potentially of multiple tables, within a single file. It is extremely widely 
used, being present and used everywhere from every iOS and Android device up 
to the largest supercomputer clusters. An interface for SQLite is part of the Python 
standard library and is available for nearly all other programming languages.

Apache Parquet (discussed below) is a column-oriented data store. What this 
amounts to is simply a way to store data frames or tables to disk, but in a manner 
that optimizes common operations that typically vectorize along columns rather than 
along rows. 
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A similar philosophy motivates columnar RDBMSs like Apache Cassandra 
and MonetDB, both of which are SQL databases, simply with different query 
optimization possibilities. kdb+ is an older, and non-SQL, approach to a similar 
problem. PostgreSQL and MariaDBMariaDB also both have optional storage formats 
that use column organization. Generally, these internal optimizations are not direct 
concerns for data science, but Parquet requires its own non-SQL APIs.

***

There are a number of binary data formats that are reasonably widely used, but I 
do not specifically discuss them in this book. Many other formats have their own 
virtues, but I have attempted to limit the discussion to the handful that I feel you are 
most likely to encounter in regular work as a data scientist. Some additional formats 
are listed below, with characterization mostly adapted from their respective home 
pages. You can see in the descriptions which discussed formats they most resemble, 
and generally the identical data integrity and quality concerns apply as in the 
formats I discuss. Differences are primarily in performance characteristics: how big 
the files are on disk, how fast can they be read and written under different scenarios, 
and so on:

•	 Feather (and Arrow): Feather is basically a direct serialization of the Arrow 
in-memory format for storage on disk with a very thin adaptor layer. Apache 
Arrow is a development platform for in-memory analytics. It specifies a 
standardized language-independent columnar memory format for flat and 
hierarchical data, organized for efficient analytic operations on modern 
hardware, as described by the Arrow documentation. 

•	 Apache Avro: Avro is a data serialization system that provides rich data 
structures, a compact, fast, binary data format, and a container file, to 
store persistent data. It integrates with dynamic languages without code 
generation being needed (unlike in similar systems such as Thrift and 
Protocol Buffers). (Paraphrased from the Apache Avro documentation.)

MariaDB

MariaDB is a fork of MySQL, created by MySQL creator Monty 
Widenius. It was motivated by intellectual property freedom 
concerns after Oracle acquired MySQL in 2009. For the most part, 
the design and features are similar to those of MySQL, although 
some advanced features have diverged since that split. You may be 
using MariaDB, in fact, even if you are unaware of doing so, since 
the shell tool and drivers still generally retain the name mysql for 
compatibility. 

https://arrow.apache.org/docs/
https://avro.apache.org/docs/1.3.3/
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•	 bcolz: bcolz provides columnar, chunked data containers that can be 
compressed either in-memory and on-disk. Column storage allows for 
efficiently querying tables, as well as for cheap column addition and 
removal. It is based on NumPy, and uses it as the standard data container to 
communicate with bcolz objects, but it also comes with support for import/
export facilities to/from HDF5/PyTables tables and Pandas dataframes, as 
described by the bcolz documentation. 

•	 Zarr: Zarr provides classes and functions for working with N-dimensional 
arrays that behave like NumPy arrays but whose data is divided into chunks 
and each chunk is compressed. If you are already familiar with HDF5 then 
Zarr arrays provide similar functionality, but with some additional flexibility, 
as described by the Zarr documentation. 

HDF5 and NetCDF-4
There is a slightly convoluted history of the Hierarchical Data Format (HDF), which 
was begun by the National Center for Supercomputing Applications (NCSA) in 
1987. HDF4 was significantly over-engineered and is far less widely used now. 
HDF5 simplified the file structure of HDF4. It consists of datasets, which are 
multidimensional arrays of a single data type, and groups, which are container 
structures holding datasets and other groups. Both groups and datasets may have 
attributes attached to them, which are any pieces of named metadata. What this 
does, in effect, is emulate a file system within a single file. The nodes or “files” 
within this virtual file system are array objects. Generally, a single HDF5 file will 
contain a variety of related data for working with the same underlying problem.

The Network Common Data Form (NetCDF) is a library of functions for storing 
and retrieving array data. The project itself is nearly as old as HDF and is an open 
standard that was developed and supported by a variety of scientific agencies. As of 
version 4, it supports using HDF5 as a storage back-end; earlier versions used some 
other file formats, and current NetCDF software requires continued support for 
those older formats. Occasionally NetCDF-4 files do enough special things with their 
contents that reading them with generic HDF5 libraries is awkward.

Generic HDF5 files typically have an extension of .h5, .hdf5, .hdf, or .he5. These 
should all represent the same binary format, and other extensions occur sometimes 
too. Some corresponding extensions for HDF4 also exist. Oddly, even though 
NetCDF can consist of numerous underlying file formats, they all seem standardized 
on the .nc extension.

https://github.com/Blosc/bcolz
https://zarr.readthedocs.io/en/stable/tutorial.html
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Tools and Libraries
Although I generally do not rely on GUI tools, in the case of viewing the fairly 
complex structure of HDF5, they can help. For example, a file from NASA’s Earth 
Science Data collection is included in this book’s sample data repository. Users 
can freely register to obtain datasets from NASA, which in aggregate is petabytes 
of information. This particular HDF5/NetCDF file contains datasets for surface 
pressure, vertical temperature profiles, surface and vertical wind profiles, tropopause 
pressure, boundary layer top pressure, and surface geopotential for a 98-minute 
period. In particular, some of the data is spatially 3-dimensional.

A view of a small portion of the data using the open source viewer HDF Compass 
illustrates some of the structure. The particular dataset viewed is 1 of 16 in the file. 
This DELP dataset is about pressure thickness, and contains both an array of 32-bit 
values and 8 attributes describing the dataset. You can see in the screenshot below 
that this particular GUI tool presents the 3rd dimension as a selection widget, and the 
first two dimensions in a tabular view.

Figure 1.5: HDF Compass NASA data

https://hdf-compass.readthedocs.io/en/latest/index.html
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Within Python, there are two popular open source libraries for working with HDF5, 
PyTables and h5py. For working with NetCDF specifically, there is a netcdf4-python 
library as well. If you wish to read data from HDF5 files, and not to add NetCDF 
specific metadata, one of the general HDF5 tools is fine (h5py handles special 
metadata better than PyTables).

PyTables and h5py have moderately different attitudes. H5py stays close to the 
HDF5 spec itself while PyTables attempts to provide a higher-level “Pythonic” 
interface. PyTables has the advantage that its data model borrows from, and 
acknowledges, a library for XML access that this author wrote way back in 2000; 
however, that advantage may be less relevant for general readers than for me 
personally. In the R world, the library rhdf5 is available.

In libraries for working with HDF5 data, a degree of laziness is allowed when 
dealing with large datasets. In the Python interfaces, datasets are virtualized NumPy 
arrays; importantly you can perform slice operations into these arrays, and only 
actually read into memory the indicated data. You may be dealing with terabytes of 
underlying information but process or modify only megabytes at a time (or at all), 
with efficient reading and writing from regions of on disk arrays.

The names for data files used by NASA are verbose but contain detailed indication 
in the names themselves of the nature of the datasets within them. Let us open one 
file and take a look at a summary of its datasets. We will show the dataset name, its 
dimensions, its data type, its shape, and the “units” attribute that these all happen to 
have. In general, attributes may have any names, but NASA has conventions about 
which to use:

import h5py
h5fname = ('data/earthdata/OMI-Aura_ANC-OMVFPITMET'
           '_2020m0216t225854-o82929_v003'
           '-2020m0217t090311.nc4')

data = h5py.File(h5fname, mode='r')

for name, arr in data.items():
    print(f"{name:6s} | {str(arr.shape):14s} | "
          f"{str(arr.dtype):7s} | {arr.attrs['units'][0]}")

DELP   | (1494, 60, 47) | float32 | Pa
PBLTOP | (1494, 60)     | float32 | Pa
PHIS   | (1494, 60)     | float32 | m+2 s-2
PS     | (1494, 60)     | float32 | Pa
T      | (1494, 60, 47) | float32 | K
TROPPB | (1494, 60)     | float32 | Pa
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U      | (1494, 60, 47) | float32 | m s-1
U10M   | (1494, 60)     | float32 | m s-1
V      | (1494, 60, 47) | float32 | m s-1
V10M   | (1494, 60)     | float32 | m s-1
lat    | (1494, 60)     | float32 | degrees_north
lev    | (47,)          | int16   | 1
line   | (1494,)        | int16   | 1
lon    | (1494, 60)     | float32 | degrees_east
sample | (60,)          | int16   | 1
time   | (1494,)        | float64 | seconds since 1993-01-01 00:00:00

We can lazily create a memory view into only part of one of the dataset arrays. In the 
example, we have opened in read-only mode, but if we had opened using the 'r+' 
or 'a' modes we could change the file. Use the 'w' mode with extreme caution since 
it will overwrite an existing file. If the mode allows modification on disk, calling 
data.flush() or data.close() will write any changes back to the HDF5 source.

Let us create a view of only a small section of the 3-dimensional V dataset. We are 
not particularly concerned here with understanding the domain of the data, but 
just demonstrating the APIs. In particular, notice that we have used a stride in one 
dimension to show that the general NumPy style of complex memory views is 
available. Only the data referenced is actually put into main memory while the rest 
stays on disk:

# A 3-D block from middle of DELP array
middle = data['V'][::500, 10:12, :3]
middle

array([[[17.032158  , 12.763597  ,  3.7710803 ],
        [16.53227   , 12.759642  ,  4.1722884 ]],

       [[ 4.003829  , -1.0843939 , -6.7918572 ],
        [ 3.818467  , -1.0030019 , -6.6708655 ]],

       [[-2.7798688 ,  0.24923703, 20.513933  ],
        [-2.690715  ,  0.2226392 , 20.473366  ]]], dtype=float32)

If we modify the data in the view middle, it will be written back when we flush or 
close the handle (if not in read-only mode). We might also use our data slice for other 
computations or data science purposes. For example, perhaps such a selection acts as 
tensors that are input into a neural network. 



Tabular Formats

[ 48 ]

In a simpler case, perhaps we simply want to find some statistics or reduction/
abstraction on the data:

middle.mean(axis=1)

array([[16.782215  , 12.76162   ,  3.9716845 ],
       [ 3.911148  , -1.0436978 , -6.7313614 ],
       [-2.735292  ,  0.23593812, 20.493649  ]], dtype=float32)

***

Working with HDF5 files in R—or most any other language—is generally similar to 
doing so from Python. Let us take a look with the R library rhdf5:

%%R -i h5fname
library(rhdf5)
h5ls(h5fname)

   group   name       otype  dclass            dim
0      /   DELP H5I_DATASET   FLOAT 47 x 60 x 1494
1      / PBLTOP H5I_DATASET   FLOAT      60 x 1494
2      /   PHIS H5I_DATASET   FLOAT      60 x 1494
3      /     PS H5I_DATASET   FLOAT      60 x 1494
4      /      T H5I_DATASET   FLOAT 47 x 60 x 1494
5      / TROPPB H5I_DATASET   FLOAT      60 x 1494
6      /      U H5I_DATASET   FLOAT 47 x 60 x 1494
7      /   U10M H5I_DATASET   FLOAT      60 x 1494
8      /      V H5I_DATASET   FLOAT 47 x 60 x 1494
9      /   V10M H5I_DATASET   FLOAT      60 x 1494
10     /    lat H5I_DATASET   FLOAT      60 x 1494
11     /    lev H5I_DATASET INTEGER             47
12     /   line H5I_DATASET INTEGER           1494
13     /    lon H5I_DATASET   FLOAT      60 x 1494
14     / sample H5I_DATASET INTEGER             60
15     /   time H5I_DATASET   FLOAT           1494

You may notice that the order of dimensions is transposed in R versus Python, so we 
have to account for that in our selection of a region of interest. However, generally 
the operation of slicing in R is very similar to that in NumPy. The function h5save() 
is used to write data that was modified back to disk. 

%%R -i h5fname
V = h5read(h5fname, 'V')
V[1:2, 10:12, 10:11]
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, , 1

         [,1]     [,2]     [,3]
[1,] 17.69524 17.23481 16.57238
[2,] 12.46370 12.44905 12.47155

, , 2

         [,1]     [,2]     [,3]
[1,] 17.71876 17.25898 16.56942
[2,] 12.42049 12.40599 12.43139

***

The NASA data shown does not use group hierarchies, only top-level datasets. Let us 
look at a toy data collection that nests groups and datasets.

make_h5_hierarchy()  # initialize the HDF5 file
f = h5py.File('data/hierarchy.h5', 'r+')
dset = f['/deeply/nested/group/my_data']
print(dset.shape, dset.dtype)

(10, 10, 10, 10) int32

We see that we have a 4-dimensional array of integer data. Perhaps some metadata 
description was attached to it as well. Let us also view—and then modify—some 
section of the data since we have opened in 'r+' mode. After we change the data, 
we can write it back to disk. We could similarly change or add attributes in a regular 
dictionary style, for instance:

dset.attrs[mykey] = myvalue

Let us show a slice from the dataset.

for key, val in dset.attrs.items():
    print(key, "→", val)
print()
print("Data block:\n", dset[5, 3, 2:4, 8:])

author      David Mertz
citation    Cleaning Data Book
shape_type  4-D integer array

Data block:
 [[-93 -53]
 [ 18 -37]]
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Now we modify the same slice of data we displayed, then close the file handle to 
write it back to disk:

dset[5, 3, 2:4, 8:] = np.random.randint(-99, 99, (2, 2))
print(dset[5, 3, 2:4, 8:])
f.close()                   # write change to disk

[[-45 -76]
 [-96 -21]]

We can walk the hierarchy in Python’s h5py package, but it is somewhat manual to 
loop through paths. R’s rhdf5 provides a nice utility function, h5ls(), that lets us see 
more of the structure of this test file:

%%R 
library(rhdf5)
h5ls('data/hierarchy.h5')

                    group       name        otype   dclass                dim
0                       /     deeply    H5I_GROUP                            
1                 /deeply     nested    H5I_GROUP                            
2          /deeply/nested      group    H5I_GROUP                            
3    /deeply/nested/group    my_data  H5I_DATASET  INTEGER  10 x 10 x 10 x 10
4                 /deeply       path    H5I_GROUP                            
5            /deeply/path  elsewhere    H5I_GROUP                            
6  /deeply/path/elsewhere      other  H5I_DATASET  INTEGER                 20
7            /deeply/path  that_data  H5I_DATASET    FLOAT              5 x 5

SQLite
In essence, SQLite is simply another RDBMS from the point of view of a data 
scientist. For a developer or systems engineer, it has some special properties, but for 
readers of this book, you will get data from an SQLite file via SQL queries. Somewhat 
similarly to HDF5, an SQLite file—often given extensions .sqlite, .db, or .db3 (but 
not as standardized as with some file types)—can contain many tables. In SQL, we 
automatically get joins and subqueries to combine data from multiple tables, whereas 
there is no similar standard for combining data from multiple HDF5 datasets.

The SQLite3 data format and server is extremely efficient, and queries are usually 
fast. As with other SQL databases, it operates with atomic transactions that succeed or 
fail in their entirety. This prevents a database from reaching a logically inconsistent 
state. However, it does not have a concurrent access model. 
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Or rather, it does not allow multiple simultaneous writers to a common database 
in the way that server-based RDBMSs do. Many reader clients may open the same 
file simultaneously without difficulty; it only bogs down when many clients wish 
to perform write transactions. There are ways to address this situation, but they are 
outside the scope of this particular book.

An important advantage of SQLite over other RDBMSs is that distributing the single 
file that makes up the database is dead simple. With other systems, you need to add 
credentials, and firewall rules, and the like, to give new users access; or alternately 
you need to export the needed data to another format, typically CSV, that is both 
slow and somewhat lossy (i.e. data types).

Data typing in SQLite is something of a chimera. There are few basic data types, 
which we will discuss. However, unlike nearly every other SQL database, SQLite 
carries data types per value, not per column. This would seem to run into the 
same fragility that was discussed around spreadsheets, but in practice it is far less 
of a problem than with those. One reason the types-per-value is not as much of 
a concern is because of the interface used to populate them; it is highly unusual 
to edit individual values in SQLite interactively, and far more common to issue 
programmatic SQL commands to INSERT or UPDATE many rows with data from a 
common source.

However, apart from the data types, SQLite has a concept called type affinity. 
Each column is given a preferred type that does not prevent other data types from 
occurring, but does nudge the preference toward the affinity of the column. We can 
run the tool sqlite from the command line to get to the interactive SQLite prompt. 
For example (adapted from SQLite documentation):

sqlite> CREATE TABLE mytable(a SMALLINT, b VARCHAR(10), c REAL);
sqlite> INSERT INTO mytable(a, b, c) VALUES('123', 456, 789);

Here a row will be inserted with an integer in the a column, TEXT in the b column, 
and a floating-point in the c column. SQL syntax itself is loosely typed, but the 
underlying database makes type/casting decisions. This is true of other RDBMSs 
too, but those are stricter about column data types. So we can also run this in SQLite, 
which will fail with other databases:

sqlite> INSERT INTO mytable(a, b, c) VALUES('xyz', 3.14, '2.71');

Let us see what results:

sqlite> SELECT * FROM mytable;
123|456|789.0
xyz|3.14|2.71
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The SQLite interactive shell does not make data types entirely obvious, but running 
a query in Python will do so.

import sqlite3
db = sqlite3.connect('data/affinity.sqlite')
cur = db.cursor()
cur.execute("SELECT a, b, c FROM t1")
for row in cur:
    print([f"{x.__class__.__name__} {x}" for x in row])

['int 123', 'str 456', 'float 789.0']
['str xyz', 'str 3.14', 'float 2.71']

Column a prefers to hold an integer if it is set with something it can interpret as an 
integer, but will fall back to a more general data type if required. Likewise, column 
c prefers a float, and it can interpret either an unquoted integer or a float-like string 
as such.

The actual data types in SQLite are exclusively NULL, INTEGER, REAL, TEXT, and BLOB. 
However, most of the type names in other SQL databases are aliases for these 
simple types. We see that in the example, where VARCHAR(10) is an alias for TEXT 
and SMALLINT is an alias for INTEGER. REAL values are always represented as 64-bit 
floating-point numbers. Within INTEGER values, bit lengths of 1, 2, 3, 4, 6, or 8 are 
chosen for storage efficiency. There is no datetime type in SQLite storage, but time-
oriented SQL functions are happy to accept any of TEXT (ISO-8601 strings), REAL 
(days since November 24, 4714 B.C), or INTEGER (seconds since 1970-01-01T00:00:00).

The overall takeaway for working with SQLite databases is that possibly a little 
extra care is needed in double-checking your data types when reading data, but for 
the most part you can pretend it is strongly typed per column. Truncation, clipping, 
and wrap-around issues will not occur. There is no actual decimal data type, but only 
aliases; for data science—versus accounting or finance—this is rarely a concern. But 
usual caveats about floating-point rounding issues will apply.

Apache Parquet
The Parquet format grew out of the Hadoop ecosystem, but at heart is simply an 
optimized, column-oriented file format for storing table-like data. Parquet has a type 
system that focuses on numeric types. It is not quite as simplified as SQLite but also 
eschews providing every possible bit length, as NumPy or C/C++ do, for example. 
All integer types are signed. Everything that is not numeric is a byte-array that is 
cast for the needed purpose at the application level (i.e. not the storage format level).
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Having grown out of Hadoop tools, Parquet is especially well optimized for parallel 
computation. A Parquet “file” is actually a directory containing a number of data 
files, with a _metadata file in that directory describing the layout and other details.

%%bash
ls -x data/multicsv.parq

 _common_metadata _metadata        part.0.parquet   part.10.parquet
 part.11.parquet  part.12.parquet  part.13.parquet  part.14.parquet
 part.15.parquet  part.16.parquet  part.17.parquet  part.18.parquet
 part.19.parquet  part.1.parquet   part.20.parquet  part.21.parquet
 part.22.parquet  part.23.parquet  part.24.parquet  part.25.parquet
 part.26.parquet  part.27.parquet  part.28.parquet  part.29.parquet
 part.2.parquet   part.3.parquet   part.4.parquet   part.5.parquet
 part.6.parquet   part.7.parquet   part.8.parquet   part.9.parquet

Sometimes the file system is a parallel and distributed system such as Hadoop File 
System (HDFS) that further supports computational efficiency on large datasets. In 
such case, Parquet does various clever sharding of data, efficient compression (using 
varying strategies), optimization of contiguous reads, and has been analyzed and 
revised to improve its typical use cases, for both speed and storage size.

Some of the tools or libraries supporting Parquet are Apache Hive, Cloudera 
Impala, Apache Pig, and Apache Spark, all of which live in the parallel computation 
space. However, there are available interfaces for Python and R as well (and other 
languages). Many of the higher-level tools address Parquet data with an SQL layer.

For Python, the libraries pyarrow and fastparquet provide a direct interface to the 
file format. While these libraries are general, they are designed primarily to translate 
Parquet data into data frames (usually Pandas, sometimes Dask, Vaex, or others). 
Within the R world, sparklyr is an interface into Spark but requires a running Spark 
instance (a local installation is fine). The arrow package is a direct reader, similar to 
the Python libraries.

In general, if you are working with genuinely big data, the Hadoop or Spark tools—
accompanied by appropriate computing clusters—are a good choice. Dask is an 
approach to parallelism on Python, which is very good; other approaches like MPI 
are available for R, Python, and many other languages. However, Hadoop and Spark 
are the tools to which the most attention has been paid in regard to efficient and 
large scale parallel computation.
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Even if you only need to worry about medium-sized data (hundred of thousands 
to millions of rows) rather than big data (hundreds of millions to billions of rows), 
Parquet is still a fast format to work with. Moreover, it has the generally desirable 
property of typing data by column that makes data at least one small step closer to 
being clean and tidy. 

As an example, let us read the medium-sized dataset we generated earlier with Dask. 
Both Pandas and Dask will use either pyarrow or fastparquet, depending on what is 
installed.

pd.read_parquet('data/multicsv.parq/')

index             timestamp        id     name           x           y
    0   2000-01-01 00:00:00       979    Zelda    0.802163    0.166619
    1   2000-01-01 00:00:01      1019   Ingrid   -0.349999    0.704687
    2   2000-01-01 00:00:02      1007   Hannah   -0.169853   -0.050842
    3   2000-01-01 00:00:03      1034   Ursula    0.868090   -0.190783
  ...                   ...       ...      ...         ...         ...
86396   2000-01-10 23:59:56       998    Jerry     0.589575   0.412477
86397   2000-01-10 23:59:57      1011   Yvonne     0.047785  -0.202337
86398   2000-01-10 23:59:58      1053   Oliver     0.690303  -0.639954
86399   2000-01-10 23:59:59      1009   Ursula     0.228775   0.750066
2592000 rows × 5 columns

We could distribute the above read using dask.dataframe and just the same syntax, 
i.e. dd.read_parquet(...). For large datasets this could keep the inactive segments 
out of core and distribute work over all the cores on the local machine. However, 
for medium to small data like this, Pandas is faster in avoiding the coordination 
overhead.

Although we have utilized the concept of data frames already, using both Python 
with Pandas and R with tibbles, it is worth looking at just what the underlying 
abstraction consists of. We will briefly look at a number of different data frame 
implementations in varying programming languages to understand what they have 
in common (which is a lot). 

Data Frames
Whenever you set out to do something, something else must be done first.
—Murphy’s (First) Corollary
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Concepts:

•	 Filter/transform/group/aggregate
•	 Spark data frames
•	 Pandas and derivatives
•	 Other Python data frames
•	 R Tidyverse
•	 R data.tables
•	 The Unix philosophy

A large number of libraries across almost as many programming languages support 
the data frame abstraction. Most data scientists find this abstraction to be powerful 
and even their preferred way of processing data. Data frames allow an easy 
expression of many of the same fundamental concepts or operations as does SQL, 
but within the particular programming language and memory space of the rest of 
their program. SQL—even when it actually addresses a purely local database such 
as SQLite—is always more of a “remote fetch” than interactive exploration that data 
frames allow.

These operations consist, in the main, of filtering, grouping, aggregation, sorting, 
and vectorized function application. Generally, all data frame libraries allow for a 
“fluent” programming style that chains together these operations in some order to 
produce a final result; that final (or at least working) result is usually itself either 
a data frame or a scalar value. Sometimes a visualization is relevant for such a 
processed result, and most data frame tools integrate seamlessly with visualization 
libraries.

The goal, of course, of these fluent chained operations is to describe a reproducible 
workflow. Exploration of various data modifications can be built up step by step, 
with intermediate results often providing hints that you might have gone wrong or 
a degree of reassurance that your path is correct. At the end of that exploration, you 
will have an expression of a composite transformation of data that can be reused 
with new data from the domain and problem you are addressing. Comments in code 
and accompanying these chains, or pipelines, always make life easier for both you 
and other readers of code.

Those libraries that are distributed and/or out-of-core allow working with large 
datasets rather seamlessly, which is to say that the data frame abstraction scales 
almost unboundedly, even if particular libraries have some rough limits. In 
this section, I will present similar code using a number of data frame libraries, 
commenting briefly on the strengths, weaknesses, and differences among them. 
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This book generally utilizes Python with Pandas, and to a somewhat lesser extent R 
with tibbles. We will see the conceptual and usage similarity of those libraries with 
other libraries in Python/R (Vaex, data.table), and even with other programming 
languages such as Scala/Spark or Bash with coreutils. Many data scientists use 
Spark in particular; whatever specific tools you use, the concepts throughout 
should translate easily, especially where data frame approaches are available.

Most of the code in this book will use Pandas. Python is, as of this writing, the 
most widely used language for data science, and Pandas is, by a large margin, its 
most widely used data frame library. In fact, several of the “competing” libraries 
themselves utilize Pandas as an internal component. However, in this section, I 
would like to illustrate and emphasize how similar all of these libraries are. For that 
purpose, I am going to perform the same task using a number of these libraries.

There are a great many operations and pipelines, many quite complex, that can 
be accomplished with data frames. This brief section is not a tutorial on any of 
the specific libraries, but only a glimpse into the shared style of expressing data 
manipulation and the smaller differences among the different tools.

With each data frame library, we will do the following:

1.	 Filter based on a comparison of two columns, x and y
2.	 Vectorize derived value from one column of the comparison, y
3.	 Group data having common value in another column, name
4.	 Aggregate data in a grouped column, x
5.	 Sort data based on a computed column, Mean_x
6.	 For illustration, display the first 5 rows of result

Spark/Scala
As a starting point, I would like to illustrate a pipeline of steps using the distributed 
computing framework, Spark, and its native programming language, Scala. Bindings 
into Spark from Python, R, and other languages also exist, but incur a certain 
degree of translation overhead that slows operations. This pipeline takes the sample 
Dask dataset shown in other examples in this chapter and performs all of the basic 
operations mentioned on the dataset.setup
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The next few lines were run inside the Spark shell. For the composition of this book, 
a local instance of Hadoop and Spark were running, but this could as easily be a 
connection to a remote cluster. Upon launch you will see something similar to this:

Spark context Web UI available at http://popkdm:4040
Spark context available as 'sc' (master = local[*], app id = 
local-1582775303458).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ '/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.4.5
      /_/

Using Scala version 2.11.12 (OpenJDK 64-Bit Server VM, Java 11.0.6)
Type in expressions to have them evaluated.
Type :help for more information.

In the shell, we can read in the collection of CSV files in a common directory. 
Many other data sources are likewise available under a similar interface. We allow 
inference of data types and use of the column headers to name fields. The pipe 
symbols (|) are simply part of the Spark shell interface to indicate a continuation line; 
they are not themselves the Scala code:

scala> val df = spark.read.       // Local file or Hadoop resource
     |     options(Map("inferSchema"->"true","header"->"true")).
     |     csv("data/multicsv/")  // Directory of multiple CSVs
df: org.apache.spark.sql.DataFrame = [
    timestamp: timestamp, id: int ... 3 more fields]

setup

Configuring and replicating the environment used by this book 
for the Python and R code is described in the accompanying 
repository. However, configuring Hadoop and Spark are 
separate steps that are not quite so easy to encapsulate in a few 
configuration files. The steps are not difficult, but you will need to 
follow the official documentation accompanying these tools, or 
other tutorials available online. 
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The fluent code below simply performs the intended steps in order:

scala> df.  // Working with loaded DataFrame
     | filter($"x" > ($"y" + 1)).  // x more than y+1 (per row)
     | groupBy($"name").           // group together same name
     | agg(avg($"x") as "Mean_x"). // mean within each group
     | sort($"Mean_x").            // order data by new column
     | show(5)

+------+------------------+
|  name|            Mean_x|
+------+------------------+
|   Ray|0.6625697073245446|
|Ursula|0.6628107271270461|
|Xavier|0.6641165295855926|
| Wendy|0.6642381725604264|
| Kevin| 0.664836301676443|
+------+------------------+
only showing top 5 rows

Pandas and Derived Wrappers
A number of libraries either emulate the Pandas API or directly utilize it as a 
dependency. Dask and Modin both directly wrap Pandas, and partition one native 
DataFrame into many separate Pandas DataFrames. A method on the native 
DataFrame is usually dispatched to the underlying corresponding Pandas method 
per DataFrame. Although Modin can use either Dask or Ray as its parallel/cluster 
execution back-end, Modin differs from Dask in being eager in its execution model.

Dask is a general-purpose execution back-end, with its dask.dataframe subpackage 
being only one component. Much of what Dask does is similar to the library Ray, 
which Modin may also use if desired (benchmarks as of this writing mildly favor 
Ray, depending on the use case). Most Pandas API method calls in Dask initially 
only build a directed acyclic graph (DAG) of the required operations. Computation 
is only performed when the .compute() method of a built DAG is called. The 
example below uses Dask, but it would look exactly the same with Modin except for 
the final .compute() and an initial import modin.pandas as pd.

cuDF is another library that follows Pandas’ API very closely, but it executes 
methods on CUDA GPUs. Since the underlying execution is on an entirely different 
kind of chip architecture, cuDF does not share code with Pandas nor wrap Pandas. 
But almost all API calls will be identical, but often vastly faster if you have a recent 
CUDA GPU on your system. 
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Like Pandas and Modin, cuDF is eager in its execution model:

import dask.dataframe as dd
dfd = dd.read_csv('data/multicsv/*.csv', parse_dates=['timestamp'])

The operations in the Pandas style below look very similar to those in Spark. The 
accessor .loc overloads several selection styles, but a predicate filter is such a 
permitted one. Another is used on the same line to select columns, i.e. a sequence 
of names. Grouping is nearly identical, other than the capitalization of the method 
name. Pandas even has an .agg() method to which we could pass a mean function 
or the string 'mean'; we just chose the shortcut. Columns are not automatically 
renamed in aggregation, so we do that to match more precisely. Instead of sorting 
and showing, we take the 5 smallest in a single method. In effect, the conceptual 
elements are identical, and spelling varies only mildly:

(dfd
   .loc[dfd.x > dfd.y+1,            # Row predicate
        ['name', 'x']]              # Column list
   .groupby("name")                 # Grouping column(s)
   .mean()                          # Aggregation
   .rename(columns={'x': 'Mean_x'}) # Naming
   .nsmallest(5, 'Mean_x')          # Selection by order
).compute()                         # Concretize

Name         Mean_x
Ray        0.662570
Ursula     0.662811
Xavier     0.664117
Wendy      0.664238
Kevin      0.664836

Vaex
Vaex is a Python library completely independent of Pandas, but that uses a largely 
similar API. A fair amount of code will just work identically with either style of 
data frame, but not so much that you can simply drop in one for the other. The 
philosophy of Vaex is somewhat different from Pandas. On the one hand, Vaex 
emphasizes lazy computation and implicit parallelism; expressions are eagerly 
evaluated, but with attention to not touching those portions of data that are not 
needed for a given operation. This goes hand in hand with the mostly out-of-core 
operation. Rather than reading data into memory, Vaex memory maps the data on 
disk, only loading those parts required for an operation.
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Vaex consistently avoids making data copies, in effect expressing selections as views. 
It has a concept of expressions and of virtual columns. For example, a computation on 
several columns, even if assigned to a new column, does not use any significant new 
memory since only the functional form is stored rather than the data. Only when 
that data is needed is the computation performed, and only for those rows affected. 
The overall result is that Vaex can be very fast on large datasets; however, Vaex 
parallelizes only over multiple cores on one machine, not over clusters of machines.

Because of its memory-mapped approach, Vaex does not really want to deal directly 
with CSV files internally. Unlike serialized Feather or HDF5, which put each datum 
at a predictable location on disk, CSV is inherently ragged in layout on disk. While 
a .read_csv() method will read a single file into memory, for working with a 
family of CSVs in a directory, you will want to convert them to a corresponding 
family of HDF5 files. Fortunately, the method .read_csv_and_convert() does this 
automatically for you. The result is that the first time you read such a collection, the 
conversion takes a while, but subsequent opens utilize the existing HDF5 files and 
open instantly (no actual read into memory, just memory maps):

import vaex
dfv = vaex.read_csv_and_convert('data/multicsv/*.csv', copy_
index=False)

Another difference from Pandas is that Vaex data frames are tidy (as described 
at the start of this chapter). Many operations on Pandas rely on their row index, 
which might even be a hierarchical index comprising multiple nested columns. 
The “index,” such as it is, in Vaex is simply the row number. You can do filtering, 
and grouping, and sorting, and so on, but always based on regular columns. This 
philosophy is shared with tibble and data.table in R, both of which reject that aspect 
of the older data.frame:

print(
dfv
   [dfv.x > dfv.y + 1]  # Predicate selection of rows
   [['name', 'x']]      # List selection of columns
   .groupby('name')     # Grouping
   .agg({'x': 'mean'})  # Aggregation
   .sort('x')           # Sort (Vaex does not have .nsmallest() method)
   .head(5)             # First 5
)

  #  name           x
  0  Ray      0.66257
  1  Ursula  0.662811
  2  Xavier  0.664117
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  3  Wendy   0.664238
  4  Kevin   0.664836

Let us remove those temporary HDF5 files for discussion of libraries other than Vaex:

%%bash
rm -f data/multicsv/*.hdf5

Let us now turn to analogous data frame options within R. 

Data Frames in R (Tidyverse)
In the Tidyverse, tibbles are the preferred data frame objects, and dplyr is an 
associated library for—often chained—pipelined data manipulations. The way that 
dplyr achieves a fluent style is not based on chained method calls. Indeed, object-
oriented programming is rarely used in R in general. Instead, dplyr relies on the 
“pipe” operator (%>%), which treats the result of the prior expression as the first 
argument to the next function called. This allows for rewriting compact but deeply 
nested expressions, such as the following:

round(exp(diff(log(x))), 1)

In fluent style this becomes:

x %>% 
  log() %>%
  diff() %>%
  exp() %>%
  round(1)

First we can read in the collection of CSV files that was generated earlier. The 2.5 
million total rows in this data are still medium-sized data, but the patterns in the 
below code could be applied to big data:

%%R 
files <- dir(path = "data/multicsv/", pattern = "*.csv", full.names = 
TRUE)
read_csv_quiet <- function(file) { 
    read_csv(file, col_types = cols("T", "n", "f", "n", "n"), progress 
= FALSE) }

data <- files   %>%
  # read_csv() on each file, reduce to one DF with rbind
  map(read_csv_quiet) %>%  
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  # If this were genuinely large data, we would process each file 
individually
  reduce(rbind)  

data

# A tibble: 2,592,000 x 5
   timestamp              id name         x       y
   <dttm>              <dbl> <fct>    <dbl>   <dbl>
 1 2000-01-01 00:00:00   979 Zelda   0.802   0.167 
 2 2000-01-01 00:00:01  1019 Ingrid -0.350   0.705 
 3 2000-01-01 00:00:02  1007 Hannah -0.170  -0.0508
 4 2000-01-01 00:00:03  1034 Ursula  0.868  -0.191 
 5 2000-01-01 00:00:04  1024 Ingrid  0.0838  0.109 
 6 2000-01-01 00:00:05   955 Ingrid -0.757   0.308 
 7 2000-01-01 00:00:06   968 Laura   0.230  -0.913 
 8 2000-01-01 00:00:07   945 Ursula  0.265  -0.271 
 9 2000-01-01 00:00:08  1020 Victor  0.512  -0.481 
10 2000-01-01 00:00:09   992 Wendy   0.862  -0.599 
# ... with 2,591,990 more rows

The dplyr pipes into functions that filter, modify, group, and aggregate data look 
nearly identical to the chained methods used in other data frame libraries. A few 
function names are slightly different than in other libraries, but the steps performed 
are identical:

%%R 
summary <- data   %>% 
  filter(x > y+1) %>%   # Predicate selection of rows
  select(name, x) %>%   # Selection of columns
  group_by(name)  %>%   # Grouping
                        # Aggregation and naming
  summarize(Mean_x = mean(x)) %>% 
  arrange(Mean_x) %>%   # Sort data
  head(5)               # First 5

summary

'summarise()' ungrouping output (override with '.groups' argument)
# A tibble: 5 x 2
  name   Mean_x
  <fct>   <dbl>
1 Ray     0.663
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2 Ursula  0.663
3 Xavier  0.664
4 Wendy   0.664
5 Kevin   0.665

Data Frames in R (data.table)
Outside the Tidyverse, the main approach to working with tabular data in modern 
R is data.table. This is a replacement for the older, but standard, R data.frame. I do 
not separately discuss data.frame in this book since new code should always prefer 
either tibbles or data.tables.

Unlike most other approaches to data frames, data.table does not use a fluent or 
chained style. Instead, it uses an extremely compact general form of DT[i, j, by] 
that captures a great many of the manipulations possible. Not every collection of 
operations can be expressed in a single general form, but a great many of them 
can. Moreover, because data.table is able to optimize over the entire general form, 
it can often be significantly faster on large datasets than those libraries performing 
operations in a sequenced manner.

Each element of the general form may be omitted to mean “everything.” If used, the 
i is an expression describing the rows of interest; often this i will consist of several 
clauses joined by logic connectors & (and), | (or), and ! (not). Row ordering may also 
be imposed within this expression (but not on derived columns). For example:

dt[(id > 999 | date > '2020-03-01') & !(name == "Lee")]

The column selector j can refer to columns, including derived columns:

dt[ , .(id, pay_level = round(log(salary), 1)]

Finally, the by form is a grouping description that allows for calculations per row 
subset. Groups can follow either categorical values or computed cuts:

dt[, mean(salary), cut(age, quantile(age, seq(0,100,10)))]

Putting those forms together, we can produce the same summary as with other data 
frame libraries. However, the final ordering has to be performed as a second step:

%%R
library(data.table)

dt <- data.table(data)
summary <- dt[
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    i = x > y + 1,      # Predicate selection of rows
                        # Aggregation and naming
    j = .(Mean_x = mean(x)), 
    by = .(name)]       # Grouping

# Sort data and first 5
summary[order(Mean_x), .SD[1:5]]

     name    Mean_x
1:    Ray 0.6625697
2: Ursula 0.6628107
3: Xavier 0.6641165
4:  Wendy 0.6642382
5:  Kevin 0.6648363

Bash for Fun
For readers who are accustomed to performing pipelined filtering and aggregation 
at the command line, the piped or fluent style used by data frames will seem very 
familiar. In fact, it is not difficult to replicate our example using command-line 
tools. The heavy lifter here is awk, but the code it uses is very simple. Conceptually, 
these steps exactly match those we used in data frame libraries. The small tools that 
combine, using pipes, under the Unix philosophy, can naturally replicate the same 
basic operations used in data frames:

%%bash
COND='{if ($4 > $5+1) print}'
SHOW='{for(j in count) print j,sum[j]/count[j]}'
AGG='{ count[$1]++; sum[$1]+=$2 }'" END $SHOW"

cat data/multicsv/*.csv | # Create the "data frame"
  grep -v ^timestamp    | # Remove the headers
  awk -F, "$COND"       | # Predicate selection
  cut -d, -f3,4         | # Select columns
  awk -F, "$AGG"        | # Aggregate by group
  sort -k2              | # Sort data
  head -5                 # First 5

Ray 0.66257
Ursula 0.662811
Xavier 0.664117
Wendy 0.664238
Kevin 0.664836
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Jeroen Janssens wrote a delightful book entitled Data Science at the Command Line 
that is both wonderfully written and freely available online. You should also buy 
the printed or ebook edition to support his work. In this subsection, and at various 
places in this book, I make only small gestures in the direction of the types of 
techniques that that book talks about in detail.

The data frame and fluent programming style is a powerful idiom, and is especially 
widely used in data science. Every one of the specific libraries I discuss are excellent 
choices with equivalent power. Which fits you best is largely a matter of taste, and 
perhaps of what your colleagues use. 

Exercises
Putting together much of what we have learned in this chapter, the below exercises 
should allow you to utilize the techniques and idioms you have read about. 

Tidy Data from Excel
An Excel spreadsheet with some brief information on awards given to movies is 
available at:

https://www.gnosis.cx/cleaning/Film_Awards.xlsx

In a more fleshed-out case, we might have data for many more years, more types of 
awards, more associations that grant awards, and so on. While the organization of this 
spreadsheet is much like a great many you will encounter “in the wild,” it is very little 
like the tidy data we would rather work with. In the simple example, only 63 data 
values occur, and you could probably enter them into the desired structure by hand 
as quickly as coding the transformations. However, the point of this exercise is to 
write programming code that could generalize to larger datasets of similar structure:

Figure 1.6: Film awards spreadsheet

https://www.datascienceatthecommandline.com/
https://www.gnosis.cx/cleaning/Film_Awards.xlsx
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Your task in this exercise is to read this data into a single well-normalized data 
frame, using whichever language and library you are most comfortable with. Along 
the way, you will need to remediate whatever data integrity problems you detect. 
As examples of issues to look out for:

•	 The film 1917 was stored as a number, not a string, when naïvely entered into 
a cell.

•	 The spelling of some values is inconsistent. Olivia Colman’s name is 
incorrectly transcribed as “Coleman” in one occurrence. There is a spacing 
issue in one value you will need to identify.

•	 Structurally, an apparent parallel is not really so. Person names are 
sometimes listed under the name of the association, but other times under 
another column. Film names are sometimes listed under association, other 
times elsewhere.

•	 Some column names occur multiple times in the same tabular area.

When thinking about good data frame organization, think of what the independent 
and dependent variables are. In each year, each association awards for each category. 
These are independent dimensions. A person name and a film name are slightly 
tricky since they are not exactly independent, but at the same time some awards are 
to a film and others to a person. Moreover, one actor might appear in multiple films 
in a year (not in this sample data, but do not rule it out). Likewise, at times multiple 
films have used the same name at times in film history. Some persons are both 
director and actor (in either the same or different films).

Once you have a useful data frame, use it to answer these questions in summary 
reports:

•	 For each film involved in multiple awards, list the award and year it is 
associated with.

•	 For each actor/actress winning multiple awards, list the film and award 
they are associated with.

•	 While not occurring in this small dataset, sometimes actors/actresses win 
awards for multiple films (usually in different years). Make sure your code 
will handle that situation.

•	 It is manual work, but you may want to research and add awards given in 
other years; in particular, adding some data will show actors with awards for 
multiple films. Do your other reports correctly summarize the larger dataset?
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Tidy Data from SQL
An SQLite database with roughly the same brief information as in the prior 
spreadsheet is available at:

https://www.gnosis.cx/cleaning/Film_Awards.sqlite

However, the information in the database version is relatively well normalized 
and typed. Also, additional information has been included on a variety of entities 
included in the spreadsheet. Only slightly more information is included in this 
schema than in the spreadsheet, but it should be able to accommodate a large 
amount of data on films, actors, directors, and awards, and the relationships among 
those data:

sqlite> .tables
actor     award     director  org_name

As was mentioned in the prior exercise, the same name for a film can be used more 
than once, even by the same director. For example, Abel Gance used the title J’accuse! 
for both his 1919 and 1938 films with connected subject matter:

sqlite> SELECT * FROM director WHERE year < 1950;
Abel Gance|J'accuse!|1919
Abel Gance|J'accuse!|1938

Let us look at a selection from the actor table, for example. In this table we have a 
column gender to differentiate beyond name. As of this writing, no transgender actor 
has been nominated for a major award both before and after a change in gender 
identity, but this schema allows for that possibility. In any case, we can use this field 
to differentiate the “actor” versus “actress” awards that many organizations grant:

sqlite> .schema actor
CREATE TABLE actor (name TEXT, film TEXT, year INTEGER, gender 
CHAR(1));

sqlite> SELECT * FROM actor WHERE name="Joaquin Phoenix";
Joaquin Phoenix|Joker|2019|M
Joaquin Phoenix|Walk the Line|2006|M
Joaquin Phoenix|Hotel Rwanda|2004|M
Joaquin Phoenix|Her|2013|M
Joaquin Phoenix|The Master|2013|M

https://www.gnosis.cx/cleaning/Film_Awards.sqlite
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The goal in this exercise is to create the same tidy data frame that you created in 
the prior exercise and answer the same questions that were asked there. If some 
questions can be answered directly with SQL, feel free to take that approach instead. 
For this exercise, only consider awards for the years 2017, 2018, and 2019. Some 
others are included in an incomplete way, but your reports are for those years:

sqlite> SELECT * FROM award WHERE winner="Frances McDormand";
Oscar|Best Actress|2017|Frances McDormand
GG|Actress/Drama|2017|Frances McDormand
Oscar|Best Actress|1997|Frances McDormand

Denouement
All models are wrong, but some models are useful.
–George Box

Topics covered in this chapter: Delimited Files; Spreadsheet Dangers; RDBMS; 
HDF5; Data Frames.

This chapter introduced the data formats that make up the large majority of all 
the structured data in the world. While I do not have hard data, exactly, on this 
breakdown of data volume—nor can anyone, apart perhaps from some three-letter 
agencies specializing in bulk data acquisition—I still feel like it is a safe assertion. 
Between all the scientific data stored in HDF5 and related formats, all the business 
data stored in spreadsheets, all the transactional data stored in SQL databases, 
and everything exported from almost everywhere to CSV, this makes up almost 
everything a working data scientist encounters on a regular basis.

In presenting formats, we addressed the currently leading tools for ingestion of those 
data sources in several languages. The focus throughout this book will remain on 
Python and R, which are the main programming languages for data science. Perhaps 
that will change in the future, and almost certainly some new libraries will arise for 
addressing this huge bulk of data in faster and more convenient ways. Even so, most 
of the conceptual issues about the strengths and limits of formats—concerns largely 
about data types and storage artifacts—will remain for those new languages and 
libraries. Only spelling will change mildly.

An extended, but nonetheless dramatically incomplete, discussion looked at the 
data frame abstraction used in a great many tools. Here again, new variations may 
arise, but I am confident that the general abstraction will be the primary one used in 
data science for several decades after this writing. In presenting a number of slightly 
different libraries, I have only scratched the surface of any one of them. 
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In fact, even if this entire chapter was about just one of the mentioned libraries, it 
would be incomplete compared with those excellent books that spend their whole 
length discussing one particular data frame library. Nonetheless, I hope that this 
introduction to thinking about data processing problems in terms of the steps of 
filtering, grouping, aggregation, naming, and ordering will serve readers well in 
their articulation of many ingestion tasks.

One limit of the data frame abstraction that we used in reading all the formats 
discussed in this chapter is that none look at data streaming in any meaningful way. 
For the most part, data science needs are not streaming needs, but occasionally 
they overlap. If your needs lie at that particular edge, check the documentation 
for streaming protocols like ActiveMQ, RabbitMQ, and Kafka (among others); 
but your concern will not chiefly be in the data formats themselves, but rather in 
event processing, and in evolving detection of anomalies and bad data, such as is 
discussed in Chapters 4 and 5, and perhaps value imputation, discussed in Chapter 6.

In the next chapter, we turn to data formats that are hierarchically organized rather 
than tabular.





[ 71 ]

2
Hierarchical Formats

No gods, no masters.
–Louis Auguste Blanqui

When we utilize machine learning models, and indeed when we perform general 
statistical analyses, we almost always assume our data is tabular. Observations and 
features; rows and columns. And yet, there are a number of very popular ways of 
storing data that resemble trees rather than plowed fields. Data objects belong to 
other data objects which belong to yet other data objects, with no specific limit on 
the depth or names of branches. Both for economy of understanding and, in the case 
of database systems, for efficiency of access, hierarchical data formats very often 
make more sense for a broad class of data.

There are many domains that simply map more naturally to hierarchies than to 
tables. Yes, the relational algebra—the conceptual structure that underpins SQL and 
relational databases—is in some way able to represent every possible structure. But it 
feels awkward for naturally hierarchical data. For example, file systems have nested 
paths that eventually lead to actual files at their leaves. Directories along the way 
might have indefinitely many subdirectories, with names at every level expressing 
something meaningful, until we get to the files, which may themselves have 
hierarchical, tabular, or other arrangements of data.

Likewise, if we make a graph of connected web pages—or indeed of any kind of 
network, whether social, electronic communications, ecological interactions, or 
another—it is closer to a hierarchy than to a table. Yes, not all, or most, graphs are 
directed acyclic graphs (DAGs), but still less are they rows and columns. 



Hierarchical Formats

[ 72 ]

Or imagine you had a “book of life” that described many biological organisms, 
organized by Linnaean taxonomy—domain, kingdom, phylum, class, order, family, 
genus, species (and perhaps sometimes subspecies, superfamily, subfamily, or tribe, 
for example). Not only is this hierarchical structure important data, but the leaf 
attributes are largely different for varying species. Information on the dentation 
of prokaryotes is not going to be relevant. Teeth are only attributes of organisms 
within the Chordata phylum, and mostly only within the subphylum Vertebrata. 
Correspondingly, attributes about hyphae are only relevant within the Fungi, 
Oomycota, or Actinobacteria (crossing domains, kingdoms, and phyla, but still 
only within a small fragment of the hierarchy).

For better or worse, when we do data science with hierarchical data sources, that 
generally means that we construct a tabular abstraction of the underlying data. 
Depending on our purpose, either or both of the leaf attributes and branching 
structure might be relevant. In either case, we want to encode these as columns of 
variables and rows of records. This contrasts somewhat with many purposes outside 
of data science; for other purposes, it is often simply a matter of “drilling down” into 
the relevant leaf or distant branch and presenting or modifying the small amount of 
information at that level. Data science is much more often about generalizing over 
many different data points, concerning many different objects.

***

Before we get to the sections of this chapter, let us run our standard setup code:

from src.setup import *
%load_ext rpy2.ipython

%%R
library(tidyverse)

Now let us dive into JavaScript Object Notation as the first hierarchical format of this 
chapter.

JSON
She’s a germ free adolescent
Cleanliness is her obsession
Cleans her teeth ten times a day
Scrub away scrub away scrub away
The S.R. way...
–Poly Styrene
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Concepts:

•	 JSON is a syntax not a semantics
•	 REST queries and responses
•	 The command-line tool jq
•	 Safe JSON readers
•	 NaNs, Infinities, and overflows
•	 Aggregating JSON records
•	 Working with large, deeply nested JSON
•	 Extracting a tabular summary of JSON data
•	 Validating structure with JSON Schema

JavaScript Object Notation (JSON) is a widely used data exchange format. As the 
name suggests, it is a format derived from JavaScript, but it is strictly language-
neutral. JSON is currently specified by Internet Engineering Task Force (IETF) RFC 
8259. While it can be and is used for many purposes, it is especially prevalent as a 
way for computer services to communicate with each other. Hence, a large share 
of JSON data consists of transient messages that do not necessarily ever live on 
permanent storage such as files on disk or values in a database. Of course, sometimes 
those messages are logged or somehow stored, and become fruitful for data science 
purposes.

JSON is supported by a great many programming languages, in their standard 
library, as built-ins, or with widely available libraries for those languages. In syntax, 
JSON is very similar to, but neither exactly a superset nor subset of, native data 
structures in JavaScript, and to a large extent to those in Python. An important thing 
to understand about JSON is that it specifies a syntax, but not a semantics. Each 
language has to make decisions about how to process text conforming with JSON 
grammar.

There are exactly four value types defined in JSON, and three literal values. 
Whitespace is ignored throughout JSON.

•	 false, true, and null are literal values.
•	 An object is a grammatical structure that is enclosed in curly braces, { and }, 

with strings for keys, separated by a colon from values of any syntactic type. 
Multiple key/value pairs are separated by commas.

•	 An array is a grammatical structure that is enclosed in square brackets, [ 
and ], with any syntactic values separated by commas.
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•	 A number optionally starts with a minus sign, followed by a sequence of 
digits, optionally followed by a fractional part after a decimal portion, 
optionally followed by an exponent. This is mostly the same as the spelling 
of numbers in languages like Python, R, JavaScript, Julia, C, etc., but slightly 
more restrictive.

•	 A string is a grammatical structure enclosed by double quotes (the code point 
U+0022) that may contain almost any characters. Unicode code points may 
be indicated as, for example, \u0022, and a few special characters must be 
escaped with a backslash.

For example, the following fragment utilizes all four value types. The example 
contains an object with a string key, whose value is an array containing one each 
of the literal values, and two numbers:

{"key": [true, false, null, 15, 55.66]}

What JSON Looks Like
JSON is frequently used to interactively communicate messages among computer 
systems. On my local machine, I have a small demonstration web service running. 
In the book repository, the directory node-server/ contains all the code to launch 
it. It happens to be written in JavaScript/Node, but it could be written in any 
programming language. The key thing about it is that it provides a Representational 
State Transfer (RESTful) interface in which clients may send JSON messages and will 
receive other JSON messages back. The short document shown in the output below 
is fairly typical of such uses:

# A response to an HTTP request
response = requests.get('http://localhost:3001/users') 

# Show status code, content-type, and JSON body
print(response.status_code, response.headers['Content-Type'])
response.text
200 application/json; charset=utf-8

'{"1":{"name":"Guido van Rossum","password":"unladenswallow","details
":{"profession":"ex-BDFL"}},"2":{"name":"Brendan Eich","password":"no
ntransitiveequality","details":{"profession":"Mozillan"}},"3":{"name
":"Ken Thompson","password":"p/q2-q4!","details":{"profession":"Unix 
Creator"}}}'
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Whitespace is not significant in JSON, but it can definitely make it more readable for 
human examination. For example, a small function in the setup module for this book 
can do that:

pprint_json(response.text)

{
  "1": {
    "name": "Guido van Rossum",
    "password": "unladenswallow",
    "details": {
      "profession": "ex-BDFL"
    }
  },
  "2": {
    "name": "Brendan Eich",
    "password": "nontransitiveequality",
    "details": {
      "profession": "Mozillan"
    }
  },
  "3": {
    "name": "Ken Thompson",
    "password": "p/q2-q4!",
    "details": {
      "profession": "Unix Creator"
    }
  }
}

A command-line tool called jq is very useful for working with JSON data, either 
streamed or on disk. A data scientist or developer who frequently works with 
JSON should consider learning the slightly arcane, but compact, query language jq 
provides; that is outside the scope of this book, however. The home page for the tool, 
as of the time of writing, contains a very nice blurb for it:

jq is like sed for JSON data - you can use it to slice and filter and map and transform 
structured data with the same ease that sed, awk, grep and friends let you play with 
text.

https://stedolan.github.io/jq/
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One very simple task jq can accomplish is pretty-printing (indentation, line breaks, 
colorization, and so on):

with open('data/3001.json', 'w') as fh:
    fh.write(response.text)
    
!jq . data/3001.json

{
  "1": {
    "name": "Guido van Rossum",
    "password": "unladenswallow",
    "details": {
      "profession": "ex-BDFL"
    }
  },
  "2": {
    "name": "Brendan Eich",
    "password": "nontransitiveequality",
    "details": {
      "profession": "Mozillan"
    }
  },
  "3": {
    "name": "Ken Thompson",
    "password": "p/q2-q4!",
    "details": {
      "profession": "Unix Creator"
    }
  }
}

Despite its close similarity to native spelling of data structures in Python and 
JavaScript (and other languages), you must use a read/parse function to convert 
JSON to native data. At times, a function like eval() in JavaScript, Python, or some 
other languages will successfully convert a string to native data. However, this is a 
very bad idea; on the one hand, it sometimes fails (even within JavaScript). The other 
hand is more crucial: trying this can potentially execute malicious code contained 
within JSON (or pseudo-JSON). Almost all programming languages have JSON 
readers/parsers as part of their standard library or widely available. 
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For example, in JavaScript, using the Node.js runtime we could write:

%%bash
js="
const fs = require('fs');
let raw = fs.readFileSync('data/3001.json');
let users = JSON.parse(raw);
console.log(users);
"
echo $js | node

{ '1':
   { name: 'Guido van Rossum',
     password: 'unladenswallow',
     details: { profession: 'ex-BDFL' } },
  '2':
   { name: 'Brendan Eich',
     password: 'nontransitiveequality',
     details: { profession: 'Mozillan' } },
  '3':
   { name: 'Ken Thompson',
     password: 'p/q2-q4!',
     details: { profession: 'Unix Creator' } } }

In Python, the equivalent is:

with open('data/3001.json') as fh:
    # Could also call 'json.load(fh)' to read file
    raw = fh.read()
    users = json.loads(raw)
users

{'1': {'name': 'Guido van Rossum',
  'password': 'unladenswallow',
  'details': {'profession': 'ex-BDFL'}},
 '2': {'name': 'Brendan Eich',
  'password': 'nontransitiveequality',
  'details': {'profession': 'Mozillan'}},
 '3': {'name': 'Ken Thompson',
  'password': 'p/q2-q4!',
  'details': {'profession': 'Unix Creator'}}}
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In R, we do not have a direct equivalent for the dictionary or hashmap structure as 
a standard data structure. Hence the representation is as a named list (generally a 
nested one). Here we only display the third element of that list for illustration:

%%R
library(rjson)
result <- fromJSON(file = "data/3001.json")
result[3]

$'3'
$'3'$name
[1] "Ken Thompson"

$'3'$password
[1] "p/q2-q4!"

$'3'$details
$'3'$details$profession
[1] "Unix Creator"

Other programming languages will have different spellings, but libraries or standard 
functions can convert between native data and JSON.

NaN Handling and Data Types
The semi-formal description of the grammar of JSON had a covert purpose 
underlying its direct information. Readers might notice things that are missing from 
it. In particular, there is a single syntactic type named “number,” but there are no 
distinctions among integers, floating-points, decimals, complex numbers, fractions/
rationals, or the bit length of represented numbers. The decision of how to interpret 
numeric values is strictly left to libraries, or to individual users.

It may not be as obvious, but there are also some important floating-point “numbers” 
missing altogether. IEEE-754 floating-point numbers include the special values 
Not-a-Number (NaN) and Infinity/-Infinity. To be pedantic, the binary standard 
represents a great many distinct bit patterns as meaning “NaN,” although just one 
each for +Infinity and -Infinity (negative zero is another oddball number, but is 
less important). JSON cannot represent those values, even though many or most 
programming languages have a way of spelling those values; in programming 
languages, typically NaN has a single spelling, such as NaN, rather than millions of 
them for all the bit patterns.
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In Python, the standard library and other common JSON parsers make a heuristic 
assumption that numbers that contain either a decimal point or an exponent are 
intended to represent floating-points, and numbers without them are meant to 
represent integers. There are edge cases where these assumptions can fail. Numbers 
like 1e309 that would fit perfectly well and exactly into Python’s unlimited-size 
integers are treated as floats, and fail as such (they could, however, be spelled with 
hundreds of trailing zeros and no decimal point to be interpreted as integers). 
Probably more often relevant is that by treating JSON numbers as floats, their 
precision is limited to the native floating-point type. In 64-bits, this works out to 
17 decimal digits; in 32-bits it is only 9 digits. Readers normally simply lose this 
potential precision.

A simple example shows some of these overflow or truncation issues. Here, Python 
and R are identical; other languages may behave differently (but most are similar):

# An interpreted float, an overflow, and a truncation
json_str = "[1e308, 1e309, 1.2345678901234567890]"
json.loads(json_str)

[1e+308, inf, 1.2345678901234567]

%%R -i json_str
options(digits = 22)
fromJSON(json_str)

[1] 1.000000000000000010979e+308                          Inf
[3]  1.234567890123456690432e+00

An inclination you could easily be forgiven is to think that this issue is no more 
than inherent in the nature of floating-point rounding. After all, the value that is 
10308 is also only approximate, as we see in the long representation in the R output. 
However, Python at least provides a natural alternative that more closely matches 
the JSON number syntax in the decimal module. Unfortunately, producing values of 
the type Decimal in the standard library is cumbersome (but possible). Fortunately, 
the third-party module simplejson makes this easy, as we see below:

simplejson.loads(json_str, use_decimal=True)

[Decimal('1E+308'), Decimal('1E+309'), Decimal('1.2345678901234567890')]

Other languages, such as JavaScript and R, lack a standard decimal or unlimited 
precision data type, and will simply lose precision in representing some syntactically 
valid JSON numbers.
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A wrinkle in this story is that the default “JSON” libraries in languages like Python 
do not actually read and write JSON by default. They read a superset of JSON, but 
that might include the additional literals NaN, Infinity, and -Infinity. The JSON5 
proposal includes these extensions and a few others, but is not an official standard 
currently. The Python standard library, for example, does not support literals of nan, 
Nan inf, +Infinity, or other spellings that might seem reasonable; at least not as 
of this writing. Exactly what literals other languages and libraries support is up to 
them, and may change. Let us try some special values:

specials = "[NaN, Infinity, -Infinity]"
vals = json.loads(specials)
vals

[nan, inf, -inf]

Several libraries in R represent these special IEEE-754 values in a manner different 
from what Python libraries do. I use rjson in these examples, but RJSONIO and 
jsonlite use similar conventions. The R solution to the underspecification is to spell 
its special values as strings with special suggestive values, as in the third line of 
output below:

%%R -i vals
vals = c(NaN, Inf, -Inf)
print(vals)
print("R version of 'enhanced JSON':")
rjson_str = toJSON(vals)  # function from rjson library
print(rjson_str)

[1]  NaN  Inf -Inf
[1] "R version of 'enhanced JSON':"
[1] "[\"NaN\",\"Inf\",\"-Inf\"]"

This technique fails on round-tripping, even within rjson itself, unless you write 
custom code to interpret strings. We read back the content simply as strings rather 
than as special numeric values:

%%R
print("Read back in 'enhanced JSON':")
fromJSON(rjson_str)

[1] "Read back in 'enhanced JSON':"
[1] "NaN"  "Inf"  "-Inf"

***
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We can see strict JSON-compliant behavior using the JavaScript reader:

%%bash
js="JSON.parse('[NaN, Infinity, -Infinity]');"
echo $js | node | cat

undefined:1
[NaN, Infinity, -Infinity]
 ^

SyntaxError: Unexpected token N in JSON at position 1
    at JSON.parse (<anonymous>)
    at [stdin]:1:6
    at Script.runInThisContext (vm.js:122:20)
    at Object.runInThisContext (vm.js:329:38)
    at Object.<anonymous> ([stdin]-wrapper:6:22)
    at Module._compile (internal/modules/cjs/loader.js:778:30)
    at evalScript (internal/bootstrap/node.js:590:27)
    at Socket.<anonymous> (internal/bootstrap/node.js:323:15)
    at Socket.emit (events.js:203:15)
    at endReadableNT (_stream_readable.js:1145:12)

We can also use a slightly misnamed, and cumbersome, parameter (parse_constant) 
to enforce strict mode in the Python standard library. This catches only those specific 
values of special floating-point numbers spelled in the manner shown below:

json.loads("[NaN, Infinity, -Infinity]", parse_constant=lambda _: 
"INVALID")

['INVALID', 'INVALID', 'INVALID']

In other words, not just any hypothetical literal outside these particular spellings will 
be handed to the parse_constant function:

try:
    json.loads("[nan, +Inf, Foobar]", parse_constant=lambda _: 
"INVALID")
except Exception as err:
    print_err(err)

JSONDecodeError
Expecting value: line 1 column 2 (char 1)
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The tool jq has an odd “semi-strict” behavior. Infinity is recognized, under several 
spellings, but is not treated as the actual IEEE-754 value “infinity.” None of these 
choices are right or wrong per se, but incompatibilities are dangers to stay alert for:

%%bash
echo "[NaN, inf, -Infinity]" | jq .

[
  null,
  1.7976931348623157e+308,
  -1.7976931348623157e+308
]

JSON Lines
In the next subsection, we look at JSON documents of substantial size and structure. 
However, as we saw in the slightly fanciful example in the previous subsection, 
JSON is often used to encode small bundles of data. One area where we very often 
encounter “small bundles of data” is in log files, such as are discussed in Chapter 7, 
Feature Engineering, Chapter 3, Repurposing Data Sources, and other places in this book. 
The entries in log files are generally similar, and are usually arranged one per line; 
however, frequently, different entries are required to hold different fields. This tends 
to require a lot of conditional logic when parsing a log file.

JSON streaming is a very useful and widely used approach to reducing this burden. 
Since whitespace is ignored in JSON, every document can be contained in a single 
line (newlines encoded as \n), and any structures and field names can be expressed 
with JSON syntactic structures. This does not remove all conditional logic since the 
disposition of a particular entry will still often depend on the data inside it, but at 
least it removes the concern from the parsing step itself.

To be precise, the syntax called Newline Delimited JSON (ndjson) or JSON Lines 
is one of several approaches to aggregating (small) JSON documents. Newline 
delimitation is the most widely used style, and is easiest to work with using 
command-line text processing tools which are usually line-oriented. However, you 
may encounter several other styles occasionally:

•	 Record separator-delimited: The Unicode character INFORMATION 
SEPARATOR TWO (U+001E) used as a delimiter (RFC 7464), that is, 
newlines may occur inside JSON document entries.
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•	 Concatenated JSON: No delimiters used, and each JSON entry is an object 
or array. This allows a streaming parser to recognize the matching } or 
] that will terminate the top-level structure. Every JSON Lines stream is 
automatically also a concatenated JSON stream.

•	 Length-prefixed JSON: Each entry consists of an integer indicating the 
number of bytes in the remainder of the entry, followed by a JSON object 
or array (in principle, a string would work too). This has an advantage over 
plain concatenation in that the reader does not need to test on each character 
read whether a structure is completed.

Let us consider a JSON Lines example based on one in the current version of the 
Wikipedia article on JSON streaming. The lines are somewhat larger than the width 
of these margins, so a small Bash pipeline will format for a presentation length. As 
shown, each line is displayed with a leading integer (which is not part of the line) 
and subsequent displayed lines without a leading number are part of the same line 
on disk (many text editors use a similar approach):

%%bash
cat -n data/jsonlines.log | fmt -w55 | tr -d " "

1      {"ts":"2020-06-18T10:44:13",
"logged_in":{"username":"foo"},
"connection":{"addr":"1.2.3.4","port":5678}}
2      {"ts":"2020-06-18T10:44:15",
"registered":{"username":"bar","email":"bar@example.com"},
"connection":{"addr":"2.3.4.5","port":6789}}
3      {"ts":"2020-06-18T10:44:16",
"logged_out":{"username":"foo"},
"connection":{"addr":"1.2.3.4","port":5678}}
4      {"ts":"2020-06-18T10:47:22",
"registered":{"username":"baz","email":"baz@example.net"},
"connection":{"addr":"3.4.5.6","port":7890}}

The three JSON documents, one per line, contain somewhat different fields. All share 
the fields "ts" and "connection" to mark when they occurred, and from what client 
address. Different kinds of events, however, require different additional fields. This 
can allow command-line processing. 

https://en.wikipedia.org/wiki/JSON_streaming
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For example, using generic text processing tools, we might list (as a JSON document) 
the username and email of all newly registered users:

%%bash
# Extract registrations
grep "registered" data/jsonlines.log |
    sed 's/^.*registered"://' |
    sed 's/}.*/}/'

{"username":"bar","email":"bar@example.com"}
{"username":"baz","email":"baz@example.net"}

You’ve probably noticed already that the above command line could have gone 
wrong (because we did not choose the best tool). If a registration object contained 
nested objects (that is, more closing braces, }) we would not match the "registered" 
event that we actually wanted. For that matter, if some "username" field were the 
string "registered", we would go awry as well. To do this correctly, we need to 
actually parse the JSON. Here again, from the command line, jq is a useful tool:

%%bash
jq '.registered | select(.username != null)' data/jsonlines.log

{
  "username": "bar",
  "email": "bar@example.com"
}
{
  "username": "baz",
  "email": "baz@example.net"
}

Most likely, following initial exploration of a dataset, for which these command-line 
tools are useful, we would like to perform these kinds of tasks in a general-purpose 
programming language. A third-party Python module called jsonlines exists, but 
simply using the standard library is more than sufficient, as we see below:

with open('data/jsonlines.log') as log:
    for line in log:
        record = json.loads(line)
        if 'registered' in record:
            user = record['registered']
            if 'username' in user:
                print(user)
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{'username': 'bar', 'email': 'bar@example.com'}
{'username': 'baz', 'email': 'baz@example.net'}

In a more fleshed-out version, of course, we would do something beyond just 
printing out the registrant information. If one of the other variants for JSON 
streaming were used rather than JSON Lines, the code would be somewhat more 
difficult, but still reasonable to program manually.

GeoJSON
GeoJSON is a format for encoding a variety of geographic data structures that 
is described in IETF RFC 7946. This book is not able to address the numerous 
programming and data issues that are specific to Geographic Information Systems 
(GISes). A variety of specialized programming tools, books, and other learning 
material is available to explore this field. For our purposes, we merely need to 
understand that a GeoJSON file is a JSON file that often contains a large amount of 
data, and is moderately nested. In contrast to some other formats JSON is used for, 
the hierarchies available in GeoJSON are not of unlimited depth, but simply consist 
of a variety of optional keys at several levels of nesting.

The particular data we will utilize in this subsection was generated by Eric Celeste 
from data published by the United States Census Bureau, describing the counties in 
the United States. The public domain data was originally provided by the Census 
Bureau as shapefiles (.shp). The GeoJSON discussed here, and the Keyhole Markup 
Language (KML) discussed in the next section, are mechanical transformations of 
the original data (the data should be equivalent). For the example here, I’ve used the 
lowest resolution shape definitions, which nonetheless amounts to fairly substantial 
data.

Notice that the JSON file we read, from the 2010 census, was encoded as ISO-8859-
1. In those days of yore, we were young and naïve, and the then-current JSON 
standard had not yet mandated encoding as UTF-8. See Chapter 3, Repurposing 
Data Sources, for a discussion on determining and working with different character 
encodings; I, myself, in fact, had to utilize those techniques to determine how to read 
this data without raising exceptions. Let us explore the concepts slightly:

with open('data/gz_2010_us_050_00_20m.json', encoding='ISO-8859-1') as 
fh:
    counties = json.load(fh)

counties.keys()

dict_keys(['type', 'features'])
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At the top level, the JSON object has a key called "type" and another called 
"features". The former is simply a descriptive string, the latter where the bulk of 
the data on the 3221 counties in the United States in 2010 lives, as we deduce from 
the output below:

counties['type'], type(counties['features']), len(counties['features'])

('FeatureCollection', list, 3221)

Let us look at one of those features. We can see that it has some metadata under the 
key "properties". The main data is the geographic position of the boundaries of the 
particular county, under the key "geometry". The higher-resolution data files contain 
the same metadata and structure of their data; the difference is that the shapes are 
defined by polygons with more sides, which hence more accurately describe the 
shape of the county in question.  What we use is more than large enough to support 
the examples. The actual shape, in Python terms, is a list-of-lists-of-lists:

counties['features'][999]

{'type': 'Feature',
 'properties': {'GEO_ID': '0500000US19153',
  'STATE': '19',
  'COUNTY': '153',
  'NAME': 'Polk',
  'LSAD': 'County',
  'CENSUSAREA': 573.795},
 'geometry': {'type': 'Polygon',
  'coordinates': [[[-93.328614, 41.507824],
    [-93.328486, 41.49134],
    [-93.328407, 41.490921],
    [-93.41226, 41.505549],
    [-93.790612, 41.511916],
    [-93.814282, 41.600448],
    [-93.815527, 41.863419],
    [-93.698032, 41.86337],
    [-93.347933, 41.863104],
    [-93.348681, 41.600999],
    [-93.328614, 41.507824]]]}}

Each leaf list is simply a longitude/latitude position, a list of those is a polygon, 
but a county potentially has discontiguous regions that need multiple polygons to 
define. 



Chapter 2

[ 87 ]

As I have mentioned, there are a plethora of tools for GIS and geospatial data 
processing. These include a more specialized Python module called geojson; 
within the broader Python GIS space, Cartopy is a well-maintained package with 
many capabilities, and is built on top of PROJ, NumPy, and Shapely. Among 
other capabilities, these types of GIS tools allow visualization of longitude/
latitude coordinates onto many map projections, with optional rendering of 
geographic and political features, and calculations based on Haversine distances 
rather than inaccurate Cartesian distances. To focus just on the JSON data though, 
with apologies to the cartographers among my readers, let us make a flat-footed 
rendering to visualize USA counties.

The code below simply creates a Matplotlib figure and axis, loops through each 
of the features in the GeoJSON data, drills down to the coordinates, and maps the 
counties as patches. Visualization helps us understand the “shape” of the data we 
are working with. The details of the Matplotlib API are not important here. The 
relevant aspect is the way that we descend into the nested data that was read from 
JSON. For example:

polk = counties['features'][999]['geometry']['coordinates'][0]

This would load the list-of-lists describing the boundaries of Polk County, Iowa:

fig, ax = plt.subplots(figsize=(8, 5))
patches, colors, ncolor = [], [], 8

for n, county in enumerate(counties['features']):
    # Only use first polygon if multiple discontiguous regions
    poly = np.array(county['geometry']['coordinates'][0])
    poly = poly.reshape(-1, 2)
    polygon = Polygon(poly)
    patches.append(polygon)
    colors.append(n % ncolor)

p = PatchCollection(patches, cmap=cm.get_cmap('Greys', ncolor))
p.set_array(np.array(colors))
ax.add_collection(p)

ax.set_ylim(24, 50)
ax.set_ylabel("Latitude")
ax.set_xlim(-126, -67)
ax.set_xlabel("Longitude")
ax.set_title("Counties of the United States");
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Figure 2.1: Plot of counties of the United States

This is certainly not the best map of the United States, but the contours as a plot 
help us understand the dataset.

Tidy Geography
As an example of utilizing this data, apart from the visualization, we would like to 
create a tabular data frame that has the following columns:

•	 State name
•	 County name
•	 Area (square kilometers of land)
•	 Northernmost latitude
•	 Southernmost latitude
•	 Westernmost longitude
•	 Easternmost longitude
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This subsection will demonstrate a bit more code than most do. When dealing 
with hierarchical data, it is difficult to avoid some messiness. Testing various data 
attributes at various levels almost always requires loops or recursion, temporary 
containers, lookups and memorization of data, and a number of steps that can often 
be handled at a much higher level with methods of a tidy data frame.

For a starting point, we can notice that the USA census provides (land) area 
measurements in square miles; we can use the conversion constant 2.59 for 

𝑚𝑚𝑚𝑚2 𝑘𝑘𝑘𝑘2⁄  . 
A less direct conversion is determining the state name from the Federal Information 
Processing Standards (FIPS) code given for the state. Looking online at government 
data sources, we can locate a tab-separated description of this correspondence that 
we can use:

fips = pd.read_csv('data/FIPS.tsv', sep='\t')
fips

                           Name     Postal Code     FIPS
─────────────────────────────────────────────────────────
0                       Alabama              AL        1
1                        Alaska              AK        2
2                       Arizona              AZ        4
3                      Arkansas              AR        5
...                         ...             ...      ...
51                         Guam              GU       66
52     Northern Mariana Islands              MP       69
53                  Puerto Rico              PR       72
54               Virgin Islands              VI       78
55 rows × 3 columns

We would like to transform this DataFrame into a Series that takes a key of FIPS 
and maps to the state name. Once we have crawled the data and levels of the JSON 
hierarchy, we can make that mechanical transformation:

fips_map = fips.set_index('FIPS').Name
fips_map

FIPS
1                      Alabama
2                       Alaska
4                      Arizona
5                     Arkansas
                ...           
66                        Guam



Hierarchical Formats

[ 90 ]

69    Northern Mariana Islands
72                 Puerto Rico
78              Virgin Islands
Name: Name, Length: 55, dtype: object

Luckily for the task at hand, we know we need to descend at fixed depths to find 
the data items of interest. In other situations, we may wish to use a recursive 
approach instead, with nested function calls corresponding to nested keys at 
indeterminate depth. We can simply loop through counties, much as we did to 
create the visualization, and gather data into plain lists as a first step.

In order to factor out the processing a bit, let us first define a function called 
extremes() that will take the collection of polygons and return the extremes for 
the cardinal directions:

def extremes(coords):
    lat, lon = [], []
    # Expect a list of lists of lists
    for region in coords:
        for point in region:
            lat.append(point[1])
            lon.append(point[0])
    # We are assuming western hemisphere here
    north = max(lat)
    south = min(lat)
    east = max(lon)
    west = min(lon)
    return north, south, east, west

Next we would like a function to produce a DataFrame from the GeoJSON 
dictionary.

def county_summary(features):
    geo_id = []
    state, county_name, area = [], [], []
    north, south, east, west = [], [], [], []

    for county in features:
        props = county['properties']
        polys = county['geometry']['coordinates']
        geo_id.append(props['GEO_ID'])
        # District of Columbia not US state (default to None)
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        state_name = fips_map.get(int(props['STATE']), None)
        state.append(state_name)
        county_name.append(props['NAME'])
        area.append(props['CENSUSAREA'] * 2.59)
        n, s, e, w = extremes(polys)
        north.append(n)
        south.append(s)
        east.append(e)
        west.append(w)

    df = pd.DataFrame({
            'geo_id': geo_id,
            'state': state,
            'county': county_name,
            'area': area,
            'northmost': north,
            'southmost': south,
            'eastmost': east,
            'westmost': west
        })
    return df.set_index('geo_id')

Although the code is fairly straightforward, it has enough in it that we would like to 
provide a sanity check in a unit test:

def test_counties(df):
    assert (df.northmost > df.southmost).all()
    assert (df.westmost < df.eastmost).all()
    assert (df.area > 0).all()

We can convert the JSON hierarchy into a tidy data frame using the county_summary() 
function we’ve just written, and check our boundary assumptions:

census_counties = county_summary(counties['features'])

# Sanity checks (if no assertion violated, we are happy)
test_counties(census_counties)
census_counties
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                   state         county         area   northmost
geo_id
0500000US01001   Alabama        Autauga   1539.58924     32.7074
0500000US01009   Alabama         Blount   1669.96984     34.2593
0500000US01017   Alabama       Chambers   1545.01529     33.1081
0500000US01021   Alabama        Chilton   1794.49186     33.0719
           ...       ...            ...          ...         ...
0500000US51021  Virginia          Bland    926.50775     37.2935
0500000US51027  Virginia       Buchanan   1302.15617     37.5378
0500000US51037  Virginia      Charlotte   1230.95189     37.2488
0500000US51041  Virginia   Chesterfield   1096.33923     37.5626

                 southmost   eastmost   westmost
geo_id
0500000US01001     32.3408   -86.4112   -86.9176
0500000US01009     33.7653   -86.3035   -86.9634
0500000US01017     32.7285   -85.1234   -85.5932
0500000US01021     32.6617    -86.375   -87.0192
           ...         ...        ...        ...
0500000US51021     36.9524   -80.8546   -81.4622
0500000US51027     37.0417   -81.7384   -82.3059
0500000US51037     36.6979   -78.4433   -78.9046
0500000US51041     37.2227   -77.2442   -77.8551

3221 rows × 7 columns

Exactly what analysis or modeling is relevant at this point is driven by your task. 
But in general, obtaining tidy data will be a similar matter of crawling through the 
hierarchical structure and pulling out relevant information from varying levels.

JSON Schema
When we tidied some GeoJSON data in the previous subsection, we made a number 
of assumptions about exactly which keys we would encounter at which levels, nested 
within objects. If these assumptions had been violated, various exceptions would 
be raised, or other errors would occur, in the processing functions. It is, of course, 
possible to check for these situations with conditional branches, exception handling, 
use of methods like Python’s dict.get(), and other similar techniques. However, 
code that is cluttered with a great many such error handling constructs can have its 
underlying processing logic obscured.
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One approach to enforcing assumptions about JSON documents is to use a JSON 
Schema to validate documents prior to passing them to data extraction functions. 
Configure Unify Execute (CUE) is a promising newer approach to validation, but I 
do not address it in this book. A JSON Schema is itself a JSON document following 
certain specifications. At its simplest, it needs to specify a type for the JSON being 
validated. Within that, it can indicate what keys might occur inside objects, which 
are required, the cardinality of arrays, and a number of other elements, including 
recursive structures. An approach of “validate, then process” is often useful; here 
validation merely describes the structure of a JSON document. It is not intended 
to make any claims about it containing good data, such as is discussed in Chapter 4, 
Anomaly Detection, and Chapter 5, Data Quality.

The examples below use the Python third-party module jsonschema, but wrap its 
API in a slightly different function, not_valid(), imported from this book’s setup.py 
module. This function will return False if everything is fine, but returns a descriptive 
error message if a problem was encountered. For example, we might validate the 
USA county data using the official GeoJSON schema:

response = requests.get('https://geojson.org/schema/GeoJSON.json')
geojson_schema = json.loads(response.text)

if msg := not_valid(counties, geojson_schema):
    print(msg)
else:
    print("Everything is Happy!")

Everything is Happy!

As hoped, the United States Census department data is valid. The GeoJSON schema 
is quite large, so I present as an example below a smaller one I developed myself. The 
small “user database” web server that was queried above sends user records that are 
expected to follow a certain format, but the format, as development usually occurs, 
might only be informally specified in email threads and telephone conversations 
between developers. Before running scripts to process these user records, it is useful 
to identify users or potential user documents that will violate the assumptions 
embedded in our code logic. 

https://cuelang.org/
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Let us see what information we can obtain from our example schema:

user_schema = json.loads("""
{
  "$schema": "http://json-schema.org/draft-07/schema#",
  "$id": "http://kdm.training/user-schema.json",
  "title": "User",
  "description": "A User of Our Computer System",
  "type" : "object",
  "required": ["name", "password"],
  "properties" : {
     "name" : {"type" : "string"},
     "password": {
         "description": "Use special characters and mixed case",
         "type": "string"},
     "lucky_numbers": {
         "description": "Up to 6 favorite numbers 1-100",
         "type": "array",
         "items": {
           "type": "number",
           "minimum": 1,
           "maximum": 100
         },
         "uniqueItems": true,
         "minItems": 0,
         "maxItems": 6
    }
  }
}
""")

This simple “User” schema does not exercise all the capabilities in JSON Schema, 
but it is a good representation. Some metadata is contained in the keys "$schema", 
"$id", "title", and "description". All of these are optional in the JSON Schema 
specification, but their names are standard, if used. The only key that is strictly 
required is "type", which must be one of the four JSON data types. Within an object, 
keys may be required or optional; however, JSON Schema has no mechanism to 
exclude other keys that are not described. The schema merely states that if a key is 
present, it must have values of a certain sort.
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The keys "name" and "password" are required, and are both strings. The optional 
description of "password" indicates a desire for passwords to be “good” in the 
sense that many computer systems enforce, but JSON Schema does not itself have 
a mechanism to check programmatic rules of that sort. The key "lucky_numbers" 
describes quite a bit; not only must it have an array as a value, but that array must 
consist of numbers between 1 and 100, and have no more than 6 of them. Let us 
look at a document that passes validation:

david = json.loads("""
{
  "name": "David Mertz",
  "password": "badpassword",
  "details": {
    "profession": "Data Scientist",
    "employer": "KDM"
  },
  "lucky_numbers": [12, 42, 55, 87]
}
""")

if msg := not_valid(david, user_schema):
    print(msg)

The top-level key "details" is not mentioned in the schema, and hence may contain 
anything whatsoever (anything which is valid JSON, of course). This document 
validates successfully, so perhaps we would want to process it downstream. Let 
us consider a few documents that fail as users:

barbara_feldon = json.loads("""
{
  "name": 99, 
  "password": "1ibydieZ!S@8"
}
""")

if msg := not_valid(barbara_feldon, user_schema):
    print(msg)

99 is not of type 'string'

Failed validating 'type' in schema['properties']['name']:
    {'type': 'string'}

On instance['name']:
    99
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The diagnosis of the failure will hopefully provide information relevant to 
remediation. The JSON below fails in a somewhat different manner, and with a 
more verbose description of the problem:

intruder = json.loads("""
{
  "password": "P4cC!^*8chWz8", 
  "profession": "Hacker"
}
""")

if msg := not_valid(intruder, user_schema):
    print(msg)

'name' is a required property

Failed validating 'required' in schema:
    {'$id': 'http://kdm.training/user-schema.json',
     '$schema': 'http://json-schema.org/draft-07/schema#',
     'description': 'A User of Our Computer System',
     'properties': {'lucky_numbers': {'description': 'Up to 6 favorite '
                                                     'numbers 1-100',
                                      'items': {'maximum': 100,
                                                'minimum': 1,
                                                'type': 'number'},
                                      'maxItems': 6,
                                      'minItems': 0,
                                      'type': 'array',
                                      'uniqueItems': True},
                    'name': {'type': 'string'},
                    'password': {'description': 'Use special characters '
                                                'and mixed case',
                                 'type': 'string'}},
     'required': ['name', 'password'],
     'title': 'User',
     'type': 'object'}

On instance:
    {'password': 'P4cC!^*8chWz8', 'profession': 'Hacker'}
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Let us look through a few more failure messages:

the_count = json.loads("""
{
  "name": "Count von Count",
  "password": "fourbananas",
  "lucky_numbers": ["one", "two", "three"]
}
""")

if msg := not_valid(the_count, user_schema):
    print(msg, "\n--------------------")

'one' is not of type 'number'

Failed validating 'type' in schema['properties']['lucky_numbers']
['items']:
    {'maximum': 100, 'minimum': 1, 'type': 'number'}

On instance['lucky_numbers'][0]:
    'one' 
--------------------

We failed on the data type of the nested array. Its cardinality is checked as well:

george = json.loads("""
{
  "name": "Georg Cantor",
  "password": "omega_aleph",
  "lucky_numbers": [1, 2, 3, 4, 5, 6, 7, 8]
}
""")

if msg := not_valid(george, user_schema):
    print(msg)

[1, 2, 3, 4, 5, 6, 7, 8] is too long

Failed validating 'maxItems' in schema['properties']['lucky_numbers']:
    {'description': 'Up to 6 favorite numbers 1-100',
     'items': {'maximum': 100, 'minimum': 1, 'type': 'number'},
     'maxItems': 6,
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     'minItems': 0,
     'type': 'array',
     'uniqueItems': True}

On instance['lucky_numbers']:
    [1, 2, 3, 4, 5, 6, 7, 8]

In one final example, we see that uniqueness can be validated in an array. This 
provides a way of distinguishing a set from a sequence, even though JSON itself 
does not distinguish those data types:

revolution_9 = json.loads("""
{
  "name": "Yoko Ono",
  "password": "grapefruit",
  "lucky_numbers": [9, 9, 9]
}
""")

if msg := not_valid(revolution_9, user_schema):
    print(msg)

[9, 9, 9] has non-unique elements

Failed validating 'uniqueItems' in schema['properties']['lucky_
numbers']:
    {'description': 'Up to 6 favorite numbers 1-100',
     'items': {'maximum': 100, 'minimum': 1, 'type': 'number'},
     'maxItems': 6,
     'minItems': 0,
     'type': 'array',
     'uniqueItems': True}

On instance['lucky_numbers']:
    [9, 9, 9]

It is time to move on to another, much scarier hierarchical topic.
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XML
XML is like violence—if it doesn’t solve your problems, you are not using enough of 
it.
–Anonymous

Concepts:

•	 Defining eXtensible Markup Language
•	 Dialects and schemata
•	 Attributes and elements
•	 Dealing with deep and ragged nesting

The almost mandatory epigraph accompanying this section, and extending Ludwig 
von Rochau’s notion of Realpolitik, is, of course, underlyingly deplorable, albeit 
presumably meant ironically. I take violence to always be unacceptable, and 
XML only mostly so. Both remain far too common in our world. This corrective 
paraphrase only partially fixes the concern: “XML is like violence: useful only in 
specific situations, and totally unacceptable everywhere else.”

eXtensible Markup Language (XML) is a complex format that might appear simple 
on its surface. A large number of books longer than this one have been written to 
discuss just one or two tools or technologies associated with XML. In particular, 
XML is not really one format so much as it is a meta-format with many dialects. 
Syntactically, XML is a relatively simple format that defines elements with angle 
bracketed tags (less-than and greater-than signs), allows attributes within tags, and 
has a few other syntactic forms for special entities and directives. The user records 
that appear shortly below provide a minimal example. As a rough approximation, 
XML is a generalization of HTML; or more accurately, HTML is a dialect of XML 
(to be pedantic, however, recent versions of HTML are not precisely XML dialects 
in some technical details).

An XML dialect is usually defined by a schema that specifies exactly which tags 
and attributes are permitted, and the manners in which they may nest inside 
one another. A schema may also define the data type interpretation of particular 
fields. Hundreds of such dialects are widely used; for example, all modern word 
processors and publication systems use an XML dialect to define their documents 
(with a compression layer wrapped around the underlying XML). Many other non-
document formats use XML as well, including, for example, scientific data formats.
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Several different schema languages can be used to define particular XML dialects. 
All of them are outside the scope of this book. However, as a general procedure, 
validating an XML document prior to further processing it is almost always a good 
idea, if a schema is available. This is closely analogous to the discussion in the 
previous section about using JSON Schema, but different tools and libraries will 
be used. Probably the most commonly used means of defining an XML schema is a 
Document Type Definition (DTD). More modern alternatives are XML Schema and 
RELAX NG. Notice that while XML Schema and RELAX NG allow the declaration 
and validation of data types, I am not aware of any widely used tool or library that 
uses those type declarations when converting XML into native data structures. 
Validation may assure you that a given data value, for example, “looks like an 
integer,” but you will still need to cast it as such within your code when you want to 
use it that way.

User Records
As a small example, I will formulate one of the user records discussed in the 
JSON section as an XML document. I do not here create or specify a schema, but 
in principle it would be possible to have one that defined all the constraints of a 
valid document. As in JSON, whitespace is not (usually) significant, but can aid 
readability:

<?xml version="1.0" encoding="utf-8" ?>
<users>
  <user>
    <name>David Mertz</name>
    <password>badpassword</password>
    <details>
      <profession employer="KDM" duration="26" units="months">
      Data Scientist</profession>
      <telephone>+1 323 863 5571</telephone>
    </details>
    <lucky-numbers>
      <item>12</item>
      <item>42</item>
      <item>55</item>
      <item>87</item>
    </lucky-numbers>
  </user>
  <user> ... </user>
</users>
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In XML, we have a somewhat underdetermined decision about whether to put 
a given datum within an element body or within an attribute. The example 
shows both.

For this section, I will use the Python standard XML library ElementTree. Other APIs 
exist, even within the Python standard library, and various other programming 
languages have a variety of libraries and APIs available for working with XML. 
ElementTree makes a reasonable compromise between feeling like Python and 
feeling like XML. However, if you want to work in a more Pythonic style with XML 
trees, the lxml library comes with an API called lxml.objectify.

The lxml.objectify API is, in turn, based on much earlier work by my colleague 
Uche Ogbuji on Amara Bindery, and by me even earlier on gnosis.xml.objectify. 
Neither of those old projects are currently maintained, but xml.objectify is very 
similar and intuitive to work with. In general, lxml is a fast and well-tested XML 
library, built on libxml2 and libxslt, that provides both the objectify interface and 
an enhanced and faster version of ElementTree.

The two styles of data representation within an XML document is something you 
need to keep in mind. There is no fundamental difference to us, as data scientists, 
whether data lives in an XML attribute or is the body of an element (tag). To clarify, 
a tag is the actual word inside angle brackets (e.g. <item>), while an element is 
everything occurring between an opening tag and the corresponding closing tag 
(e.g. <item>55</item>). Both elements and attributes can equally be useful for us. 
However, in most APIs, they are accessed differently. Let us show both in a code 
example:

import xml.etree.ElementTree as ET
tree = ET.parse('data/users.xml')

# Let us first find the attributes and text of a profession
prof = tree.find('user').find('details').find('profession')
print("Body (title):", prof.text.strip())
print("Attributes:  ", prof.attrib)

Body (title): Data Scientist
Attributes:   {'employer': 'KDM', 'duration': '26', 'units': 'months'}

Within attributes, we have a perfectly regular native Python dictionary that we can 
extract field values from. Notice that all keys and values are simply strings. If we 
wished, for example, to treat ‘duration' as an integer, we could cast it within our 
code. Additionally, we often wish to loop through elements at the same level of the 
document hierarchy to treat them similarly. 
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As we saw with JSON, elements might be ragged and contain different children, 
even if they share the same parent tag:

items = tree.find('user').find('lucky-numbers').findall('item')
lucky_numbers = [int(item.text) for item in items]
lucky_numbers

[12, 42, 55, 87]

Nested or recursive traversal, for example by calling .findall() at various levels 
of the hierarchy, is a common approach to walking an XML document. XML 
documents can be very large, and for those, an incremental approach is available in 
ElementTree and other libraries. In the next section, as a slightly more fleshed out 
example, we will process the same geographic data as we did in the JSON section.

Keyhole Markup Language
KML is an XML format that is generally functionally equivalent to shapefiles or 
GeoJSON. As with those other formats, more specialized GIS tools will do more than 
we show in this subsection. We will need to do a little bit of magic to look for tags 
within the KML namespace that defines the tags within this document. We can see 
that some schema and namespace information is defined at the top of the file before 
we get the real “data” of the file (the "Placemark" elements):

<?xml version="1.0" encoding="utf-8" ?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Document>
  <Folder>
    <name>gz_2010_us_050_00_20m</name>
    <Schema name="gz_2010_us_050_00_20m" id="gz_2010_us_050_00_20m">
      <SimpleField name="Name" type="string"></SimpleField>
      <SimpleField name="Description" type="string"></SimpleField>
      <SimpleField name="GEO_ID" type="string"></SimpleField>
      <SimpleField name="STATE" type="string"></SimpleField>
      <SimpleField name="COUNTY" type="string"></SimpleField>
      <SimpleField name="NAME" type="string"></SimpleField>
      <SimpleField name="LSAD" type="string"></SimpleField>
      <SimpleField name="CENSUSAREA" type="float"></SimpleField>
    </Schema>
    <Placemark>
      <name>Autauga</name>
      <Style>
        <LineStyle><color>ff0000ff</color></LineStyle>  
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        <PolyStyle><fill>0</fill></PolyStyle>
      </Style>
      <ExtendedData>
        <SchemaData schemaUrl="#gz_2010_us_050_00_20m">
          <SimpleData name="Name">Autauga</SimpleData>
          <SimpleData name="GEO_ID">0500000US01001</SimpleData>
          <SimpleData name="STATE">01</SimpleData>

... more content, eventual closing tags ...

An XML file can contain many namespaces that different tags live within. So 
ElementTree allows us to define a dictionary mapping short names to namespace 
URLs to allow more convenient access. We drill down a few levels, where just one 
parent node occurs, to find the "Folder" that contains the "Placemark" elements 
that we really care about. These were called “features" in GeoJSON:

ns = {'kml': "http://www.opengis.net/kml/2.2"}
document = ET.parse('data/gz_2010_us_050_00_20m.kml')

root = document.getroot()
kml_doc = root.find('kml:Document', ns)
folder = kml_doc.find('kml:Folder', ns)

# Make sure we have the same number of counties as with GeoJSON
placemarks = folder.findall('kml:Placemark', ns)
print("Count of placemarks:", len(placemarks))
# Show one Placemark element object
placemarks[0]

Count of placemarks: 3221
<Element '{http://www.opengis.net/kml/2.2}Placemark' at 0x7fe220289680>

Pulling out the somewhat obscurely nested data is a bit more work than is ideal. Let 
us look at what we want from the first county child node:

# The name of the county is comparatively straightforward
print("County name:", placemarks[0].find('kml:name', ns).text)

# Other county info is only distinguished by attribute
sdata = (placemarks[0].find('kml:ExtendedData', ns)
                      .find('kml:SchemaData', ns)
                      .findall('kml:SimpleData', ns))
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# We are going to want GEO_ID, STATE and CENSUSAREA
for record in sdata:
    print(record.attrib, record.text)

County name: Autauga
{'name': 'Name'} Autauga
{'name': 'GEO_ID'} 0500000US01001
{'name': 'STATE'} 01
{'name': 'COUNTY'} 001
{'name': 'LSAD'} County
{'name': 'CENSUSAREA'} 594.436000000000035

The actual name of the county is redundantly encoded in two places. Our below 
function, kml_county_summary(), should check for data integrity (that is, consistent 
values). Now we need to drill into a slightly different part of the hierarchy to locate 
the polygon:

coords = (placemarks[0].find('kml:Polygon', ns)
                       .find('kml:outerBoundaryIs', ns)
                       .find('kml:LinearRing', ns)
                       .find('kml:coordinates', ns))
pprint(coords.text)

('-86.497916734108713,32.346347937379285,123.940341341309249 '
 '-86.719045580223096,32.404719907202413,124.507383406162262 '
 '-86.816062031841554,32.342711234558017,124.433184524998069 '
 '-86.891734835750142,32.50487314981855,125.151479452848434 '
 '-86.918751525796665,32.666059588245083,125.785741473548114 '
 '-86.714541775531544,32.66362459160964,125.451970156282187 '
 '-86.715371359148733,32.707584324141543,125.614226697944105 '
 '-86.414261392701192,32.709278995622782,125.144079957157373 '
 '-86.41231357529395,32.411845326016262,124.046804890967906 '
 '-86.497916734108713,32.346347937379285,123.940341341309249')

If we consult the KML documentation, we can determine that within KML, within 
a "LinearRing" element, the coordinates (polygon) take the form of lon,lat[,alt] 
structures separated by spaces. For our task of finding the northernmost, 
southernmost, easternmost, and westernmost points—as we did in the GeoJSON 
case—the altitude will not interest us. However, we do need to parse the 
structured raw text to get the actual boundary. We will do that with the function 
kml_extremes(). Since most of the actual logic is the same as in the GeoJSON 
version in the previous section, kml_extremes() can merely massage the data 
format slightly before calling the earlier extremes() function:
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def kml_extremes(coordinates):
    "Pass in a KML coordinates ElementTree object"
    text_points = coordinates.text.split()
    points = [p.split(',') for p in text_points]
    points = [[float(p[0]), float(p[1])] for p in points]
    # We pass a list-of-list-of-lists here
    return extremes([points])

kml_extremes(coords)

(32.70927899562278, 32.34271123455802, -86.41231357529395, 
-86.91875152579667)

Next, we would like a function to produce a DataFrame from the KML data. It will 
be similar to that for the GeoJSON, but digging out the data is moderately different 
(and generally more cumbersome):

def kml_county_summary(placemarks, ns=ns):
    geo_id = []
    state, county_name, area = [], [], []
    north, south, east, west = [], [], [], []

    for placemark in placemarks:
        # Get county name here and below to assure consistency
        name = placemark.find('kml:name', ns).text
        
        # Other county info is distinguished by XML attribute
        sdata = (placemark.find('kml:ExtendedData', ns)
                          .find('kml:SchemaData', ns)
                          .findall('kml:SimpleData', ns))
        # We want Name, GEO_ID, STATE and CENSUSAREA
        for record in sdata:
            rectype = record.attrib['name']  # XML attrib
            if rectype == 'Name':  # String 'Name' (county)
                # If name is recorded differently, problem!
                assert record.text == name
                county_name.append(name)
            elif rectype == 'GEO_ID':
                geo_id.append(record.text)
            elif rectype == 'CENSUSAREA':
                # Convert to km^2 from mi^2
                area.append(float(record.text) * 2.59)
            elif rectype == 'STATE':
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                # District of Columbia is not a US state
                state_name = fips_map.get(int(record.text), None)
                state.append(state_name)

        # We are going to "cheat" here a little bit.  
        # Sometimes a placemark has a top level <MultiGeometry>
        # with several Polygons; we will skip that calculation 
        try:
            coordinates = (placemark
                    .find('kml:Polygon', ns)
                    .find('kml:outerBoundaryIs', ns)
                    .find('kml:LinearRing', ns)
                    .find('kml:coordinates', ns))                
            n, s, e, w = kml_extremes(coordinates)
        except AttributeError:
            n, s, e, w = None, None, None, None
            
        north.append(n); south.append(s); 
        east.append(e); west.append(w)

    df = pd.DataFrame({
            'geo_id': geo_id, 'state': state, 
            'county': county_name, 'area': area,
            'northmost': north, 'southmost': south,
            'eastmost': east, 'westmost': west
        })
    return df.set_index('geo_id')

We can convert the KML hierarchy into a tidy data frame. Working with XML is 
often persnickety; often the main cause of this is not the physical format per se, but 
a tendency among creators of XML dialects to nest elements especially deeply and 
utilize very complex schemata. That is somewhat the case with this KML example.
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kml_counties = kml_county_summary(placemarks)
kml_counties

                   state         county         area   northmost
geo_id
0500000US01001   Alabama        Autauga   1539.58924   32.709279
0500000US01009   Alabama         Blount   1669.96984   34.261131
0500000US01017   Alabama       Chambers   1545.01529   33.109960
0500000US01021   Alabama        Chilton   1794.49186   33.073731
...                  ...            ...          ...         ...
0500000US51021  Virginia          Bland    926.50775   37.295189
0500000US51027  Virginia       Buchanan   1302.15617   37.539502
0500000US51037  Virginia      Charlotte   1230.95189   37.250505
0500000US51041  Virginia   Chesterfield   1096.33923   37.564372

                 southmost     eastmost     westmost
geo_id
0500000US01001   32.342711   -86.412314   -86.918752
0500000US01009   33.767154   -86.304677   -86.964531
0500000US01017   32.730429   -85.124537   -85.594308
0500000US01021   32.663625   -86.376119   -87.020318
           ...         ...          ...          ...
0500000US51021   36.954152   -80.855694   -81.463294
0500000US51027   37.043415   -81.739470   -82.306981
0500000US51037   36.699679   -78.444320   -78.905600
0500000US51041   37.224467   -77.245139   -77.856138

3221 rows × 7 columns

Let us now make a great leap forward to the hundred flowers that make up 
configuration formats.
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Configuration Files
The wonderful thing about standards is that there are so many of them to choose 
from.
–Grace Murray Hopperattrib

Concepts:

•	 A surfeit of slightly different formats
•	 Namespaces may simulate hierarchy
•	 INI and TOML
•	 YAML

Small data often lives in configuration files. Probably the most popular of these, at 
least for programming projects, is now YAML Ain’t Markup Language; formerly 
Yet Another Markup Language (YAML). The informal INI format is also common, 
especially in the Windows world (but mostly in older software). Tom’s Obvious, 
Minimal Language (TOML) is very similar to INI, but contains a few enhancements 
and a stricter definition. Sometimes JSON or XML are also used for the same 
purpose, although both are distinctly less human-editable. The greatest difficulty 
comes with numerous software projects that have, for various reasons (few of them 
good), adopted their own custom configuration format.

These configuration formats typically have a certain degree of hierarchy. Depending 
on the format, this hierarchy might be of fixed or unlimited depth. However, most 
formats allow unlimited nesting, and hence crawling them is similar to techniques 
we saw with JSON and XML.

attrib

The provenance of this quote is uncertain, though widely 
attributed to Admiral Hopper. It is sometimes also credited to 
Andrew Tanenbaum, Patricia Seybold, or Ken Olsen. The first 
of these did, indeed, use it in his Computer Networks (1981), but 
perhaps not as an original comment.
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INI and Flat Custom Formats
The exceptions to unlimited depth seem to be either env (.env) files—which are also 
an informal convention rather than a standard—and INI files. Env files are (usually) 
not actually hierarchical at all, but are simply assignments of values to names in a 
flat fashion. Sometimes this can be identical to defining environment variables in a 
shell configuration, but often the need for quoting a value containing whitespace is 
omitted and character escaping rules can vary. An INI file is often taken to allow a 
single level of hierarchy between the sections marked with square brackets ([ and ]) 
and assignments marked with a name and equals sign on a single line. Let us look 
at a simple INI example given in the Wikipedia article on INI files:

; last modified 1 April 2001 by John Doe
[owner]
name=John Doe
organization=Acme Widgets Inc.

[database]
; use IP address in case network name resolution is not working
server=192.0.2.62     
port=143
file="payroll.dat"

At times, INI files simulate deeper hierarchies by, in concept, namespacing their 
section names. So such a file might contain the sections [owner.database.systems] 
and [owner.vcs.developers], which could be manually decoded into a hierarchy of 
“owners.” The Python standard library comes with a parser for this format called 
configparser. This is one of the older modules in the standard library, and its API 
is a bit creaky:

import configparser
cfg = configparser.ConfigParser()
cfg.read('data/example.ini')

print("Sections:   ", cfg.sections())
print("Owner keys: ", [k for k in cfg['owner']])
print("Owner/name: ", cfg['owner']['name'])
print("Port #:     ", cfg['database'].getint('port'))

Sections:    ['owner', 'database']
Owner keys:  ['name', 'organization']
Owner/name:  John Doe
Port #:      143

https://en.wikipedia.org/wiki/INI_file
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Data typing is limited as well. The special methods .getboolean(), .getint(), and 
.getfloat() simply do the equivalent of the obvious type constructors. However, 
Booleans, as cast with the methods, are case-insensitive and recognize yes/no, on/
off, true/false, and 1/0.

While this API is not the most natural, at least the module exists. When tools define 
their own formats, you may need to drop to the level of manual text processing, 
such as is discussed in Chapter 3, Repurposing Data Sources, in the section Custom Text 
Formats. For example, on my system, the archaic text-based web browser w3m has a 
custom configuration format in $HOME/.w3m/config that contains lines such as these 
(and about 150 others):

tabstop 8
display_charset UTF-8
cookie_avoid_wrong_number_of_dots
accept_encoding gzip, compress, bzip, bzip2, deflate
extbrowser7 wget -c
extbrowser8 url=%s && printf %s "$url" | xsel && printf %s "$url" | 
xsel -b & ssl_ca_path /etc/ssl/certs

In general, it appears that the key is some alphanumeric characters followed by a 
space. But what comes next might be nothing at all; it might be a string or a number, 
it might be a comma-separated list with more spaces, or it might even be a shell 
command that involves pipes, processes, and so on. If we wanted to analyze a 
million users’ config files, we would need to use a number of manual heuristics, or 
find explicit documentation of what values each key can take (if such documentation 
exists).

TOML
TOML formalizes a number of conventions that have been used by various 
tools utilizing their own INI format. Sections are marked in the same fashion, 
but may be nested for indefinite hierarchy. A reasonable range of data types are 
formally specified by the parser. Not every data structure can be represented 
straightforwardly in TOML, but most of the most common ones can be. A great 
many programming languages have libraries supporting TOML, albeit as of this 
writing, some are only at the v0.5.0 level of support rather than v1.0.0-rc.1 (but the 
differences are very small).
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The following is an example given in the TOML documentation:

# This is a TOML document.

title = "TOML Example"

[owner]
name = "Tom Preston-Werner"
dob = 1979-05-27T07:32:00-08:00 # First class dates

[database]
server = "192.168.1.1"
ports = [ 8001, 8001, 8002 ]
connection_max = 5000
enabled = true

[servers]

  # Indentation (tabs and/or spaces) is allowed but not required
  [servers.alpha]
  ip = "10.0.0.1"
  dc = "eqdc10"

  [servers.beta]
  ip = "10.0.0.2"
  dc = "eqdc10"

[clients]
data = [ ["gamma", "delta"], [1, 2] ]

# Line breaks are OK when inside arrays
hosts = [
  "alpha",
  "omega"
]
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Having a formal parser available avoids a great deal of the manual logic of custom 
formats. Moreover, the API here is quite modern in that it simply converts a 
configuration file to a native data structure, with no need for unusual special 
methods to get at the underlying data. Having native support for a datetime data 
type is a handy convenience (which JSON lacks); strings, numbers (float/int), lists, 
and dictionaries are supported. The top level of every TOML document is always 
a mapping; however, that might be represented in a particular programming 
language. Let us take a look at an example:

import toml
toml.load(open('data/example.toml'))

{'title': 'TOML Example',
 'owner': {'name': 'Tom Preston-Werner',
  'dob': datetime.datetime(1979, 5, 27, 7, 32, tzinfo=<toml.tz.TomlTz 
object at 0x7fe20bc4e490>)},
 'database': {'server': '192.168.1.1',
  'ports': [8001, 8001, 8002],
  'connection_max': 5000,
  'enabled': True},
 'servers': {'alpha': {'ip': '10.0.0.1', 'dc': 'eqdc10'},
  'beta': {'ip': '10.0.0.2', 'dc': 'eqdc10'}},
 'clients': {'data': [['gamma', 'delta'], [1, 2]],
  'hosts': ['alpha', 'omega']}}

One big advantage of having a parser available is that typically it will report 
(relatively) helpfully on what went wrong. I created a slightly wrong version of the 
same TOML file, intended to resemble errors human typists might often make. The 
error message itself does not, perhaps, provide complete clarity about what went 
wrong; at least it tells us where to look for it though:

with open('data/example-bad.toml') as fh:
    try:
        cfg = toml.load(fh)
    except Exception as err:
        print_err(err)

TomlDecodeError
invalid literal for int() with base 0: '2] []
hosts = [   "alpha"' (line 27 column 1 char 433)
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Let us print part of the TOML file:

!cat -n data/example-bad.toml | tail -8

    26  [clients]
    27  data = [ ["gamma", "delta"], [1, 2] []
    28
    29  # Line breaks are OK when inside arrays
    30  hosts = [
    31    "alpha",
    32    "omega"
    33  ]

With human eyes, we can detect the problem easily enough. Line 27 has some 
formatting problems, although exactly what was intended is not entirely obvious. 
Generally, manual remediation is required to reconstruct the original intention.

Just to demonstrate another programming language, reading TOML into R is very 
similar. Specifically, this also gives us a (nested) native data structure with a single 
call:

%%R
library(RcppTOML)
parseTOML("data/example.toml")

List of 5
 $ clients :List of 2
  ..$ data :List of 2
  .. ..$ : chr [1:2] "gamma" "delta"
  .. ..$ : int [1:2] 1 2
  ..$ hosts: chr [1:2] "alpha" "omega"
 $ database:List of 4
  ..$ connection_max: int 5000
  ..$ enabled       : logi TRUE
  ..$ ports         : int [1:3] 8001 8001 8002
  ..$ server        : chr "192.168.1.1"
 $ owner   :List of 2
  ..$ dob : POSIXct[1:1], format: "1979-05-27 15:32:00"
  ..$ name: chr "Tom Preston-Werner"
 $ servers :List of 2
  ..$ alpha:List of 2
  .. ..$ dc: chr "eqdc10"
  .. ..$ ip: chr "10.0.0.1"
  ..$ beta :List of 2
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  .. ..$ dc: chr "eqdc10"
  .. ..$ ip: chr "10.0.0.2"
 $ title   : chr "TOML Example"

Yet Another Markup Language
YAML occupies a similar space as JSON and XML, but with a heavy emphasis on 
human readability and editability. Both of the latter had an initial impetus, in part, 
to be human-readable and editable formats, but neither succeeds well in such a goal; 
yes they are textual, but for both it is easy to make subtle syntax or grammatical 
mistakes. YAML comes much closer.

In their basic form, YAML documents are quite readable and present an intuitive 
view of their structure. Things can get more complicated with tags and directives, 
and by the time you get to language-specific schemata, much of the generic 
readability is diminished. However, 99% of YAML documents utilize only the 
very accessible subset that remains simple, yet powerful. Let us look at an example 
adapted from the YAML tutorial:

invoice: 34843
date   : 2001-01-23
bill-to: &id001
    given  : Chris
    family : Dumars
    address:
        lines: |
            458 Walkman Dr.
            Suite #292
        city    : Royal Oak
        state   : MI
        postal  : 48046
ship-to: *id001
product:
    - sku         : BL394D
      quantity    : 4
      description : Basketball
      price       : 450.00
    - sku         : BL4438H
      quantity    : 1
      description : Super Hoop
      price       : 2392.00
tax  : 251.42
total: 4443.52
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comments:
    Late afternoon is best.
    Backup contact is Nancy
    Billsmer @ 338-4338.

There are a few subtleties in this simple document. A very large variety of data types 
are recognized based on syntactic patterns, much as we can spell constants of many 
types in programming languages, which a parser distinguishes. Quoting is rarely 
needed, but is permitted (for example, if a string happens to contain numeric digits 
only, and you do not wish it to be treated as a number).

The overall structure of this document is a mapping from several names to their 
values. In some cases, those values are themselves sequences or mappings, in 
other cases they are scalars. Strings may be multiline, with a pleasant subtlety that 
beginning with a pipe (|) indicates that newlines should be preserved (but other 
indentation is ignored). The address lines in the above example show this. In the 
case of the key comments, the string occupies multiple lines, but newlines are not 
preserved.

A powerful feature is the availability of anchors and references. These are vaguely 
inspired by C-family languages that have references and pointers. The idea is that a 
fragment of a document may be named (an anchor) and referenced elsewhere. This 
avoids repetition but also, more importantly, assures consistency in the contents. 
We see this where a person with an address is defined in relation to bill-to but 
referenced under the key ship-to.

Let us see what the data looks like when read into native Python data structures:

import yaml
order = yaml.load(open('data/example.yaml'))
order

{'invoice': 34843,
 'date': datetime.date(2001, 1, 23),
 'bill-to': {'given': 'Chris',
  'family': 'Dumars',
  'address': {'lines': '458 Walkman Dr.\nSuite #292\n',
   'city': 'Royal Oak',
   'state': 'MI',
   'postal': 48046}},
 'ship-to': {'given': 'Chris',
  'family': 'Dumars',
  'address': {'lines': '458 Walkman Dr.\nSuite #292\n',
   'city': 'Royal Oak',
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   'state': 'MI',
   'postal': 48046}},
 'product': [{'sku': 'BL394D',
   'quantity': 4,
   'description': 'Basketball',
   'price': 450.0},
  {'sku': 'BL4438H',
   'quantity': 1,
   'description': 'Super Hoop',
   'price': 2392.0}],
 'tax': 251.42,
 'total': 4443.52,
 'comments': 'Late afternoon is best. Backup contact is Nancy Billsmer 
@ 338-4338.'}

As with TOML, dates are handled natively. The anchor and reference are expanded 
into references to the same nested dictionary. Some numbers are parsed as floats, 
others as ints, using the same spelling rules as most programming languages. Notice 
that an initial dash introduces an item of a sequence/list as opposed to a key in a 
mapping/dictionary. Look back at the YAML version of the invoice to see this.

We can verify that referenced objects are simply references, not full copies:

# Is nested dict same object under different keys?
order['ship-to'] is order['bill-to']

True

Remember that several different enhancements are used to enable JSON streaming, 
the most common being JSON Lines. YAML thought of this in its initial design, and 
inherently builds in specific elements for multiple documents in the same stream, 
while still allowing each component document to use whatever whitespace makes 
it the most readable (obviously, subject to the grammar of YAML, but it is flexible). 
For example, here is a single file that contains multiple documents; it could equally 
be any other Python file-like object with a .read() method though (i.e. including an 
infinite stream):

%YAML 1.1
---
# YAML can contain comments like this
name: David
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age: 55
---
name: Mei
age: 50     # Including end-of-line
---
name: Juana  
age: 47
...
---
name: Adebayo
age: 58
...

The version directive at the start is optional, but is good practice. Three dashes 
alone on a line indicate the start of a document. Starting a new document suffices to 
indicate the last one has ended. However, three dots are also available to explicitly 
mark the end of a document. We might loop through these multiple documents, 
and process each one in some manner, as in the code below. In a data science 
context, we generally expect each document to contain similar structure and 
“fields,” but that is not a constraint of the YAML format itself:

with open('data/multidoc.yaml') as stream:
    docs = yaml.load_all(stream)
    print(docs, '\n')
    for doc in docs:
        print(doc)

<generator object load_all at 0x7fe20bc2edd0> 

{'name': 'David', 'age': 55}
{'name': 'Mei', 'age': 50}
{'name': 'Juana', 'age': 47}
{'name': 'Adebayo', 'age': 58}

As we discussed with TOML, one of the biggest advantages to working with 
a formally specified format with developed tools—even, or especially, if it is a 
format often manually edited by humans—is that parsers will hopefully produce 
meaningful messages about formatting problems without us needing to catch them 
manually:
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try:
    yaml.load(open('data/example-bad.yaml'))
except Exception as err:
    print_err(err)

ScannerError
mapping values are not allowed here   in "data/example-bad.yaml", line
17, column 31

With the error message in hand, we might look at the portion of the document that 
indicates a problem. It is not too difficult to identify the problem on line 17. In this 
case, the error is intentionally obvious:

%%bash
cat -n data/example-bad.yaml | sed '15,19p;d'

    15      - sku         : BL394D
    16        quantity    : 4
    17        description : Basketball: ERROR
    18        price       : 450.00
    19      - sku         : BL4438H

Similarly, if we try to parse a YAML stream, it will succeed up until the point that it 
encounters the bad document. This has to be true, since the grammatically incorrect 
document in the stream is not even read until the iterator gets to it. We can confirm 
this by trying to print out each document as it is read:

try:
    for doc in yaml.load_all(open('data/multidoc-bad.yaml')):
        print(doc)
except Exception as err:
    print_err(err)

{'name': 'David', 'age': 55}
{'name': 'Mei', 'age': 50}
ScannerError
mapping values are not allowed here   in "data/multidoc-bad.yaml",
line 10, column 12

We have looked at the most important configuration file formats; let us return to big 
data.
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NoSQL Databases
Das ist nicht nur nicht richtig; es ist nicht einmal falsch!
–Wolfgang Paulinot wrong

Concepts:

•	 Graph databases
•	 Document-oriented databases
•	 Missing fields in ragged documents
•	 Denormalization and data integrity
•	 Key/value stores
•	 Informal hierarchies

A number of database systems avoid the relational model, usually with the goal of 
better performance within a particular domain. As well, many RBDMSs now include 
JSON and XML data types. In overview, these systems break down into document-
oriented databases, graph databases, and key/value stores. Specific server software 
may combine elements of these—or indeed elements of relational databases—and the 
specific performance characteristics, design philosophy, and general limitations vary 
among each project.

Most “NoSQL” database systems have a prominent attribute suggested by the 
moniker; namely, using query languages other than SQL. However, even there, 
some of them nonetheless implement at least a subset of SQL as a method of 
accessing data. These other query languages are sometimes unique to a particular 
database system, but in some cases are somewhat standardized. For example, the 
graph query languages Gremlin, SPARQL (SPARQL Protocol and RDF Query 
Language), and GQL (Graph Query Language; formerly Cypher) are each supported 
by several different database systems. Among open source graph databases, the most 
well known are perhaps Neo4j and OrientDB, but numerous others exist, including 
many proprietary ones.

not wrong

In English: “That is not only not right; it is not even wrong.” Pauli’s 
colorful phrase is usually circulated simply as the description 
“not even wrong.” In general understanding, his intent is taken as 
meaning “unfalsifiable.”
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Beyond mentioning here that they exist, I will not discuss in this book anything 
specific about data cleanliness issues that are characteristic of graph databases. The 
types of data analyses performed on graphs are typically somewhat specialized and 
outside the scope of what I can discuss here. But you may encounter data in these 
formats. I will discuss in somewhat more detail document-oriented databases and 
key/value stores, both of which you are more likely to find yourself working with 
(for most readers; individual needs and jobs vary, of course).

In broad concept, graph databases consist of nodes, and edges that connect nodes; 
both nodes and edges can usually hold attributes or properties, either freeform per 
object or defined by a schema. For example, the node representing me might contain 
my name (“David”), my occupation (“Data Scientist”), and my current home state 
(“Maine”). In turn, I have a “social graph” that includes my connection/edge labeled 
“Friend” (that perhaps contains other properties) to the node “Brad.” I also have a 
connection labeled “Publisher” to the node “Packt.” A complete social graph may 
consist of millions of nodes and edges, with various attributes attached to each.

A small illustration in the public domain was created by user Ahzf for the 
Wikimedia Commons:

Figure 2.2: Example of a social graph. Source: https://commons.wikimedia.org/wiki/ 
File:GraphDatabase_PropertyGraph.png
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Document-Oriented Databases
Document-oriented databases typically store and communicate their data using 
XML, JSON, or Binary JSON (BSON). In a sense, you can think of these databases 
simply as single giant files in one of these formats, which just happen to have 
mechanisms to index and optimize queries into them. In actual implementation, this 
will not be true, but as a conceptual model it does not go far astray. The key thing 
to understand in document-oriented databases is that their data is hierarchically 
organized. This can make some access patterns very efficient, but it comes with all 
the same pitfalls as other hierarchical formats.

Popular open source document-oriented databases include MongoDB, CouchDB, 
CrateDB, Elasticsearch, and Solr. This software space is well occupied, and a large 
number of other tools, both open source and proprietary, are not included in my list. 
In broad concept, especially in terms of data cleanliness concerns, these different 
projects are similar.

The main pitfall in hierarchical data is simply that it is ragged. Particular fields 
at particular levels of nesting might be missing. Let us illustrate with an example 
inspired by a MongoDB blog post about restaurants with reviews. For these 
illustrations we use MongoDB, which is based around JSON. The same concepts 
would apply to any document-oriented database. As with other examples in this 
book, security configuration and login credentials will be part of normal usage, 
but are not addressed here:

# Assume that MongoDB is running on local system
from pymongo import MongoClient
client = MongoClient('mongodb://localhost:27017')

We can check what databases exist on this server. Other than "business", the 
others are administrative in nature, and simply exist by default on every MongoDB 
installation.

# What databases exist on the local server?
client.database_names()

['admin', 'business', 'config', 'local']

The "business" database has two branches at its top level: one for reviews, another 
for info. 

A document-oriented database is typically organized in a hierarchy 
of server → database → collection → document. For comparison, 
a relational database is organized as server → database → table → 
row.
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Let us look at a few documents from each. General "info" on the first few 
restaurants:

db_biz = client.business
print("Restaurants:", db_biz.info.count())
for biz in db_biz.info.find(limit=3):
    pprint(biz)

Restaurants: 50
{'_id': ObjectId('5f30928db504836031a2c2a1'),
 'cuisine': 'Mexican',
 'name': 'Kitchen Tasty Inc.',
 'phone': '+1 524 555 9265'}
{'_id': ObjectId('5f30928db504836031a2c2a2'),
 'cuisine': 'Sandwich',
 'name': 'Sweet Salty Take-Out',
 'phone': '+1 408 555 6924'}
{'_id': ObjectId('5f30928db504836031a2c2a3'),
 'cuisine': 'Vegetarian',
 'name': 'City Kitchen Inc.',
 'phone': '+1 528 555 8923'}

Similarly, here are the first few reviews. Each review pertains to one of the listed 
restaurants in the "info" branch:

print("Reviews:", db_biz.reviews.count())
for review in db_biz.reviews.find(limit=3):
    pprint(review)

Reviews: 5000
{'_id': ObjectId('5f30928db504836031a2c2d3'),
 'name': 'Tasty Sweet Inc.',
 'price': 'cheap',
 'rating': 1}
{'_id': ObjectId('5f30928db504836031a2c2d4'),
 'name': 'Big Big Restaurant',
 'price': 'cheap',
 'rating': 6}
{'_id': ObjectId('5f30928db504836031a2c2d5'),
 'name': 'Goat Big Take-Out',
 'price': 'reasonable',
 'rating': 8}
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We might make a more specific inquiry. For example, perhaps we are interested 
in those reviews of "City Kitchen Inc." that consider the price "cheap". We can 
see that different diners who evaluated the price the same rated the restaurant 
differently. In principle, other data might be attached to each of these documents, 
of course. MongoDB’s query language is itself expressed as JSON (or as Python 
dictionaries from the Python interface):

query = {'price': 'cheap', 'name': 'City Kitchen Inc.'}
for review in db_biz.reviews.find(query, limit=4):
    pprint(review)

{'_id': ObjectId('5f30928db504836031a2c2ea'),
 'name': 'City Kitchen Inc.',
 'price': 'cheap',
 'rating': 3}
{'_id': ObjectId('5f30928db504836031a2c435'),
 'name': 'City Kitchen Inc.',
 'price': 'cheap',
 'rating': 7}
{'_id': ObjectId('5f30928db504836031a2c553'),
 'name': 'City Kitchen Inc.',
 'price': 'cheap',
 'rating': 3}
{'_id': ObjectId('5f30928db504836031a2c5d6'),
 'name': 'City Kitchen Inc.',
 'price': 'cheap',
 'rating': 1}

Missing Fields
In our general preview of the "business" database, everything was completely 
regular. We might jump into writing some code that crawls through records of 
a certain sort, perhaps matching a certain filter, with the intention of performing 
aggregation or modeling on corresponding data fields. For example, perhaps we 
would like to generate a histogram of the ratings given to "City Kitchen Inc.". The 
danger here is that some reviews might not have ratings, which we handle below 
using a try/except block:

ratings = []
query = {'name': 'City Kitchen Inc.'}
for review in db_biz.reviews.find(query):
    try:
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        ratings.append(review['rating'])
    except KeyError:
        pass

n = len(ratings)
pd.Series(ratings).plot(kind="hist", title=f"{n} ratings");

Figure 2.3: Histogram of ratings and their frequencies

We can see what is missing if we ask MongoDB for the actual number of rows. Our 
loop indeed skipped some data:

db_biz.reviews.find({'name': 'City Kitchen Inc.'}).count()

110

MongoDB—or any other hierarchical database (with perhaps some variation in 
API)—will let you match documents based on missing fields. In this small example, 
there is not that much other data in each document to consider, but in real-world 
cases, there might be many, and diverse, fields in similar documents. Let us list the 
reviews that do not have an associated rating:

list(db_biz.reviews.find({'name': 'City Kitchen Inc.', 'rating': 
None}))

[{'_id': ObjectId('5f30928db504836031a2c3fa'),
  'name': 'City Kitchen Inc.',
  'price': 'expensive'},
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 {'_id': ObjectId('5f30928db504836031a2c6b6'),
  'name': 'City Kitchen Inc.',
  'price': 'reasonable'}]

Whether or not you need to worry about these two reviews with missing ratings is 
problem- and domain-driven. You might want to ignore them. You might want to 
perform techniques such as those discussed in Chapter 5, Data Quality, and Chapter 6, 
Value Imputation. In any event, you should be conscious of the fact that your data is 
incomplete.

Denormalization and Its Discontents
For performance reasons that are analogous to those in relational databases, 
sometimes data is denormalized in document-oriented databases. Querying within 
one branch will be faster, and querying just one document will be much faster again. 
Hence, administrators of document-oriented databases will commonly duplicate 
information into a location “closer” to where it is typically accessed.

In querying a document-oriented database, we might use code similar to this:

def has_best_review(name, db=db_biz):
    "Return phone if restaurant has at least one 10 rating"
    query = {'name': name, 'rating': 10}
    review = None
    
    # Fast path has phone in local results
    for review in db.reviews.find(query):
        phone = review.get('phone')
        if phone:
            return f"Call {name} at {phone}! (FAST query)"

    # If there were no ratings of 10, we don't like it!
    if not review:
        return f"Do not bother with {name}!"

    # MUCH SLOWER path is second query
    info = db.info.find_one({'name': name})
    return f"Call {name} at {info['phone']}! (SLOW query)"

Perhaps when a review is consulted numerous times (for example, if it had an actual 
description field), the database administrator may cache the phone number that is 
usually wanted within the actual review document. 
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Let us see how several inquiries behave:

has_best_review('Salty Big Take-Out')

'Call Salty Big Take-Out at +1 354 555 8317! (FAST query)'

has_best_review('City Kitchen Inc.')

'Call City Kitchen Inc. at +1 528 555 8923! (SLOW query)'

has_best_review('Out of Business')

'Do not bother with Out of Business!'

On its face, this all seems like reasonable performance optimization. The problem 
is that duplicated information is information that might be inconsistent. Here we will 
use the database itself to look for non-absent fields (the example function could be 
improved using this query element also):

query = {'name': 'Salty Big Take-Out', 
         'rating': 10, 'phone':{"$ne":None}}

db_biz.reviews.find_one(query)

{'_id': ObjectId('5f30928db504836031a2c7c9'),
 'name': 'Salty Big Take-Out',
 'price': 'reasonable',
 'rating': 10,
 'phone': '+1 354 555 8317'}

However, let us take a look at the "info" branch for this restaurant rather than the 
"reviews" branch we have focused on so far:

db_biz.info.find_one({'name': 'Salty Big Take-Out'})

{'_id': ObjectId('5f30928db504836031a2c2aa'),
 'name': 'Salty Big Take-Out',
 'cuisine': 'Mexican',
 'phone': '+1 967 555 5487'}

At this point, we are faced with a data integrity problem. Presumably, at some point 
the telephone number was copied into the review document. It is plausible that the 
phone number was copied from the "info" branch to the "reviews" branch at the 
time the review was created (or maybe on the thousandth access to it?); that would 
suggest that the "info" branch is more current. However, it is also possible that the 
phone number was entered with the review itself as an option. 



Chapter 2

[ 127 ]

Determining the cause of the data integrity problem, unfortunately, depends on 
understanding not only the code that might have run in the past, but also even the 
human or automated entry processes that might have occurred.

Key/Value Stores
The simplest possible database system is a key/value store. These systems do 
nothing more than map some key (usually a string) to a value (sometimes a string, 
sometimes compound types). Often these systems are used as in-memory data stores 
to allow the fastest possible access, often as a form of caching. However, most of the 
systems that usually operate in-memory—including among distributed servers—also 
have some persistence mechanism such as virtual memory or snapshotting. Other 
variations of key/value stores are primarily on-disk formats, but they might in turn 
reside primarily in cache memory, hence achieving similar speed.

Redis (Remote Dictionary Server) and Memcached are popular in-memory systems 
(with persistence mechanisms on the side). Memcached, as its name suggests, 
is most commonly used as a cache, and is hence much less commonly a “source 
of knowledge.” That is, a cache frequently sits between a client and a server and 
simply records the previous result from a client. If an identical request occurs again 
(possibly limited to some “staleness” period) then the complex database query, 
difficult computation, or access to additional resources external to the server can be 
skipped and the cached result is returned instead. Redis is sometimes used this way, 
but is also often used as a definitive or sole source of knowledge for some element 
of the data needed by a server.

To illustrate this caching in pseudo-code, a server proxy might contain code similar 
to this:

request = get_client_request()
key = hash(request)   # Collision resistant hash

# See if FAST PATH is available
if result := check_for_cache(key):
    send_to_client(result)

# SLOW PATH as fallback
else:
    result = expensive_operation(request)
    send_to_client(result)
    store_to_cache(key, result, expiration=duration)
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Other key/value stores are derived from the early Unix Database Manager (DBM) 
system. These include Lightning Memory-Mapped Database (LMDB), GNU dbm 
(GDBM), and Berkeley DB. All of these simply map byte strings to other byte 
strings, without addressing more complex data structures. In contrast, for example, 
Redis allows for values to have a rich collection of data types, including collections 
allowing nesting. In practice, however, bytes are sufficient to hold any kind of data; 
it is just a matter of those bytes representing some serialization format, such as JSON 
text or Python pickles (the Python shelve module, for example, is basically just DBM 
coupled with pickles).

Being primarily single files on disk that store key/value pairs, DBM-family libraries 
occupy a similar application space with SQLite single-file databases. Both are a way 
to encapsulate related data into a format that can be read universally and depends 
only on a single file to be shared. Obviously, the manner of use is different between 
relational and key/value stores, but the same information can easily be represented 
in either, and both provide their own kind of querying and updating interfaces.

In a sense, key/value stores are simple enough that they do not lend themselves 
to data integrity problems. Obviously, it is always possible to store values that are 
simply wrong no matter what format is used. But there is nothing in the structure of 
a mapping itself that adds special concerns. Or so it would seem.

Problems arise in practice because users actually want hierarchy in their data. Most 
keys are not useful as completely flat names. Developers commonly invent ad 
hoc hierarchies in the keys used within key/value stores; this is not necessarily or 
usually a bad habit by developers, it usually reflects a genuine requirement of the 
problem space. However, these hierarchies can be especially fragile.

For example, I have created a DBM file that contains similar information to the 
restaurant database discussed above in its MongoDB format. The hierarchy of 
branches is represented here using namespacing of the keys with delimiters. This 
approach is quite commonplace among creators of key/value store systems. Let us 
look at a few of the keys in this key/value store. I have used a random seed that 
happens to sample some keys of interest:

biz = dbm.open('data/keyval.db')
seed(6)
# Keys are bytes; could convert to strings if desired
sample(list(biz.keys()), 10)

[b'Big Sweet Take-Out::info::phone',
 b'Big Sweet Inc.::ratings',
 b'Goat Sweet Inc.::info::phone',
 b'Fish City Restaurant//ratings',
 b'Delight Goat Inc.::ratings',
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 b'DESCRIPTION',
 b'Salty Delight Take-Out::ratings',
 b'Sweet Tasty Restaurant::info::phone',
 b'Delight Salty Restaurant::info::phone',
 b'Tasty Fish Inc.::info::cuisine']

We can query on various informally hierarchical keys.

name = b"Tasty Fish Inc."
print("Overview:", biz[b"DESCRIPTION"])
print("Cuisine: ", biz[name + b"::info::cuisine"] )
print("Ratings: ", biz[name + b"::ratings"][:30], "...")

Overview: b'Restaurant information'
Cuisine:  b'Mexican'
Ratings:  b'2;1;1;10;5;7;1;4;8;10;7;7;6;8;' ...

As is common, I have created an informal sequence in the "ratings" value by using 
delimiters. Consumers of the data will simply have to be aware that a particular 
value is formatted that way. We might even use a small amount of code to pull 
related keys out from the ad hoc hierarchy:

for key, val in biz.items():
    if key.startswith(b'Tasty Fish Inc.::'):
        print(key.decode(), '\t', val[:30].decode())

Tasty Fish Inc.::ratings         2;1;1;10;5;7;1;4;8;10;7;7;6;8;
Tasty Fish Inc.::info::phone     +1 935 555 8029
Tasty Fish Inc.::info::cuisine   Mexican

The main problem that arises here is that over the course of using the database, an 
inconsistent convention for hierarchical keys was used. This is a general concern, 
and occurs frequently in real data; it is probably especially prominent in multi-user, 
multi-consumer systems like Redis that are likely to communicate with tools written 
by many people, in many languages, over time. Data integrity failures just tend to 
seep in. For example:

for key, val in biz.items():
    if key.startswith(b'Fish City Restaurant'):
        print(key, val[:30])

b'Fish City Restaurant::ratings' b'6;10;4;3;10;5;1;4;7;8;5;2;1;5;'
b'Fish City Restaurant//ratings' b'9'
b'Fish City Restaurant::info::phone' b'+1 851 555 1082'
b'Fish City Restaurant::info::cuisine' b'American'
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Although the intent of the differently delimited hierarchical keys is easy to discern 
as human readers, detecting such inconsistencies can be laborious, and you risk 
missing information with inadequate remediation. For these types of key/value 
stores, if you need to utilize their data source, a good first examination is to analyze 
the structure of keys themselves. They will not always utilize an ad hoc hierarchy, 
but doing so is frequent. Even if there are millions of keys rather than the hundreds 
in my example, that initial approach can at least assure that consistent path 
components exist using consistent delimiters (or other formatting of keys).

We have covered a large number of different hierarchical formats, and even so 
left out much possible discussion of others. An in-depth look at graph databases 
will need to live in a different book. Also, many volumes have been written on the 
myriad APIs and dialects of XML that this chapter only gestures at. However, I hope 
this has given you a feel for the kinds of concerns that arise with this family of data 
sources.

Exercises
The first exercise here deals with refining the processing of the geographic data that 
is available in several formats. The second exercise addresses moving between a 
key/value and a relational model for data representation.

Exploring Filled Area
Using the United States county data, we created tidy data frames that contained the 
extents of counties as simple cardinal direction limits; we also were provided with 
the “census area” of each county. Unfortunately, the data available here does not 
specifically address water bodies and their sizes, which might be relevant to some 
counties.

The census data can be found at:

https://www.gnosis.cx/cleaning/gz_2010_us_050_00_20m.json

https://www.gnosis.cx/cleaning/gz_2010_us_050_00_20m.kml

https://www.gnosis.cx/cleaning/gz_2010_us_050_00_20m.zip

In this exercise, you will create an additional column in the data frame illustrated in 
the text to hold the percentage of the “bounding box” of a county that is occupied 
by the census area. The trick, of course, is that the surface area enclosed by latitude/
longitude corners is not a simple rectangle, nor even a trapezoid, but rather a portion 
of a spherical surface. County shapes themselves are typically not rectangular, and 
may include discontiguous regions.

https://www.gnosis.cx/cleaning/gz_2010_us_050_00_20m.json
https://www.gnosis.cx/cleaning/gz_2010_us_050_00_20m.kml
https://www.gnosis.cx/cleaning/gz_2010_us_050_00_20m.zip
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To complete this exercise, you may either reason mathematically about this area 
(the simplifying assumption that the Earth is a sphere is acceptable) or identify 
appropriate GIS software to do this calculation for you. The result of your work 
will be a data frame like that presented in the chapter, but with a column called 
"occupied" that contains 3221 floating-point values between 0 and 1.

For extra credit, you can investigate or improve a few additional data integrity 
issues. The shapefile in the ZIP archive is the canonical data provided by the US 
Census Bureau. The code we saw in this chapter to process GeoJSON and KML 
actually produces slightly different results for latitude/longitude locations, at the 
third decimal place. Presumably, the independent developer whom I downloaded 
these conversions from allowed some data error to creep in somehow. Diagnose 
which version, if either, matches the original .shp file, and try to characterize the 
reason for and degree of the discrepancy.

For additional extra credit, fix the kml_county_summary() function presented in 
this chapter so that it correctly handles <MultiGeometry> county shapes rather than 
skipping over them. How often did this problem occur among the 3221 United 
States counties?

Create a Relational Model
The key/value data in the DBM restaurant data is organized in a manner that might 
provide very fast access in Redis or similar systems. But there is certainly a mismatch 
with the implicit data model. Keys have structure in their hierarchy, but it is a finite 
and shallow hierarchy. Values may be of several different implicit data types; in 
particular, ratings are stored as strings, but they really represent sequences of small 
integer values. Other fields are simple strings (albeit stored as bytes in the DBM).

The dbm module in the shown example uses Python’s fallback “dumb DBM” format, 
which does not depend on external drivers like GDBM or LDBM. For the example 
with hundreds of records, this is quite fast; if you wished to use millions of records, 
other systems would scale well and are preferred. This “dumb” format actually 
consists of three separate files, but sharing the keyval.db prefix; the three are 
provided as a ZIP archive:

dbm.whichdb('data/keyval.db')

'dbm.dumb'
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The dbm.dumb format is not necessarily portable to other programming languages. It 
is, however, simple enough that you could write an adapter rather easily. To provide 
the identical data in a more universal format, a CSV of the identical content is also 
available:

https://www.gnosis.cx/cleaning/keyval.zip

https://www.gnosis.cx/cleaning/keyval.csv

For this assignment, you should transform the key/value data in this example into 
relational tables, using foreign keys where appropriate and making good decisions 
about data types. SQLite is an excellent choice for a database system to target; it is 
discussed in Chapter 1, Tabular Formats. Any other RDBMS is also a good choice if 
you have administrative access (i.e. table creation rights). Before transforming the 
data model, you will need to clean up the inconsistencies in the hierarchical keys 
that were discussed in this chapter.

The names of restaurants are promised to be distinct; however, for foreign key 
relationships, you may wish to normalize using a short index number standing 
for the restaurants uniformly. The separate ratings should definitely be stored as 
distinct data items in a relevant table. To get a feel for more fleshed-out data, invent 
timestamps for the reviews, such that each is mostly distinct. A real-world dataset 
will generally contain review dates; for the example, no specific dates are required, 
just the form of them.

Although this data is small enough that performance will not be a concern, think 
about what indices are likely to be useful in a hypothetical version of this data that is 
thousands or millions of times larger. Imagine you are running a popular restaurant 
review service and you want your users to have fast access to their common queries.

Using the relational version of your data model, answer some simple queries, most 
likely using SQL:

•	 What restaurant received the most reviews?
•	 What restaurants received reviews of 10 during a given time period (the 

relevant range will depend on which dates you chose to populate)?
•	 What style of cuisine received the highest mean review?

For extra credit, you may go back and write code to answer the same questions using 
only the key/value data model.

https://www.gnosis.cx/cleaning/keyval.zip
https://www.gnosis.cx/cleaning/keyval.csv
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Denouement
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
–Tim Peters (The Zen of Python)

Topics covered in this chapter: JSON; JSON Lines; JSON Schema; XML; YAML and 
Configuration Files; Document-Oriented Databases; Key/Value Stores.

Hierarchical data often provides a much better representation of entities that 
have attributes and relationships to each other than does flat data. In object-
oriented programming, but also simply in ordinary taxonomies and ontologies, 
the relationships is-a and has-a are frequently fundamental, and neither of those is 
whatsoever tabular. Or at best, even the attributes captured by has-a relationships 
are ragged and sparse, and definitely not tidy. Moreover, is-a relationships are 
hierarchical at their core.

There is often—even usually—an impedance mismatch between hierarchical data 
and data science. Much of these issues comes down to access patterns. For many 
software applications, what interests us are particular entities that carry with them 
heterogeneous bundles of data, each bundle pertaining to the kind of thing the entity 
is an instance of. In utilizing such applications, we only care about one thing (or a 
handful of things) at a given time. When that is the case, hierarchical data structures 
can often be both more efficient and conceptually closer to the underlying ideas the 
data represents.

When we do data science, whether it is general statistics, data visualization, or 
machine learning models, we are concerned with collections of records or samples 
that are homogeneous in regard to our purpose or goal. Yes, there may be missing 
data concerns such as those that will be addressed in Chapter 4, Anomaly Detection, 
and Chapter 5, Data Quality, but those do not dominate our analysis. Data science is 
about summarization and aggregation. It is almost never about individual entities 
in themselves.
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Therefore, when provided with hierarchical data, as data scientists we need to 
articulate what a tree represents that can be expressed in terms of homogeneous 
samples. What fields or features abstract from the hierarchical structure and express 
something in common among numerous entities? Those entities need not be leaves 
of the trees (although that is common); they might also be properties that can be 
extracted or extrapolated from different branches, which are useful and meaningful 
to summarize, model, and aggregate.

In the next chapter, we look at a number of additional data formats, including web 
data, PDFs, images, and custom text and binary formats.
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3
Repurposing Data Sources
All language is but a poor translation.
–Franz Kafka

Sometimes, data lives in formats that take extra work to ingest. For common and 
explicitly data-oriented formats, common libraries already have readers built into 
them. Data frame libraries, for example, read a huge number of different file types. 
At worst, slightly less common formats have their own more specialized libraries 
that provide a relatively straightforward path between the original format and the 
general purpose data processing library you wish to use.

A greater difficulty often arises because a given format is not per se a data format, 
but exists for a different purpose. Nonetheless, often there is data somehow 
embedded or encoded in the format that we would like to utilize. For example, web 
pages are generally designed for human readers and rendered by web browsers 
with “quirks modes” that deal with not-quite-HTML, as is often needed. Portable 
Document Format (PDF) documents are similar in having human readers in mind, 
and yet also often containing tabular or other data that we would like to process as 
data scientists. Of course, in both cases, we would rather have the data itself in some 
separate, easily ingestible, format; but reality does not always live up to our hopes. 
Image formats likewise are intended for the presentation of pictures to humans, but 
we sometimes wish to characterize or analyze collections of images in some data 
science or machine learning manner. There is a bit of a difference between Hypertext 
Markup Language (HTML) and PDF, on one hand, and images on the other 
hand. With the former, we hope to find tables or numeric lists that are incidentally 
embedded inside a textual document. 
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With the images, we are interested in the format itself as data: what is the pattern of 
pixel values and what does that tell us about characteristics of the image as such?

Still other formats are indeed intended as data formats, but they are unusual enough 
that common readers for the formats will not be available. Generally, custom text 
formats are manageable, especially if you have some documentation of what the 
rules of the format are. Custom binary formats are usually more work, but possible 
to decode if the need is sufficiently pressing and other encodings do not exist. 
Mostly, such custom formats are legacy in some way, and a one-time conversion to 
more widely used formats is the best process.

***

Before we get to the sections of this chapter, let us run our standard setup code:

from src.setup import *
%load_ext rpy2.ipython

%%R 
library(imager)
library(tidyverse)
library(rvest)

Web Scraping
Important letters which contain no errors will develop errors in the mail.
–Anonymous

Concepts:

•	 HTML tables
•	 Non-tabular data
•	 Command-line scraping

A great deal of interesting data lives on web pages, and often, unfortunately, we do 
not have access to the same data in more structured data formats. In the best cases, 
the data we are interested in at least lives within HTML tables inside a web page; 
however, even where tables are defined, often the content of the cells has more than 
just the numeric or categorical values of interest to us. For example, a given cell 
might contain commentary on the data point or a footnote providing a source for the 
information. At other times, of course, the data we are interested in is not in HTML 
tables at all, but structured in some other manner across a web page.
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In this section, we will first use the R library rvest to extract some tabular data, and 
then use BeautifulSoup in Python to work with some non-tabular data. This shifting 
tool choice is not because one tool or the other is uniquely capable of doing the task 
we use it for, nor even is one necessarily better than the other at it. I simply want to 
provide a glimpse into a couple of different tools for performing a similar task.

In the Python world, the framework Scrapy is also widely used—it does both more 
and less than BeautifulSoup. Scrapy can actually pull down web pages and navigate 
dynamically among them, while BeautifulSoup is only interested in the parsing 
aspect, and it assumes you have used some other tool or library (such as Requests) to 
actually obtain the HTML resource to be parsed. For what it does, BeautifulSoup is 
somewhat friendlier and is remarkably well able to handle malformed HTML. In the 
real world, what gets called “HTML” is often only loosely conformant to any actual 
format standards, and hence web browsers, for example, are quite sophisticated 
(and complicated) in providing reasonable rendering of only vaguely structured tag 
soups.

At the time of writing, in 2020, the Covid-19 pandemic is ongoing, and the exact 
contours of the disease worldwide are changing on a daily basis. Given this active 
change, the current situation is too much of a moving target to make a good example 
(and too politically and ethically laden). Let us look at some data from a past disease 
though to illustrate web scraping. While there are surely other sources for similar 
data we could locate, and some are most likely in immediately readable formats, we 
will collect our data from the Wikipedia article on the 2009 flu pandemic.

A crucial fact about web pages is that they can be and often are modified by their 
maintainers. There are times when the Wayback Machine can be used to find specific 
historical versions. Data that is available at a given point in time may not continue 
to be in the future at a given URL. Or even where a web page maintains the same 
underlying information, it may change details of its format that would change 
the functionality of our scripts for processing the page. On the other hand, many 
changes represent exactly the updates in data values that are of interest to us, and 
the dynamic nature of a web page is exactly its greatest value. These are trade-offs to 
keep in mind when scraping data from the web.

HTML Tables
Wikipedia has a great many virtues, and one of them is its versioning of its pages. 
While a default URL for a given topic has a friendly and straightforward spelling 
that can often even be guessed from the name of a topic, Wikipedia also provides a 
URL parameter in its query strings that identifies an exact version of the web page 
that should remain bitwise identical for all time. 

https://archive.org/web/


Repurposing Data Sources

[ 138 ]

There are a few exceptions to this permanence; for example, if an article is deleted 
altogether, it may become inaccessible. Likewise, if a template is part of a renaming, 
as unfortunately occurred during the writing of this book, a “permanent” link can 
break. Let us examine the Wikipedia page we will attempt to scrape in this section:

# Same string composed over two lines for layout
# XXXX substituted for actual ID because of discussed breakage
url2009 = ("https://en.wikipedia.org/w/index.php?"
           "title=2009_flu_pandemic&oldid=XXXX")

The particular part of this page that we are interested in is an info box about halfway 
down the article. It looks like this in my browser:

Figure 3.1: Wikipedia info box in the article entitled “2009 Flu Pandemic”
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Constructing a script for web scraping inevitably involves a large amount of trial 
and error. In concept, it might be possible to manually read the underlying HTML 
before processing it, and correctly identify the positions and types of the element of 
interest. In practice, it is always quicker to eyeball the partially filtered or indexed 
elements and refine the selection through repetition. 

For example, in this first pass below, I determined by trial and error that the “cases 
by region” table was number 4 on the web page by enumerating through earlier 
numbers and visually ruling them out. As rendered by a web browser, it is not 
always apparent what element is a table; it is also not necessarily the case that 
an element being rendered visually above another actually occurs earlier in the 
underlying HTML.

This first pass also already performs a little bit of cleanup in value names. Through 
experimentation, I determined that some region names contain an HTML <br/>, 
which is stripped in the following code, leaving no space between words. In order 
to address that, I replace the HTML break with a space, and then need to reconstruct 
an HTML object from the string and select the table again:

%%R
page <- read_html(url2009) 
table <- page %>% 
    html_nodes("table") %>%
    .[[4]] %>%
    str_replace_all("<br>", " ") %>%
    minimal_html() %>%
    html_node("table") %>%
    html_table(fill = TRUE) 
head(table, 3)

This code produced the following (before the template change issue):

    2009 flu pandemic data  2009 flu pandemic data  2009 flu pandemic data
1                     Area        Confirmed deaths                    <NA>
2        Worldwide (total)                  14,286                    <NA>
3  European Union and EFTA                   2,290                    <NA>

Although the first pass still has problems, all the data is basically present, and we can 
clean it up without needing to query the source further. Because of the nested tables, 
the same header is incorrectly deduced for each column. The more accurate headers 
are relegated to the first row. 
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Moreover, an extraneous column that contains footnotes was created (it has content 
in some rows below those shown by head()). Because of the commas in numbers 
over a thousand, integers were not inferred.  Let us convert the data.frame to a 
tibble:

data <- as_tibble(table, 
        .name_repair = ~ c("Region", "Deaths", "drop")) %>%
    select(-drop) %>%
    slice(2:12) %>%
    mutate(Deaths = as.integer(gsub(",", "", Deaths)),
           Region = as.factor(Region))
data

And this might give us a helpful table like:

# A tibble: 11 x 2
   Region                                      Deaths
   <fct>                                        <int>
 1 Worldwide (total)                            14286
 2 European Union and EFTA                       2290
 3 Other European countries and Central Asia      457
 4 Mediterranean and Middle East                 1450
 5 Africa                                         116
 6 North America                                 3642
 7 Central America and Caribbean                  237
 8 South America                                 3190
 9 Northeast Asia and South Asia                 2294
10 Southeast Asia                                 393
11 Australia and Pacific                          217

Obviously this is a very small example that could easily be typed in manually. 
The general techniques shown might be applied to a much larger table. More 
significantly, they might also be used to scrape a table on a web page that is updated 
frequently. 2009 is strictly historical, but other data is updated every day, or even 
every minute, and a few lines like the ones shown could pull down current data 
each time it needs to be processed.

Non-Tabular Data
For our processing of a non-tabular source, we will use Wikipedia as well. Again, a 
topic that is of wide interest and not prone to deletion is chosen. Likewise, a specific 
historical version is indicated in the URL, just in case the page changes its structure 
by the time you read this. In a slightly self-referential way, we will look at the article 
that lists HTTP status codes in a term/definition layout. 
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A portion of that page renders in my browser like this:

Figure 3.2: HTTP status codes, Wikipedia definition list

Numerous other codes are listed in the articles that are not in the screenshot. 
Moreover, there are section divisions and other descriptive elements or images 
throughout the page. Fortunately, Wikipedia tends to be very regular and 
predictable in its use of markup. The URL we will examine is:

url_http = ("https://en.wikipedia.org/w/index.php?"
            "title=List_of_HTTP_status_codes&oldid=947767948")

The first thing we need to do is actually retrieve the HTML content. The Python 
standard library module urllib is perfectly able to do this task. However, even its 
official documentation recommends using the third-party package Requests for most 
purposes. There is nothing you cannot do with urllib, but often the API is more 
difficult to use, and is unnecessarily complicated for historical/legacy reasons. For 
simple things, like what is shown in this book, it makes little difference; for more 
complicated tasks, getting in the habit of using Requests is a good idea. 

https://docs.python.org/3/library/urllib.request.html#module-urllib.request
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Let us open a page and check the status code returned:

import requests
resp = requests.get(url_http)
resp.status_code

200

The raw HTML we retrieved is not especially easy to work with. Even apart from the 
fact it is compacted to remove extra whitespace, the general structure is a “tag soup” 
with various things nested in various places, and in which basic string methods 
or regular expressions do not help us very much in identifying the parts we are 
interested in. For example, here is a short segment from somewhere in the middle:

pprint(resp.content[43400:44000], width=55)

(b'ailed</dt>\n<dd>The server cannot meet the requir'
 b'ements of the Expect request-header field.<sup i'
 b'd="cite_ref-53" class="reference"><a href="#cite'
 b'_note-53">&#91;52&#93;</a></sup></dd>\n<dt><span '
 b'class="anchor" id="418"></span><a href="/wiki/HT'
 b'TP_418" class="mw-redirect" title="HTTP 418">418'
 b' I\'m a teapot</a> (<a class="external mw-magicli'
 b'nk-rfc" rel="nofollow" href="https://tools.ietf.'
 b'org/html/rfc2324">RFC 2324</a>, <a class="extern'
 b'al mw-magiclink-rfc" rel="nofollow" href="https:'
 b'//tools.ietf.org/html/rfc7168">RFC 7168</a>)</dt'
 b'>\n<dd>This code was defined in 1998 as one of th'
 b'e traditional <a href="/')

What we would like is to make the tag soup beautiful instead. The steps in doing so 
are first creating a “soup” object from the raw HTML, then using methods of that 
soup to pick out the elements we care about for our dataset. As with the R and rvest 
version—as indeed, with any library you decide to use—finding the right data in 
the web page will involve trial and error:

from bs4 import BeautifulSoup
soup = BeautifulSoup(resp.content)

As a start, upon our examination, we notice that the status codes themselves are each 
contained within an HTML <dt> element. Below we display the first and last few of 
the elements identified by this tag. Everything so identified is, in fact, a status code, 
but I only know that from manual inspection of all of them (fortunately, eyeballing 
fewer than 100 items is not difficult; doing so with a million would be infeasible). 
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However, if we look back at the original web page itself, we will notice that two 
AWS custom codes at the end are not captured because the page formatting is 
inconsistent for those. In this section, we will ignore those, having determined they 
are not general-purpose anyway:

codes = soup.find_all('dt')
for code in codes[:5] + codes[-5:]:
    print(code.text)

100 Continue
101 Switching Protocols
102 Processing (WebDAV; RFC 2518)
103 Early Hints (RFC 8297)
200 OK
524 A Timeout Occurred
525 SSL Handshake Failed
526 Invalid SSL Certificate
527 Railgun Error
530

It would be nice if each <dt> were matched with a corresponding <dd>. If it were, 
we could just read all the <dd> definitions and zip them together with the terms. 
Real-world HTML is messy. It turns out—and I discovered this while writing, not 
by planning the example—that there are sometimes more than one (and potentially 
sometimes zero) <dd> elements following each <dt>. Our goal then will be to collect 
all of the <dd> elements that follow a <dt> until other tags occur.

In the BeautifulSoup API, the empty space between elements is a node of plain text 
that contains exactly the characters (including whitespace) inside that span. It is 
tempting to use the API node.find_next_siblings() in this task. We could succeed 
doing this, but this method will fetch too much, including all subsequent <dt> 
elements after the current one. Instead, we can use the .next_sibling property to 
get each one, and stop when needed:

def find_dds_after(node):
    dds = []
    sib = node.next_sibling
    while True:     # Loop until a break
        # Last sibling within page section
        if sib is None:
            break
        # Text nodes have no element name
        elif not sib.name: 
            sib = sib.next_sibling
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            continue
        # A definition node
        if sib.name == 'dd':
            dds.append(sib)
            sib = sib.next_sibling
        # Finished <dd> the definition nodes
        else:
            break
    return dds

The custom function I wrote above is straightforward, but special to this purpose. 
Perhaps it is extensible to similar definition lists one finds in other HTML 
documents. BeautifulSoup provides numerous useful APIs, but they are building 
blocks for constructing custom extractors rather than foreseeing every possible 
structure in an HTML document. To understand it, let us look at a couple of the 
status codes:

for code in codes[23:26]:
    print(code.text)
    for dd in find_dds_after(code):
        print("  ", dd.text[:40], "...")    

400 Bad Request
   The server cannot or will not process th ...
401 Unauthorized (RFC 7235)
   Similar to 403 Forbidden, but specifical ...
   Note: Some sites incorrectly issue HTTP  ...
402 Payment Required
   Reserved for future use. The original in ...

The HTTP 401 response contains two separate definition blocks. Let us apply the 
function across all the HTTP code numbers. What is returned is a list of definition 
blocks; for our purpose, we will join the text of each of these with a newline. In fact, 
we construct a data frame with all the information of interest to us in the next cells:

data = []
for code in codes:
    # All codes are 3 character numbers
    number = code.text[:3]
    # Parenthetical is not part of status
    text, note = code.text[4:], ""
    if " (" in text:
        text, note = text.split(" (")
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        note = note.rstrip(")")
    # Compose description from list of strings
    description = "\n".join(t.text for t in find_dds_after(code))
    data.append([int(number), text, note, description])

From the Python list of lists, we can create a Pandas DataFrame for further work on 
the dataset:

(pd.DataFrame(data, 
              columns=["Code", "Text", "Note", "Description"])
    .set_index('Code')
    .sort_index()
    .head(8))

Code                 Text              Note                  Description
————————————————————————————————————————————————————————————————————————
 100             Continue                    The server has received the
                                                   request headers an...
 101  Switching Protocols                    The requester has asked the
                                                   server to switch p...
 102           Processing  WebDAV; RFC 2518         A WebDAV request may
                                               contain many sub-requests
 103           Checkpoint                          Used in the resumable
                                              request proposal to res...
 103          Early Hints          RFC 8297          Used to return some
                                                 response headers before
                                                                   fi...
 200                   OK                          Standard response for
                                             successful HTTP requests...
 201              Created                           The request has been
                                                 fulfilled, resulting in
                                                                    t...
 202             Accepted                           The request has been
                                                accepted for processing,
                                                                     ...

Clearly, the two examples this book walked through in some detail are not general 
to all the web pages you may wish to scrape data from. Organization into tables and 
into definition lists are certainly two common uses of HTML to represent data, but 
many other conventions might be used. Particular domain-specific—or likely page-
specific—class and id attributes on elements is also a common way to mark the 
structural role of different data elements. 
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Libraries such as rvest, BeautifulSoup, and scrapy all make identification and 
extraction of HTML by element attributes straightforward as well. Simply be 
prepared to try many variations on your web scraping code before you get it right. 
Generally, your iteration will be a narrowing process; each stage needs to include 
the information desired, and it becomes a process of removing the parts you do 
not want through refinement.

Command-Line Scraping
Another approach that I have often used for web scraping is to use the command-
line web browsers lynx and links. Install either or both with your system package 
manager. These tools can dump HTML contents as text that is, in turn, relatively 
easy to parse if the format is simple. There are many times when just looking for 
patterns of indentation, vertical space, searching for particular keywords, or similar 
text processing will get the data you need more quickly than the trial and error of 
parsing libraries like rvest or BeautifulSoup. Of course, there is always a certain 
amount of eyeballing and retrying commands. For people who are well versed in 
text processing tools, this approach is worth considering.

The two similar text-mode web browsers both share a -dump switch that outputs 
non-interactive text to STDOUT. Both of them have a variety of other switches that 
can tweak the rendering of the text in a variety of ways. The output from these two 
tools is similar, but the rest of your scripting will need to pay attention to the minor 
differences. Each of these browsers will do a very good job of dumping 90% of web 
pages as text that is easy to process. Of the problem 10% (a hand waving percentage, 
not a real measure), often one or the other tool will produce something reasonable 
to parse. In certain cases, one of these browsers may produce useful results and the 
other will not. Fortunately, it is easy simply to try both for a given task or site.

Let us look at the output from each tool against a portion of the HTTP response code 
page. Obviously, I experimented to find the exact line ranges of output that would 
correspond. You can see that only incidental formatting differences exist in this 
friendly HTML page. First, with lynx:

%%bash
base='https://en.wikipedia.org/w/index.php?title='
url="$base"'List_of_HTTP_status_codes&oldid=947767948'
lynx -dump $url | sed -n '397,406p'
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          requester put on the request header fields.^[170][44]^[171][45]

   413 Payload Too Large ([172]RFC 7231)
          The request is larger than the server is willing or able to
          process. Previously called "Request Entity Too Large".^[173][46]

   414 URI Too Long ([174]RFC 7231)
          The [175]URI provided was too long for the server to process.
          Often the result of too much data being encoded as a
          query-string of a GET request, in which case it should be

And the same part of the page again, but this time with links:

%%bash
base='https://en.wikipedia.org/w/index.php?title='
url="$base"'List_of_HTTP_status_codes&oldid=947767948'
links -dump $url | sed -n '377,385p'

           requester put on the request header fields.^[44]^[45]

   413 Payload Too Large (RFC 7231)
           The request is larger than the server is willing or able to
           process. Previously called "Request Entity Too Large".^[46]

   414 URI Too Long (RFC 7231)
           The URI provided was too long for the server to process. Often the
           result of too much data being encoded as a query-string of a GET

The only differences here are one space difference in indentation of the definition 
element and some difference in the formatting of footnote links in the text. In either 
case, it would be easy enough to define some rules for the patterns of terms and 
their definitions. Something like this:

•	 Look for a line that starts with 3 spaces followed by a 3-digit number
•	 Accumulate all non-blank lines following that; stop at the blank line
•	 Strip the footnote/link markers from the texts
•	 Split the code number and text in the same manner as in the previous 

example

Let us wave goodbye to the Scylla of HTML, as we pass by, and fall into the 
Charybdis of PDF.
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Portable Document Format
This functionary grasped it in a perfect agony of joy, opened it with a trembling 
hand, cast a rapid glance at its contents, and then, scrambling and struggling to the 
door, rushed at length unceremoniously from the room and from the house.
–Edgar Allan Poe

Concepts:

•	 Identifying tabular regions
•	 Extracting plain text

There are a great many commercial tools for extracting data that has become hidden 
away in PDF files. Unfortunately, many organizations—government, corporate, and 
others—issue reports in PDF format but do not provide data formats more easily 
accessible to computer analysis and abstraction. This is common enough to have 
provided impetus for a cottage industry of tools for semi-automatically extracting 
data back out of these reports. This book does not recommend the use of proprietary 
tools, about which there is no guarantee of maintenance and improvement over time; 
as well, of course, those tools cost money and are an impediment to cooperation 
among data scientists who work together on projects without necessarily residing in 
the same “licensing zone.”

There are two main elements that are likely to interest us in a PDF file. An obvious 
one is tables of data, and those are often embedded in PDFs. Otherwise, a PDF can 
often simply be treated as a custom text format, as we discuss in a section below. 
Various kinds of lists, bullets, captions, or simply paragraph text might have data of 
interest to us.

There are two open source tools I recommend for extraction of data from PDFs. One of 
these is the command-line tool pdftotext, which is part of the Xpdf and derived Poppler 
software suites. The second is a Java tool called tabula-java. tabula-java is, in turn, the 
underlying engine for the GUI tool Tabula, and also has language bindings for Ruby 
(tabula-extractor), Python (tabula-py), R (tabulizer), and Node.js (tabula-js). Tabula 
creates a small web server that allows interaction within a browser to do operations like 
creating lists of PDFs and selecting regions where tables are located. The Python and 
R bindings also allow the direct creation of data frames or arrays, with the R binding 
incorporating an optional graphical widget for region selection.

For this discussion, we do not use any of the language bindings, nor the GUI tools. 
For one-off selection of single-page datasets, the selection tools could be useful, but 
for automation of recurring document updates or families of similar documents, 
scripting is needed. 
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Moreover, while the various language bindings are perfectly suitable for scripting, 
we can be somewhat more language agnostic in this section by limiting ourselves to 
the command-line tool of the base library.

As an example for this section, let us use a PDF that was output from the preface of 
this book itself. There may have been small wording changes by the time you read 
this, and the exact formatting of the printed book or ebook will surely be somewhat 
different from this draft version. However, this nicely illustrates tables rendered in 
several different styles that we can try to extract as data. There are three tables, in 
particular, that we would like to capture:

Figure 3.3: Page 5 of the book’s preface
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On page 5 of the draft preface, a table is rendered by both Pandas and tibble, with 
corresponding minor presentation differences. On page 7, another table is included 
that looks somewhat different again:

Figure 3.4: Page 7 of the book’s preface

Running tabula-java requires a rather long command line, so I have created a small 
Bash script to wrap it on my personal system:

#!/bin/bash
# script: tabula
# Adjust for your personal system path
TPATH='/home/dmertz/git/tabula-java/target'
JAR='tabula-1.0.4-SNAPSHOT-jar-with-dependencies.jar'
java -jar "$TPATH/$JAR" $@

Extraction will sometimes automatically recognize tables per page with the --guess 
option, but you can get better control by specifying a portion of a page where tabula-
java should look for a table. We simply output to STDOUT in the following code 
cells, but outputting to a file is just another option switch:

%%bash
tabula -g -t -p5 data/Preface-snapshot.pdf

[1]:,,Last_Name,First_Name,Favorite_Color,Age
"",Student_No,,,,
"",1,Johnson,Mia,periwinkle,12.0
"",2,Lopez,Liam,blue-green,13.0
"",3,Lee,Isabella,<missing>,11.0
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"",4,Fisher,Mason,gray,NaN
"",5,Gupta,Olivia,sepia,NaN
"",6,Robinson,Sophia,blue,12.0

Tabula does a good, but not perfect, job. The Pandas style of setting the name of the 
index column below the other headers threw it off slightly. There is also a spurious 
first column that is usually empty strings, but has a header as the output cell 
number. However, these small defects are very easy to clean up, and we have a very 
nice CSV of the actual data in the table.

Remember from just above, however, that page 5 actually had two tables on it. 
Tabula-java only captured the first one, which is not unreasonable, but is not all the 
data we might want. Slightly more custom instructions (determined by moderate 
trial and error to determine the region of interest) can capture the second one:

%%bash
tabula -a'%72,13,90,100' -fTSV -p5 data/Preface-snapshot.pdf

First     Last      Age
<chr>     <chr>
bl>
Mia       Johnson   12
Liam      Lopez     13
Isabella  Lee       11
Mason     Fisher    NaN
Olivia    Gupta     NaN
Sophia    Robinson  12

To illustrate the output options, we chose tab-delimited rather than comma-
separated for the output. A JSON output is also available. Moreover, by adjusting 
the left margin (as percent, but as typographic points is also an option), we can 
eliminate the unnecessary row numbers. As before, the ingestion is good but not 
perfect. The tibble formatting of data type markers is superfluous for us. Discarding 
the two rows with unnecessary data is straightforward.

Finally, for this example, let us capture the table on page 7 that does not have any 
of those data frame library extra markers. This one is probably more typical of the 
tables you will encounter in real work. For the example, we use points rather than 
page percentage to indicate the position of the table:

%%bash
tabula -p7 -a'120,0,220,500' data/Preface-snapshot.pdf

Number,Color,Number,Color
1,beige,6,alabaster



Repurposing Data Sources

[ 152 ]

2,eggshell,7,sandcastle
3,seafoam,8,chartreuse
4,mint,9,sepia
5,cream,10,lemon

The extraction here is perfect, although the table itself is less than ideal in that it 
repeats the number/color pairs twice. However, that is likewise easy enough to 
modify using data frame libraries.

The tabula-java tool, as the name suggests, is only really useful for identifying 
tables. In contrast, pdftotext creates a best-effort purely text version of a PDF. Most 
of the time this is quite good. From that, standard text processing and extraction 
techniques usually work well, including those that parse tables. However, since an 
entire document (or a part of it selected by pages) is output, this lets us work with 
other elements such as bullet lists, raw prose, or other identifiable data elements of 
a document:

%%bash
# Start with page 7, tool writes to .txt file 
# Use layout mode to preserve horizontal position
pdftotext -f 7 -layout data/Preface-snapshot.pdf
# Remove 25 spaces from start of lines
# Wrap other lines that are too wide
sed -E 's/^ {,25}//' data/Preface-snapshot.txt |
    fmt -s | 
    head -20

• Missing data in the Favorite Color field should be substituted with
the string <missing>.
• Student ages should be between 9 and 14, and all other values are
considered missing data.
• Some colors are numerically coded, but should be dealiased. The
mapping is:

   Number     Color      Number    Color
       1      beige           6    alabaster
       2      eggshell        7    sandcastle
       3      seafoam         8    chartreuse
       4      mint            9    sepia
       5      cream          10    lemon

Using the small test data set is a good way to test your code. But try 
also manually adding more rows with similar, or different, problems in 
them, and see how well your code produces a reasonable result.
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The tabular part in the middle would be simple to read as a fixed width format. 
The bullets at the top or the paragraph at the bottom might be useful for other data 
extraction purposes. In any case, it is plain text at this point, which is easy to work 
with.

Let us turn now to analyzing images, mostly for their metadata and overall statistical 
characteristics.

Image Formats
As the Chinese say, 1001 words is worth more than a picture.
–John McCarthy picture

Concepts:

•	 OCR and image recognition (outside scope)
•	 Color models
•	 Pixel statistics
•	 Channel preprocessing
•	 Image metadata

For certain purposes, raster images are themselves the datasets of interest to us. 
“Raster” just means rectangular collections of pixel values. The field of machine 
learning around image recognition and image processing is far outside the scope of 
this book. The few techniques in this section might be useful to get your data ready 
to the point of developing input to those tools, but no further than that. 

picture

The quote McCarthy plays off of is not, of course, of ancient 
Chinese origin. Like much early 20th century American 
sinophilia—inevitably tinged with sinophobia—it originated with 
an advertising agency. Henrik Ibsen had said “A thousand words 
leave not the same deep impression as does a single deed” prior to 
his 1906 death. This was adapted in March 1911 by Arthur Brisbane 
speaking to the Syracuse Advertising Men’s Club, as “Use a 
picture. It’s worth a thousand words.” Later repetitions added the 
alleged source as a “Chinese proverb” or even a false attribution to 
Confucius specifically, presumably to lend credence to the slogan.
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Also not considered in this book are other kinds of recognition of the content of 
images at a high-level. For example, optical character recognition (OCR) tools might 
recognize an image as containing various strings and numbers as rendered fonts, and 
those values might be the data we care about.

If you have the misfortune of having data that is only available in printed and 
scanned form, you most certainly have my deep sympathy. Scanning the images 
using OCR is likely to produce noisy results with many misrecognitions. Detecting 
those is addressed in Chapter 4, Anomaly Detection; essentially, you will get either 
wrong strings or wrong numbers when these errors happen, and ideally the errors 
will be identifiable. However, the specifics of those technologies are not within the 
current scope.

For this section, we merely want to present tools to read in images as numeric arrays, 
and perform a few basic processing steps that might be used in your downstream 
data analysis or modeling. Within Python, the library Pillow is the go-to tool 
(backward-compatible successor to PIL, which is deprecated). Within R, the imager 
library seems to be most widely used for the general-purpose tasks of this section. 
As a first task, let us examine and describe the raster images used in the creation of 
this book:

from PIL import Image, ImageOps

for fname in glob('img/*'):
    try:
        with Image.open(fname) as im:
            print(fname, im.format, "%dx%d" % im.size, im.mode)
    except IOError:
        pass

img/Flu2009-infobox.png PNG 607x702 RGBA
img/Konfuzius-1770.jpg JPEG 566x800 RGB
img/UMAP.png PNG 2400x2400 RGBA
img/DQM-with-Lenin-Minsk.jpg MPO 3240x4320 RGB
img/HDFCompass.png PNG 958x845 RGBA
img/t-SNE.png PNG 2400x2400 RGBA
img/preface-2.png PNG 945x427 RGBA
img/DQM-with-Lenin-Minsk.jpg_original MPO 3240x4320 RGB
img/PCA.png PNG 2400x2400 RGBA
img/Excel-Pitfalls.png PNG 551x357 RGBA
img/gnosis-traffic.png PNG 1064x1033 RGBA
img/Film_Awards.png PNG 1587x575 RGBA
img/HTTP-status-codes.png PNG 934x686 RGBA
img/preface-1.png PNG 988x798 RGBA
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We see that mostly PNG images were used, with a smaller number of JPEGs. 
Each has certain spatial dimensions, by width then height, and each is either RGB, 
or RGBA if it includes an alpha channel. Other images might be HSV format. 
Converting between color spaces is easy enough using tools like Pillow and imager, 
but it is important to be aware of which model a given image uses. Let us read one 
in, this time using R:

%%R
library(imager)
confucius <- load.image("img/Konfuzius-1770.jpg")
print(confucius)
plot(confucius)

Image. Width: 566 pix Height: 800 pix Depth: 1 Colour channels: 3 

Figure 3.5: Confucius

Let us analyze the contours of the pixels.
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Pixel Statistics
We can work on getting a feel for the data, which at heart is simply an array of 
values, with some tools the library provides. In the case of imager, which is built 
on CImg, the internal representation is 4-dimensional. Each plane is an X by Y grid 
of pixels (left-to-right, top-to-bottom). However, the format can represent a stack 
of images—for example, an animation—in the depth dimension. The several color 
channels (if the image is not grayscale) are the final dimension of the array. The 
Confucius example is a single image, so the third dimension is of length one. Let us 
look at some summary data about the image:

%%R
grayscale(confucius) %>% 
    hist(main="Luminance values in Confucius drawing")

Figure 3.6: Histogram of luminance values in the Confucius drawing

Perhaps we would like to look at the distribution only of one color channel instead:

%%R
B(confucius) %>% 
    hist(main="Blue values in Confucius drawing")
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Figure 3.7: Histogram of blue values in the Confucius drawing

The preceding histograms simply utilize the standard R histogram function. There is 
nothing special about the fact that the data represents an image. We could perform 
whatever statistical tests or summarizations we wanted on the data to make sure 
it makes sense for our purpose; a histogram is only a simple example to show the 
concept. We can also easily transform the data into a tidy data frame. As of this 
writing, there is an “impedance error” in converting directly to a tibble, so the cell 
below uses an intermediate data.frame format. 
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Tibbles are often but not always drop-in replacements when functions were written 
to work with data.frame objects:

%%R
data <- as.data.frame(confucius) %>%
    as_tibble %>%
    # channels 1, 2, 3 (RGB) as factor
    mutate(cc = as.factor(cc))
data

# A tibble: 1,358,400 x 4
       x     y cc    value
   <int> <int> <fct> <dbl>
 1     1     1 1     0.518
 2     2     1 1     0.529
 3     3     1 1     0.518
 4     4     1 1     0.510
 5     5     1 1     0.533
 6     6     1 1     0.541
 7     7     1 1     0.533
 8     8     1 1     0.533
 9     9     1 1     0.510
10    10     1 1     0.471
# ... with 1,358,390 more rows

With Python and PIL/Pillow, working with image data is very similar. As in R, the 
image is an array of pixel values with some metadata attached to it. Just for fun, we 
use a variable name with Chinese characters to illustrate that such is supported in 
Python:

# Courtesy name: Zhòngní (仲尼)
# "Kǒng Fūzǐ" (孔夫子) was coined by 16th century Jesuits
仲尼 = Image.open('img/Konfuzius-1770.jpg')
data = np.array(仲尼)
print("Image shape:", data.shape)
print("Some values\n", data[:2, :, :])

Image shape: (800, 566, 3)
Some values
 [[[132  91  69]
  [135  94  74]
  [132  91  71]
  ...



Chapter 3

[ 159 ]

  [148  98  73]
  [142  95  69]
  [135  89  63]]

 [[131  90  68]
  [138  97  75]
  [139  98  78]
  ...
  [147 100  74]
  [144  97  71]
  [138  92  66]]]

In the Pillow format, images are stored as 8-bit unsigned integers rather than as 
floating-point numbers in the [0.0, 1.0] range. Converting between these is easy 
enough, of course, as is other normalization. For example, for many neural network 
tasks, the preferred representation is values centered at zero with a standard 
deviation of one. The array used to hold Pillow images is 3-dimensional since it 
does not have provision for stacking multiple images in the same object.

Channel Manipulation
It might be useful to perform manipulation of image data before processing. The 
following example is contrived, and similar to one used in the library tutorial. The 
idea in the next few code lines is that we will mask the image based on the values 
in the blue channel, but then use that to selectively zero-out red values. The result 
is not visually attractive for a painting, but one can imagine it might be useful for 
medical imaging or false-color radio astronomy images, for example (I am also 
working around making a transformation that is easily visible in a monochrome 
book as well as in full color).

The convention used in the .paste() method below is a bit odd. The rule is: where 
the mask is 255, copied as is; where mask is 0, preserve current value (blend if 
intermediate). The effect overall in the color version is that in the mostly red-tinged 
image, the greens dominate at the edges where the image had been most red. In 
grayscale, it mostly just darkens the edges:

# split the Confucius image into individual bands
source = 仲尼.split()
R, G, B = 0, 1, 2

# select regions where blue is less than 100
mask = source[B].point(lambda i: 255 if i < 100 else 0)
source[R].paste(0, None, mask)
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im = Image.merge(仲尼.mode, source)
ImageOps.scale(im, 0.5)

Figure 3.8: Processed Confucius image (left), original image (right)

Another example we mentioned is that transformation of the color space might be 
useful. For example, rather than look at the colors red, green, and blue, it might be 
that hue, saturation, and lightness are better features for your modeling needs. This 
is a deterministic transformation of the data, but emphasizing different aspects. It 
is something analogous to decompositions such as principal component analysis, 
which is discussed in Chapter 7, Feature Engineering. Here we convert from an RGB to 
HSL representation of the image:

%%R
confucius.hsv <- RGBtoHSL(confucius)
data <- as.data.frame(confucius.hsv) %>%
    as_tibble %>%
    # channels 1, 2, 3 (HSV) as factor
    mutate(cc = as.factor(cc))
data

# A tibble: 1,358,400 x 4
       x     y cc    value
   <int> <int> <fct> <dbl>
 1     1     1 1      21.0
 2     2     1 1      19.7
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 3     3     1 1      19.7
 4     4     1 1      19.7
 5     5     1 1      19.7
 6     6     1 1      19.7
 7     7     1 1      19.7
 8     8     1 1      19.7
 9     9     1 1      19.7
10    10     1 1      20  
# ... with 1,358,390 more rows

Both the individual values and the shape of the space have changed in this 
transformation. The transformation is lossless, beyond minor rounding issues. A 
summary by channel will illustrate this:

%%R
data %>% 
    mutate(cc = recode(
        cc, '1'="Hue", '2'="Saturation", '3'="Value")) %>%
    group_by(cc) %>%
    summarize(Mean = mean(value), SD = sd(value))

'summarise()' ungrouping output (override with '.groups' argument)
# A tibble: 3 x 3
  cc           Mean     SD
  <fct>       <dbl>  <dbl>
1 Hue         34.5   59.1  
2 Saturation  0.448  0.219
3 Value       0.521  0.192

Let us now look at perhaps the most important aspect of images to data scientists.

Metadata
Photographic images may contain metadata embedded inside them. Specifically, 
the Exchangeable Image File Format (Exif) specifies how such metadata can be 
embedded in JPEG, TIFF, and WAV formats (the last is an audio format). Digital 
cameras typically add this information to the images they create, often including 
details such as timestamp and latitude/longitude location.

Some of the data fields within an Exif mapping are textual, numeric, or tuples; others 
are binary data. Moreover, the keys in the mapping are from ID numbers that are 
not meaningful to humans directly; this mapping is a published standard, but some 
equipment makers may introduce their own IDs as well. 
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The binary fields contain a variety of types of data, encoded in various ways. For 
example, some cameras may attach small preview images as Exif metadata, but 
simpler fields are also encoded.

The function below will utilize Pillow to return two dictionaries, one for the textual 
data, the other for the binary data. Tag IDs are expanded to human-readable names, 
where available. Pillow uses “camel case” for these names, but other tools have 
different variations on capitalization and punctuation within the tag names. The 
casing by Pillow is what I like to call Bactrian case—as opposed to Dromedary case—
both of which differ from Python’s usual “snake case” (e.g. BactrianCase versus 
dromedaryCase versus snake_case):

from PIL.ExifTags import TAGS

def get_exif(img):
    txtdata, bindata = dict(), dict()
    for tag_id in (exifdata := img.getexif()):
        # Lookup tag name from tag_id if available
        tag = TAGS.get(tag_id, tag_id)
        data = exifdata.get(tag_id)
        if isinstance(data, bytes):
            bindata[tag] = data
        else:
            txtdata[tag] = data
    return txtdata, bindata

Let us check whether the Confucius image has any metadata attached:

get_exif(仲尼)  # Zhòngní, i.e. Confucius

({}, {})

We see that this image does not have any such metadata. Let us look instead at a 
photograph taken of the author next to a Lenin statue in Minsk:

# Could continue using multi-lingual variable names by
# choosing 'Ленин', 'Ульянов' or 'Мінск'
dqm = Image.open('img/DQM-with-Lenin-Minsk.jpg')
ImageOps.scale(dqm, 0.1)
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Figure 3.9: The Author after keynote at PyCon Belarus

This image, taken with a digital camera, indeed has Exif metadata. These generally 
concern photographic settings, which are perhaps valuable to analyze in comparing 
images. This example also has a timestamp, although not in this case a latitude/
longitude position (the camera used did not have a GPS sensor). Location data, 
where available, can obviously be valuable for many purposes:

txtdata, bindata = get_exif(dqm)
txtdata

{'CompressedBitsPerPixel': 4.0,
 'DateTimeOriginal': '2015:02:01 13:01:53',
 'DateTimeDigitized': '2015:02:01 13:01:53',
 'ExposureBiasValue': 0.0,
 'MaxApertureValue': 4.2734375,
 'MeteringMode': 5,
 'LightSource': 0,
 'Flash': 16,
 'FocalLength': 10.0,
 'ColorSpace': 1,
 'ExifImageWidth': 3240,
 'ExifInteroperabilityOffset': 10564,
 'FocalLengthIn35mmFilm': 56,
 'SceneCaptureType': 0,
 'ExifImageHeight': 4320,
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 'Contrast': 0,
 'Saturation': 0,
 'Sharpness': 0,
 'Make': 'Panasonic',
 'Model': 'DMC-FH4',
 'Orientation': 1,
 'SensingMethod': 2,
 'YCbCrPositioning': 2,
 'ExposureTime': 0.00625,
 'XResolution': 180.0,
 'YResolution': 180.0,
 'FNumber': 4.4,
 'ExposureProgram': 2,
 'CustomRendered': 0,
 'ISOSpeedRatings': 500,
 'ResolutionUnit': 2,
 'ExposureMode': 0,
 34864: 1,
 'WhiteBalance': 0,
 'Software': 'Ver.1.0  ',
 'DateTime': '2015:02:01 13:01:53',
 'DigitalZoomRatio': 0.0,
 'GainControl': 2,
 'ExifOffset': 634}

One detail we notice in the textual data is that the tag ID 34864 was not unaliased by 
Pillow. I can locate external documentation indicating that the ID should indicate 
“Exif.Photo.SensitivityType”, but Pillow is apparently unaware of that ID. The bytes 
strings may contain data you wish to utilize, but the meaning given to each field 
is different and must be compared to reference definitions. For example, the field 
ExifVersion is defined as ASCII bytes, but not as UTF-8 encoded bytes like regular 
text field values. We can view that using:

bindata['ExifVersion'].decode('ascii')

'0230'

In contrast, the tag named ComponentsConfiguration consists of four bytes, with 
each byte representing a color code. The get_exif() function produces separate text 
and binary dictionaries (txtdata and bindata). Let us decode bindata with a new 
special function:

def components(cc):
    colors = {0: None,
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              1: 'Y', 2: 'Cb', 3: 'Cr',
              4: 'R', 5: 'G', 6: 'B'}
    return [colors.get(c, 'reserved') for c in cc]
components(bindata['ComponentsConfiguration'])

['Y', 'Cb', 'Cr', None]

Other binary fields are encoded in other ways. The specifications are maintained 
by the Japan Electronic Industries Development Association (JEIDA). This section 
intends only to give you a feel for working with this kind of metadata, and is by no 
means a complete reference.

Let us turn our attention now to the specialized binary data formats we sometimes 
need to work with.

Binary Serialized Data Structures
I usually solve problems by letting them devour me.
–Franz Kafka

Concepts:

•	 Prefer existing libraries
•	 Bytes and struct data types
•	 Offset layout of data

There are a great many binary formats that data might live in. Everything very 
popular has grown good open source libraries, but you may encounter some legacy 
or in-house format for which this is not true. Good general advice is that unless 
there is an ongoing and/or performance sensitive need for processing an unusual 
format, try to leverage existing parsers. Custom formats can be tricky, and if one is 
uncommon, it is as likely as not also to be underdocumented.

If an existing tool is only available in a language you do not wish to use for your 
main data science work, nonetheless see if that can be easily leveraged to act only 
as a means to export to a more easily accessed format. A fire-and-forget tool might 
be all you need, even if it is one that runs recurringly, but asynchronously with the 
actual data processing you need to perform.
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For this section, let as assume that the optimistic situation is not realized, and we 
have nothing beyond some bytes on disk, and some possibly flawed documentation 
to work with. Writing the custom code is much more the job of a systems engineer 
than a data scientist; but we data scientists need to be polymaths, and we should not 
be daunted by writing a little bit of systems code.

For this relatively short section, we look at a simple and straightforward binary 
format. Moreover, this is a real-world data format for which we do not actually 
need a custom parser. Having an actual well-tested, performant, and bullet-proof 
parser to compare our toy code with is a good way to make sure we do the right 
thing. Specifically, we will read data stored in the NumPy NPY format, which is 
documented as follows (abridged):

•	 The first 6 bytes are a magic string: exactly \x93NUMPY
•	 The next 1 byte is an unsigned byte: the major version number of the file 

format, e.g. \x01
•	 The next 1 byte is an unsigned byte: the minor version number of the file 

format, e.g. \x00.
•	 The next 2 bytes form a little-endian unsigned short int: the length of the 

header data HEADER_LEN
•	 The next HEADER_LEN bytes are an ASCII string that contains a Python 

literal expression of a dictionary
•	 Following the header comes the array data

First, we read in some binary data using the standard reader, using Python and 
NumPy, to understand what type of object we are trying to reconstruct. It turns 
out that the serialization was of a 3-dimensional array of 64-bit floating-point 
values. A small size was chosen for this section, but of course, real-world data will 
generally be much larger:

arr = np.load(open('data/binary-3d.npy', 'rb'))
print(arr, '\n', arr.shape, arr.dtype)

[[[ 0.  1.  2.]
  [ 3.  4.  5.]]

 [[ 6.  7.  8.]
  [ 9. 10. 11.]]] 
 (2, 2, 3) float64

https://docs.scipy.org/doc/numpy/reference/generated/numpy.lib.format.html#module-numpy.lib.format
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Visually examining the bytes is a good way to have a better feel for what is going 
on with the data. NumPy is, of course, a clearly and correctly documented project, 
but for some hypothetical format, this is an opportunity to potentially identify 
problems with the documentation not matching the actual bytes. More subtle issues 
may arise in the more detailed parsing; for example, the meaning of bytes in a 
particular location can be contingent on flags occurring elsewhere. Data science is, 
in surprisingly large part, a matter of eyeballing data:

%%bash
hexdump -Cv data/binary-3d.npy

00000000  93 4e 55 4d 50 59 01 00  76 00 7b 27 64 65 73 63  |.NUMPY..v.{'desc|
00000010  72 27 3a 20 27 3c 66 38  27 2c 20 27 66 6f 72 74  |r': '<f8', 'fort|
00000020  72 61 6e 5f 6f 72 64 65  72 27 3a 20 46 61 6c 73  |ran_order': Fals|
00000030  65 2c 20 27 73 68 61 70  65 27 3a 20 28 32 2c 20  |e, 'shape': (2, |
00000040  32 2c 20 33 29 2c 20 7d  20 20 20 20 20 20 20 20  |2, 3), }        |
00000050  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00000060  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00000070  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 0a  |               .|
00000080  00 00 00 00 00 00 00 00  00 00 00 00 00 00 f0 3f  |...............?|
00000090  00 00 00 00 00 00 00 40  00 00 00 00 00 00 08 40  |.......@.......@|
000000a0  00 00 00 00 00 00 10 40  00 00 00 00 00 00 14 40  |.......@.......@|
000000b0  00 00 00 00 00 00 18 40  00 00 00 00 00 00 1c 40  |.......@.......@|
000000c0  00 00 00 00 00 00 20 40  00 00 00 00 00 00 22 40  |...... @......"@|
000000d0  00 00 00 00 00 00 24 40  00 00 00 00 00 00 26 40  |......$@......&@|
000000e0

As a first step, let us make sure the file really does match the type we expect 
in having the correct “magic string.” Many kinds of files are identified by a 
characteristic and distinctive first few bytes. In fact, the common utility on Unix-like 
systems, file, uses exactly this knowledge via a database describing many file types. 
For a hypothetical rare file type (i.e. not NumPy), this utility may not know about the 
format; nonetheless, the file might still have such a header:

%%bash
file data/binary-3d.npy

data/binary-3d.npy: NumPy array, version 1.0, header length 118

With that, let us open a file handle for the file and proceed with trying to parse it 
according to its specification. For this, in Python, we will simply open the file in bytes 
mode, so as not to convert to text, and read various segments of the file to verify or 
process portions. 
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For this format, we will be able to process it strictly sequentially, but in other cases 
it might be necessary to seek to particular byte positions within the file. The Python 
struct module will allow us to parse basic numeric types from bytestrings. The ast 
module will let us create Python data structures from raw strings without a security 
risk that eval() can encounter:

import struct, ast
binfile = open('data/binary-3d.npy', 'rb')

# Check that the magic header is correct
if binfile.read(6) == b'\x93NUMPY':
    vermajor = ord(binfile.read(1))
    verminor = ord(binfile.read(1))
    print(f"Data appears to be NPY format, "
          f"version {vermajor}.{verminor}")
else:
    print("Data in unsupported file format")
    print("*** ABORT PROCESSING ***")

Data appears to be NPY format, version 1.0

Next we need to determine how long the header is, and then read it in. The header 
is always ASCII in NPY version 1, but may be UTF-8 in version 3. Since ASCII is a 
subset of UTF-8, decoding does no harm even if we do not check the version:

# Little-endian short int (tuple 0 element)
header_len = struct.unpack('<H', binfile.read(2))[0]
# Read specified number of bytes
header = binfile.read(header_len)
# Convert header bytes to a dictionary
# Use safer ast.literal_eval()
header_dict = ast.literal_eval(header.decode('utf-8'))
print(f"Read {header_len} bytes "
      f"into dictionary: \n{header_dict}")

Read 118 bytes into dictionary: 
{'descr': '<f8', 'fortran_order': False, 'shape': (2, 2, 3)}

While this dictionary stored in the header gives a nice description of the dtype, value 
order, and the shape, the convention used by NumPy for value types is different 
from that used in the struct module. We can define a (partial) mapping to obtain 
the correct spelling of the data type for the reader. We only define this mapping for 
some data types encoded as little-endian, but the big-endian versions would simply 
have a greater-than sign instead. 
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The key for 'fortran_order' indicates whether the fastest or slowest varying 
dimension is contiguous in memory. Most systems use “C order” instead.

We are not aiming for high efficiency here, but to minimize code. Therefore, I will 
expediently read the actual data into a simple list of values first, and then later 
convert that to a NumPy array:

# Define spelling of data types and find the struct code
dtype_map = {'<i2': '<i', '<i4': '<l', '<i8': '<q',
             '<f2': '<e', '<f4': '<f', '<f8': '<d'}
dtype = header_dict['descr']
fcode = dtype_map[dtype]
# Determine number of bytes from dtype spec
nbytes = int(dtype[2:])

# List to hold values
values = []

# Python 3.8+ "walrus operator"
while val_bytes := binfile.read(nbytes):
    values.append(struct.unpack(fcode, val_bytes)[0])
    
print("Values:", values)

Values: [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0]

Let us now convert the raw values into an actual NumPy array of appropriate shape 
and dtype. We will also look for whether to use Fortran- or C-order in memory:

shape = header_dict['shape']
order = 'F' if header_dict['fortran_order'] else 'C'
newarr = np.array(values, dtype=dtype, order=order)
newarr = newarr.reshape(shape)
print(newarr, '\n', newarr.shape, newarr.dtype)
print("\nMatched standard parser:", (arr == newarr).all())

[[[ 0.  1.  2.]
  [ 3.  4.  5.]]

 [[ 6.  7.  8.]
  [ 9. 10. 11.]]] 
 (2, 2, 3) float64

Matched standard parser: True

Just as binary data can be oddball, so can text.
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Custom Text Formats
Need we emphasize the similarity of these two sequences? Yes, for the resemblance 
we have in mind is not a simple collection of traits chosen only in order to delete their 
difference. And it would not be enough to retain those common traits at the expense 
of the others for the slightest truth to result. It is rather the intersubjectivity in which 
the two actions are motivated that we wish to bring into relief, as well as the three 
terms through which it structures them.
–Jacques Lacan

Concepts:

•	 Line-oriented and hierarchical structures
•	 Heuristics to identify data of interest
•	 Character encodings and mojibake
•	 Guessing with chardet (character detection)

In life as a data scientist, but especially if you occasionally wear the hat of a systems 
administrator or similar role, you will encounter textual data with unusual formats. 
Log files are one common source of these kinds of files. Many or most log files do 
stick to the record-per-line convention; if so, we are given an easy way to separate 
records. From there, a variety of rules or heuristics can be used to determine exactly 
what kind of record the line corresponds to.

Not all log files, however, stick to a line convention. Moreover, over time, you will 
likewise encounter other types of files produced by tools that store nested data and 
chose to create their own format rather than use some widely used standard. For 
hierarchical or other non-tabular structures, the motivation for eschewing strict 
record-per-line format is often compelling and obvious.

In many cases, the authors of the programs creating one-off formats are entirely free 
of blame. Standard formats for representing non-tabular data did not exist a decade 
prior to this writing in 2020, or at least were not widely adopted across a range 
of programming languages in that not-so-distant past. Depending on your exact 
domain, legacy data and formats are likely to dominate your work. For example, 
JSON was first standardized in 2013, as ECMA-404. YAML was created in 2001, but 
not widely used before approximately 2010. XML dates to 1996, but has remained 
unwieldy for human-readable formats since then. Hence many programmers have 
gone their own way, and left as traces the files you now need to import, analyze, 
and process.
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A Structured Log
Scanning my own system, I found a good example of a reasonably human-readable 
log file that is not parsable in a line-oriented manner. The Perl package management 
tool cpan logs the installation actions of each library it manages. The format used for 
such logs varies per package (very much in a Perl style). The package Archive::Zip 
left the discussed log on my system (for its self-tests). This data file contains sections 
that are actual Perl code defining test classes, interspersed with unformatted output 
messages. Each of the classes has a variety of attributes, largely overlapping but not 
identical. A sensible memory data format for this is a data frame with missing values 
marked where a given attribute name does not exist for a class.

Obviously, we could use Perl itself to process those class definitions. However, that 
is unlikely to be the programming language we wish to actually use to work with the 
data extracted. We will use Python to read the format, and use only heuristics about 
what elements we expect. Notably, we cannot statically parse Perl, which task was 
shown to be strictly equivalent to solving the halting problem by Jeffrey Kegler in 
several 2008 essays for The Perl Review. Nonetheless, the output in our example uses 
a friendly, but not formally defined, subset of the Perl language. Here is a bit of the 
file being processed:

%%bash
head -25 data/archive-zip.log

zipinfo output:
$ZIP = bless( {
  "versionNeededToExtract" => 0,
  "numberOfCentralDirectories" => 1,
  "centralDirectoryOffsetWRTStartingDiskNumber" => 360,
  "fileName" => "",
  "centralDirectorySize" => 76,
  "writeCentralDirectoryOffset" => 0,
  "diskNumber" => 0,
  "eocdOffset" => 0,
  "versionMadeBy" => 0,
  "diskNumberWithStartOfCentralDirectory" => 0,
  "desiredZip64Mode" => 0,
  "zip64" => 0,
  "zipfileComment" => "",
  "members" => [],
  "numberOfCentralDirectoriesOnThisDisk" => 1,
  "writeEOCDOffset" => 0
}, 'Archive::Zip::Archive' );

https://en.wikipedia.org/wiki/Halting_problem
http://www.jeffreykegler.com/Home/perl-and-undecidability
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Found EOCD at 436 (0x1b4)

Found central directory for member #1 at 360
$CDMEMBER1 = bless( {
  "compressedSize" => 300,

Computer science theory to the side, we can notice some patterns in the file that will 
suffice for us. Every record that we care about starts a line with a dollar sign, which 
is the marker used for variable names in Perl and some other languages. That line 
also happens to follow with the class constructor bless(). We find the end of the 
record by a line ending with );. On that same last line, we also find the name of the 
class being defined, but we do not, in this example, wish to retain the common prefix 
Archive::Zip:: that they all use. Also stipulated for this example is that we will not 
try to process any additional data that is contained in the output lines.

Clearly it would be possible to create a valid construction of a Perl class that our 
heuristic rules will fail to capture accurately. However, our goal here is not to 
implement the Perl language, but only to parse the very small subset of it contained 
in this particular file (and hopefully cover a family of similar logs that may exist for 
other CPAN libraries). A small state machine is constructed to branch within a loop 
over lines of the file:

def parse_cpan_log(fh):
    "Take a file-like object, produce a DF of classes generated"
    import pandas as pd
    # Python dictionaries are ordered in 3.6+
    classes = {}
    in_class = False
    
    for n, line in enumerate(fh):
        # Remove surrounding whitespace
        line = line.strip()
        # Is this a new definition?
        if line.startswith('$'):
            new_rec = {}
            in_class = True # One or more variables contain the "state"
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        # Is this the end of the definition?
        elif line.endswith(');'):
            # Possibly fragile assumption of parts of line
            _, classname, _ = line.split()
            barename = classname.replace('Archive::Zip::', '')
            # Just removing extra quotes this way
            name = ast.literal_eval(barename)
            # Distinguish entries with same name by line number
            classes[f"{name}_{n}"] = new_rec
            in_class = False
            
        # We are still finding new key/val pairs
        elif in_class:
            # Split around Perl map operator
            key, val = [s.strip() for s in line.split('=>')]
            # No trailing comma, if it was present
            val = val.rstrip(',')
            # Special null value needs to be translated
            val = "None" if val == "undef" else val
            # Also, just quote variables in vals
            val = f'"{val}"' if val.startswith("$") else val
            # Safe evaluate strings to Python objects
            key = ast.literal_eval(key)
            val = ast.literal_eval(val)
            # Add to record dictionary
            new_rec[key] = val
            
    return pd.DataFrame(classes).T

The function defined is a bit longer than most examples in this book, but is typical 
of a small text processing function. The use of the state variable in_class is common 
when various lines may belong to one domain of parsing or another. This pattern of 
looking for a start state based on something about a line, accumulating contents, then 
looking for a stop state based on a different line property is very common in these 
kinds of tasks. Beyond the state maintenance, the rest of the lines are, in the main, 
merely some minor string manipulation.
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Let us now read and parse the data file:

df = parse_cpan_log(open('data/archive-zip.log'))
df.iloc[:, [4, 11, 26, 35]]  # Show only a few columns

                    centralDirectorySize   zip64        crc32
——————————————————————————————————————————————————————————————
       Archive_18                     76       0          NaN
 ZipFileMember_53                    NaN       0   2889301810
 ZipFileMember_86                    NaN       0   2889301810
      Archive_113                     72       1          NaN
              ...                    ...     ...          ...
ZipFileMember_466                    NaN       0   3632233996
      Archive_493                     62       1          NaN
ZipFileMember_528                    NaN       1   3632233996
ZipFileMember_561                    NaN       1   3632233996

                    lastModFileDateTime
——————————————————————————————————————————————————————————————
       Archive_18                   NaN
 ZipFileMember_53            1345061049
 ZipFileMember_86            1345061049
      Archive_113                   NaN
              ...                   ...
ZipFileMember_466            1325883762
      Archive_493                   NaN
ZipFileMember_528            1325883770
ZipFileMember_561            1325883770

18 rows × 4 columns

In this case, the DataFrame might better be utilized as a Series with a hierarchical index:

with show_more_rows(25):
    print(df.unstack())

versionNeededToExtract  Archive_18             0
                        ZipFileMember_53      20
                        ZipFileMember_86      20
                        Archive_113           45
                        ZipFileMember_148     45
                        ZipFileMember_181     20
                        Archive_208           45
                        ZipFileMember_243     45
                        ZipFileMember_276     45
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                        Archive_303          813
                        ZipFileMember_338     45
                        ZipFileMember_371     45
                                            ... 
fileAttributeFormat     Archive_208          NaN
                        ZipFileMember_243      3
                        ZipFileMember_276      3
                        Archive_303          NaN
                        ZipFileMember_338      3
                        ZipFileMember_371      3
                        Archive_398          NaN
                        ZipFileMember_433      3
                        ZipFileMember_466      3
                        Archive_493          NaN
                        ZipFileMember_528      3
                        ZipFileMember_561      3
Length: 720, dtype: object

Character Encodings
The question of character encodings of text formats is somewhat orthogonal to the 
data issues the bulk of this book addresses. However, being able to read the content 
of a text file is an essential step in processing the data within it, so we should look 
at possible problems. The problems that occur are an issue for “legacy encodings,” 
but should be solved as text formats standardized on Unicode. That said, it is not 
uncommon that you need to deal with files that are decades old, either preceding 
Unicode altogether, or created before organizations and software (such as operating 
systems) fully standardized their text formats to Unicode. We will look both at the 
problems that arise and heuristic tools to solve them.

The American Standard Code for Information Interchange (ASCII) was created in 
the 1960s as a standard for encoding text data. However, at the time, in the United 
States, consideration was only made to encode the characters used in English text. 
This included upper and lowercase characters, some basic punctuation, numerals, 
and a few other special or control characters (such as newline and the terminal bell). 
To accommodate this collection of symbols, 128 positions were sufficient, so the 
ASCII standard defines only values for 8-bit bytes where the high-order bit is a zero. 
Any byte with a high-order bit set to 1 is not an ASCII character.

Extending the ASCII standard in a “compatible” way are the ISO-8859 character 
encodings. These were developed to cover the characters in (approximately) phonemic 
alphabets, primarily those originating in Europe. Many alphabetic languages are based 
on Roman letters, but add a variety of diacritics that are not used in English. 
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Other alphabets are of moderate size, but unrelated to English in letter forms, such as 
Cyrillic, Greek, and Hebrew. All of the encodings that make up the ISO-8859 family 
preserve the low-order values of ASCII, but encode additional characters using the 
high-order bits of each byte. The problem is that 128 additional values (in a byte 
with 256 total values) is not large enough to accommodate all of those different extra 
characters, so particular members of the family (e.g. ISO-8859-6 for Arabic) use the 
high-order bit values in incompatible ways. This allows English text to be represented 
in all encodings in this family, but each sibling is mutually incompatible.

For CJK languages (Chinese-Japanese-Korean), the number of characters needed is 
vastly larger than 256, so any single byte encoding is not suitable to represent these 
languages. Most encodings that were created for these languages use 2 bytes for 
each character, but some are of variable length. However, a great many incompatible 
encodings were created, not only for the different languages, but also within a 
particular language. For example, EUC-JP, SHIFT_JIS, and ISO-2022-JP are all 
encodings used to represent Japanese text, in mutually incompatible ways. Abugida 
writing systems, such as Devanagari, Telugu, or Geʽez, represent syllables, and hence 
have larger character sets than alphabetic systems; however, most do not utilize 
letter case, hence roughly halving the code points needed.

Adding to the historical confusion, not only do other encodings outside of the 
ISO-8859 family exist for alphabetic languages (including some also covered by 
an ISO-8859 member), but Microsoft, in the 1980s, fervently pursued its “embrace-
extend-extinguish” strategy to try to kill open standards. In particular, the 
windows-12NN character encodings are deliberately “almost-but-not-quite” the 
same as corresponding ISO-8859 encodings. For example, windows-1252 uses most 
of the same code points as ISO-8859-1, but is just different enough as not to be 
entirely compatible.

The sometimes amusing, but usually frustrating, result of trying to decode a 
byte sequence using the wrong encoding is called mojibake (meaning “character 
transformation” in Japanese, or, more holistically, “corrupted text”). Depending 
on the pairs of encoding used for writing and reading, the text may superficially 
resemble genuine text, or it might have displayed markers for unavailable 
characters and/or punctuation symbols that are clearly misplaced.
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Unicode is a specification of code points for all characters in all human languages. 
It may be encoded as bytes in multiple ways. However, if a format other than the 
default and prevalent UTF-8 is used, the file will always have a “magic number” 
at its start, and the first few bytes will unambiguously encode the byte length and 
endianness of the encoding. UTF-8 files are neither required nor encouraged to use 
a byte-order mark (BOM), but one exists that is not ambiguous with any code points. 
UTF-8 itself is a variable length encoding; all ASCII characters remain encoded as a 
single byte, but for other characters, special values that use the high-order bit trigger 
an expectation to read additional bytes to decide what Unicode character is encoded. 
For the data scientist, it is enough to know that all modern programming languages 
and tools handle Unicode files seamlessly.

The next few short texts are snippets of Wikipedia articles on character encoding 
written for various languages:

for fname in glob('data/character-encoding-*.txt'):
    bname = os.path.basename(fname)
    try:
        open(fname).read()
        print("Read 'successfully':", bname, "\n")
    except Exception as err:
        print("Error in", bname)
        print(err, "\n")

Error in character-encoding-nb.txt
'utf-8' codec can't decode byte 0xc4 in position 171: invalid 
continuation byte 

Error in character-encoding-el.txt
'utf-8' codec can't decode byte 0xcc in position 0: invalid 
continuation byte 

Error in character-encoding-ru.txt
'utf-8' codec can't decode byte 0xbd in position 0: invalid start byte 

Error in character-encoding-zh.txt
'utf-8' codec can't decode byte 0xd7 in position 0: invalid 
continuation byte 
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Something goes wrong with trying to read the text in these files. If we are so 
fortunate as to know the encoding used, it is easy to remedy the issue. However, the 
files themselves do not record their encoding. In addition, depending on what fonts 
you are using for display, some characters may show as boxes or question marks on 
your screen, which makes identification of the problems harder:

zh_file = 'data/character-encoding-zh.txt'
print(open(zh_file, encoding='GB18030').read())

字符编码（英語：Character encoding）、字集碼是把字符集中的字符编码为指
定集合中某一对象（例如：比特模式、自然数序列、8位元组或者电脉冲），以便文
本在计算机中存储和通过通信网络的传递。常见的例子包括将拉丁字母表编码成摩斯
电码和ASCII。

 

Even if we take a hint from the filename that the encoding represents Chinese text, 
we will either fail or get mojibake as a result if we use the wrong encoding in our 
attempt:

try:
    # Wrong Chinese encoding
    open(zh_file, encoding='GB2312').read()
except Exception as err:
    print("Error in", os.path.basename(zh_file))
    print(err)

Error in character-encoding-zh.txt
'gb2312' codec can't decode byte 0xd5 in position 12: illegal multibyte 
sequence

Note that we did not see the error immediately. If we had only read 11 bytes, it 
would have been “valid” (but the wrong characters). Likewise, the character-
encoding-nb.txt file above would have succeeded for an entire 170 bytes without 
encountering an issue. We can see a wrong guess going wrong in these files. For 
example:

ru_file = 'data/character-encoding-ru.txt'
print(open(ru_file, encoding='iso-8859-10').read())

―ÐŅÞā áØÜŌÞÛÞŌ (ÐÝÓÛ. character set) - âÐŅÛØæÐ, 
ŨÐÔÐîéÐï ÚÞÔØāÞŌÚã ÚÞÝÕįÝÞÓÞ ÜÝÞÖÕáâŌÐ áØÜŌÞÛÞŌ ÐÛäÐŌØâÐ 
(ÞŅëįÝÞ íÛÕÜÕÝâÞŌ âÕÚáâÐ: ŅãÚŌ, æØäā, ŨÝÐÚÞŌ ßāÕßØÝÐÝØï). 
ÂÐÚÐï âÐŅÛØæÐ áÞßÞáâÐŌÛïÕâ ÚÐÖÔÞÜã áØÜŌÞÛã ßÞáÛÕÔÞŌÐâÕÛėÝÞáâė 
ÔÛØÝÞŲ Ō ÞÔØÝ ØÛØ ÝÕáÚÞÛėÚÞ áØÜŌÞÛÞŌ ÔāãÓÞÓÞ ÐÛäÐŌØâÐ 
(âÞįÕÚ Ø âØāÕ Ō ÚÞÔÕ MÞāŨÕ, áØÓÝÐÛėÝëå äÛÐÓÞŌ ÝÐ äÛÞâÕ, 
ÝãÛÕŲ Ø ÕÔØÝØæ (ŅØâÞŌ) Ō ÚÞÜßėîâÕāÕ).
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Here we read something, but even without necessarily knowing any of the languages 
at issue, it is fairly clearly gibberish. As readers of English, we can at least recognize 
the base letters that these mostly diacritic forms derive from. They are jumbled 
together in a manner that doesn’t follow any real sensible phonetic rules, such as 
vowels and consonants roughly alternating, or a meaningful capitalization pattern. 
Included here is the brief English phrase “character set.”

In this particular case, the text genuinely is in the ISO-8859 family, but we chose 
the wrong sibling among them. This gives us one type of mojibake. As the filename 
hints at, this happens to be in Russian, and uses the Cyrillic member of the ISO-8859 
family. Readers may not know the Cyrillic letters, but if you have seen any signage 
or text incidentally, this text will not look obviously wrong:

print(open(ru_file, encoding='iso-8859-5').read())

Набор символов (англ. character set) - таблица, 
задающая кодировку конечного множества символов алфавита 
(обычно элементов текста: букв, цифр, знаков препинания). 
Такая таблица сопоставляет каждому символу последовательность 
длиной в один или несколько символов другого алфавита 
(точек и тире в коде Mорзе, сигнальных флагов на флоте, 
нулей и единиц (битов) в компьютере).

 

Similarly, if you have seen writing in Greek, this version will perhaps not look 
obviously wrong:

el_file = 'data/character-encoding-el.txt'
print(open(el_file, encoding='iso-8859-7').read())

Μια κωδικοποίηση χαρακτήρων αποτελείται από έναν κώδικα που 
συσχετίζει ένα σύνολο χαρακτήρων όπως πχ οι χαρακτήρες που 
χρησιμοποιούμε σε ένα αλφάβητο με ένα διαφορετικό σύνολο 
πχ αριθμών, ή ηλεκτρικών σημάτων, προκειμένου να 
διευκολυνθεί η αποθήκευση, διαχείριση κειμένου σε 
υπολογιστικά συστήματα καθώς και η μεταφορά κειμένου μέσω
τηλεπικοινωνιακών δικτύων.

 

Merely being not obviously wrong in a language you are not familiar with is a 
weak standard to meet. Having native, or at least modestly proficient, readers of the 
languages in question will help, if that is possible. If this is not possible—which often 
it will not be if you are processing many files with many encodings—automated 
tools can make reasonable heuristic guesses. This does not guarantee correctness, 
but it is suggestive.
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The way the Python chardet module works is similar to the code in all modern 
web browsers. HTML pages can declare their encoding in their headers, but this 
declaration is often wrong, for various reasons. Browsers do some hand-holding and 
try to make better guesses when the data clearly does not match declared encoding. 
The general idea in this detection is threefold. A detector will scan through multiple 
candidate encodings to reach a best guess:

•	 Under the candidate encoding, are any of the byte values or sequences 
simply invalid?

•	 Under the candidate encoding, is the character frequency similar to that 
typically encountered in the language(s) often encoded using that encoding?

•	 Under the candidate encoding, are digraph frequencies similar to those 
typically encountered?

We do not need to worry about the exact details of the probability ranking, just 
the API to use. Implementations of the same algorithm are available in a variety of 
programming languages. Let us look at the guesses chardet makes for some of our 
text files:

import chardet

for fname in glob('data/character-encoding-*.txt'):
    # Read the file in binary mode
    bname = os.path.basename(fname)
    raw =  open(fname, 'rb').read()
    print(f"{bname} (best guess):")
    guess = chardet.detect(raw)
    print(f"    encoding: {guess['encoding']}")
    print(f"  confidence: {guess['confidence']}")
    print(f"    language: {guess['language']}")
    print()     

character-encoding-nb.txt (best guess):
    encoding: ISO-8859-9
  confidence: 0.6275904603111617
    language: Turkish

character-encoding-el.txt (best guess):
    encoding: ISO-8859-7
  confidence: 0.9900553828371981
    language: Greek
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character-encoding-ru.txt (best guess):
    encoding: ISO-8859-5
  confidence: 0.9621526092949461
    language: Russian

character-encoding-zh.txt (best guess):
    encoding: GB2312
  confidence: 0.99
    language: Chinese

These guesses are only partially correct. The language code nb is actually Norwegian 
Bokmål, not Turkish. This guess has a notably lower probability than others. 
Moreover, it was actually encoded using ISO-8859-10. However, in this particular 
text, all characters are identical between ISO-8859-9 and ISO-8859-10, so that aspect 
is not really wrong. A larger text would more reliably guess between Bokmål and 
Turkish by letter and digram frequency; it does not make much difference if that 
is correct for most purposes, since our concern as data scientists is to get the data 
correct:

print(open('data/character-encoding-nb.txt', 
           encoding='iso-8859-9').read())

Tegnsett eller tegnkoding er det som i datamaskiner 
definerer hvilket lesbart symbol som representeres av et gitt 
heltall. Foruten Unicode finnes de nordiske bokstavene ÄÅÆÖØ 
og äåæöø (i den rekkefølgen) i følgende tegnsett: ISO-8859-1, 
ISO-8859-4, ISO-8859-9, ISO-8859-10, ISO-8859-14, ISO-8859-15 
og ISO-8859-16.

The guess about the zh text is wrong as well. We have already tried reading that 
file as GB2312 and reached an explicit failure in doing so. This is where domain 
knowledge becomes relevant. GB18030 is strictly a superset of GB2312. In principle, 
the Python chardet module is aware of GB18030, so the problem is not a missing 
feature per se. Nonetheless, in this case, unfortunately, chardet guesses an 
impossible encoding, in which one or more encoded characters do not exist in the 
subset encoding.

The errors in encoding inference are illustrative, even if not too serious in these 
particular cases. Adding more text than 2-3 sentences would make guesses more 
reliable, and most text documents will be much longer. However, text formats for 
non-text data will typically only have short snippets of text, often just single words 
in a categorical feature. 
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The specific strings “blue”, “mavi”, “blå”, “blau”, and “sininen” are all plausible 
words in English, Turkish, Norwegian, German, and Finnish. The a-ring character 
does not occur in Turkish or English, but other than that, the distinction is strictly in 
vocabulary, not letter or digraph plausibility.

For example, a CSV file with personal names will only have clusters of 5-10 letters 
for each name, not full paragraphs. The number of letters and digraphs is small, 
and even if uncommon ones occur in isolation, that is hardly definitive. If you have 
some domain knowledge or guidance on the problem, you could write more custom 
code to validate candidate encodings against language-specific wordlists (including 
common names); even there, you would have to allow a certain rate of non-matches 
for misspellings and rare words.

Exercises
We present here two exercises. One of them deals with a custom binary format, the 
other with web scraping. Not every topic of this chapter is addressed in the exercises, 
but these two are important domains for practical data science.

Enhancing the NPY Parser
The binary data we read from the NPY was in the simplest format we could choose. 
For this exercise you want to process a somewhat more complex binary file using 
your own code. Write a custom function that reads a file into a NumPy array, and 
test it against several arrays you have serialized using numpy.save() or numpy.
savez().

The test cases for your function are at the URLs:

https://www.gnosis.cx/cleaning/students.npy

https://www.gnosis.cx/cleaning/students.npz

We have not previously looked at the NPZ format, but it is a zip archive of one or 
more NPY files, allowing both compression and storage of multiple arrays. Ideally, 
your function will handle both formats, and will determine which type of file you 
are reading based on the magic string in the first few bytes. As a first pass, only try 
to parse the NPY version, then enhance from there.

Using the official readers, we can see that this array adds something the earlier 
example had not. Specifically, it stores a recarray that combines several data types 
into each value in the array, as shown in the output below. The rules we described 
earlier in this chapter will actually still suffice, but you have to think about them 
carefully. 

https://www.gnosis.cx/cleaning/students.npy
https://www.gnosis.cx/cleaning/students.npz
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The data we want to match in your reader will be exactly the same as using the 
official reader:

students = np.load(open('data/students.npy', 'rb'))
print(students)
print("\nDtype:", students.dtype)

[[('Mia', 12, 1.3) ('Liam', 13, 0.6) ('Isabélla', 11, 2.1)]
 [('Mason', 12, 1.6) ('Olivia', 11, 2.3) ('Sophia', 12, 0.7)]]

Dtype: [('first', '<U8'), ('age', '<i2'), ('distance', '>f4')]

When you move on to processing the NPZ format, you can compare again with the 
official reader. As mentioned, this might have several arrays inside it, although only 
one is stored in the example:

arrs = np.load(open('data/students.npz', 'rb'))
print(arrs)
arrs.files

<numpy.lib.npyio.NpzFile object at 0x7f5e12d8d070>
['arr_0']

The contents of arr_0 within the NPZ file are identical to the single array in the NPY. 
However, after you have successfully parsed this NPZ file, try creating one or more 
others that actually do store multiple arrays, and parse those using custom code. 
Decide on the best API to use for a function that may need to return either one or 
several arrays. For this part of the task, the Python standard library module zipfile 
will be very helpful for you.

There is no reason this exercise has to be performed in Python. Other programming 
languages are perfectly well able to read binary data, and the general steps involved 
will be very similar to those performed in this chapter in the Binary Serialized Data 
Structures section. You could, for example, read the data within an NPY file into an R 
array instead.

Scraping Web Traffic
The author’s web domain, gnosis.cx, has been operating for more than two decades, 
and retains most of the “Web 0.5” technology and visual style it was first authored 
with. One thing the web host provides, as do most others, is reports on traffic at the 
site (using nearly as ancient styling as that of the domain itself). 
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You can find the most current reports at:

https://www.gnosis.cx/stats/

A snapshot of the reports current at the time of this writing are also copied to:

https://www.gnosis.cx/cleaning/stats/

An image of the report page at the time of writing follows:

Figure 3.10: Traffic report for gnosis.cx

https://www.gnosis.cx/stats/
https://gnosis.cx/clearning/stats/
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The weekly table shown is quite long since it goes back to February 2010. The actual 
site is a decade older than that, but servers and logging databases were modified, 
losing older data. There is also a rather large glitch of almost 5 years in the middle 
where traffic shows as zero. The rather dramatic fall in traffic over the 6 weeks up to 
the snapshot reflects a change to using a CDN proxy for DNS and SSL (hence hiding 
traffic from the actual web host).

Your goal in this exercise is to write a tool to dynamically scrape the data made 
available in the various tables listing traffic sliced by different time increments and 
recurring periods (which day of the week, which month of the year, and so on). As 
part of this exercise, have your scripts generate less terrible graphs than the one 
shown in the screen picture (meaningless false perspective in a line graph offends 
good sensibility, and the apparent negative spike to negative traffic around the start 
of 2013 is merely inexplicable).

It is a common need to scrape a website similar to these reports. The pattern of 
having a regular and infrequently changed structure but updated contents on a 
daily basis often reflects a data acquisition requirement. A script like the one you 
will write in this exercise could run on a cronjob or under a similar mechanism, to 
maintain local copies and revisions of such rolling reports.

Denouement
They invaded the hexagons, showed credentials which were not always false, leafed 
through a volume with displeasure and condemned whole shelves: their hygienic, 
ascetic furor caused the senseless perdition of millions of books.
–Jorge Luis Borges (The Library of Babel)

Topics covered in this chapter: Web Scraping; Portable Document Format; Image 
Formats; Binary Formats; Custom Text Formats.

This chapter contemplated data sources that you may not, in your first thought, think 
of as data per se. Within web pages and PDF documents, the intention is usually to 
present human-readable content that only contains analyzable data as a secondary 
concern. In the ideal situation, whoever produced those less structured documents 
will also provide structured versions of the same data; however, that ideal situation 
is only occasionally realized. A few nicely written Free Software libraries let us do a 
reasonable job of extracting meaningful data from these sources, albeit always in a 
way that is somewhat specific to the particular document, or at least to the family or 
revisions of a particular document.
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Images are a very common interest in machine learning. Drawing various 
conclusions about, or characterizations of, the content portrayed in images is a 
key application of deep neural networks, for example. While those actual machine 
learning techniques are outside the scope of this particular book, this chapter 
introduced you to the basic APIs for acquiring an array/tensor representation of 
images, and performing some basic correction or normalization that will aid in 
those later machine learning models.

There are formats as well that, while directly intended as a means of recording and 
communicating data as such, are not widely used and tooling to read them directly 
may not be available to you. The specific examples we present, for both binary and 
textual custom formats, are ones that library support exists for (less so for the text 
format this chapter examines), but the general kinds of reasoning and approach to 
creating custom ingestion tools presented resemble those you will need to use when 
you encounter an antiquated, in-house, or merely idiosyncratic format.

The next chapter begins the next saga of this book. These early chapters paid special 
attention to data formats you need to work with. The next two chapters look at 
problems characteristic of data elements per se, not only their representation. We 
begin by looking for anomalies in data.
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4
Anomaly Detection

The map is not the territory and data is not the world observed. Data is messy, 
inconsistent, and unreliable. The world is messier, less consistent, and less reliable.
–cf. Alfred Korzybski

When we think about anomaly detection, there are two distinct, and mostly 
independent, concepts that go by the name. The topic of this chapter is perhaps the 
less exciting of the two. Security and cryptography researchers, importantly, look 
for anomalies that can represent fraud, forgery, and system intrusion attempts. By 
the intention of perpetrators, these outliers in the normal patterns of data are subtle 
and hard to detect, and a conflict exists between those wishing to falsify data and 
those wishing to detect that falsification.

The concept of interest to us in this book is more quotidian. We wish to detect 
those cases where data goes bad in the ordinary course of its collection, collation, 
transmission, and transcription. Perhaps an instrument gives a bad reading some 
or all of the time. Perhaps some values are systematically altered in the course of 
reencoding to a different data format. Perhaps the wrong units of measure were 
used for a subset of the data. And so on. By accident, these broader checks may 
occasionally identify changes that reflect actual malice, but more often they will 
simply detect errors, and perhaps bias (but less often, since bias still is usually 
toward plausible values).

Anomaly detection has an especially close connection to Chapter 5, Data Quality, 
and often to the topic of Chapter 6, Value Imputation. The loose contrast between this 
chapter and the next one on data quality is that anomalies are individual data values 
that can be diagnosed as probably wrong, whereas data quality more broadly looks 
at patterns of the dataset as a whole that can present or identify problems. 
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When anomalies are detected it sometimes makes sense to impute more likely values 
rather than to discard those observations altogether. In terms of the structure of this 
book, the lessons of this chapter will allow you to identify and mark anomalies as 
“missing” while Chapter 6, Value Imputation, will pick up with filling in those better-
imputed values (imputation is simply replacing mising data points with values that 
are likely, or at least plausible).

These connected chapters—4, 5, and 6—form a broader unit, and roughly describe a 
pipeline or series of steps. That is, given your inevitably flawed data you might first 
look for anomalies and mark them missing. Next you might look for more systematic 
attributes of your dataset, and remediate them in various ways. Finally, you might 
impute (or drop) data that was either missing to start with or marked so because 
of properties this chapter will help you detect. The step past the final step of this 
sequence is the actual modeling or analysis you perform, and is the subject of many 
excellent books, but not of this one.clean code

***

Before we get to the sections of this chapter, let us run our standard setup code:

from src.setup import *
%load_ext rpy2.ipython

%%R
library(tidyverse)
require("RPostgreSQL")

clean code

My mention of these steps is a good opportunity to repeat an 
admonishment that has occurred elsewhere herein. The steps of 
your data processing pipeline should be coded and documented 
carefully and reproducibly. It is often easy and tempting to make 
changes to datasets in an exploratory way—as this book does—
but in the process lose a good record of exactly what steps were 
taken. The exploration is an integral part of data science, but 
reproducibility should not be lost in that process. Good practice 
is to retain your original dataset—in whatever data format it 
originally presents itself—and generate the final version via scripts 
(maintained in version control) rather than within notebooks or 
interactive shells. Care must always be taken to allow someone else 
to repeatably move from the raw original dataset to the version 
that is fed into a machine learning model or other analytic tool. 
Keeping an audit trail of what tool or function produced what 
change is hygienic practice.
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Missing Data
Gregory: Is there any other point to which you would wish to draw my attention?
Holmes: To the curious incident of the dog in the night-time.
Gregory: The dog did nothing in the night-time.
Holmes: That was the curious incident.
–Arthur Conan Doyle

Concepts:

•	 Sentinels versus explicit absence
•	 Semantics of NULL, NaN, and N/A
•	 Nullable columns in SQL
•	 Absence in hierarchies
•	 Pitfalls of sentinels

Some data formats explicitly support missing data while other formats use a special 
value, known as a sentinel value, of one sort or another to indicate missingness. 
Non-tabular formats may indicate missing data simply by not including any value in 
a position where it might otherwise occur. However, sentinel values are sometimes 
ambiguous, unfortunately.

In particular, within many data formats, and within most data frame libraries, 
missing numeric values are represented by the special IEEE-754 floating-point value 
NaN (Not-a-Number). The problem here is that NaN, by design and intention, 
can arise as the result of some attempts at computation that are not obviously 
unreasonable. While such an unrepresentable value is indeed unavailable, this is 
potentially semantically different from data that was simply never collected in 
the first place. As a small digression, let us look at coaxing a NaN to arise in an 
“ordinary” computation (albeit a contrived one).

for n in range(7, 10):
    exp1 = 2**n
    a = (22/7) ** exp1 
    b = π ** exp1
    # Compute answer in two "equivalent" ways
    res1 = (a * a) / (b * b)
    res2 = (a / b) * (a / b)
    print(f"n={n}:\n  "
          f"method1: {res1:.3f}\n  "
          f"method2: {res2:.3f}")
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n=7:
  method1: 1.109
  method2: 1.109
n=8:
  method1: 1.229
  method2: 1.229
n=9:
  method1: nan
  method2: 1.510

Parallel to the pitfall of missing floats being represented as NaNs, missing strings 
are almost always represented as strings. Generally, one or more reserved values 
such as “N/A” or the empty string are used when a string value is missing. 
However, those sentinels do not clearly distinguish between “not applicable” 
and “not available,” which are subtly different.

As a toy example, we might have collected names of people, including “middle 
name.” Having a sentinel value for “middle name” would not distinguish between 
survey subjects who have no middle name and those who merely had not provided 
it. Reaching just slightly for a data science purpose: perhaps we wish to find the 
correlation between certain middle names and demographic characteristics. In 
the United States, for example, the middle name “Santiago” would be strongly 
associated with Hispanic family origin; a survey subject who provided no middle 
name might nonetheless have that middle name. In principle, a string field could 
contain different sentinels for, e.g. “No middle name” and “No response,” but 
datasets are very rarely careful in those distinctions.

SQL
In SQL databases, an explicit NULL is available for all column types. Whether a 
particular column is “nullable” is determined by the database administrator (or 
whoever had that functional role, however much or little qualified). This allows a 
distinction in principle between an explicit NaN for a numeric field and a NULL 
for missing values.

Unfortunately, many or most actual database tables fail to utilize these available 
distinctions (i.e. the specific configured and populated tables). In practice, you are 
likely to see many combinations of empty strings, NaNs, actual NULLs, or other 
sentinels, even within SQL databases. This is not because any widely used RDBMS 
fails to support these different values and types; it is rather that in the history of 
various clients putting data into them, using various codebases, non-optimal choices 
were made.
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To run the code in the next cells, you need to obtain access to an RDBMS. The 
PostgreSQL server running on my local system, in particular, has a database called 
dirty, and that in turn contains a table called missing. If you use a different RDBMS, 
your driver will have a different name, and your engine will use a different scheme 
in its connection URL. The particular user, password, host, and port will also vary. 
Database servers also often use authentication methods other than a password to 
grant access. However, the Python DB-API (database API) is quite consistent, and you 
will work with the connection object and engine in identical ways when you access 
other RDBMSs. For illustrative purposes, we show our PostgreSQL configuration 
function connect_local(), which is contained in setup.py. 

# PostgreSQL configuration
def connect_local():
    user = 'cleaning'
    pwd = 'data'
    host = 'localhost'
    port = '5432'  
    db = 'dirty'
    con = psycopg2.connect(database=db, host=host, user=user, 
password=pwd)
    engine = create_engine(f'postgresql://{user}:{pwd}@{host}:{port}/
{db}')
    return con, engine

With the connection established, we can examine some of our data in Python. 

con, engine = connect_local()
cur = con.cursor()
# Look at table named "missing"
cur.execute("SELECT * FROM missing")
for n, (a, b) in enumerate(cur):
    print(f"{n+1} | {str(a):>4s} | {b}")

1 |  nan | Not number
2 | 1.23 | A number  
3 | None | A null    
4 | 3.45 | Santiago  
5 | 6.78 |           
6 | 9.01 | None
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As Python objects, an SQL NULL is represented as the singleton None, which is a 
reasonable choice. Let us review this friendly data representation.

•	 Row 1 contains a NaN (not computable) and a string describing the row
•	 Row 2 contains a regular float value and a string describing it
•	 Row 3 contains an SQL NULL (not available) and a string
•	 Row 4 contains a regular float value and a regular string
•	 Row 5 contains a regular float value and an empty string (“not applicable”)
•	 Row 6 contains a regular float value and a NULL (“not available”)

In terms of actually supporting the distinction between a true NULL and a sentinel 
value like NaN, libraries are of mixed quality. Pandas has made some strides with 
version 1.0 by introducing the special singleton pd.NA to be used as a “missing” 
indicator across data types, instead of np.nan, None, and pd.NaT (Not a Time). 
However, as of this writing, the singleton is not utilized in any of the standard data 
readers, and getting the value into data requires special efforts. I hope this will have 
improved by the time you read this. 

R’s Tidyverse does better because R itself has an NA special value. Slightly 
confusingly, R also contains an even more special pseudo-value NULL, which is used 
to indicate that something is undefined (as opposed to simply missing). R’s NULL 
can result from some expressions and function calls, but it cannot be an element 
in arrays or data frames.

%%R
# Notice NULL is simply ignored in the construction
tibble(val = c(NULL, NA, NaN, 0), 
       str = c("this", "that", NA))

# A tibble: 3 x 2
     val  str  
   <dbl>  <chr>
1     NA  this 
2    NaN  that 
3      0  NA   

What SQL calls NULL, R calls NA; NaN remains a separate value indicating “not 
computable.” NaN This allows R to interface correctly and unambiguously with SQL, 
or with the occasional other formats which also explicitly mark “missing” in a non-
sentinel manner.
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This R code assumes the same PostgreSQL database is available as that used in the 
Python example. As with the Python code, a different RDBMS will require a different 
driver name, and user, password, host, and port will vary in your configuration:

%%R
drv <- dbDriver("PostgreSQL")
con <- dbConnect(drv, dbname = "dirty",
                 host = "localhost", port = 5432,
                 user = "cleaning", password = "data")
sql <- "SELECT * FROM missing"
data <- tibble(dbGetQuery(con, sql))
data

# A tibble: 6 x 2
         a   b           
     <dbl>   <chr>       
1   NaN      "Not number"
2     1.23   "A number  "
3    NA      "A null    "
4     3.45   "Santiago  "
5     6.78   "          "
6     9.01    NA         

NaN

The IEEE-754 standard, in fact, reserves a large number of bit 
patterns as NaNs: 16 million of them for 32-bit floats, and vastly 
more for 64-bit floats. Moreover, these many NaNs are divided 
into a generous number each for signaling versus quiet NaNs. In 
concept, when the standard was developed, the choice of which 
of the millions of NaNs available (the “payload”) could be used to 
record information about exactly what kind of operation led to the 
NaN occurring. That said, no software used in data science—and 
nearly no software used in array and numeric computation—
actually utilizes the distinction among the many NaNs. In practical 
terms, NaN is equivalent to a singleton, like R’s NA, Python’s None, 
or JavaScript’s null. 
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In contrast, Pandas 1.0 produces the less correct data frame. The engine object was 
configured and discussed above with the connect_local() function:

pd.read_sql("SELECT * FROM missing", engine)

        A            b
0     NaN   Not number
1    1.23     A number
2     NaN       A null
3    3.45     Santiago
4    6.78             
5    9.01         None

Hierarchical Formats
In formats like JSON that nest data flexibly, there is an obvious way of representing 
missing data: by not representing it at all. If you perform hierarchical processing, 
you will need to check for the presence or absence of a given dictionary key at a 
given level. The JSON specification itself does not address NaN values, which means 
that some systems producing data may choose to use the JavaScript null value in its 
place, producing the ambiguity we have discussed above. However, many specific 
libraries extend the definition to recognize NaN (and sometimes inf, which is also a 
floating-point number) as a value. To illustrate:

json.loads('[NaN, null, Infinity]')  # null becomes Python None

[nan, None, inf]

Let us represent the same data of the SQL table illustrated above in a (relatively) 
compact way. Notice, however, that since in the Python json library NaN is a 
recognized value, we could explicitly represent all missing keys and match them with 
null as needed. Obviously, we data scientists do not usually generate the data we 
need to consume; so the format we get is the one we need to process.

We can read this particular data into a Pandas DataFrame easily, subject to the 
sentinel limitation. Since a data frame imposes a tabular format, the missing row/
column positions must be filled with some value, in this case with a NaN as sentinel. 
Of course, as discussed in Chapter 2, Hierarchical Formats, nested data may simply not 
be amenable to being represented in a tabular way.

json_data = '''
{"a": {"1": NaN, "2": 1.23, "4": 3.45, "5": 6.78, "6": 9.01},
 "b": {"1": "Not number", "2": "A number", "3": "A null",
       "4": "Santiago", "5": ""}
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}'''
pd.read_json(json_data).sort_index()

        A            b
1     NaN   Not number
2    1.23     A number
3     NaN       A null
4    3.45     Santiago
5    6.78             
6    9.01          NaN

Let us also process this JSON data in a more hierarchical and procedural way 
for illustration, classifying special/missing values as we encounter them. For the 
example, we assume that the top level is a dictionary of dictionaries, but obviously 
we could walk other structures as well if needed:

data = json.loads(json_data)
rows = {row for dct in data.values() 
            for row in dct.keys()}

for row in sorted(rows):
    for col in data.keys():
        val = data[col].get(row)
        if val is None:
            print(f"Row {row}, Col {col}: Missing")
        elif isinstance(val, float) and math.isnan(val):
            print(f"Row {row}, Col {col}: Not a Number")
        elif not val:
            print(f"Row {row}, Col {col}: Empty value {repr(val)}")

Row 1, Col a: Not a Number
Row 3, Col a: Missing
Row 5, Col b: Empty value ''
Row 6, Col b: Missing

Sentinels
In textual data formats, mainly delimited and fixed-width files, missing data 
is indicated either by absence or by a sentinel. Both delimited and fixed-width 
formats are able to omit a certain field in a row—albeit, in fixed-width, this does not 
distinguish among an empty string, a string of spaces, and a missing value. Two 
commas next to each other in CSV should be unambiguous for “no value.” 
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Ideally, this absence should be used to indicate missingness, and potentially allow 
some other sentinel to indicate “Not Applicable,” “Not Calculable,” “No Middle 
Name,” or other specific markers for known values that fall outside the domain of 
a variable. In practice, however, the “best practice” I recommend here is often not 
what is used in the datasets you will actually need to work with.

The use of sentinels is not limited to text formats. Often in SQL, for example, TEXT 
or CHAR columns that could, in principle, be made nullable and use NULL to indicate 
missing values instead use sentinels (and not always single sentinels; in practice 
they often acquire multiple markers over multiple generations of software changes). 
Sometimes formats such as JSON that can hold text values likewise use sentinels 
rather than omitting keys. Even in formats like HDF5 that enforce data typing, 
sometimes sentinel numeric values are used to indicate missing values rather than 
relying on NaN as a special marker (which has its own problems, discussed above).

In Pandas, in particular, as of version 1.0, the following sentinel values are 
recognized by default as meaning “missing” when reading delimited or fixed-
width files: ' ', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan', 
'1.#IND', '1.#QNAN', 'N/A', 'NA', 'NULL', 'NaN', 'n/a', 'nan', and 'null'. Some of 
these must arise in domains or from tools I am personally unfamiliar with, but many 
I have seen. However, I have also encountered numerous sentinels not in that list. 
You will need to consider sentinels for your specific dataset, and such defaults are 
only some first guesses the tool provides. Other tools will have different defaults.

Libraries for working with datasets, often as data frames, will have mechanisms to 
specify the particular values to treat as sentinels for missing data. Let us look at an 
example that is closely based on real-world data obtained from the United States 
National Oceanic and Atmospheric Administration (NOAA). This data was, in fact, 
provided as CSV files; a more descriptive filename is used here, and many of the 
columns are omitted. But only one data value is changed in the example. In other 
words, this is a dataset I actually had to work with outside of writing this book, and 
the issues discussed were not ones I knew about in advance of doing that.

The dataset we read below concerns weather measurements at a particular 
weather station. The station at Sorstokken, Norway, is chosen here more-or-less 
at random from thousands available. Other stations employ the same encoding, 
which is nowhere obviously documented. Unfortunately, undocumented or 
underdocumented field constraints are the rule in published data, not the exception. 
The column names are somewhat abbreviated, but not too hard to guess the 
meaning of: temperature (℉ ), maximum wind gust speed (mph), etc:

sorstokken = pd.read_csv('data/sorstokken-no.csv.gz')
sorstokken
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        STATION         DATE    TEMP   VISIB   GUST   DEWP
0    1001499999   2019-01-01    39.7     6.2   52.1   30.4
1    1001499999   2019-01-02    36.4     6.2  999.9   29.8
2    1001499999   2019-01-03    36.5     3.3  999.9   35.6
3    1001499999      UNKNOWN    45.6     2.2   22.0   44.8
...         ...          ...     ...     ...    ...    ...
295  1001499999   2019-12-17    40.5     6.2  999.9   39.2
296  1001499999   2019-12-18    38.8     6.2  999.9   38.2
297  1001499999   2019-12-19    45.5     6.1  999.9   42.7
298  1001499999   2019-12-20    51.8     6.2   35.0   41.2
299 rows × 6 columns

We notice a few things in the view of a selection of the table. The DATE value 
UNKNOWN is included (by my construction). Also, some GUST values are 999.9 (in 
the original data). The use of several 9 digits as a sentinel is a common convention. 
The number of 9s used varies, however, as does the position of a decimal point if 
any is used. Another common convention is using a -1 as a sentinel for numeric 
values that semantically must be positive for legitimate values. For example, the 
-1 convention might sensibly be used for wind gust speed, but it could not be 
for degrees Fahrenheit or Celsius, which can perfectly well have the value -1 for 
ordinary Earth surface temperatures. On the other hand, if we were using the same 
units to measure the temperatures inside an iron forge (the melting point of iron is 
2,800℉ /1,538℃ ), -1 would be safely outside the possible operating range.

Looking at the minimum and maximum values of a given variable is often a 
clue about the sentinels used. For numbers—and also for dates—a value that is 
unreasonably large or unreasonably small is generally used for a sentinel. This can go 
wrong where legitimate measurements later exceed their initially anticipated range:

pd.DataFrame([sorstokken.min(), sorstokken.max()])

        STATION         DATE    TEMP    VISIB    GUST    DEWP
0    1001499999   2019-01-01    27.2      1.2    17.1    16.5
1    1001499999      UNKNOWN    88.1    999.9   999.9    63.5

Here we see that TEMP and DEWP seem always to fall within a “reasonable” range. 
DATE alerts us to a problem value this way; it might also do so, but possibly more 
subtly, if the sentinel had been for example 1900-01-01, which is an actual date but 
one from before NOAA measurements were taken. Likewise, VISIB and GUST 
have unreasonably high and special-looking values. For string values, sentinels 
are quite likely to occur right in the middle of valid values. “No Middle Name” is 
alphabetically between “Naomi” and “Nykko.” Let us look more closely at these 
variables with sentinels. 
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Outliers and standard deviation (σ) are discussed more in a later section:

print("Normal max:")
for col in ['VISIB', 'GUST']:
        s = sorstokken[col]
        print(col, s[s < 999.9].max(), 
              "...standard deviation w/ & w/o sentinel:",
              f"{s.std():.1f} / {s[s < 999.9].std():.1f}")

Normal max:
VISIB 6.8 ...standard deviation w/ & w/o sentinel: 254.4 / 0.7
GUST 62.2 ...standard deviation w/ & w/o sentinel: 452.4 / 8.1

I believe VISIB is measured in miles, and seeing a thousand miles is unreasonable. 
GUST wind speed is in mph, and likewise 999.9 is not something that will occur 
on Earth. However, one should worry when sentinels are within three orders of 
magnitude of actual values, as here. For power law distributed values, even that 
rule of thumb about orders of magnitude is of little help.

In Pandas and other tools, we can instruct the tool to look for specific sentinels, and 
substitute specific values. Of course, we could do so after data is read into a data 
structure using regular data frame filtering and manipulation techniques. If we 
can do so at read time, so much the better. Here we look for sentinels on a column-
specific basis:

sorstokken = pd.read_csv('data/sorstokken-no.csv.gz', 
                         na_values={'DATE': 'UNKNOWN', 
                                    'VISIB': '999.9',
                                    'GUST': '999.9'},
                         parse_dates=['DATE'])
sorstokken.head()

        STATION         DATE    TEMP    VISIB    GUST    DEWP
0    1001499999   2019-01-01    39.7      6.2    52.1    30.4
1    1001499999   2019-01-02    36.4      6.2     NaN    29.8
2    1001499999   2019-01-03    36.5      3.3     NaN    35.6
3    1001499999          NaT    45.6      2.2    22.0    44.8
4    1001499999   2019-01-06    42.5      1.9     NaN    42.5
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The topics in this section are largely driven by data formats themselves. Let us turn 
to anomalies caused more often by collection processes.

Miscoded Data
“When I use a word,” Humpty Dumpty said, in rather a scornful tone, “it means 
just what I choose it to mean—neither more nor less.”
–Lewis Carroll

Concepts:

•	 Categorical and ordinal constraints
•	 Encoded values and metadata definitions
•	 Rare categories

When I discuss miscoded data in this section, I am primarily addressing categorical 
data, also called “factors” in R (and sometimes elsewhere). Ordinal data might be 
included too inasmuch as it has known bounds. For example, if a ranking scale is 
specified as ranging from 1 to 10, any values outside of that numeric range—or if 
genuinely ordinal, any values that are not integral—must be miscoded in some 
manner.

Quantitative data can obviously be miscoded as well, in some sense. A data entry 
intending a value of 55 might be carelessly entered as 555. But equally, a value 
intended as 55 might be mis-entered as 54, which is less likely to be caught as 
obviously wrong. In any event, the examination of quantitative features for errors 
is addressed in the later sections of this chapter. Numbers, especially real numbers 
(or complex numbers, integers, fractions, etc.), do not present as immediately wrong, 
but only in their distribution or domain constraints.

For an ordinal value, verifying its type and range should assure the validity of the 
coding, in most cases (ordinals with non-contiguous integers as valid values do occur 
sometimes, but less common). In the Dermatology Data Set available from the UCI 
Machine Learning Repository, most fields are coded as 0, 1, 2, or 3. One field is only 
0 or 1; the age and target (the skin condition) are continuous and factor variables, 
respectively. 

https://archive.ics.uci.edu/ml/datasets/Dermatology
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In this example, nothing is miscoded; note that verifying that is not the same as 
knowing all values are correct:

from src.dermatology import *
(pd.DataFrame(
    [derm.min(), derm.max(), derm.dtypes])
     .T
     .rename(columns={0:'min', 1:'max', 2:'dtype'})
)

                                    Min                  max      dtype
erythema                              0                    3      int64
scaling                               0                    3      int64
definite borders                      0                    3      int64
itching                               0                    3      int64
...                                 ...                  ...        ...
inflammatory                          0                    3      int64
monoluclear infiltrate
band-like infiltrate                  0                    3      int64
Age                                   0                   75    float64
TARGET                cronic dermatitis  seboreic dermatitis     object
35 rows × 3 columns

Minimum, maximum, and verifying the use of the integer data type is sufficient to 
assure ordinals are not miscoded. Categorical variables are sometimes encoded in 
an ordinal fashion, but often consist of words naming their values. For example, 
the below dataset is very similar to the one used in an exercise of Chapter 6, Value 
Imputation. However, in this version, some errors exist that we will look at in the 
next several sections. This data contains the (hypothetical) height, weight, hair 
length, and favorite color of 25,000 survey subjects:

humans = pd.read_csv('data/humans-err.csv')
# random_state for deterministic sample
humans.sample(5, random_state=1)

           Height        Weight   Hair_Length    Favorite
21492  176.958650     72.604585          14.0         red
9488   169.000221     79.559843           0.0        blue
16933  171.104306     71.125528           5.5         red
12604  174.481084     79.496237           8.1        blue
8222   171.275578     77.094118          14.6       green
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As one would expect semantically, Favorite is a categorical value, with a small 
number of legitimate values. Generally, the way to examine such a feature 
for miscoding starts with examining the unique values it takes. Obviously, if 
documentation exists as to the expected values that can help us. However, keep in 
mind a software developers’ motto that “documentation” is a synonym for “lies.” 
It may not accurately reflect the data itself:

humans.Favorite.unique()

array(['red', 'green', 'blue', 'Red', ' red', 'grееn', 'blüe',
       'chartreuse'], dtype=object)

At an initial look at unique values, we already see several likely problems. For 
example, ' red' with a space at the beginning is a common kind of data entry error, 
and we can most likely assume it was intended simply as 'red'. On the other hand, 
'Red' capitalized versus in lowercase is not necessarily self-evident as to which 
is correct. The string 'blüe' looks like another misspelling of the English word. 
Something strange is happening with 'green' still; we will return to that.

To get a sense of the intention of the data, we can check whether some variations 
are rare with others common. This is often a strong hint:

humans.Favorite.value_counts()

red           9576
blue          7961
green         7458
Red              1
chartreuse       1
 red             1
grееn            1
blüe             1
Name: Favorite, dtype: int64

These counts tell us a lot. The color 'chartreuse' is a perfectly good color name, 
albeit a less commonly used word. It could be a legitimate value, but most likely its 
rarity indicates some sort of improper entry, given that only three colors (modulo 
some spelling issues we are working on) seem to be otherwise available. Most likely, 
we will want to mark this value as missing for later processing. But only most likely; 
there may be domain knowledge that indicates that despite its rarity, it is a value 
we wish to consider. If documentation exists describing it, that lends weight to the 
option of simply keeping it.
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The rare occurrence of ' red' with a leading space and 'Red' capitalized give us 
strong support for the assumption that they are simply miscoded versions of 'red'. 
However, if we were roughly evenly split on capitalized and lowercase versions, or 
even if neither was rare, the correct action would be less clear. Nonetheless, in many 
cases, canonicalization or normalization to one particular case (case folding) would 
be good practice, and data frame tools make this easy to vectorize on large datasets. 
However, sometimes capitalization represents intended differences, for example 
in otherwise identical last names that have distinct capitalization among different 
families. Likewise, in many scientific fields, short names or formulae can be case-
sensitive and should not be case-folded. Having a sense of the content domain 
remains important.

We are left with the curious case of the two greens. They look identical; likewise, 
for example, a trailing space in the above categorical values would not be visible on 
screen. Manually looking closer at those values is needed here:

for color in sorted(humans.Favorite.unique()):
    print(f"{color:>10s}", [ord(c) for c in color])

       red [32, 114, 101, 100]
       Red [82, 101, 100]
      blue [98, 108, 117, 101]
      blüe [98, 108, 252, 101]
chartreuse [99, 104, 97, 114, 116, 114, 101, 117, 115, 101]
     green [103, 114, 101, 101, 110]
     grееn [103, 114, 1077, 1077, 110]
       red [114, 101, 100]

What we find here from the Unicode code points is that one of our greens in fact 
has two Cyrillic “ye” characters rather than Roman “e” characters. This substitution 
of near-identical glyphs is often—as in this instance of a sneaky book author—a 
result of malice or deception. However, in the large world of human languages, it 
genuinely can occur that a particular string of characters innocently resembles some 
other string that it is not. Other than perhaps making it more difficult to type some 
strings at the particular keyboard with which you are familiar, this visual similarity 
is not per se a data integrity issue. However, here, with the one mixed-language 
version also being rare, clearly it is something to correct to the regular English word 
in Roman letters.

Once we have made decisions about the remediations desired—in a manner sensitive 
to domain knowledge—we can translate troublesome values. For example:

humans.loc[humans.Favorite.isin(['Red', ' red']), 'Favorite'] = 'red'
humans.loc[humans.Favorite == 'chartreuse', 'Favorite'] = None
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humans.loc[humans.Favorite == 'blüe', 'Favorite'] = 'blue'
humans.loc[humans.Favorite == 'grееn', 'Favorite'] = 'green'
humans.Favorite.value_counts()

red      9578
blue     7962
green    7459
Name: Favorite, dtype: int64

Let us turn to areas where domain knowledge can inform anomaly detection.

Fixed Bounds
“Cricket is an art. Like all arts it has a technical foundation. To enjoy it does not 
require technical knowledge, but analysis that is not technically based is mere 
impressionism.”
–C.L.R. James, Beyond A Boundary

Concepts:

•	 Domain versus measurement limits
•	 Imputation and clipping
•	 Improbability versus impossibility
•	 Exploring hypotheses for data errors

Based on our domain knowledge of the problem and dataset at hand, we may know 
of fixed bounds for particular variables. For example, we might know that the tallest 
human who has lived was Robert Pershing Wadlow at 271cm, and that the shortest 
adult was Chandra Bahadur Dangi at 55cm. Values outside this range are probably 
unreasonable to allow in our dataset. In fact, we may perhaps wish to assume much 
stricter bounds; as an example, let us choose between 92cm and 213cm (which will 
include the vast majority of all adult humans). Let us check whether our humans 
dataset conforms with these bounds:

((humans.Height < 92) | (humans.Height > 213)).any()

False

For height, then, our domain-specific fixed bounds are not exceeded in the dataset. 
What about the variable Hair_Length? From the actual physical meaning of the 
measurement, hair cannot be negative length. 
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However, let us stipulate as well that the measuring tape used for our observations 
was 120cm long (i.e. hypothetical domain knowledge), and that, therefore, a length 
more than that cannot be completely legitimate (such a length is rare, but not 
impossible among humans). First, let us look at the hair lengths that exceed the 
measuring instrument:

humans.query('Hair_Length > 120')

           Height     Weight  Hair_Length   Favorite
1984   165.634695  62.979993        127.0        red
8929   175.186061  73.899992        120.6       blue
14673  174.948037  77.644434        130.1       blue
14735  176.385525  68.735397        121.7      green
16672  173.172298  71.814699        121.4        red
17093  169.771111  77.958278        133.2       blue

There are just a few samples with a hair length longer than a possible measurement. 
However, all of these numbers are only modestly longer than the measuring 
instrument or scale. Without more information on the collection procedure, it is 
not possible to be confident of the source of the error. Perhaps some subjects made 
their own estimates of their very long hair length rather than using the instrument. 
Perhaps one data collection site actually had a longer measuring tape that was not 
documented in our metadata or data description. Or perhaps there is a transcription 
error, such as adding a decimal point; e.g. maybe the 124.1cm hair was 24.1cm in 
reality. Or perhaps the unit was confused, and millimeters were actually measured 
rather than centimeters (as is standard in hair clippers and other barbering 
equipment).

In any case, this problem affects only 6 of the 25,000 observations. Dropping those 
rows would not lose us a large amount of data, so that is a possibility. Imputing 
values would perhaps be reasonable (for example, stipulating that these 6 subjects 
had average hair length). Value imputation is the subject of Chapter 6, and options 
are discussed there in more detail; at this stage, the first pass might be marking those 
values as missing.

However, for these out-of-range values that cluster relatively close to legitimate 
values, clipping the values to the documented maximum might also be a reasonable 
approach. The operation “clip” is also sometimes called “clamp,” “crop,” or “trim” 
depending on the library you are working with. The general idea is simply that 
a value outside of a certain bound is treated as if it is that bound itself. We can 
version our data as we modify it:
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humans2 = humans.copy()  # Retain prior versions of dataset
humans2['Hair_Length'] = humans2.Hair_Length.clip(upper=120)
humans2[humans2.Hair_Length > 119]

           Height     Weight  Hair_Length   Favorite
1984   165.634695  62.979993        120.0        red
4146   173.930107  72.701456        119.6        red
8929   175.186061  73.899992        120.0       blue
9259   179.215974  82.538890        119.4      green
14673  174.948037  77.644434        120.0       blue
14735  176.385525  68.735397        120.0      green
16672  173.172298  71.814699        120.0        red
17093  169.771111  77.958278        120.0       blue

A slightly lower threshold for a filter shows that 119.6 was left unchanged, but the 
values over 120.0 were all set to 120 exactly.

The too-big values were not difficult to massage. Let us look at the physical lower 
bound of zero next. A value of exactly zero is perfectly reasonable. Many people 
shave their heads or are otherwise bald. This is invented data, pulled from a 
distribution that feels vaguely reasonable to this author, so do not put too much 
weight in the exact distributions of lengths. Just note that zero length is a relatively 
common occurrence in actual humans:

humans2[humans2.Hair_Length == 0]

           Height      Weight   Hair_Length   Favorite
6      177.297182   81.153493           0.0       blue
217    171.893967   68.553526           0.0       blue
240    161.862237   76.914599           0.0       blue
354    172.972247   73.175032           0.0        red
...           ...         ...           ...        ...
24834  170.991301   67.652660           0.0      green
24892  177.002643   77.286141           0.0      green
24919  169.012286   74.593809           0.0       blue
24967  169.061308   65.985481           0.0      green
517 rows × 4 columns

However, what about the impossible negative lengths? We can easily create a filter 
to look at those also:

neg_hair = humans2[humans2.Hair_Length < 0]
neg_hair
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           Height       Weight   Hair_Length   Favorite
493    167.703398    72.567763          -1.0       blue
528    167.355393    60.276190         -20.7      green
562    172.416114    60.867457         -68.1      green
569    177.644146    74.027147          -5.9      green
...           ...          ...           ...        ...
24055  172.831608    74.096660         -13.3        red
24063  172.687488    69.466838         -14.2      green
24386  176.668430    62.984811          -1.0      green
24944  172.300925    72.067862         -24.4        red
118 rows × 4 columns

There are a moderate number of these obviously miscoded rows. As elsewhere, 
simply dropping the problem rows is often a reasonable approach. However, a quick 
glance at the tabular data, as well as some slight forensics, suggests that quite likely 
a negative sign snuck into many reasonable values. It is at least plausible that these 
quantities are right, but simply with an inverted sign. Let us look at some statistics 
of the problem values. Just for fun, we will look at very similar summaries using 
both R and Pandas:

%%R -i neg_hair
summary(neg_hair$Hair_Length)

   Min.   1st Qu.   Median     Mean   3rd Qu.   Max. 
 -95.70    -38.08   -20.65   -24.35    -5.60   -0.70 

neg_hair.Hair_Length.describe()

count    118.000000
mean     -24.348305
std       22.484691
min      -95.700000
25%      -38.075000
50%      -20.650000
75%       -5.600000
max       -0.700000
Name: Hair_Length, dtype: float64

The general statistics do not contradict this sign-inversion hypothesis. However, 
before we draw a conclusion, let us continue to look at these bad values more closely 
for this exercise. There might be additional patterns:

plt.hist(neg_hair.Hair_Length, bins=30)
plt.title("Distribution of invalid negative hair length");
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Figure 4.1: Histogram showing distribution of negative hair length values

This distribution of negative values roughly matches the distribution of positive 
ones. There are a larger number of people with short hair of varying short lengths, 
and a tail of fewer people at longer lengths. However, at a glance, the region close to 
zero seems to be a bit too much of a peak. For the one hundred or so rows of data in 
the example, you could eyeball them all manually, but for larger datasets, or larger 
bounds-violation sets, honing in on nuances programmatically is more general:

neg_hair.Hair_Length.value_counts()

-1.0     19
-41.6     2
-6.8      2
-30.1     2
         ..
-3.3      1
-51.4     1
-25.1     1
-4.8      1
Name: Hair_Length, Length: 93, dtype: int64

Indeed there is a pattern here. There are 19 values of exactly -1, and only one or two 
occurrences of each other invalid negative value. It seems very likely that something 
different is happening between the -1 error and the other negative value errors. 
Perhaps -1 was used as a sentinel, for example. Of course, it is also possible that -1 
could result from the stipulated sign-inversion error; we cannot entirely separate 
those two possibilities.
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The working hypothesis I would probably use to handle this problem in the dataset 
(if not simply dropping everything questionable outright) would be to mark the -1 
values as missing but invert the sign of other negative values:

humans3 = humans2.copy()     # Versioned changes to data

# The "sentinel" negative value means missing
humans3.loc[humans3.Hair_Length == -1, 'Hair_Length'] = None

# All other values simply become non-negative
humans3['Hair_Length'] = humans3.Hair_Length.abs()

plt.hist(humans3.Hair_Length, bins=30)
plt.title("Distribution of corrected hair lengths");

Figure 4.2: Histogram showing corrected hair lengths

We have performed a typical cleaning of bounded values. Let us turn to values 
without sharp bounds, but with general distribution statistics.

Outliers
If Congress had meant to so limit the Act, it surely would have used words to that 
effect.
–Tennessee Valley Auth. v. Hill, 437 U.S. 153 (1978)
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Concepts:

•	 Z-score and unexpected values
•	 Interquartile range
•	 Standard deviation and frequency of occurrence

In continuous data, values that fall within normative ranges might still be strongly 
uncharacteristic within those bounded expectations. In the simplest case, this occurs 
when a value is very different from other values of the same variable. The standard 
way to characterize the expectedness of a value is a measure called a z-score. This 
value is simply the distance of each point from the mean of the variable, divided by 
the standard deviation of the variable.

𝑍𝑍 𝑍 𝑥𝑥 𝑥 𝑥𝑥𝜎𝜎  

Where 𝜇𝜇  is the sample mean, and 𝜎𝜎  is the standard deviation.

This measure is most precise for data that follows a normal distribution, but generally 
it is useful for any data that is unimodal (having one peak), somewhat symmetric, and 
scale-dependent. In more ordinary language, we just want to look for the histogram 
of a data variable having one peak, and tapering off at roughly the same rate on both 
sides. Completely normal distribution is unusual in real-world data.

A slightly different way of identifying outliers is often used as well. Box and whisker 
plots (usually simply called boxplots) will often include outliers as separate visual 
elements. While it is possible to use a z-score in such a visualization, more often 
these plots utilize interquartile range (IQR) and a fixed multiplier to define outliers. 
The different techniques will produce similar, but not identical, answers.

Z-Score
We can see that height and weight in our dataset follow a generally normal-like 
distribution by visualizing them. We have seen just above that hair length, after 
correction, is strictly single tailed. However, the one-sided drop-off from a mode 
at 0 is close enough to one tail of a normal distribution that the z-score is still 
reasonable to consider.

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.hist(humans3.Height, bins=50)
ax2.hist(humans3.Weight, bins=50)
ax1.set_title("Distribution of Height")
ax2.set_title("Distribution of Weight");
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Figure 4.3: Histograms showing distributions of height and weight

If we wish to be more precise in quantifying the normality of variables, we can use 
statistical tests such and Anderson-Darling, Shapiro-Wilk, or Skewness-Kurtosis 
All. Each of these techniques tries to reject the hypothesis that a distribution is 
normal. For different p-values (probabilities), different test statistics determine a 
threshold for this rejection (although for large samples, even small deviations from 
normality will reject the hypothesis, but do not matter from the point of view of 
the z-score being useful). In Anderson-Darling, if the test statistic is not much more 
than 1.0 the curve is definitely normal enough to measure outliers with a z-score. 
The inverse does not hold, however; many non-normal curves are still reasonable to 
use the z-score with. Essentially, we just need to avoid this measure for power law 
or exponential distributions, and for curves that are strongly multi-modal. Let us 
perform Anderson-Darling tests on our height, weight, and hair length variables:

from scipy.stats import anderson

for var in ('Height', 'Weight', 'Hair_Length'):
    data = humans3[var][humans3[var].notnull()]
    stat = anderson(data, 'norm').statistic
    print(f"Anderson-Darling statistic for {var:<12s}: {stat:6.2f}")

Anderson-Darling statistic for Height      :   0.24
Anderson-Darling statistic for Weight      :   0.54
Anderson-Darling statistic for Hair_Length : 578.19

Having recognized that hair length is not normal, but that it shows a one-sided 
decay along a linear scale nonetheless, we can add z-scores for all of our quantitative 
variables to the working data frame. As before, as good practice of keeping 
versions of our modifications, we copy the data to a new data frame before the next 
transformations. 
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We ignore the delta degrees of freedom parameter in our calculation of standard 
deviation because it is trivial with 25,000 samples (if we had only 10 or 20 samples, 
it could matter). The degrees of freedom concerns the anticipated variance within a 
total population based on a sample; but these only vary significantly when samples 
are tens of observations, not tens of thousands:

humans4 = humans3.copy()

for var in ('Height', 'Weight', 'Hair_Length'):
    zscore = (humans4[var] - humans4[var].mean()) / humans4[var].std()
    humans4[f"zscore_{var}"] = zscore
    
humans4.sample(5, random_state=1)

            Height      Weight   Hair_Length   Favorite   zscore_Height
21492   176.958650   72.604585          14.0        red        0.880831
9488    169.000221   79.559843           0.0       blue       -0.766210
16933   171.104306   71.125528           5.5        red       -0.330758
12604   174.481084   79.496237           8.1       blue        0.368085
8222    171.275578   77.094118          14.6      green       -0.295312

        zscore_Weight   zscore_Hair_Length
21492       -0.042032            -0.568786
9488         0.997585            -1.225152
16933       -0.263109            -0.967294
12604        0.988078            -0.845397
8222         0.629028            -0.540656

The choice of a z-score threshold is very domain- and problem-dependent. A rule of 
thumb is often to use a z-score of an absolute value more than 3 as a cut-off to define 
outliers. But what is expected very much depends on the size of a dataset. 

At any distance from the mean, some observations would be expected if they 
are numerous enough, but the number diminishes rapidly with more standard 
deviations’ distance.

In statistics, we sometimes recall the 68–95–99.7 rule, which lists 
the percentage of observations that fall within one, two, or three 
standard deviations in a normal distribution. 
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Let us look at that common z-score threshold of 3. Remember that we are working 
with 25,000 samples here, so generally we expect to find roughly 75 of them outside 
of 3 standard deviations, under the 68–95–99.7 rule discussed above. Let us look at 
the table for height, but just check the number of rows outside this bound for the 
other variables:

humans4[humans4.zscore_Height.abs() > 3]

            Height      Weight   Hair_Length   Favorite   zscore_Height
138     187.708718   86.829633          19.3      green        3.105616
174     187.537446   79.893761          37.5       blue        3.070170
412     157.522316   62.564977           6.8       blue       -3.141625
1162    188.592435   86.155948          53.1        red        3.288506
...            ...         ...           ...        ...             ...
22945   157.293031   44.744929          18.4        red       -3.189077
23039   187.845548   88.554510           6.9       blue        3.133934
24244   158.153049   59.725932          13.8      green       -3.011091
24801   189.310696   85.406727           2.3      green        3.437154

          zscore_Weight    zscore_Hair_Length
138            2.084216             -0.320304
174            1.047496              0.532971
412           -1.542673             -0.906345
1162           1.983518              1.264351
...                 ...                   ...
22945         -4.206272             -0.362499
23039          2.342037             -0.901657
24244         -1.967031             -0.578162
24801          1.871531             -1.117320

51 rows × 7 columns

print("Outlier weight:", (humans4.zscore_Weight.abs() > 3).sum())
print("Outlier hair length:", (humans4.zscore_Hair_Length.abs() > 
3).sum())

Outlier weight: 67
Outlier hair length: 285

We have already noted that hair length is single-tailed, so we might expect 
approximately twice as many outliers. The actual number is somewhat more than 
twice that many, but that is not itself an extreme divergence of values. Height and 
weight actually have modestly lower kurtosis than we would expect from the normal 
distribution (the tails thin out slightly faster). 
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In any case, a z-score of 3 is probably too small to be useful for our sample size. 4 
sigma is probably more relevant for our purpose of distinguishing merely unusual 
from probably wrong observations, and maybe 4.5 for the one-tailed hair length.

A table of the frequency of once-a-day observations falling outside of a given 
standard deviation (σ) provides a helpful intuition. A shorthand trick to remember 
the effect of sigma is the 68–95–99.7 rule mentioned earlier; that is, the percentage of 
things falling within one, two, and three standard deviations:

Range Proportion of observations Frequency for daily event
± 1σ 1 in 3 Twice a week
± 2σ 1 in 22 Every three weeks
± 3σ 1 in 370 Yearly
± 4σ 1 in 15,787 Every 43 years (twice in a lifetime)
± 5σ 1 in 1,744,278 Every 5,000 years (once in recorded history)
± 6σ 1 in 506,797,346 Every 1.4 million years (twice in history of 

humankind)
± 7σ 1 in 390,682,215,445 Every 1 billion years (four times in history of 

Earth)

Let us see the outliers given the broader z-score bounds:

cond = (
    (humans4.zscore_Height.abs() > 4) |
    (humans4.zscore_Weight.abs() > 4) |
    (humans4.zscore_Hair_Length.abs() > 4.5))
humans4[cond] 

            Height      Weight   Hair_Length   Favorite   zscore_Height
13971   153.107034   63.155154           4.4      green       -4.055392
14106   157.244415   45.062151          70.7        red       -3.199138
22945   157.293031   44.744929          18.4        red       -3.189077

          zscore_Weight     zscore_Hair_Length
13971         -1.454458              -1.018865
14106         -4.158856               2.089496
22945         -4.206272              -0.362499

Using modest domain knowledge of human physical characteristics, even though 
they are outside the “norm,” persons of 153cm or 45kg are small, but not outside of 
bounds we would expect. The small number of 4 sigma outliers are both short and 
light according to the data, which we would expect to be correlated to a relatively 
high degree, lending plausibility to the measurements. 
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Moreover, the height bounds we discussed in the above section on fixed bounds 
were considerably wider than this 4 sigma (or even 5 sigma) detects. Therefore, 
while we could discard or mark missing values in these outliers rows, the analysis 
does not seem to motivate doing so.

Interquartile Range
Using the IQR rather than the z-score makes less of an assumption of normality of a 
distribution. However, this technique will also fail to produce meaningful answers 
for power law or exponential data distributions. If you can identify a distribution as 
one that ranges over many orders of magnitude like those, looking at the quartiles 
of either an Nth root or a logarithm of the raw data might still produce reasonable 
results. The same transformation, in fact, can be equally relevant if you use z-score 
analysis.

The idea of the IQR is simply to look at the quartile cut-offs in a variable and 
measure the numeric distance between the first and third quartile, i.e. between the 
25% and 75% percentiles. Exactly half the data is in that range, but we often also 
expect that most data will be within some distance beyond those cut-offs, defined 
as a multiplier of the range between cut-offs. Most commonly, a multiplier of 1.5 is 
chosen; this is merely a convention that is often useful but lacks any deeper meaning.

I include in this text a brief function to visualize boxplots that show the IQR defined 
outliers. Normally, this functionality is only included in the source code repository 
for the book, but here I think it is worthwhile for readers to see the configuration 
that goes into these few lines in Matplotlib (other visualization libraries have similar 
capabilities; often higher-level abstractions with more visual pizzazz, in fact):

# Function defined but not run in this cell
def show_boxplots(df, cols, whis=1.5):
    # Create as many horizontal plots as we have columns
    fig, axes = plt.subplots(len(cols), 1, figsize=(10, 2*len(cols)))
    # For each one, plot the non-null data inside it
    for n, col in enumerate(cols):
        data = df[col][df[col].notnull()]
        axes[n].set_title(f'{col} Distribution')
        # Extend whiskers to specified IQR multiplier
        axes[n].boxplot(data, whis=whis, vert=False, sym='x')
        axes[n].set_yticks([])
    # Fix spacing of subplots at the end
    fig.tight_layout()
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While the default multiplier (the “whisker” width) is 1.5, we have already seen that 
the human data is large enough that values have to be relatively extreme to appear 
as genuinely unlikely to be genuine. We choose, therefore, a whisker width of 2.5 
instead:

show_boxplots(humans4, ["Height", "Weight", "Hair_Length"], 2.5)

Figure 4.4: Boxplots showing height, weight, and hair length distribution

The central boxes represent the IQR, from 25% to 75% percentile. The whiskers 
extend to multiplier times IQR above/below the box. An x marks outliers past the 
whiskers.

Only one outlier appears at this threshold for height, at the short end. Likewise, only 
two appear for weight, both at the light end. This was the same pattern we found 
with the z-score. Rather more “outlier” long hair lengths occur, but we already had 
used a larger z-score to filter that more restrictively. We could similarly use a larger 
whisker width to filter more hair lengths out, if we wished.
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While the visualization is handy, we want to find the actual data rows that are 
marked with x’s in the plots. Let us code that. We find the quartiles, compute the 
IQR, then display the inlier ranges:

quartiles = (
    humans4[['Height', 'Weight']]
    .quantile(q=[0.25, 0.50, 0.75, 1.0]))
quartiles

            Height       Weight
0.25    169.428884    68.428823
0.50    172.709078    72.930616
0.75    175.953541    77.367039
1.00    190.888112    98.032504

IQR = quartiles.loc[0.75] - quartiles.loc[0.25]
IQR

Height    6.524657
Weight    8.938216
dtype: float64

for col, length in IQR.iteritems():
    high = quartiles.loc[0.75, col] + 2.5*IQR[col]
    low = quartiles.loc[0.25, col] - 2.5*IQR[col]
    print(f"Inliers for {col}: [{low:.3f}, {high:.3f}]")

Inliers for Height: [153.117, 192.265]
Inliers for Weight: [46.083, 99.713]

Actually, filtering using the inlier range in this case gives us the same answer as the 
z-score approach. Of necessity, the very shortest person is the shortest regardless 
of which outlier detection technique we use. But selecting a domain-motivated 
IQR multiplier may identify more or fewer outliers than using a domain-motivated 
z-score, depending on actual data distributions:

cond = (
    (humans4.Height > 192.265) |
    (humans4.Height < 153.117) |
    (humans4.Weight > 99.713)  |
    (humans4.Weight < 46.083))
humans4[cond] 
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           Height     Weight  Hair_Length  Favorite    zscore_Height
13971  153.107034  63.155154          4.4     green        -4.055392
14106  157.244415  45.062151         70.7       red        -3.199138
22945  157.293031  44.744929         18.4       red        -3.189077

       zscore_Weight  zscore_Hair_Length
13971      -1.454458           -1.018865
14106      -4.158856            2.089496
22945      -4.206272           -0.362499

Univariate outliers can be important to detect, but sometimes it is a combination of 
features that becomes anomalous.

Multivariate Outliers
If you are not part of the solution, you are part of the precipitate.
–Anonymous

Concepts:

•	 Variance in deterministic synthetic features
•	 Expectations of relative rarity

Sometimes univariate features can fall within relatively moderate z-score boundaries, 
and yet combinations of those features are unlikely or unreasonable. Perhaps an 
actual machine learning model might predict that combinations of features are likely 
to be wrong. In this section we only look at simpler combinations of features to 
identify problematic samples.

In Chapter 7, Feature Engineering we discuss polynomial features. That technique 
multiplies together the values of two or more variables pertaining to the same 
observation and treats the result as a new feature. For example, perhaps neither 
height nor weight in our working example are outside a reasonable bound, and yet 
the multiplicative product of them is. While this is definitely possible, we generally 
expect these features to be positively correlated to start with, so multiplication 
would probably only produce something new slightly outside the bounds already 
detected by univariate outlier detection.
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However, let us consider a derived feature that is well-motivated by the specific 
domain. Body Mass Index (BMI) is a measure often used to measure healthy weights 
for people, and is defined as: 𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑘𝑘𝑚𝑚2 

That is, weight and height are in an inverse relationship in this derived quantity 
rather than multiplicatively combined. Perhaps this multivariate derived feature 
shows some problem outliers. Let us construct another data frame version that 
discards previous calculated columns, but adds BMI and its z-score:

humans5 = humans4[['Height', 'Weight']].copy()
# Convert weight from cm to m
humans5['BMI'] = humans5.Weight / (humans5.Height/100)**2
humans5["zscore_BMI"] = (
    (humans5.BMI - humans5.BMI.mean()) / 
     humans5.BMI.std()
)
humans5

             Height         Weight           BMI        zscore_BMI
0        167.089607      64.806216     23.212279         -0.620410
1        181.648633      78.281527     23.724388         -0.359761
2        176.272800      87.767722     28.246473          1.941852
3        173.270164      81.635672     27.191452          1.404877
...             ...            ...           ...               ...
24996    163.952580      68.936137     25.645456          0.618008
24997    164.334317      67.830516     25.117048          0.349063
24998    171.524117      75.861686     25.785295          0.689182
24999    174.949129      71.620899     23.400018         -0.524856
25000 rows × 4 columns

Looking for outliers in the derived feature, we see strong signals. As was discussed, 
at a z-score of 4 and a dataset of 25,000 records, we expect to see slightly more than 
one record appearing as an outlier by natural random distribution. Indeed, the two 
z-scores we see below that are only slightly more than 4 in absolute value occurred 
in the dataset before it was engineered to highlight the lesson of this section:
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humans5[humans5.zscore_BMI.abs() > 4]

            Height       Weight          BMI     zscore_BMI
21388   165.912597    90.579409    32.905672       4.313253
23456   187.110000    52.920000    15.115616      -4.741383
23457   158.330000    92.780000    37.010755       6.402625
24610   169.082822    47.250297    16.527439      -4.022805

As well as one example of a moderate outlier for high BMI and one for low BMI, 
we also have two more extreme values on each side. In this case, these were 
constructed for the section, but similar multivariate outliers will occur in the wild. 
The -4.74 z-score is not an extreme we would expect in 25,000 samples, but is 
perhaps not completely implausible. However, the +6.4 z-score is astronomically 
unlikely to occur without a data error (or a construction by a book author). Since 
BMI is a derived feature that combines height and weight—and moreover since 
each of those is within reasonable bounds on its own—the correct approach is 
almost surely simply to discard these problem rows. Nothing in the data themselves 
guides us toward knowing whether weight or height is the problem value, and 
no remediation is sensible.

Fortunately for this particular dataset, only 2 (or maybe 4) samples display the 
problem under discussion. We have plentiful data here, and no real harm is done 
by discarding those rows. Obviously, the particular decisions made about z-score 
thresholds and disposition of particular data rows that are illustrated in this section 
and the last several are only examples. You will need to decide within your problem 
and domain what the most relevant levels and tests are, and what remediations to 
perform.

Exercises
The two exercises in this chapter ask you to look for anomalies first in quantitative 
data, then in categorical data.

A Famous Experiment
The Michelson–Morley experiment was an attempt in the late 19th century to detect 
the existence of the luminiferous aether, a widely assumed medium that would carry 
light waves. This was the most famous “failed experiment” in the history of physics 
in that it did not detect what it was looking for—something we now know not to 
exist at all. 
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The general idea was to measure the speed of light under different orientations 
of the equipment relative to the direction of movement of the Earth, since relative 
movement of the ether medium would add or subtract from the speed of the wave. 
Yes, it does not work that way under the theory of relativity, but it was a reasonable 
guess 150 years ago.

Apart from the physics questions, the dataset derived by the Michelson–Morley 
experiment is widely available, including as a sample built into R. The same data is 
available at:

https://www.gnosis.cx/cleaning/morley.dat

Figuring out the format, which is not complex, is a good first step of this exercise 
(and typical of real data science work).

The specific numbers in this data are measurements of the speed of light in km/s 
with a zero point of 299,000. So, for example, the mean measurement in experiment 
1 was 299,909 km/s. Let us look at the data in the R bundle:

%%R -o morley
data(morley)
morley %>%
    group_by('Expt') %>%
    summarize(Mean = mean(Speed), Count = max(Run))

'summarise()' ungrouping output (override with '.groups' argument)
# A tibble: 5 x 3
   Expt  Mean Count
  <int> <dbl> <int>
1     1  909     20
2     2  856     20
3     3  845     20
4     4  820.    20
5     5  832.    20

In the summary, we just look at the number of runs of each experimental setup, and 
the mean across that setup. The raw data has 20 measurements within each setup.

Using whatever programming language and tools you prefer, identify the outliers 
first within each setup (defined by an Expt number) and then within the data 
collection as a whole. The hope in the original experiment was that each setup 
would show a significant difference in central tendency, and indeed their means are 
somewhat different. 

https://www.gnosis.cx/cleaning/morley.dat
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This book and chapter does not explore confidence levels and null hypotheses in 
any detail, but create a visualization that aids you in gaining visual insight into how 
much apparent difference exists between the several setups.

If you discard the outliers within each setup, are the differences between setups 
increased or decreased? Answer with either a visualization or by looking at 
statistics on the reduced groups.

Misspelled Words
For this exercise we return to the 25,000 human measurements we have used to 
illustrate a number of concepts. However, in this variation of the dataset, each row 
has a person’s first name (pulled from the US Social Security Agency list of common 
first names over the last century; apologies that the names lean Anglocentric because 
of the past history of US population and immigration trends).

The dataset for this exercise can be found at:

https://www.gnosis.cx/cleaning/humans-names.csv

Unfortunately, our hypothetical data collectors for this dataset are simply terrible 
typists, and they make typos when entering names with alarming frequency. 
There are some number of intended names in this dataset, but quite a few simple 
miscodings of those names as well. The problem is: how do we tell a real name 
from a typo?

There are a number of ways to measure the similarity of strings and that provide 
a clue as to likely typos. One general class of approach is in terms of edit distance 
between strings. The R package stringdist, for example, provides Damerau–
Levenshtein, Hamming, Levenshtein, and optimal string alignment as measures of 
edit distance. Less edit-specific fuzzy matching techniques utilize a “bag of n-grams” 
approach, and include q-gram, cosine distance, and Jaccard distance. Some heuristic 
metrics like Jaro and Jaro-Winkler are also included in stringdist along with 
the other measures mentioned. Soundex, soundex variants, and metaphone look 
for similarity of the sounds of words as pronounced, but are therefore specific to 
languages and even regional dialects.

In a reversal of the more common pattern of Python versus R libraries, Python is the 
one that scatters string similarity measures over numerous libraries, each including 
just a few measures. However, python-Levenshtein is a very nice package including 
most of these measures. If you want cosine similarity, you may have to use sklearn.
metrics.pairwise or another module. For phonetic comparisons, fonetika and 
soundex both support multiple languages (but different languages for each; English 
is in common for almost all packages).

https://www.gnosis.cx/cleaning/humans-names.csv
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On my personal system, I have a command-line utility called similarity that I use to 
measure how close strings are to each other. This particular few-line script measures 
Levenshtein distance, but also normalizes it to the length of the longer string. A 
short name will have a small numeric measure of distance, even between dissimilar 
strings, while long strings that are close overall can have a larger measure before 
normalization (depending on what measure is chosen, but for most of them). A few 
examples show this:

String 1 String 2 Levenshtein 
distance

Similarity ratio

David Davin 1 0.8

David Maven 3 0.4

the quick brown fox 
jumped

thee quikc brown fax 
jumbed

5 0.814814814815

For this exercise, your goal is to identify every genuine name and correct all the 
misspelled ones to the correct canonical spelling. Keep in mind that sometimes 
multiple legitimate names are actually close to each other in terms of similarity 
measures. However, it is probably reasonable to assume that rare spellings are typos, 
at least if they are also relatively similar to common spellings. You may use whatever 
programming language, library, and metric you feel is the most useful for the task.

Reading in the data, we see it is similar to the human measures we have seen before:

names = pd.read_csv('data/humans-names.csv')
names.head()

       Name        Height     Weight
0     James    167.089607  64.806216
1     David    181.648633  78.281527
2   Barbara    176.272800  87.767722
3      John    173.270164  81.635672
4   Michael    172.181037  82.760794

It is easy to see that some “names” occur very frequently and others only rarely. 
Look at the middling values as well when working on this exercise:

names.Name.value_counts()

Elizabeth    1581
Barbara      1568
Jessica      1547
Jennifer     1534
             ... 
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ichael          1
Wlliam          1
Richrad         1
Mray            1
Name: Name, Length: 249, dtype: int64

Denouement
When you have eliminated the impossible, whatever remains, however improbable, 
must be the truth.
–Arthur Conan Doyle

Topics covered in this chapter: Missing Data; Sentinels; Miscoded Data; Fixed 
Bounds; Outliers.

The anomalies that we have discussed in this chapter fall into a few relatively distinct 
categories. For the first kind, there are the special values that explicitly mark missing 
data, although those markers are sometimes subject to pitfalls. However, an explicit 
indication of missingness is probably the most straightforward kind of anomaly. A 
second kind of anomaly is categorical values that are miscoded; some finite number 
of values are proper (although not always clearly documented), and anything that 
isn’t one of those few values is an anomaly.

The third kind of anomaly is in continuous—or at least ranged—data values that fall 
outside of the bounds of our expectations. These are also called outliers, although 
exactly how much a value has to lie outside typical values to be a problem is very 
domain- and problem-dependent. Expectations may take the form of a priori 
assumptions that arise from domain knowledge of the measurement. They may also 
arise from the distribution of data within a variable overall, and the deviation of one 
particular value from others measured as that variable. At times, our expectations 
about bounds can even be multivariate, and some numeric combination of multiple 
variables produces a value outside of expectation bounds.

For all of these kinds of anomalies, there are essentially two actions we might take. 
We may decide to discard an observation or sample altogether if it has one of these 
problems. Or alternately, we may simply more explicitly mark one feature within 
an observation as missing based on its value not being reliable. When we modify 
values to the “missing” special value, keeping track of our changes and data versions 
is extremely important practice. What we choose to do with those values marked as 
explicitly missing is a downstream decision that is discussed at more length in later 
chapters.

In the next chapter, we move from looking for problems with particular data points 
and on to looking for problems with the overall “shape” of a dataset.
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5
Data Quality

All data is dirty, some data is useful.
–cf. George Box

Welcome to the mid-point of the book. In something like the loose way in which 
a rock “concept album” tells an overarching story through its individual songs, 
this book is meant, to a certain degree, to follow the process a data scientist goes 
through from acquiring raw data to feeding suitable data into a machine learning 
model or data analysis. Up until this point, we have looked at how one goes about 
getting data into a program or analysis system (e.g. a notebook), and we touched 
on identifying data that has clearly “gone bad” at the level of individual data 
points in Chapter 4, Anomaly Detection. In the chapters after this one, we will look at 
remediation of that messy and marked data that earlier chapters delivered in stages.

Now, however, is the time to look for ways in which your data may have problems, 
not in its individual details, but in its overall “shape” and character. In some 
cases, these problems will pertain to the general collection techniques used, and in 
particular to systematic bias that might be introduced during collection. In other 
cases, problems are not the fault of data collectors, but simply of units and scales, 
and correction can be quite mechanical and routine. At this point, we gradually 
ease into active interventions that do not simply detect dirt as we have done 
hitherto, but also go about cleaning it. One such cleanup might involve handling the 
inherent biases that cyclicities in data often create (often over time periods, but not 
exclusively).
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In the last section of this chapter, we look at the idea of performing validation that is 
domain-specific and utilizes rules that are practical, beyond being simply numeric. 
Of course, every domain might have its own such rules, and an example in this 
chapter is meant to inspire thought, not provide a blueprint for your specific tasks. 
In fact, it can hardly be said often enough that everything within this book is meant 
to provide inspiration for ways of thinking about data science problems, and never 
merely recipes to copy directly to the task you have in front of you.

***

Before we get to the sections of this chapter, let us run our standard setup code.

from src.setup import *
%load_ext rpy2.ipython

%%R
library(gridExtra)
library(tidyverse)

Missing Data
Absence of evidence is not evidence of absence.
–Martin Rees

Concepts:

•	 Aspects of missing data
•	 Distribution of records in parameter space
•	 Bias in missing data

The story of missing data forms a trilogy in this book. The prior chapter, Chapter 4, 
Anomaly Detection, led with a section on missing data. In that case, our concern was 
to identify “missingness,” which can be marked in various ways by various datasets 
in various data formats. The next chapter, Chapter 6, Value Imputation, is primarily 
about what we might do to fill missing values with reasonable guesses.

This chapter falls between the previous and the next one. We have already taken 
mechanical or statistical tests to identify some data as missing (or as unreliable 
enough that it is better to pretend it is missing). But we have not yet decided whether 
to keep or drop the observations to which those missing data points belong. For this 
section, we need to assess the significance of that missing data to our overall dataset.



Chapter 5

[ 229 ]

When we have a record with missing data, we essentially have two choices about 
its disposition. On the one hand, we can discard that particular record. On the 
other hand, we can impute some value for the missing value, as will be discussed 
in Chapter 6. Actually, in some sense there is a third option as well: we may decide 
that because of the amount or distribution of missing data in our dataset, the data 
is simply not usable for the purpose at hand. While, as data scientists, we never 
want to declare a task hopeless, as responsible researchers we need to consider the 
possibility that particular data simply cannot support any conclusions. Missing 
data is not the only thing that could lead us to this conclusion, but it is certainly 
one common fatal deficit.

If we wish to discard records—but also to a large extent if we wish to impute 
values—we need to think about whether what remains will be a fair representation 
of the parameter space of the data. Sample bias can exist not only in the overall 
composition of a dataset, but also more subtly in the distribution of missing values. 
Keep in mind that “missing” here might result from the processing in Chapter 4, in 
which some values may have been marked missing because we determined they 
were unreliable, even if they were not per se absent in the raw data.

For example, I created a hypothetical dataset of persons with names, ages, genders, 
and favorite colors and flowers. The ages, genders, and names are modeled on the 
actual distribution of popular names over time reported by the United States Social 
Security Administration. I assigned favorite colors and flowers to the people for this 
illustration.

df = pd.read_parquet('data/usa_names.parq')
df

     Age  Gender       Name  Favorite_Color   Favorite_Flower
———————————————————————————————————————————————————————————————
0     48       F       Lisa          Yellow             Daisy
1     62       F      Karen           Green              Rose
2     26       M    Michael          Purple              None
3     73       F   Patricia             Red            Orchid
...  ...     ...        ...             ...               ...
6338  11       M      Jacob             Red              Lily
6339  20       M      Jacob           Green              Rose
6340  72       M     Robert            Blue              Lily
6341  64       F      Debra          Purple              Rose
6342 rows × 5 columns
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In general, this is an ordinary-looking dataset, with a moderately large collection of 
records. We can notice in the data frame summary that at least some data is missing. 
This is worth investigating more carefully.

with show_more_rows():
    print(df.describe(include='all'))

                Age   Gender      Name  Favorite_Color  Favorite_Flower
count   6342.000000     6342      6342            5599             5574
unique          NaN        2        69               6                5
top             NaN        F   Michael          Yellow           Orchid
freq            NaN     3190       535             965             1356
mean      42.458846      NaN       NaN             NaN              NaN
std       27.312662      NaN       NaN             NaN              NaN
min        2.000000      NaN       NaN             NaN              NaN
25%       19.000000      NaN       NaN             NaN              NaN
50%       39.000000      NaN       NaN             NaN              NaN
75%       63.000000      NaN       NaN             NaN              NaN
max      101.000000      NaN       NaN             NaN              NaN

Using Pandas’ .describe() method or similar summaries by other tools allows 
us to see that Age, Gender, and Name have values for all 6,342 records. However, 
Favorite_Color and Favorite_Flower are missing for approximately 750 records 
each. In itself, missing data in 10-15% of the rows is quite likely not to be a huge 
problem. This statement assumes that missingness is not itself biased. Even if we 
need to discard those records altogether, that is a relatively small fraction of a 
relatively large dataset. Likewise, imputing values would probably not introduce 
too much bias, and other features could be utilized within those records. In the 
below section and in Chapter 6, Value Imputation, in relation to undersampling and 
oversampling, we discuss the dangers of exclusion resulting in class imbalance.

While uniformly randomly missing data can be worked around relatively easily, data 
that is missing in a biased way can present a more significant problem. To figure out 
which category we are in with this dataset, let us compare those missing flower 
preferences to the ages of the people. Looking at every individual age up to 101 
years old is hard to visualize; for this purpose, we will group people into 10-year age 
groups. The graph below uses a statistical graphing library called Seaborn, which is 
built on top of Matplotlib.
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df['Age Group'] = df.Age//10 * 10
fig, ax = plt.subplots(figsize=(12, 4.5))
sns.countplot(x="Age Group", hue="Favorite_Flower", 
              ax=ax, palette='gray', data=df)
ax.set_title("Distribution of flower preference by age");

Figure 5.1: Distribution of flower preference by age

A few patterns jump out in this visualization. It appears that older people tend to 
have a strong preference for orchids, and young people a moderate preference for 
roses. This is perhaps a property of the data meriting analysis. More significantly 
for this section, there are few data points for favorite flower at all in the 20-30 age 
group. One might imagine several explanations, but the true answer would depend 
on problem and domain knowledge. For example, perhaps the data corresponding to 
these ages was not collected during a certain time period. Or perhaps people in that 
age group reported a different favorite flower but its name was lost in some prior 
inaccurate data validation/cleaning step.

If we look at the records with missing color preference, we see a similar pattern in 
relation to age. The drop in frequency of available values occurs instead in the 30-40 
age group though.

fig, ax = plt.subplots(figsize=(12, 4.5))
sns.countplot(x="Age Group", hue="Favorite_Color", 
              ax=ax, palette='gray', data=df)
ax.set_title("Distribution of color preference by age");
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Figure 5.2: Distribution of color preference by age

If we were to drop all records with missing data, we would wind up with nearly no 
representation of people in the entire 20-40 age range. This biased unavailability of 
data would be likely to weaken the analysis generally. The number of records would 
remain fairly large, but the parameter space, as mentioned, would have an empty 
(or at least much less densely occupied) region. Obviously, these statements depend 
both on the purpose of our data analysis and our assumptions about the underlying 
domain. If age is not an important aspect of the problem in general, our approach 
may not matter much. But if we think age is a significant independent variable, 
dropping this data would probably not be a workable approach.

This section, like many others, shows the kinds of exploration one should typically 
perform of a dataset. It does not provide one simple answer for the best remediation 
of bias in missing data. That decision will be greatly dependent upon the purpose 
for which the data is being used and also on background domain knowledge that 
may clarify the reasons for the data being missing. Remediation is inevitably a per-
problem decision.

Let us turn to ways that bias might occur in relation to other features rather than 
simply globally in a dataset.

Biasing Trends
It is not the slumber of reason that engenders monsters, but vigilant and insomniac 
rationality.
–Gilles Deleuze
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Concepts:

•	 Collection bias versus trends in underlying domain
•	 Perspective as source of bias
•	 Artifact of collection methods
•	 Visualization to identify bias
•	 Variance by group
•	 Externally identifying base rates
•	 Benford’s law

At times, you may be able to detect sample bias within your data, and will need to 
make a domain area judgment about the significance of that bias. There are at least 
two kinds of sample bias that you should be on the lookout for. On the one hand, 
the distribution of observations may not match the distribution in the underlying 
domain. Quite likely, you will need to consult other data sources—or simply use 
your own domain area knowledge—to detect such a skew in the samples. On the 
other hand, the data themselves may reveal a bias by trends that exist between 
multiple variables. In this latter case, it is important to think about whether the 
detected “trend” could be a phenomenon you have detected in the data, or is a 
collection or curation artifact.

Understanding Bias
Bias is an important term in both statistics and human sciences, with a meaning 
that is strongly related, but that assumes a different valence across fields. In the 
most neutral statistical sense, bias is simply the fact, more commonly true than not, 
that a dataset does not accurately represent its underlying population of possible 
observations. This bare statement hides more nuance than is evident, even outside 
of observations about humans and politically laden matters. More often than not, 
neither we data scientists, who analyze data, nor the people or instruments that 
collected the raw data in the first place can provide an unambiguous delineation of 
exactly what belongs to the underlying population. In fact, the population is often 
somewhat circularly defined in terms of data collection techniques.

An old joke observes someone looking for their lost keys at night in the area under 
a street light. Asked why they do not also look elsewhere, they answer that it is 
because the visibility is better where they are looking. This is a children’s joke, not 
told particularly engagingly, but it also lays the pattern for most data collection of 
most datasets. 
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Observers make observations of what they can see (metaphorically, most are 
probably voltages in an instrument, or bits on a wire, rather than actual human 
eyes), and not what they cannot. Survivorship bias is a term for the cognitive error of 
assuming those observations we have available are representative of the underlying 
population.

It is easy not to be conscious of bias that exists in data, and probably that much 
easier when it indeed does concern human or social subjects and human observers 
bring in psychological and social biases. But it is humans, in the end, even if aided 
by instruments we set up, who make observations of everything else too. For 
example, the history of ethology (the study of animal behavior) is largely a history 
of scientists seeing the behaviors in animals that exist—or that they believe should 
exist—in the humans around them, that they impose by metaphor and blindness. If 
you make a survey of books in your local library to determine the range of human 
literature or music, you will discover the predominance of writers and musicians 
who use your local language and play your local musical style. Even in areas that 
seem most obviously not about humans, our vantage point may create a perspectival 
bias. For example, if we catalog the types of stars that exist in the universe, and the 
prevalence of different types, we are always observing those within our cosmological 
horizon, which not only expresses an interaction of space and time, but also may 
not uniformly describe the entire universe. Cosmologists know this, of course, but 
they know it as an inherent bias to their observations.

In most of this section, we will look at a version of the synthetic United States 
name/age data to detect both of these patterns. As in the last section, this data 
approximately accurately represents the frequency of different names across 
different age groups, based on Social Security Administration data. We can see that 
within the actual domain, the popularity of various names authentically changed 
over time. As in the last section, it is useful to aggregate people into coarser age 
groups for visualization.

Throughout this book I have attempted to avoid social bias in the datasets I select 
or create as examples. For the imagined people in the rows of the name tables, I 
added features like favorite color or flower, rather than more obviously ethnically or 
culturally marked features like eye color, favorite food, or musical preference. Even 
those invented features I use are not entirely independent of culture though, and 
perhaps my position in the social world leads me to choose different factor values 
than would someone located elsewhere. 
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Moreover, by choosing the top 5 most popular names in the United States each year, I 
impose a kind of majority bias: all are roughly Anglo names, and none, for example, 
are characteristically African-American, Latino, Chinese, or Polish, though such are 
all common outside of that top-5-by-year collation methodology.

names = pd.read_parquet('data/usa_names_states.parq')
names['Age Group'] = names.Age//10 * 10
names

     Age   Birth_Month         Name  Gender            Home  Age Group
———————————————————————————————————————————————————————————————————————
0     17          June      Matthew       M          Hawaii         10
1      5     September         Emma       F   West Virginia          0
2      4       January         Liam       M          Alaska          0
3     96         March      William       M        Arkansas         90
...  ...           ...          ...     ...             ...        ...
6338  29        August      Jessica       F   Massachusetts         20
6339  51         April      Michael       M         Wyoming         50
6340  29           May  Christopher       M  North Carolina         20
6341  62      November        James       M           Texas         60
6342 rows × 6 columns

The fields Birth_Month and Home are added to this dataset, and let us stipulate that we 
suspect they may indicate some bias in the observations. Before we look at that, let 
us take a look at a more-or-less expected trend. Note that this dataset was artificially 
constructed only based on the most popular male and female names for each birth 
year. A particular name may not be in this top 5 (per gender) for a particular year, or 
even a particular decade, but nonetheless, a certain number of people in the United 
States were probably given that name (and would be likely to show up in non-
synthetic data).

fig, ax = plt.subplots(figsize=(12, 4.5))
somenames = ['Michael', 'James', 'Mary', 'Ashley']
popular = names[names.Name.isin(somenames)]
sns.countplot(x="Age Group", hue="Name", 
              ax=ax, palette='gray', data=popular)
ax.set_title("Distribution of name frequency by age");
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Figure 5.3: Distribution of name frequency by age

We can see trends in this data. Mary is a popular name among the older people in 
the dataset, but no longer shows up in the most popular names for younger people. 
Ashley is very popular among 20-40-year-olds, but we do not see it present outside 
that age group. James seems to have been used over most age ranges, although it fell 
out of the top-5 spot among 10-40-year-olds, resurging among children under 10. 
Michael, similarly, seems especially represented from 10-60 years of age.

The top-5 threshold used in the generation of the data has definitely created a 
few artifacts in the visualization, but a general pattern of some names becoming 
popular and others waning is exactly a phenomenon we would expect with a bare 
minimum of domain knowledge. Moreover, if we know only a little bit more about 
popular baby names in the United States, the specific distribution of names will 
seem plausible; both for the 4 shown and for the remaining 65 names that you can 
investigate within the dataset if you download it.

Detecting Bias
Let us apply a similar analysis to birth month as we did to name frequency. A 
minimum of domain knowledge will tell you that while there are small annual 
cyclicities in birth month, there should not be a general trend over ages. Even if 
some world-historical event had dramatically affected births in one particular 
month of one particular year, this should create little overall trend when we 
aggregate over decades of age.
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fig, ax = plt.subplots(figsize=(12, 4.5))
months = ['January', 'February', 'March', 'April']
popular = names[names.Birth_Month.isin(months)]
sns.countplot(x="Age Group", hue="Birth_Month", 
              ax=ax, palette='gray', data=popular)
ax.set_title("Distribution of birth month frequency by age");

Figure 5.4: Distribution of birth month frequency by age

Contrary to our hope of excluding a biasing trend, we have discovered that—for 
unknown reasons—January births are dramatically underrepresented among the 
youngest people and dramatically overrepresented among the oldest people. This 
is overlain on an age trend of there being more young people, in general, but the 
pattern nonetheless appears strong. We have not looked at months beyond April, 
but of course we could in a similar fashion.

A certain amount of random fluctuation occurs in the dataset simply because of 
sampling issues. The fact that April is a somewhat more common birth month for 
50-something people than for 40-something people in the dataset is quite likely 
meaningless since there are relatively few data points (on the order of 50) once we 
have cross-cut by both age and birth month. Distinguishing genuine data bias from 
randomness can require additional analysis (albeit, by construction, the January 
pattern jumps out strongly even in this simple visualization).



Data Quality

[ 238 ]

There are numerous ways we might analyze it, but looking for notable differences 
in the spread of one variable in relation to another can be a good hint. For example, 
we think we see an oddness in the pattern of January birth months, but is there a 
general irregularity in the distribution per age? We could attempt to analyze this 
using exact age, but that probably makes the distinction too fine-grained to have 
good subsample sizes. The decade of age is an appropriate resolution for this test. 
As always, think about your subject matter in making such judgments.

Since the number of people decreases with age, we need to find statistics that are 
not overly influenced by the raw numbers. In particular, we can count the number 
of records we have for each age group and birth month and see if those counts are 
notably divergent. Variance or standard deviation (of counts) will increase as the 
size of the age group increases. However, we can normalize that simply by dividing 
by the raw count within the age group of all months.

A little bit of Pandas magic gets us this. We want to group the data by age group, 
look at the birth month, and count the number of records that fall within each 
Age ⨯ Birth_Month. We wish to look at this in a tabular way rather than with a 
hierarchical index. This operation arranges months in order of their occurrence in 
the data, but ordering by chronology is more friendly.

by_month = (names
    .groupby('Age Group')
    .Birth_Month
    .value_counts()
    .unstack())

by_month = by_month[month_names]
by_month
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Birth_Month  January  February  March  April  May  June  July  August
  Age Group
——————————————————————————————————————————————————————————————————————
          0       20        67     59     76   66    77    71      65
         10       37        72     71     78   70    73    82      81
         20       52        60     76     72   65    65    71      66
         30       54        56     66     64   73    58    87      82
        ...      ...       ...    ...    ...  ...   ...   ...     ...
         70       57        43     39     33   39    36    45      34
         80       57        39     28     21   31    37    23      28
         90       55        17     31     24   21    23    30      29
        100       10         7      4      2    6     2     4       6

Birth_Month  September  October  November  December
  Age Group
————————————————————————————————————————————————————
          0         67       67        56        63
         10         83       79        70        79
         20         68       75        76        71
         30         66       65        57        58
        ...        ...      ...       ...       ...
         70         38       30        37        37
         80         27       31        34        37
         90         33       25        28        20
        100          5        5         7         7

11 rows × 12 columns
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That data grid remains a bit too much to immediately draw a conclusion about, so 
as described, let us look at the normalized variance across age groups.

with show_more_rows():
    print(by_month.var(axis=1) / by_month.sum(axis=1))

Age Group
0          0.289808
10         0.172563
20         0.061524
30         0.138908
40         0.077120
50         0.059772
60         0.169321
70         0.104118
80         0.227215
90         0.284632
100        0.079604
dtype: float64

The over-100-years-old group shows a low normalized variance, but it is a small 
subset. Among the other age groups, the middle ages show a notably lower 
normalized variance across months than do the older or younger people. This 
difference is quite striking for those under 10 and those over 80 years old. We can 
reasonably conclude at this point that some kind of sample bias occurred in the 
collection of the birth month; specifically, there is a different bias in effect based on 
the age group of persons sampled. Whether or not this bias matters for the purpose 
at hand, the fact should be documented clearly in any work products of your analyses 
or models. In principle, some sampling technique that will be discussed in Chapter 6, 
Value Imputation, might be relevant to adjust for this.

Comparison to Baselines
The setup of this synthetic dataset is a giveaway, of course. As well as introducing 
birth month, I also added Home in the sense of state or territory of residence and/or 
birth. While there is no documented metadata that definitively clarifies the meaning 
of the column, let us take it as the state of current residence. If we had chosen to 
interpret it as birthplace, we might need to find historical data on populations at 
the times people of various ages were born; clearly that is possible, but the current 
assumption simplifies our task.
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Let us take a look at the current population of the various US states. This will 
provide an external baseline relative to which we can look for sample bias in the 
dataset under consideration.

states = pd.read_fwf('data/state-population.fwf')
states

                State   Population_2019   Population_2010   House_Seats
———————————————————————————————————————————————————————————————————————
  0        California          39512223          37254523          53.0
  1             Texas          28995881          25145561          36.0
  2           Florida          21477737          18801310          27.0
  3          New York          19453561          19378102          27.0
...               ...               ...               ...           ...
 52              Guam            165718            159358           0.5
 53   U.S. Virgin Isl            104914            106405           0.5
 54    American Samoa             55641             55519           0.5
 55    N. Mariana Isl             55194             53883           0.5
 56 rows × 4 columns

As most readers will know, the range of population sizes across different US states 
and territories is quite large. In this particular dataset, representation of states in the 
House of Representatives is given as a whole number, but in order to indicate the 
special status of some entities that have non-voting representation, the special value 
of 0.5 is used (this is not germane to this section, just as a note).

Let us take a look at the distribution of home states of persons in the dataset. The 
step of sorting the index is used to assure that states are listed in alphabetical order, 
rather than by count or something else.

(names
    .Home
    .value_counts()
    .sort_index()
    .plot(kind='bar', figsize=(12, 3), 
          title="Distribution of sample by home state")
);
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Figure 5.5: Distribution of sample by home state

There is clearly variation in the number of samples drawn from residents of each 
state. However, the largest state represented, California, has only about 3x the 
number of samples as the smallest. In comparison, a similar view of the underlying 
populations emphasizes the different distribution.

(states
    .sort_values('State')
    [['State', 'Population_2019']]
    .set_index('State')
    .plot(kind='bar', figsize=(12, 3),
          title="2019 Population of U.S. states and territories")
);
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Figure 5.6: 2019 population of United States states and territories

While California provides the most samples for this dataset, Californians are 
simultaneously the most underrepresented relative to the baseline population of the 
states. As a general pattern, smaller states tend to be overrepresented generally. 
We can, and probably should, think of this as selection bias based on the size of the 
various states. As before, unless we have accurate documentation or metadata that 
describes the collection and curation procedures, we cannot be sure of the cause of 
the imbalance. But a strong trend exists in this inverse relationship of population to 
relative sample frequency.

A note here is that sometimes sampling approaches deliberately introduce similar 
imbalances. If the actual samples were precisely balanced, with some fixed N 
collected per state, this would fairly clearly point to such a deliberate categorical 
sampling as opposed to a sampling based on an underlying rate. The pattern 
we actually have is less obvious than that. We might form a hypothesis that the 
sampling rate is based on some other underlying feature not directly present in 
this data. 
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For example, perhaps a fixed number of observations were made in each county 
of each state, and larger states tend to have more counties (this is not the actual 
underlying derivation, but thinking in this manner should be in your mind). 
Understanding data integrity issues resembles either a scientific process of 
experimentation and hypothesis, or perhaps even more so a murder mystery. 
Developing a reasonable theory of why the data is dirty is always a good first 
step in remediating it (or even in ignoring the issue as not pertinent to the actual 
problem at hand).

Benford’s Law
There is a curious fact about the distribution of digits in many observed numbers 
called Benford’s Law. For a large range of real-world datasets, we see leading 1 
digits far more often than leading 2s, which in turn occur far more commonly than 
leading 3s, and so on. If you see this pattern, it probably does not reflect harmful 
bias; in fact, for many kinds of observations, if you fail to see it, that might itself 
reflect bias (or even fraud).

If a distribution precisely follows Benford’s law, it will specifically have digits 
distributed as: 𝑃𝑃(𝑑𝑑) = log10 (1 + 1𝑑𝑑) 

However, this distribution is often only approximate for real-world data.

When data is distributed according to a power law or a scaling factor, it becomes 
relatively intuitive to understand what leading digits will be distributed in a 
“biased” way. However, much observational data that is not obviously scaling in 
nature still follows Benford’s law (at least approximately). Let us pick an example 
to check; I scraped and cleaned up formatting for the populations and areas of the 
most populous US cities.

cities = pd.read_fwf('data/us-cities.fwf')
cities

             NAME    POP2019    AREA_KM2
0   New York City    8336817       780.9
1     Los Angeles    3979576      1213.9
2         Chicago    2693976       588.7
3         Houston    2320268      1651.1
...           ...        ...         ...
313     Vacaville     100670        75.1
314       Clinton     100471        72.8
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315          Bend     100421        85.7
316    Woodbridge     100145        60.3
317 rows × 3 columns

Let us first count the leading digits of populations.

pop_digits =  cities.POP2019.astype(str).str[0].value_counts()
with show_more_rows():
    print(pop_digits)

1    206
2     53
3     20
4     10
6      9
5      8
8      5
7      3
9      3
Name: POP2019, dtype: int64

Now we ask the same question of area in square kilometers.

area_digits =  cities.AREA_KM2.astype(str).str[0].value_counts()
with show_more_rows():
    print(area_digits)

1    118
2     47
3     31
4     23
9     21
8     21
7     20
6     20
5     16
Name: AREA_KM2, dtype: int64

Neither collection of data exactly matches the Benford’s law ideal distribution, but 
both show the general pattern of favoring leading digits in roughly ascending order.

Let us turn to evaluating the importance of the uneven distribution of categorical 
variables.
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Class Imbalance
It seems to be correct to begin with the real and the concrete, with the real 
precondition, thus to begin [...] with the population. However, on closer examination 
this proves false. The population is an abstraction if I leave out, for example, the 
classes of which it is composed.
–Karl Marx

Concepts:

•	 Predicting rare events
•	 Imbalance in features versus in targets
•	 Domain versus data integrity imbalance
•	 Forensic analysis of sources of imbalance
•	 Stipulating the direction of causality

The data you receive will have imbalanced classes, if it has categorical data at all. The 
several distinct values that a categorical variable may have are also sometimes called 
factor levels (“factor” is synonymous with “feature” or “variable,” as discussed in the 
Preface and Glossary). Moreover, as will be discussed in Chapter 6, Value Imputation 
in the section on Sampling, dividing a continuous variable into increments can often 
usefully form synthetic categories also. In principle, any variable might have a 
categorical aspect, depending on the purpose at hand. When these factor levels occur 
with notably different frequency, it may show selection bias or some other kind of 
bias; however, it very often simply represents the inherent nature of the data, and is 
an essential part of the observation.

A problem arises because many types of machine learning models have difficulty 
predicting rare events. Discussion of concretely rebalancing classes is deferred 
until the Chapter 6 discussion of undersampling and oversampling, but here we at 
least want to reflect on identifying class imbalance. Moreover, while many machine 
learning techniques are highly sensitive to class imbalance, others are more or less 
indifferent to it. Documentation of the characteristics of particular models, and their 
contrast with others, is outside the scope of this particular book.

In particular, though, the main difference between when class imbalance poses a 
difficulty versus when it is central to the predictive value of the data is precisely the 
difference between a target and the features. Or equivalently, the difference between 
a dependent variable and independent variables. When we think of a rare event that 
might cause difficulty for a model, we usually mean a rare target value, and only 
occasionally are we concerned about a rare feature. When we wish to use sampling 
to rebalance classes, it is almost always in relation to target class values.
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We will work with a simple example. Two weeks of Apache server logs from my 
web server are provided as sample data. Such a log file has a number of features 
encoded in it, but one particular value in each request is the HTTP status code 
returned. If we imagine trying to model the behavior of my web server, quite likely 
we would wish to treat this status code as a target that might be predicted by the 
other (independent) variables. Of course, the log file itself does not impose any such 
purpose; it simply contains data on numerous features of each request (including 
response).

The status codes returned from the actual requests to my web server are extremely 
unbalanced, which is generally a good thing. I want most requests to result in 200 
OK responses (or at least some 2xx code). When they do not, there is either a problem 
with the URLs that users have utilized or there is a problem with the web server 
itself. Perhaps the URLs were published in incorrect form, such as in links from other 
web pages; or perhaps deliberately wrong requests were used in attempts to hack 
my server. I never really want a status code outside of 2xx, but inevitably some arise. 
Let us look at their distribution:

%%bash
zcat data/gnosis/*.log.gz | 
    cut -d' ' -f9 | 
    sort | 
    uniq -c

  10280 200
      2 206
    398 301
   1680 304
    181 403
    901 404
      9 500

The 200 status dominates here. The next highest occurrence is 304 Not Modified, 
which is actually fine as well. It simply indicates that a cached copy on a client 
remains current. Those 4xx and 5xx (and perhaps 301) status codes are generally 
undesirable events, and I may want to model the patterns that cause them. Let us 
remind ourselves what is inside an Apache access.log file (the name varies by 
installation, as can the exact fields).

%%bash
zcat data/gnosis/20200330.log.gz | head -1 | fmt -w50

162.158.238.207 - - [30/Mar/2020:00:00:00 -0400]
"GET /TPiP/024.code HTTP/1.1" 200 75
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There is a variety of data in this line, but notably it is easy to think of pretty much all 
of it as categorical. The IP address is a dotted quad, and the first (and often second) 
quad tends to be correlated with the organization or region where the address 
originates. Allocation of IPv4 addresses is more complex than we can detail here, 
but it may be that requests originating from a particular /8 or /16 origin tend to get 
non-200 responses. Likewise, the date—while unfortunately not encoded in ISO 8601 
format—can be thought of as categorical fields for month, hour, minute, and so on.

Let us show a bit of Pandas code to read and massage these records into a data 
frame. The particular manipulations done are not the main purpose of this section, 
but gaining familiarity with some of these methods is worthwhile.

One thing to notice, however, is that I have decided that I am not really concerned 
with the pattern where, for example, my web server became erratic for a day. That 
has not occurred in this particular data, but if it had I would assume that was a 
one-off occurrence not subject to analysis. The separate cyclical elements of hour 
and minute might detect recurrent issues (which are discussed more in later sections 
of this chapter). Perhaps, for example, my web server gives many 404 responses 
around 3 a.m., and that would be a pattern/problem worth identifying.

def apache_log_to_df(fname):
    # Read one log file.  Treat is as a space separated file
    # There is no explicit header, so we assign columns
    cols = ['ip_address', 'ident', 'userid', 'timestamp', 
            'tz', 'request', 'status', 'size']
    df = pd.read_csv(fname, sep=' ', header=None, names=cols)
    
    # The first pass gets something workable, but refine it
    # Datetime has superfluous '[', but fmt matches that
    fmt = "[%d/%b/%Y:%H:%M:%S"
    df['timestamp'] = pd.to_datetime(df.timestamp, format=fmt)
    
    # Convert timezone to an integer
    # Not general, I know these logs use integral timezone
    # E.g. India Standard Time (GMT+5:30) would break this
    df['tz'] = df.tz.str[:3].astype(int)
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    # Break up the quoted request into sub-components
    df[['method', 'resource', 'protocol']] = (
                df.request.str.split(' ', expand=True))
    
    # Break the IP address into each quad
    df[['quad1', 'quad2', 'quad3', 'quad4']] = (
                df.ip_address.str.split('.', expand=True))
    
    # Pandas lets us pull components from datetime
    df['hour'] = df.timestamp.dt.hour
    df['minute'] = df.timestamp.dt.minute
    
    # Split resource into the path/directory vs. actual page
    df[['path', 'page']] = (
                df.resource.str.rsplit('/', n=1, expand=True))
    # Only care about some fields for current purposes
    cols = ['hour', 'minute', 
            'quad1', 'quad2', 'quad3', 'quad4', 
            'method', 'path', 'page', 'status']
    return df[cols]

This function allows us to read all of the daily log files into a single Pandas 
DataFrame simply by mapping over the collection of file names and concatenating 
data frames. Everything except perhaps page in the resulting data frame is reasonable 
to think of as a categorical variable.

reqs = pd.concat(map(apache_log_to_df, 
                 glob('data/gnosis/*.log.gz')))
# Each file has index from 0, so dups occur in raw version
reqs = reqs.reset_index().drop('index', axis=1)
# The /16 subnetwork is too random for this purpose
reqs.drop(['quad3', 'quad4'], axis=1, inplace=True)
reqs
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       hour  minute  quad1  quad2  method                           path
    0     0       0    162    158     GET    /download/pywikipedia/cache
    1     0       3    172     68     GET                          /TPiP
    2     0       7    162    158     GET   download/pywikipedia/archive
    3     0       7    162    158     GET                     /juvenilia
  ...   ...     ...    ...    ...     ...                            ...
13447    23      52    162    158     GET          /download/gnosis/util
13448    23      52    172     69     GET                               
13449    23      52    162    158     GET               /publish/resumes
13450    23      56    162    158     GET    /download/pywikipedia/cache

                                 page   status
    0   DuMont%20Television%20Network      200
    1                        053.code      200
    2                        ?C=N;O=A      200
    3  History%20of%20Mathematics.pdf      200
  ...                             ...      ...
13447                     hashcash.py      200
13448                     favicon.ico      304
13449                                     200
13450          Joan%20of%20Lancaster      200

13451 rows × 8 columns

Within my web server, I have relatively few directories where content lives, but 
relatively many different concrete pages within many of those directories. In fact, the 
path /download/pywikipedia/cache is actually a robot that performs some formatting 
cleanup of Wikipedia pages that I had forgotten that I left running 15+ years ago. 
Given that it may be pointed to any Wikipedia page, there is effectively an infinite 
space of possible pages my server will reply to. There are also a small number of 
long path components because URL parameters are sometimes passed in to a few 
resources. Let us visualize the distribution of the other features in this dataset, with 
an eye to the places where class imbalance occurs.

fig, axes = plt.subplots(3, 2, figsize=(12, 9))

# Which factors should we analyze for class balance?
factors = ['hour', 'minute', 'quad1', 'quad2', 'method', 'status']

# Loop through the axis subplots and the factors
for col, ax in zip(factors, axes.flatten()):
    # Minute is categorical but too many so quantize
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    if col == 'minute':
        data = (reqs[col] // 5 * 5).value_counts()
    else:
        data = reqs[col].value_counts()
    data.plot(kind='bar', ax=ax)
    ax.set_title(f"{col} distibution")

# Matplotlib trick to improve spacing of subplots
fig.tight_layout()

Figure 5.7: Distributions of different features

In these plots, we see some highly imbalanced classes and some mostly balanced 
ones. The hours show a minor imbalance, but with a fairly strong pattern of more 
requests around 21:00–24:00 in Atlantic Daylight Time. Why my hosted server is in 
that timezone is unclear to me, but this is around 6 p.m. US Pacific Time, so perhaps 
users in California and British Columbia tend to read my pages after work. The 
distribution of 5-minute increments within an hour is generally uniform, although the 
slight elevation of a few increments could possibly be more than random fluctuation.
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The imbalance in the initial quads of IP address seems striking, and might initially 
suggest an important bias or error. However, after probing only slightly deeper, 
we can determine using online “whois” databases that (at the time of writing) both 
162.158.0.0/16 and 172.69.0.0/16 are assigned to the CDN (content delivery network) 
that I use to proxy traffic. So the imbalance in these features has simply provided a clue 
that almost all requests are proxied through a known entity. In particular, it means that 
we are unlikely to be able to use these features usefully in any kind of predictive model. 
At most, we might perform feature engineering—as will be discussed in Chapter 7, 
Feature Engineering—to create a derived feature such as is_proxied.

The class imbalances that remain are in the HTTP method and in the status code 
returned. In neither case is it at all surprising that GET and 200 dominate the 
respective features. This is what I expect, and even hope for, in the behavior of my 
web server and website. So nothing there suggests bias in the data collection; since 
all requests were logged, this is not a sample but rather a complete domain. 

As data scientists, we are not necessarily constrained by temporal causality. For 
example, it is clear that in a literal and sequential way, the requesting IP address, 
possibly the userid, maybe the time of the request, and definitely the URL of the 
request, both method and path, will cause a certain status code and number of bytes 
to be returned. In many cases (probably all of them on my simple, static website), 
the size is simply that of the underlying HTML page. But in concept, a server might 
do something different depending on the date and time, or the requester’s address. 
In any case, certain facts about the request exist a few milliseconds before the server 
decides on the appropriate status code and response size and logs all of that.

However, for an analysis, we might want to make predictions that exactly reverse 
causality. Perhaps we would like to treat the size of the response as an independent 
variable in our effort to predict the time of day. For example, it could be that large files 
are always requested around 7 p.m. rather than at other times. Our model might try 
to predict a cause from its effect—and that is perfectly legitimate in data science, as 
long as we are aware of it. In fact, we may only look for correlations, entirely ignoring 
for a particular task the potential hidden cause of multiple features. Data science is 
something different from other sciences; the endeavors are, hopefully, complementary.

***

As a side note, the population is specifically delineated, and cannot 
necessarily be used to describe anything beyond those lines. These 
are all requests made to port 80 or port 443 for the web domain 
gnosis.cx between March 29, 2020, and April 11, 2020; we can 
draw no conclusions about other web domains or other dates 
without further analysis or reasoning about how typical this data is 
of the web as a whole.



Chapter 5

[ 253 ]

In this section, we focused merely on recognizing, and to a limited extent analyzing, 
class imbalance. What it means for the actual task to which we wish to put this 
data is another matter. A significant distinction to keep in mind is that between 
independent and dependent variables. Generally, imbalance in a dependent 
variable will skew classification models in a more important way than imbalance 
in an independent variable. So, for example, if we wish to predict the likely status 
code that will be produced by a request based on other features of the request, we 
would be likely to use sampling techniques that will be discussed in Chapter 6, Value 
Imputation, to balance the dataset synthetically.

On the other hand, class imbalance is not completely irrelevant in independent 
variables, at least not for all kinds of models. This very much depends on the kind 
of model. If we use something in the family of decision trees, for example, it makes 
little difference that HEAD requests are rare if we wish to detect the (hypothetical) 
fact that HEAD is strongly associated with 500 status codes. However, if we use a 
K-nearest neighbors family of algorithm, the actual distance in parameter space can 
be important. Neural networks fall somewhere in the middle in terms of sensitivity 
to class imbalance in independent variables. If we encode the HTTP method either as 
an ordinal value or using one-hot encoding, we may naïvely underweight that strong 
but rare feature. One-hot encoding is discussed in Chapter 7, Feature Engineering. For 
an independent variable, we would not generally wish to oversample a rare factor 
level; but we might wish to artificially overweight it.

We also should think about the numeric ranges of data, which might reflect very 
different underlying units.

Normalization and Scaling
Measure with a micrometer. Mark with chalk. Cut with an axe.
–Rule for precision

Concepts:

•	 The effect of numeric ranges in variables
•	 Univariate and multivariate effects
•	 Numeric forms of various scalers
•	 Factor and sample weighting
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The idea behind normalization of data is simply bringing all the features being 
utilized in a dataset into a comparable numeric range. When starkly different units 
are used for different features—that is, for dimensions of a parameter space—some 
machine learning models will disproportionately utilize those features which simply 
have a larger numeric range. Special cases of differently scaled numeric ranges occur 
when one feature has outliers that have not been removed, or when one feature is 
normally distributed but another feature is exponentially distributed.

This book generally steers away from showing machine learning examples or 
code. There are many wonderful libraries that address that 20% of your work, as a 
data scientist, that you will do after you have done the 80% that this book teaches 
you. However, to emphasize the motivation for normalization, we will create a 
very simple machine learning model on some overly neat data that illustrates 
an overwhelming benefit of scaling. For this example, a small amount of code in 
scikit-learn is used. Notably, however, the scaler classes in scikit-learn are extremely 
useful even if you do not wish to use that library for modeling. It is certainly 
reasonable—and perhaps even best practice within Python—to use scikit-learn even 
if you only ever perform normalization with it.

The synthetic dataset here has two features and one target; all are continuous 
variables.

unscaled = make_unscaled_features()
unscaled

      Feature_1     Feature_2       Target
——————————————————————————————————————————
  0    0.112999   19247.756104   11.407035
  1    0.204178   23432.270613   20.000000
  2    0.173678   19179.445753   17.336683
  3    0.161411   17579.625264   16.633166
...         ...            ...         ...
196    0.137692   20934.654450   13.316583
197    0.184393   18855.241195   18.241206
198    0.177846   19760.314890   17.839196
199    0.145229   20497.722353   14.371859
200 rows × 3 columns
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At a glance, we can see that the Target values are on the order of 15, while Feature_1 
is on the order of 0.1 and Feature_2 is on the order of 20,000. The invented example 
does not assign any specific units for these measures, but there are many quantities 
you might measure whose units produce numeric values in those ranges. As 
an initial question, we might ask whether any of the features have a univariate 
correlation with the target. A machine learning model will find more than just this, 
but it is a useful first question.

unscaled.corr()

            Feature_1   Feature_2      Target
—————————————————————————————————————————————
Feature_1    1.000000   -0.272963    0.992514
Feature_2   -0.272963    1.000000   -0.269406
   Target    0.992514   -0.269406    1.000000

We see that Feature_1 has a very strong positive correlation with the Target, and 
Feature_2 has a moderate negative correlation. So on the face of it, a model should 
have plenty to work with. Indeed, we can tell from the correlation matrix that linear 
models would do extremely well, with or without normalization; but that is the topic 
of a different book. This point can be made visually by plotting Target against each 
feature. 

plot_univariate_trends(unscaled)

Figure 5.8: Feature_1 and Feature_2 as functions of Target

Feature_1 has a visually obvious correlation; Feature_2 reveals at most a very weak 
one to a human eye.
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Applying a Machine Learning Model
As promised, let us apply a machine learning model against this data, trying to 
predict the target based on the features. In ML, we conventionally use the names X 
and y for features and target, respectively. This follows the common pattern, from 
high school algebra, of naming an independent variable x and a dependent variable 
y. Since we generally have multiple features, a capital X is used. While we cannot 
discuss the motivation in any depth, good practice in machine learning is to always 
reserve a portion of your training data for testing, so that you do not overfit your 
model. That is done with the function train_test_split().

from sklearn.model_selection import train_test_split

X = unscaled.drop('Target', axis=1)
y = unscaled['Target']

X_train, X_test, y_train, y_test = (
    train_test_split(X, y, random_state=1))

For this example, we use a K-neighbors regressor to try to model our data. For 
many kinds of problems, this is a very effective algorithm, but it is also one that 
looks directly at distances in parameter space, and is hence very sensitive to scaling. 
If we naïvely apply this model to our raw data, the R-squared score is very low 
(other metrics would be similarly bad).

from sklearn.neighbors import KNeighborsRegressor

knn = KNeighborsRegressor()
knn.fit(X_train, y_train).score(X_test, y_test)

0.027756186064182953

A “perfect” R-squared score is 1.0. A very bad score is 0.0 (negative scores are also 
sometimes possible, and even worse in a sense). But for anything below 0.25 or so, 
we essentially reject the model.

By using, in this case, a min-max scaler, we achieve a far better metric score. The 
scaler we use here simply takes the minimum value of the raw feature, and shifts 
all values by that amount toward zero by subtraction, then divides all values by the 
shifted maximum value. The effect is to produce a range that is always [0, 1], for 
every feature. This synthetic feature does not have any physical meaning per se, as 
the original measure presumably did. 
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But by applying this scaler, all features are guaranteed to occupy the same numeric 
range (with the specific values distributed differently within their ranges). Let us 
apply this min-max scaling to our features before fitting the model again.

from sklearn.preprocessing import MinMaxScaler
X_new = MinMaxScaler().fit_transform(X)

X_train, X_test, y_train, y_test = (
    train_test_split(X_new, y, random_state=1))

knn2 = KNeighborsRegressor()
knn2.fit(X_train, y_train).score(X_test, y_test)

0.9743878175626131

Notice that I did not bother to scale the target in the above code. There would be no 
harm in doing so for the model, but there is no benefit either since the target is not 
part of the parameter space of the features. Moreover, if we scaled the target, we 
would have to remember to unscale it correspondingly to get a meaningful number 
in the desired units.

Scaling Techniques
The scaling technique we used above utilized scikit-learn’s MinMaxScaler. All of the 
scalers in scikit-learn use the same API, and are implemented in an efficient and 
correct manner. There is certainly a good argument for using those within Python, 
even if scikit-learn is not otherwise part of your overall modeling pipeline. However, 
it is not difficult to do the same scaling “by hand” using lower-level vectorized 
operations. For example, this would be simple in NumPy; here we show an example 
in R, and focus only on the algorithm. One nice detail of the scikit-learn API is that it 
knows to normalize column-by-column. In the comparison, we only do one column.

%%R -i X,X_new
# Import the data frame/array from Python
py_raw_data <- X$Feature_1  # only feature 1
py_scaled <- X_new[,1]      # scaled column 1

# Utility function to scale as [0, 1]
normalize <- function(x) {
    floor <- min(x)  # Only find min once
    return ((x - floor) / (max(x) - floor))
}

# Scale the raw data
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r_scaled <- normalize(py_raw_data)

# Near equality of elements from normalize() and MinMaxScaler
all.equal(py_scaled, r_scaled)

[1] TRUE

Notice that even for a straightforward operation like this, the different 
implementations, across libraries and languages, do not perform identical operations 
in an identical order. This allows some floating-point rounding differences to creep 
in. Comparing for strict equality of floating-point values is almost always the wrong 
thing to do; measurements have finite precision and operations introduce 1-ULP 
(unit in the last place) errors frequently. On the other hand, these slight numeric 
differences make no practical difference for actual models, only for equality checks.

%%R
print("A few 'equalities':")
print(py_scaled[1:5])
print(r_scaled[1:5])

print("Exactly equal?")
print((py_scaled == r_scaled)[1:10])

print("Mean absolute difference:")
print(mean(abs(py_scaled - r_scaled)))

[1] "A few 'equalities':"
[1] 0.1776148 1.0000000 0.7249096 0.6142706 0.8920478
[1] 0.1776148 1.0000000 0.7249096 0.6142706 0.8920478
[1] "Exactly equal?"
[1] TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE
[1] "Mean absolute difference:"
[1] 6.130513e-17

Another very common scaling technique is called StandardScaler in scikit-learn. 
It sets the mean of a feature to 0 and the standard deviation to 1. This scaling is 
particularly relevant when a variable is (very roughly) normally distributed. The 
name hints that this approach is usually the default scaler to choose (although 
probably it was derived from “standard deviation” when the name was chosen). Let 
us implement it to illustrate the simple transformation. Here we display the values 
from Feature_2, which are around 20,000 in the raw data.

from sklearn.preprocessing import StandardScaler
X_new2 = StandardScaler().fit_transform(X)
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# Second column for example (both were scaled)
plt.hist(X_new2[:, 1], bins=30)
plt.title("Value distribution after StandardScaler");

Figure 5.9: Feature_2 value distribution after the StandardScaler transformation

StandardScaler uses more numeric operations than MinMaxScaler, since it involves 
standard deviation, and that gives the calculation more opportunity for introducing 
numeric errors. The code in scikit-learn performs tricks to minimize this error 
better than the simple version we present, although again the magnitude is unlikely 
to be genuinely important. Let us manually reproduce the basic operation of 
StandardScaler.

%%R -i X,X_new2
# Import the data frame/array from Python
py_raw_data <- X$Feature_2  # Only feature 2
py_scaled <- X_new2[, 2]    # scaled column 2

r_scaled = (py_raw_data - mean(py_raw_data)) / 
            sd(py_raw_data)

all.equal(py_scaled, r_scaled)

[1] "Mean relative difference: 0.002503133"

In this calculation, we do not pass the all.equal() test. R characterizes the failure 
beyond only a boolean FALSE. We can make the comparison with a bit more laxness 
by setting the tolerance parameter. Let us also verify the characteristics of the 
scaled data.
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%%R
print("Mean from R scaling:")
print(mean(r_scaled))

print("Standard deviation:")
print(sd(r_scaled))

print("Almost equal with tolerance 0.005")
all.equal(py_scaled, r_scaled, tolerance = 0.005)

[1] "Mean from R scaling:"
[1] 6.591949e-17
[1] "Standard deviation:"
[1] 1
[1] "Almost equal with tolerance 0.005"
[1] TRUE

A number of variations are available for scaling through basic multiplication and 
subtraction operations. For example, rather than normalize on standard deviation, 
we could normalize using inter-quartile range (IQR). The scikit-learn class 
RobustScaler does this, for example. To some degree, IQR—or generally quantile-
based approaches—are more robust against outliers. However, the degree to which 
IQR range scaling normalizes is limited, and a stricter quantile approach can be 
more aggressive.

Let us replicate Feature_1 in the sample dataset we are presenting, but make just 
one value (out of 200) an extreme outlier. Recall that Feature_1 has values on the 
order of 0.1. We will introduce a single value of 100 into the variable. Arguably, this 
is an extreme-enough outlier that we should have removed it already, using the 
techniques discussed in Chapter 4, Anomaly Detection, but for whatever reason we 
did not.

X['Feature_3'] = X.Feature_1
X.loc[0, 'Feature_3'] = 100

When we attempt to utilize RobustScaler, the transformed data still has one data 
point at an extreme value. In fact, that extreme is worse than the out-of-bounds 
value, 100, that we selected; moreover, the outlier is even farther out than under 
a StandardScaler transformation. RobustScaler is really only productive under a 
collection including a moderate number of moderate outliers (of the sort that might 
have escaped anomaly detection).
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from sklearn.preprocessing import RobustScaler
X_new3 = RobustScaler().fit_transform(X)

# Third column for example (all were scaled)
plt.hist(X_new3[:, 2], bins=30)
plt.title("Value distribution after RobustScaler");

Figure 5.10: Feature_1 value distribution after RobustScaler

A stronger approach we can use is to rigorously scale values so that they fall 
exclusively within quantiles. In essence, this scales the data within each quantile 
range separately, and hence imposes both a reasonable distribution overall and 
strict bounds on values.

from sklearn.preprocessing import QuantileTransformer
# Ten quantiles is also called "decile"
deciles = QuantileTransformer(n_quantiles=10)
X_new4 = deciles.fit_transform(X)

# Third column for example (all were scaled)
plt.hist(X_new4[:, 2], bins=30)
plt.title("Value distribution after QuantileTransformer");
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Figure 5.11: Feature_1 value distribution after QuantileTransformer

Obviously, this transformed data is not completely uniform—it would have little 
value if there was not some variability beyond ordinal order—but it is bounded and 
reasonably evenly distributed across the range [0, 1]. The single outlier point remains 
as a minor outlier from the main distribution, but is numerically not very distant.

In principle, even though the specific transformers in scikit-learn operate in a 
column-wise fashion, we might wish to apply a different scaling technique to each 
column or feature. As long as the particular transformation generates numeric ranges 
among the transformed values on roughly the same scale (i.e. usually of about 
distance one or two between maximum and minimum value, at least for the majority 
of data), all machine learning techniques that utilize distance in parameter space as 
part of their algorithm will be satisfied. Examples of such algorithms include linear 
models, support vector machines, and K-nearest neighbors. As was mentioned, 
algorithms in the family of decision trees simply do not care about specific distance 
in a dimension, and neural networks can perform a kind of scaling by allowing what 
we can informally call a “scaling layer” that at least might act as a multiplier of each 
input feature (exactly what a trained network “decides” to use neurons and layers 
for is always somewhat opaque to our intentions or understanding).

Factor and Sample Weighting
There are times when you will wish to give a particular feature more significance 
than fair scaling across features allows. This is a slightly different issue than the one 
that is addressed by sampling in Chapter 6, Value Imputation. In that later chapter, 
I discuss either undersampling or oversampling to produce more witnesses of 
minority target classes. That is certainly a possible approach to balancing classes 
within a feature rather than a target, but is not usually the best approach. 
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If nothing else, oversampling across two distinct unbalanced classes has the potential 
to explode the number of synthetic samples.

In the case of unbalanced feature classes, another approach is available. We can simply 
overweight minority classes rather than oversample them. Many machine learning 
models contain an explicit hyperparameter called something like sample_weight 
(the scikit-learn spelling). Separately from the sample weights, however, these same 
model classes will also sometimes have something like class_weight as a separate 
hyperparameter. The distinction here is exactly the one we have been making: sample 
weight allows you to overweight (or underweight) specific rows of input data, while 
class weight allows you to over/underweight specific target class values.

To add more nuance to this matter, we are not restricted to over/underweighting only 
to address class imbalance. We can, in fact, apply it for any reason we like. For example, 
we may know that certain measurements in our dataset are more reliable than others, 
and wish to overweight those. Or we may know that getting predictions right for 
samples with a certain characteristic is more important for task-specific reasons, even 
while not wishing entirely to discard those samples lacking that characteristic.

Let us return to the Apache log file example to illustrate all of these concerns. Recall 
that the processed data looks something like this:

reqs.sample(8, random_state=72).drop('page', axis=1)

       hour    minute    quad1    quad2    method
——————————————————————————————————————————————————
 3347     0         4      172       69       GET
 2729     9        43      172       69       GET
 8102     4        16      172       69       GET
 9347     0        48      162      158       GET
 6323    21        30      162      158       GET
 2352     0        35      162      158       GET
12728     9         0      162      158       GET
12235    19         3      172       69       GET

                                     path    status
————————————————————————————————————————————————————
 3347                /publish/programming       200
 2729                               /TPiP       200
 8102                      /member/images       404
 9347                     /publish/images       304
 6323         /download/pywikipedia/cache       200
 2352    /download/gnosis/xml/pickle/test       200
12728                     /download/relax       200
12235                              /dede2       404
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We noted that both method and status are highly imbalanced in pretty much the way 
we expect them to be in a working web server. The method data specifically has this 
imbalance that we saw plotted above, in Figure 5.7. The hypothetical task we have 
in mind is to predict status codes based on the other features of the dataset (without 
actually issuing an HTTP request, which might change based on the current time, 
for example).

reqs.method.value_counts()

GET     13294
HEAD      109
POST       48
Name: method, dtype: int64

In other words, GET requests are 122 times more common than HEAD requests, and 277 
times more common than POST requests. We may be concerned that this limits our 
ability to make predictions on the rare class values for the method. Often our models 
will simply figure this out for us, but sometimes they will not. Moreover, although 
it is a frequently occurring path, we have decided that we need our model to be 
more sensitive to paths of /TPiP and so will artificially overweight that by 5x as well. 
Notice that in this stipulation, the overweighting has nothing whatsoever to do with 
the underlying distribution of the feature, but rather is a domain requirement of the 
underlying purpose of our modeling.

Likewise, we are especially concerned about predicting 404 status codes (i.e. enhance 
the recall of this label), but are not necessarily interested in the overall balance of 
the target. Instead, we will weight all other outcomes as 1, but weight 404s as 10, 
for task purposes we have determined before performing modeling. Let us do all of 
that in code, in this case using a random forest model from scikit-learn. Should some 
row match both the overweighted path and an underrepresented method, the larger 
multiplier for the method will take precedence.

# The row index positions for rows to overweight
tpip_rows = reqs[reqs.path == '/TPiP'].index
head_rows = reqs[reqs.method == 'HEAD'].index
post_rows = reqs[reqs.method == 'POST'].index

# Configure the weights in a copy of data frame
reqs_weighted = reqs.copy()
reqs_weighted['weight'] = 1  # Default weight of one
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reqs_weighted.loc[tpip_rows, 'weight'] = 5
reqs_weighted.loc[head_rows, 'weight'] = 122
reqs_weighted.loc[post_rows, 'weight'] = 277

# Do not use column page in the model
reqs_weighted.drop('page', axis=1, inplace=True)

# View the configured weights
reqs_weighted.sample(4, random_state=72)

      hour  minute  quad1  quad2  method                  path  status
———————————————————————————————————————————————————————————————————————
3347     0       4    172     69     GET  /publish/programming     200
2729     9      43    172     69     GET                 /TPiP     200
8102     4      16    172     69     GET        /member/images     404
9347     0      48    162    158     GET       /publish/images     304

      weight
—————————————
3347       1
2729       5
8102       1
9347       1

These sample weights are stored on a per-row basis; in other words, we have 13,451 
of them. For this example, most are simply weight 1, but they could all be distinct 
numbers, in concept. Configuring the weights we wish to use with the target is 
different. We could leverage the sample weight itself to choose rows with a certain 
target label; however, that approach is unnecessarily clunky and is not usually our 
preferred approach. Instead, we simply wish to create a small mapping from label 
to weight.

target_weight = {code:1 for code in reqs.status.unique()}
target_weight[404] = 10
target_weight

{200: 1, 304: 1, 403: 1, 404: 10, 301: 1, 500: 1, 206: 1}
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Here we will create, fit, train, and score a scikit-learn model. The API will vary if you 
use some other library, but the concepts will remain the same. It only takes a line 
to perform a train/test split, as is good practice in real code. As a minor API detail, 
we need to encode our string categorical values for this model type, so we will use 
OrdinalEncoder.

from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import OrdinalEncoder

# Create the model object with target weights
rfc = RandomForestClassifier(class_weight=target_weight,
                             random_state=0)

# Select and encode the features and target
X = reqs_weighted[['hour', 'minute', 
                   'quad1', 'quad2',
                   'method', 'path']]

# Encode strings as ordinal integers
X = OrdinalEncoder().fit_transform(X)
y = reqs_weighted['status']
weight = reqs_weighted.weight

# Perform the train/test split, including weights
X_train, X_test, y_train, y_test, weights_train, _ = (
     train_test_split(X, y, weight, random_state=1))

# Fit the model on the training data and score it
rfc.fit(X_train, y_train, sample_weight=weights_train)
rfc.score(X_test, y_test)

0.8183169788878977

As with R-squared used in the regression example, 1.0 represents perfect accuracy. 
Accuracy cannot be less than 0.0 though.

Without more context and analysis, I cannot say whether this model does well or 
poorly for the intended purpose. Quite possibly some other model class and/or 
some better-tuned weights would serve the hypothetical purpose better. The steps 
in trying those are straightforward, and mostly the same as the code shown.

We turn now to a difficult but important concept. Many times we wish to remove 
expected trends from data to reveal the exceptions to those trends.
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Cyclicity and Autocorrelation
Do I contradict myself?
Very well then I contradict myself,
(I am large, I contain multitudes.)
–Walt Whitman

Concepts:

•	 Detrending sequential data
•	 Detected cycles versus a priori domain knowledge
•	 Expected versus distinctive variability
•	 Multiple cyclicities
•	 Autocorrelation

There are times when you expect your data to have periodic behavior within it. In 
such cases—especially when multiple overlapping cyclicities exist within sequential 
data—the deviations from the cyclical patterns can be more informative than the raw 
values. Most frequently we see this in association with time series data, of course. To 
some degree, this concern falls under the purview of Chapter 7, Feature Engineering, 
and indeed we return there to some of the same concerns, and even to the same 
dataset we discuss here.

As a first step, we would like to be able to recognize and analyze periodicities or 
cyclicities in our data. Some of these are intuitively obvious once we have some 
domain knowledge, but others lurk in the data themselves and not necessarily in 
our initial intuitions. For this section, I will utilize a dataset collected many years 
ago by my friend, and occasional co-author, Brad Huntting. For a period in the past, 
Brad collected temperatures in and outside his house in Colorado (USA), generally 
every 3 minutes. The data presented here covers a few days less than a year.

Rooms inside the house were regulated by thermostats; the outdoors naturally 
shows seasonal variation. Moreover, the data itself is imperfect. When we return to 
this data in Chapter 7, Feature Engineering, we will look at gaps, recording errors, and 
other problems in the data collection. For the purpose of this section, a minor degree 
of data cleanup and value imputation was performed in the code that loads the 
dataset. See also Chapter 6, Value Imputation, for additional discussion of imputation 
generally, with different examples.



Data Quality

[ 268 ]

First, let us read in the data using a Python function that loads a Pandas DataFrame. 
However, beyond the loading step, we will perform the analysis and visualization in 
R and its Tidyverse. Very similar capabilities exist in other libraries and languages, 
including Pandas. The underlying concepts are important here, not the specific 
APIs and languages used. Brad uses a web domain name of “glarp” so we use that 
same invented word for some variable names referring to this data about his house 
temperatures.

thermo = read_glarp()
start, end = thermo.timestamp.min(), thermo.timestamp.max()
print("Start:", start)
print("  End:", end)
# Fencepost counting includes ends
print(" Days:", 1 + (end.date() - start.date()).days)

Start: 2003-07-25 16:04:00
  End: 2004-07-16 15:28:00
 Days: 358

Let us look at a few rows of the dataset to have a feeling for its nature. We can see 
that one row exists every 3 minutes during the interval of recording. For this section, 
the interval is completely regular at 3 minutes, and no missing values are present. 
Moreover, a few obvious recording errors in the raw data are cleaned up here with 
imputed values.

%%R -i thermo
glarp <- as.tibble(thermo)
glarp

# A tibble: 171,349 x 5
   timestamp           basement   lab livingroom outside
   <dttm>                 <dbl> <dbl>      <dbl>   <dbl>
 1 2003-07-25 16:04:00     24    25.2       29.8    27.5
 2 2003-07-25 16:07:00     24    25.2       29.8    27.3
 3 2003-07-25 16:10:00     24    25.2       29.8    27.3
 4 2003-07-25 16:13:00     24.1  25.2       29.8    27.4
 5 2003-07-25 16:16:00     24.1  25.2       29.8    27.8
 6 2003-07-25 16:19:00     24.1  25.2       29.8    27.5
 7 2003-07-25 16:22:00     24.1  25.2       29.8    27.6
 8 2003-07-25 16:25:00     24.1  25.2       29.8    27.6
 9 2003-07-25 16:28:00     24.1  25.2       29.8    27.7
10 2003-07-25 16:31:00     24.1  25.2       29.8    27.6
# ... with 171,339 more rows
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We can visualize this data as a first step to removing cyclicities with the goal of 
focusing on the ways in which individual measurements vary from expectations. 
These operations are also called “detrending” the data. Let us look first at outside 
temperatures, plotting their pattern using ggplot2.

%%R
ggplot(glarp, aes(x=timestamp, y=outside)) +
  geom_line() + clean_theme +
  ggtitle("Outside temperature over recording interval")

Figure 5.12: Outside temperature over the recording interval
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As is easy to guess, there is a general pattern of northern hemisphere temperatures 
being warmer in July than in January, with a great deal of jitter within the global 
trend. Even though only 1 year of data is available, we know from very basic 
domain knowledge to expect similar annual cycles for other years. In contrast, as we 
can also anticipate, indoor temperatures both fall within a narrower range and show 
less of a clear pattern.

%%R
ggplot(glarp, aes(x=timestamp, y=basement)) +
  geom_line() + clean_theme +
  ggtitle("Basement temperature over recording interval")

Figure 5.13: Basement temperature over the recording interval
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Overall, indoor temperatures in the basement are relatively narrowly bound between 
about 14°C and 23°C. Some points fall outside of this range, both some high summer 
temperatures indicating that the house had a heating system but no air conditioner, 
and some low winter temperatures in sharp spikes, perhaps reflecting periods when 
windows were opened. However, the outside lows reached about -20°C while these 
indoor lows are generally above 10°C. Something somewhat odd seems to have 
happened around September and October of 2003 as well; perhaps this reflects 
some change in the heating system during that period.

Domain Knowledge Trends
As a first task, let us think about outdoor temperatures that are presumably little 
affected by the house heating system. We would like to identify unexpectedly 
warm or unexpectedly cold measurements as inputs to our downstream model. 
For example, a temperature of 10°C might either be a surprisingly cold summer 
temperature or a surprisingly warm winter temperature, but in itself it is merely 
globally typical and does not carry very much information about the observation 
without additional context.

Given that yearly temperatures will continue to repeat from year to year, it might 
make sense to model this yearly pattern as a portion of a sine wave. However, 
in shape, it certainly resembles a parabola for this period from roughly the 
warmest day of 2003 until roughly the warmest day of 2004. Since we are merely 
detrending a year-scale pattern, not modeling the behavior, let us fit a second-order 
polynomial to the data, which will account for most of the variation that exists in 
the measurements.

%%R
# Model the data as a second order polynomial
year.model <- lm(outside ~ poly(timestamp, 2), data = glarp)

# Display the regression and the data
ggplot(glarp, aes(x=timestamp)) + clean_theme +
  geom_line(aes(y = outside), color = "gray") +
  geom_line(aes(y = predict(year.model)), 
            color = "darkred", size = 2) +
  ggtitle("Outside temperature versus polynomial fit")
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Figure 5.14: Fitting a polynomial curve to the outside temperature data
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We can see in the plot that our annual detrending accounts for most of the data 
variation, so we can simply subtract the trend from the underlying points to get, as 
a first pass, the degree to which a measurement is unexpected. A new tibble named 
outside will hold the data for this narrower focus.

%%R
outside <- glarp[, c("timestamp", "outside")] %>%
    add_column(no_seasonal = glarp$outside - predict(year.model))
outside

# A tibble: 171,349 x 3
   timestamp           outside no_seasonal
   <dttm>                <dbl>       <dbl>
 1 2003-07-25 16:04:00    27.5        1.99
 2 2003-07-25 16:07:00    27.3        1.79
 3 2003-07-25 16:10:00    27.3        1.79
 4 2003-07-25 16:13:00    27.4        1.89
 5 2003-07-25 16:16:00    27.8        2.29
 6 2003-07-25 16:19:00    27.5        1.99
 7 2003-07-25 16:22:00    27.6        2.10
 8 2003-07-25 16:25:00    27.6        2.10
 9 2003-07-25 16:28:00    27.7        2.20
10 2003-07-25 16:31:00    27.6        2.07
# ... with 171,339 more rows

Visualizing the seasonally detrended temperatures, we see a remaining range 
from around -20°C to +20°C. This is somewhat less than the range of the raw 
temperatures, but only somewhat. Variability has decreased, but only modestly. 
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However, there is no obvious overall annual trend once we have performed this 
removal, and the synthetic value is centered at 0.

%%R
ggplot(outside, aes(x=timestamp)) +
  geom_line(aes(y = no_seasonal)) + clean_theme +
  ggtitle("Outside temperature with removed seasonal expectation")

Figure 5.15: Outside temperature with seasonal expectation subtracted
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The second obvious insight we might have into outdoor temperature cycles is that 
it is warmer during the day than at night. Given that there are 358 days of data, a 
polynomial will clearly not fit, but a trigonometric model is likely to fit to a better 
degree. We do not calculate a Fourier analysis here, but rather simply look for an 
expected daily cyclicity. Since we have observations every 3 minutes during each 
day, we wish to convert these 3,360 intervals into 2π radians for the regression to 
model. The model will simply consist of fitted sine and cosine terms, which can 
additively construct any sine-like curve on the specified periodicity.

%%R
# Make one day add up to 2*pi radians
x <- 1:nrow(outside) * 2*pi / (24*60/3)
    
# Model the data as a first order trigonometric regression
day_model <- lm(no_seasonal ~ sin(x) + cos(x), 
                data = outside)
print(day_model)

# Create a new tibble the holds the regression 
# and its removal from the annually detrended data
outside2 <- add_column(outside, 
                day_model = predict(day_model),
                no_daily = outside$no_seasonal - day_model)
outside2

Call:
lm(formula = no_seasonal ~ sin(x) + cos(x), data = outside)

Coefficients:
(Intercept)       sin(x)       cos(x)  
  0.0002343   -0.5914551    3.6214463  

# A tibble: 171,349 x 5
   timestamp           outside no_seasonal day_model no_daily
   <dttm>                <dbl>       <dbl>     <dbl>    <dbl>
 1 2003-07-25 16:04:00    27.5        1.99      3.61    -1.62
 2 2003-07-25 16:07:00    27.3        1.79      3.60    -1.81
 3 2003-07-25 16:10:00    27.3        1.79      3.60    -1.80
 4 2003-07-25 16:13:00    27.4        1.89      3.59    -1.69
 5 2003-07-25 16:16:00    27.8        2.29      3.58    -1.28
 6 2003-07-25 16:19:00    27.5        1.99      3.56    -1.57
 7 2003-07-25 16:22:00    27.6        2.10      3.55    -1.46
 8 2003-07-25 16:25:00    27.6        2.10      3.54    -1.44
 9 2003-07-25 16:28:00    27.7        2.20      3.53    -1.33
10 2003-07-25 16:31:00    27.6        2.07      3.51    -1.44
# ... with 171,339 more rows
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It is difficult to tell from just the first few rows of the data frame, but the daily 
detrending is typically closer to zero than the seasonal detrending alone. The 
regression consists mostly of a cosine factor, but is shifted a bit by a smaller negative 
sine factor. The intercept is very close to zero, as we would expect from the seasonal 
detrending. If we visualize the three lines, we can get some sense; in order to show 
it better, only one week in early August of 2003 is shown. Other time periods have a 
similar pattern; all will be centered at zero because of the detrending. 

%%R
week <- outside2[5000:8360,]
p1 <- ggplot(week, aes(x = timestamp)) +
  no_xlabel + ylim(-8, +8) + 
  geom_line(aes(y = no_seasonal))
p2 <- ggplot(week, aes(x = timestamp)) +
  no_xlabel + ylim(-8, +8) + 
  geom_line(aes(y = day_model), color = "lightblue", size = 3)
p3 <- ggplot(week, aes(x = timestamp)) +
   clean_theme + ylim(-8, +8) +
  geom_line(aes(y = no_daily), color = "darkred")
grid.arrange(p1, p2, p3,
            top = "Annual de-trended; daily regression; daily de-
trended")
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Figure 5.16: Annual detrended data; daily regression; daily detrended
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The thicker, smooth line is the daily model of temperature. In electronic versions 
of this book, it will appear as light blue. At the top is the more widely varying 
seasonally detrended data. At the bottom, the daily detrended data has mostly 
lower magnitudes (in red if your reading format allows it). The third subplot is 
simply the subtraction of the middle subplot from the top one.

Around August 7 are some oddly low values. These look sharp enough to suggest 
data problems, but perhaps a thunderstorm brought August temperatures that 
much lower during one afternoon. One thing we can note in the date range plotted 
is that even the daily detrended data shows a weak daily cycle, albeit with much 
more noise. This would indicate that other weeks of the year have less temperature 
fluctuation than this one; in fact, some weeks will show an anti-cyclic pattern with 
the detrended data being an approximate inverse of the regression line. Notably, 
even on this plot, it looks like August 8 was anti-cyclic, while August 5 and 6 have 
a remaining signal matching the sign of the regression, and the other days have a 
less clear correspondence. By anti-cyclic, we do not mean that, for example, a night 
was warmer than the days around it, but rather that there was less than the expected 
fluctuation, and hence detrending produces an inverted pattern.

That said, while we have not removed every possible element of more complex 
cyclic trends, the range of most values in the doubly detrended data is approximately 
8°C, whereas it was approximately 50°C for the raw data. Our goal is not to remove 
the underlying variability altogether but rather to emphasize the more extreme 
magnitude measurements, which this has done.

Discovered Cycles
We have good a priori beliefs about what outdoor temperatures are likely to do. 
Summers are warmer than winters, and nights are colder than days. However, no 
similarly obvious assumption presents itself for indoor temperatures. We saw earlier 
a plot for temperatures in Brad’s basement. The data is interestingly noisy, but in 
particular we noticed that for about two summer months, the basement temperatures 
were pinned above about 21°C throughout the day and night. From this, we inferred 
that Brad’s house had a heating system but no cooling system, and therefore the 
indoor temperature approximately followed the higher outdoor ones. We wish here 
to analyze only the heating system and its artificially maintained temperature, rather 
than the seasonal trend. Let us limit the data to non-summer days (here named 
according to the pattern in the data rather than the official season dates).
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%%R
not_summer <- filter(glarp, 
                     timestamp >= as.Date("2003-08-15"), 
                     timestamp <= as.Date("2004-06-15")) 

# Plot only the non-summer days
ggplot(not_summer, aes(x=timestamp, y=basement)) +

  geom_line() + clean_theme +
  ggtitle("Basement temperature over non-summer days")

Figure 5.17: Basement temperature over non-summer days

Within the somewhat narrowed period, nearly every day of measurements has 
temperatures both above and below around 18-20°C, so most likely the heating 
system was operating for a portion of each day in almost all of these non-summer 
days. The question we would like to analyze—and perhaps to detrend—is whether 
cyclic patterns exist in indoor temperature data, among the considerable noisiness 
that is clearly present in the raw data.
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A technique called autocorrelation lends itself well to this analysis. Autocorrelation 
is a mathematical technique that identifies repeating patterns, such as the presence 
of a periodic signal mixed with noise or non-periodic variation. In Pandas, the Series 
method .autocorr() looks for this. In R, the relevant function is called acf(). Other 
libraries or programming languages have similar capabilities. Let us take a look at 
what we discover. Note that we do not wish blindly to look for autocorrelations if 
our domain knowledge tells us that only certain periodicities “make sense” within 
the subject matter.

Although our data frame contains a timeseries column already, it is easier here 
simply to create one out of the basement column we will work with. The actual dates 
corresponding to data points are irrelevant for the operation; only their spacing in 
time is of interest. In particular, we can impose a frequency matching the number 
of observations in a day to get a plot labeled intuitively by the number of days. The 
acf() function generates a plot automatically, and returns an object with a number of 
values attached that you can utilize numerically. For the purpose of this section, the 
graph is sufficient.

%%R
per_day <- 24*60/3
basement.temps <- ts(not_summer$basement, frequency = per_day)
auto <- acf(basement.temps, lag.max = 10*per_day)

Figure 5.18: Density distribution of similarities at different increments
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As the autocorrelation name suggests, this shows the correlation of the single 
data series with itself at each possible offset. Trivially, the zero increment is 100% 
correlated with itself. Everything other than that tells us something specific about 
the cyclicities within this particular data. There are strong spikes at each integral 
number of days. We limited the analysis to 10 days forward here. These spikes let us 
see that the thermostat in the basement had a setting to regulate the temperature to 
different levels at different times of each day, but in a way that was largely the same 
between one day and each of the next ten after it.

The spikes in this data are sloped rather than sharp (they are, at least, continuous 
rather than stepped). Any given 3-minute interval tends to have a similar 
temperature to those nearby it, diminishing fairly quickly, but not instantaneously, 
as measurements occur farther away. This is what we would expect in a house with 
a thermostat-controlled heating system, of course. Other systems might be different; 
for example, if a light was on a timer to come on for exactly 3 minutes then go out, 
on some schedule, the measurement of light levels would be suddenly, rather than 
gradually, different between adjacent measurements.

The pattern in the autocorrelation provides more information than only the daily 
cycle, however. We see also a lower correlation at approximately half-day intervals. 
This is also easily understood by thinking about the domain and the technology 
that produced it. To save energy, Brad set his thermostat timer to come on in the 
mornings when he’d wake up, then go to a lower level while he was at the office, 
then again to go up in the early evening when he returned home. I happen to know 
this was an automated setting, but the same effect might, for example, have occurred 
if it was simply a human pattern of manually adjusting the thermostat up and down 
at those times (the signal would probably be less strong than with a mechanical 
timer, but likely present).

Rising above the daily cyclicity, there is also a somewhat higher spike in the 
autocorrelation at 7 days. This indicates that days of the week are correlated with 
the temperature setting of the thermostat. Most likely, either because of a timer 
setting or human habit and comfort, a different temperature was set on weekdays 
versus weekends, for example. This secondary pattern is less strong than the general 
24-hour cyclicity, but about as strong as the half-day cyclicity; examining the 
autocorrelation spikes more carefully could reveal exactly what duration Brad was at 
his office versus coming home, typically. The offset of the secondary spikes from the 
24-hour spikes is probably not at exactly 12 hours, but is at some increment less than 
the full 24 hours.
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We will not do these operations in this section, but think about using the 
autocorrelation as a detrending regression, much as we did with the trigonometric 
regression. This would effectively have separate periodicities of 12 and 24 hours, 
and at 7 days. Clearly, the raw data shown has a lot of additional noise, but it 
would presumably be reduced by subtracting out these known patterns. Some very 
atypical values would stand out even more strongly among this detrended data, 
and potentially thereby have even stronger analytic significance.

Sometimes the data validation that we need to perform is simply highly specific to 
the domain in question. For that, we tend to need more custom approaches and code.

Bespoke Validation
Explanations exist; they have existed for all time; there is always a well-known 
solution to every human problem—neat, plausible, and wrong.
–H. L. Mencken

Concepts:

•	 Leveraging domain knowledge beyond anomaly detection
•	 Example: evaluating duplicated data
•	 Validation as sanity check to further investigation

There are many times when domain knowledge informs the shape of data that is 
likely to be genuine versus data that is more likely to reflect some kind of recording 
or collation error. Even though general statistics on the data do not show anomalies, 
bias, imbalance, or other generic problems, we know something more about the 
domain or the specific problem that informs our expectations about “clean” data.

To illustrate, we might have an expectation that certain kinds of observations should 
occur with roughly a particular frequency compared to other observations; perhaps 
this would be specified further by the class values of a third categorical variable. 
For example, as background domain knowledge, we know that in the United States, 
family size is slightly less than 2 children, on average. If we had data that was meant 
to contain information about all the individual people in sampled households, we 
could use this as a guideline for the shape of the data. In fact, if we had auxiliary 
data on children per household by state, we might refine this reference expectation 
more when validating our data.
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Obviously, we do not expect every household to have exactly 1.9 children in it. Given 
that humans come in integral units, we in fact could never have such a fractional 
number in any specific household at all. However, if we found that in our sampled 
households we averaged 0.5 children per household, or 4 children per household-
with-children, we would have a strong indication that some kind of sample bias was 
occurring. Perhaps children are under- or overreported in the household data for 
individual households. Perhaps the selection of which households to sample biases 
the data toward those with children, or toward those without them. This scenario 
is largely similar to the issue addressed earlier in this chapter of comparisons to 
baselines. It adds only a minor wrinkle to the earlier examples in that we only 
identify households where we wish to validate our expectation of the number of 
children (i.e. under 18 years old) based on a shared address feature across several 
observations (that is, a household).

Collation Validation
Let us look at a completely different example that really cannot be formulated 
in terms of baseline expectations. In this section, we consider genomic data on 
ribosomal RNA (rRNA) that was downloaded from DNA Data Bank of Japan 
(DDBJ), specifically the 16S rRNA (Prokaryotes) in FASTA format dataset. You do 
not need to know anything about genomics or cellular biology for this example; we 
focus simply on the data formats used and an aggregation of records in this format.

Each sequence in this dataset contains a description of the organism in question and 
the nature of the sequence recorded. The FASTA format is widely used in genomics 
and is a simple textual format. Multiple entries in the line-oriented format can simply 
be concatenated in the same file or text. For example, a sequence entry might look 
like this:

FASTA
>AB000001_1|Sphingomonas sp.|16S ribosomal RNA
agctgctaatattagagccctatatatagagggggccctatactagagatatatctatca
gctaatattagagccctatatatagagggggccctatactagagatatatctatcaggct
attagagccctatatatagagggggccctatactagagatataagtcgacgatattagca
agccctatatatagagggggccctatactagagatatatctatcaggtgcacgatcgatc
cagctagctagc

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/16S/


Data Quality

[ 284 ]

The description published with this dataset indicates that each sequence contained 
is at least 300 base pairs, and the average length is 1,104 base pairs. There are 998,911 
sequences contained as of this writing. Note that in DNA or RNA, every nucleobase 
uniquely determines which other base is paired in a double helix, so the format 
does not need to notate both. A variety of high-quality tools exist for working with 
genomic data; details of those are outside the scope of this book. However, as an 
example, let us use SeqKit to identify duplicated sequences. In this dataset, there are 
no pairs of sequences with the same name or ID, but quite a few contain the same 
base pairs. This is not an error, per se, since it reflects different observations. It may, 
however, be redundant data that is not useful for our analysis.

%%bash
cd data/prokaryotes
zcat 16S.fasta.gz | 
  seqkit rmdup --by-seq --ignore-case \
               -o clean.fasta.gz \
               -d duplicated.fasta.gz \
               -D duplicated.detail.txt

[INFO] 159688 duplicated records removed

Around 15% of all the sequences are duplicates. In general, these are multiple IDs 
that pertain to the same organism. We can see such in a quick examination of the 
duplication report produced by seqkit. As an exercise, you might think about 
how you would write a similar duplicate detection function in a general-purpose 
programming language; it is not particularly difficult, but SeqKit is certainly more 
optimized and better tested than would be a quick implementation you might 
produce yourself.

%%bash
cut -c-60 data/prokaryotes/duplicated.detail.txt | head

1384  JN175331_1|Lactobacillus, MN464257_1|Lactobacillus, MN4
1383  MN438326_1|Lactobacillus, MN438327_1|Lactobacillus, MN4
1330  AB100791_1|Lactococcus, AB100792_1|Lactococcus, AB10079
1004  CP014153_1|Bordetella, CP014153_2|Bordetella, CP014153_
934   MN439952_1|Lactobacillus, MN439953_1|Lactobacillus, MN43
912   CP003166_2|Staphylococcus, CP003166_3|Staphylococcus, CP
908   CP010838_1|Bordetella, CP010838_2|Bordetella, CP010838_3
793   MN434189_1|Enterococcus, MN434190_1|Enterococcus, MN4341
683   CP007266_3|Salmonella, CP007266_5|Salmonella, CP007266_6
609   MN440886_1|Leuconostoc, MN440887_1|Leuconostoc, MN440888
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Horizontal transfer of rRNA between organisms is possible, but such an occurrence 
in the data might also represent a misclassification of an organism under 
examination. We can write some code to determine if such an event of multiple 
IDs for the same sequence are sometimes tagged as different bacteria (or perhaps 
archaea).

def matched_rna(dupfile):
    """Count of distinct organisms per sequence match
    
    Return a mapping from line number in the duplicates
    to Counters of occurrences of species names
    """
    counts = dict()
    for line in open(dupfile):
        line = line.rstrip()
        _, match_line = line.split('\t')
        matches = match_line.split(', ')
        first_id = matches[0].split('|')[0]
        names = [match.split('|')[1] for match in matches]
        count = Counter(names)
        counts[first_id] = count
    return counts

It turns out that cataloging multiple organisms with apparently identical rRNA 
sequences is quite a common occurrence. But our analysis/validation may shed 
light on what is likely occurring with these duplicate records. Many lines in the 
duplication report show just one species with many observations. A significant 
minority show something else. Let us look at several examples.

dupfile = 'data/prokaryotes/duplicated.detail.txt'
counts = matched_rna(dupfile)

In some examples, different observations have differing levels of specificity, but are 
not per se different organisms.

print(counts['CP004752_1'])
print(counts['AB729796_1'])

Counter({'Mannheimia': 246, 'Pasteurellaceae': 1})
Counter({'Microbacterium': 62, 'Microbacteriaceae': 17})
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Mannheimia is a genus of the family Pasteurellaceae, and Microbacterium is a 
genus of the family Microbacteriaceae. Whether these “discrepancies” need to be 
remediated in cleanup is very problem-specific, however. For example, we may wish 
to use the more general families in order to group matching sequences together. 
On the other hand, the problem may demand as much specificity in identifying 
organisms as is available. You have to decide how to process or handle different 
levels of specificity in your domain ontology.

A similar issue occurs in another record, but with what appears to be an additional, 
straightforward data error. 

counts['AB851397_1']

Counter({'Proteobacteria': 1, 'proteobacterium': 2, 
'Phyllobacteriaceae': 8})

Phyllobacteriaceae is a family in the broad phylum Proteobacteria, so either way we 
are dealing with rather non-specific classification. But “proteobacterium” appears to 
be a non-standard way of spelling the Linnaean family, both in being singular and in 
lacking of capitalization of the name.

Looking at another record, we might judge the classification as an observational 
error, but it is obviously difficult to be certain without deeper domain knowledge.

counts['CP020753_6']

Counter({'Shigella': 11, 'Escherichia': 153})

Both Shigella and Escherichia belong to the family Enterobacteriaceae. The identical 
sequence is characterized as belonging to different genera here. Whether this 
indicates a misidentification of the underlying organism or a horizontal transfer of 
rRNA between these organisms is not clear from this data alone. However, in your 
data science tasks, this is the sort of decision you are required to make, probably in 
consultation with domain experts.

One more record we can look at is very strange relative to this dataset. It shows 
many duplicates, but that is not really the surprising aspect.

counts['FJ537133_1']

Counter({'Aster': 1,
         "'Elaeis": 1,
         "'Tilia": 1,
         "'Prunus": 2,
         "'Brassica": 3,
         'Papaya': 1,
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         "'Phalaris": 1,
         "'Eucalyptus": 1,
         "'Melochia": 1,
         'Chinaberry': 1,
         "'Catharanthus": 4,
         "'Sonchus": 1,
         "'Sesamum": 1,
         'Periwinkle': 1,
         'Candidatus': 1})

In this case, we have a number of genera of flowering plants—that is, eukaryotes—
mixed with a dataset that is documented to catalog rRNA in prokaryotes. There is 
also a spelling inconsistency in that many of the genera listed have a spurious single-
quote character at the beginning of their name. Whether or not it is plausible for 
these different plants, mostly trees, to share rRNA is a domain knowledge question, 
but it seems likely that these data do not belong within our hypothetical analysis of 
prokaryotic rRNA at all.

The examination of duplicated sequences in this dataset of rRNA sequences points 
to a number of likely problems in the collection. It also hints at problems that may 
lurk elsewhere within the collection. For example, even where identical sequences 
are not named by different levels of cladistic phylogeny, these differing levels may 
conflate the classification of other sequences. Perhaps, for example, this calls out 
for normalization of the data to a common phyletic level (which is a significantly 
large project, but it might be required for a task). Either way, this cursory validation 
suggests a need to filter the dataset to address only a well-defined collection of 
genera or families of organisms.

Transcription Validation
We discussed above, in this section, the possibility that the collection of records (i.e. 
sequences) may have problems in their annotation or aggregation. Perhaps records 
are inconsistent with each other or in some way present conflicting information. The 
examples we identified point to possible avenues for removal or remediation. In 
this second part of the section, we want to look at possible identifiable errors in the 
individual records.

This hypothetical is presented simply as a data example, not per se motivated by 
deep knowledge of RNA sequencing techniques. This is commonly the perspective 
of data scientists who work with domain experts. For example, I do not know 
how many of the measurements in the dataset utilized RNA-Seq versus older 
hybridization-based microarrays. 
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But for this purpose, let us suppose that a relatively common error in the sequencing 
technique causes inaccurate repetitions of short fragments of RNA base pairs that are 
not present in the actual measured rRNA. On the other hand, we also do know that 
microsatellites and minisatellites do occur in rRNA as well (although telomeres do 
not), so the mere presence of repeated sequences does not prove that a data collection 
error occurred; it is merely suggestive.

The purpose of this example is simply to present the idea that something as custom 
as what we do below may be relevant to your data validation for your specific 
domain. What we will look for is all the places where relatively long subsequences 
are repeated within a particular sequence. Whether this is an error or an interesting 
phenomenon is a matter for domain expertise. By default in the code below we look 
for repeated subsequences of 45 base pairs, but provide a configuration option to 
change that length. If each nucleotide were simply randomly chosen, each particular 
pattern of length 45 would occur with probability of about 10–27, and repetitions—
even with “birthday paradox” considerations—would essentially never occur. But 
genetic processes are not so random as that.

As a first step, let us create a short function that iterates over a FASTA file, producing 
a more descriptive namedtuple for each sequence contained along with its metadata. 
Many libraries will do something similar, perhaps faster and more robustly than the 
code shown does, but the FASTA format is simple enough that such a function is 
simple to write.

Sequence = namedtuple("FASTA", "recno ID name locus bp")

def get_sequence(fname):
    fasta = gzip.open(fname)
    pat = re.compile(r'n+')  # One or more 'n's
    sequence = []
    recno = 0
    for line in fasta:
        line = line.decode('ASCII').strip()
        if line.startswith('>'):
            # Modify base pairs to contain single '-' 
            # rather than strings of 'n's 
            bp = "".join(sequence)
            bp = re.sub(pat, '-', bp)  # Replace pat with a dash
            if recno > 0:
                yield Sequence(recno, ID, name, locus, bp)
            ID, name, locus = line[1:].split('|')
            sequence = []
            recno += 1
        else:
            sequence.append(line)

https://en.wikipedia.org/wiki/Birthday_problem
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The get_sequence() function allows us to iterate lazily over all the sequences 
contained in a single gzipped file. Given that the total data is 1.1 GiB, not reading it 
all at once is an advantage. Beyond assuming such files are gzipped, it also makes 
an assumption that headers are formatted in the manner of the DDBJ rather than 
according to a different convention or lacking headers. As I say, other tools are more 
robust. Let us try reading just one record to see how the function works:

fname = 'data/prokaryotes/16S.fasta.gz'
prokaryotes = get_sequence(fname)
rec = next(prokaryotes)

print(rec.recno, rec.ID, rec.name, rec.locus)
print(fill(rec.bp, width=60))

1 AB000106_1 Sphingomonas sp. 16S ribosomal RNA
ggaatctgcccttgggttcggaataacgtctggaaacggacgctaataccggatgatgac
gtaagtccaaagatttatcgcccagggatgagcccgcgtaggattagctagttggtgagg
taaaggctcaccaaggcgacgatccttagctggtctgagaggatgatcagccacactggg
actgagacacggcccagactcctacgggaggcagcagtagggaatattggacaatgggcg
aaagcctgatccagcaatgccgcgtgagtgatgaaggccttagggttgtaaagctctttt
acccgggatgataatgacagtaccgggagaataagccccggctaactccgtgccagcagc
cgcggtaatacggagggggctagcgttgttcggaattactgggcgtaaagcgcacgtagg
cggcgatttaagtcagaggtgaaagcccggggctcaaccccggaatagcctttgagactg
gattgcttgaatccgggagaggtgagtggaattccgagtgtagaggtgaaattcgtagat
attcggaagaacaccagtggcgaaggcggatcactggaccggcattgacgctgaggtgcg
aaagcgtggggagcaaacaggattagataccctggtagtccacgccgtaaacgatgataa
ctagctgctggggctcatggagtttcagtggcgcagctaacgcattaagttatccgcctg
gggagtacggtcgcaagattaaaactcaaaggaattgacgggggcctgcacaagcggtgg
agcatgtggtttaattcgaagcaacgcgcagaaccttaccaacgtttgacatccctagta
tggttaccagagatggtttccttcagttcggctggctaggtgacaggtgctgcatggctg
tcgtcagctcgtgtcgtgagatgttgggttaagtcccgcaacgagcgcaaccctcgcctt
tagttgccatcattcagttgggtactctaaaggaaccgccggtgataagccggaggaagg
tggggatgacgtcaagtcctcatggcccttacgcgttgggctacacacgtgctacaatgg
cgactacagtgggcagctatctcgcgagagtgcgctaatctccaaaagtcgtctcagttc
ggatcgttctctgcaactcgagagcgtgaaggcggaatcgctagtaatcgcggatcagca
tgccgcggtgaatacgtccccaggtcttgtacacaccgcccgtcacaccatgggagttgg
tttcacccgaaggcgctgcgctaactcgcaagagaggcaggcgaccacggtgggatcagc
gactgggtgagtcgtacaggtgc
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In order to check each sequence/record for the subsequence duplication we are 
concerned about, another short function can help us. This Python code uses a 
Counter again, as did the matched_rna() function earlier. It simply looks at every 
subsequence of a given length, many thereby overlapping, and returns only those 
counts that are greater than 1.

def find_dup_subseq(bp, minlen=45):
    count = Counter()
    for i in range(len(bp)-minlen):
        count[bp[i:i+minlen]] += 1
    return {seq: n for seq, n in count.items() if n > 1}

Putting it together, let us look at only the first 2,800 records to see if any have the 
potential problem we are addressing. Given that the full dataset contains close to 
1 million sequences, many more such duplicates occur. An initial range was only 
chosen by trial and error to find exactly two examples. Duplicate subsequences are 
comparatively infrequent, but not so rare as not to occur numerous times among a 
million sequences.

for seq in islice(get_sequence(fname), 2800):
    dup = find_dup_subseq(seq.bp)
    if dup:
        print(seq.recno, seq.ID, seq.name)
        pprint(dup)

2180 AB051695_1 Pseudomonas sp. LAB-16
{'gtcgagctagagtatggtagagggtggtggaatttcctgtgtagc': 2,
 'tcgagctagagtatggtagagggtggtggaatttcctgtgtagcg': 2}
2534 AB062283_1 Acinetobacter sp. ST-550
{'aaaggcctaccaaggcgacgatctgtagcgggtctgagaggatga': 2,
 'aaggcctaccaaggcgacgatctgtagcgggtctgagaggatgat': 2,
 'accaaggcgacgatctgtagcgggtctgagaggatgatccgccac': 2,
 'aggcctaccaaggcgacgatctgtagcgggtctgagaggatgatc': 2,
 'ccaaggcgacgatctgtagcgggtctgagaggatgatccgccaca': 2,
 'cctaccaaggcgacgatctgtagcgggtctgagaggatgatccgc': 2,
 'ctaccaaggcgacgatctgtagcgggtctgagaggatgatccgcc': 2,
 'gcctaccaaggcgacgatctgtagcgggtctgagaggatgatccg': 2,
 'ggcctaccaaggcgacgatctgtagcgggtctgagaggatgatcc': 2,
 'ggggtaaaggcctaccaaggcgacgatctgtagcgggtctgagag': 2,
 'gggtaaaggcctaccaaggcgacgatctgtagcgggtctgagagg': 2,
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 'ggtaaaggcctaccaaggcgacgatctgtagcgggtctgagagga': 2,
 'ggtggggtaaaggcctaccaaggcgacgatctgtagcgggtctga': 2,
 'gtaaaggcctaccaaggcgacgatctgtagcgggtctgagaggat': 2,
 'gtggggtaaaggcctaccaaggcgacgatctgtagcgggtctgag': 2,
 'taaaggcctaccaaggcgacgatctgtagcgggtctgagaggatg': 2,
 'taccaaggcgacgatctgtagcgggtctgagaggatgatccgcca': 2,
 'tggggtaaaggcctaccaaggcgacgatctgtagcgggtctgaga': 2,
 'tggtggggtaaaggcctaccaaggcgacgatctgtagcgggtctg': 2,
 'ttggtggggtaaaggcctaccaaggcgacgatctgtagcgggtct': 2}

As before, this validation only points in the direction of asking domain- and 
problem-specific questions, and does not determine the correct action. Subsequence 
duplications may indicate errors in the sequencing process, but they might also 
reveal something relevant about the underlying domain, and genomic mechanisms. 
Collisions are far too unlikely to occur by mere chance, however.

Exercises
For the exercises of this chapter, we first ask you to perform a typical multi-step 
data cleanup using techniques you have learned. For the second exercise, you try to 
characterize sample bias in the provided dataset using analytic tools this book has 
addressed (or others of your choosing).

Data Characterization
For this exercise, you will need to perform a fairly complete set of data cleaning 
steps. The focus is on techniques discussed in this chapter, but concepts discussed 
in other chapters will be needed as well. Some of these tasks will require skills 
discussed in later chapters, so skip ahead briefly, as needed, to complete the tasks.

Here we return to the “Brad’s House” temperature data, but in its raw form. The 
raw data consists of four files, corresponding to the four thermometers that were 
present. These files may be found at:

https://www.gnosis.cx/cleaning/outside.gz

https://www.gnosis.cx/cleaning/basement.gz

https://www.gnosis.cx/cleaning/livingroom.gz

https://www.gnosis.cx/cleaning/lab.gz

https://www.gnosis.cx/cleaning/outside.gz
https://www.gnosis.cx/cleaning/basement.gz
https://www.gnosis.cx/cleaning/livingroom.gz
https://www.gnosis.cx/cleaning/lab.gz
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The format of these data files is a simple but custom textual format. You may want to 
refer back to Chapter 1, Tabular Formats, and to Chapter 3, Repurposing Data Sources, for 
inspiration on parsing the format. Let us look at a few rows:

%%bash
zcat data/glarp/lab.gz | head -5

2003 07 26 19 28 25.200000
2003 07 26 19 31 25.200000
2003 07 26 19 34 25.300000
2003 07 26 19 37 25.300000
2003 07 26 19 40 25.400000

As you can see, the space-separated fields represent the components of a datetime, 
followed by a temperature reading. The format itself is consistent for all the 
files. However, the specific timestamps recorded in each file are not consistent. 
All four data files end on 2004-07-16T15:28:00, and three of them begin on 
2003-07-25T16:04:00. Various and different timestamps are missing in each file. For 
comparison, we can recall that the full data frame we read with a utility function 
that performs some cleanup has 171,346 rows. In contrast, the line counts of the 
several data files are:

%%bash
for f in data/glarp/*.gz; do 
    echo -n "$f: "
    zcat $f | wc -l 
done

data/glarp/basement.gz: 169516
data/glarp/lab.gz: 168965
data/glarp/livingroom.gz: 169516
data/glarp/outside.gz: 169513

All of the tasks in this exercise are agnostic to the particular programming languages 
and libraries you decide to use. The overall goal will be to characterize each of the 
685k data points as one of several conceptual categories that we present below.

Task 1: Read all four data files into a common data frame. Moreover, we would like 
each record to be identified by a proper native timestamp rather than by separated 
components. You may wish to refer forward to Chapter 7, Feature Engineering, which 
discusses date/time fields.
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Task 2: Fill in all missing data points with markers indicating they are explicitly 
missing. This will have two slightly different aspects. There are some implied 
timestamps that do not exist in any of the data files. Our goal is to have 3-minute 
increments over the entire duration of the data. In the second aspect, some 
timestamps are represented in some data files but not in others. You may wish to 
refer to the Missing Data section of this chapter and the same-named one in Chapter 
4, Anomaly Detection; as well, the discussion of date/time fields in Chapter 7 is likely 
relevant.

Task 3: Remove all regular trends and cycles from the data. The relevant techniques 
may vary between the different instruments. As we noted in the discussion in this 
chapter, three measurement series are of indoor temperatures regulated, at least in 
part, by a thermostat, and one is of outdoor temperatures. Whether or not the house 
in question had differences in thermostats or heating systems between rooms is 
left for readers to try to determine based on the data (at the very least though, heat 
circulation in any house is always imperfect and not uniform).

Task 4: Characterize every data point (timestamp and location) according to these 
categories:

•	 A “regular” data point that falls within generally expected bounds.
•	 An “interesting” data point that is likely to indicate relevant deviation from 

trends.
•	 A “data error” that reflects an improbable value relative to expectations, and 

is more likely to be a recording or transcription error. Consider that a given 
value may be improbable based on its delta from nearby values and not 
exclusively because of absolute magnitude. Chapter 4 is likely to be relevant 
here.

•	 A missing data point.

Task 5: Describe any patterns you find in the distribution of characterized 
data points. Are there temporal trends or intervals that show most or all data 
characterized in a certain way? Does this vary by which of four instruments we 
look at?

Note: As a step in performing detrending, it may be useful to 
temporarily impute missing data, as is discussed in Chapter 6, Value 
Imputation.
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Oversampled Polls
Polling companies often deliberately utilize oversampling (overselection) in their 
data collection. This is a somewhat different issue than the overweighting discussed 
in a topic of this chapter, or than the mechanical oversampling that will be addressed 
in Chapter 6, Value Imputation. Rather, the idea here is that a particular class, or a 
value range, is known to be uncommon in the underlying population, and hence 
the overall parameter space is likely to be sparsely filled for that segment of the 
population. Alternately, the oversampled class may be common in the population 
but also represents a subpopulation about which the analytic purpose needs 
particularly high discernment.

The use of oversampling in data collection itself is not limited to human subjects 
surveyed by polling companies. There are times when it similarly makes sense for 
entirely unrelated subject domains, for example, the uncommon particles produced 
in cyclotrons or the uncommon plants in a studied forest. Responsible data collectors, 
such as the Pew Research Center that collected the data used in this exercise, will 
always explicitly document their oversampling methodology and expectations 
about the distribution of the underlying population. You can, in fact, read all of 
these details about the 2010 opinion survey we utilize at:

https://www.pewsocialtrends.org/2010/02/24/millennials-confident-
connected-open-to-change/

However, to complete this exercise, we prefer you skip initially consulting that 
documentation. For the work here, pretend that you received this data without 
adequate accompanying documentation and metadata (just to be clear: Pew is 
meticulous here). Such is all too often the case in the real world of messy data. 
The raw data, with no systematic alteration to introduce bias or oversampling, is 
available by itself at:

https://www.gnosis.cx/cleaning/pew-survey.csv

Task 1: Read in the data, and make a judgment about what ages were deliberately 
over- or undersampled, and to what degree. We may utilize this weighting in later 
synthetic sampling or weighting, but for now, simply add a new column called 
sampling_multiplier to each observation of the dataset matching your belief.

For this purpose, treat 1x as the “neutral” term. So, for example, if you 
believe 40-year-old subjects were overselected by 5x, assign the multiplier 5.0. 
Symmetrically, if you believe 50-year-olds were systematically underselected by 
2x, assign the multiplier 0.5. Keep in mind that humans in the United States in 2010 
were not uniformly distributed by age. 

https://www.pewsocialtrends.org/2010/02/24/millennials-confident-connected-open-to-change/
https://www.pewsocialtrends.org/2010/02/24/millennials-confident-connected-open-to-change/
https://www.gnosis.cx/cleaning/pew-survey.csv
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Moreover, with a sample size of about 2,000 and 75 different possible ages, we expect 
some non-uniformity of subgroup sizes simply from randomness. Merely random 
variation from the neutral selection rate should still be coded as 1.0.

Task 2: Some of the categorical fields seem to encode related but distinct binary 
values. For example, this question about technology is probably not ideally coded 
for data science goals:

pew = pd.read_csv('data/pew-survey.csv')
list(pew.q23a.unique())

['New technology makes people closer to their friends and family',
 'New technology makes people more isolated',
 '(VOL) Both equally',
 "(VOL) Don't know/Refused",
 '(VOL) Neither equally']

Since the first two descriptions may either be mutually believed or neither believed 
by a given surveyed person, encoding each as a separate boolean value makes 
sense. How to handle a refusal to answer is an additional decision for you to make 
in this re-encoding. Determine which categorical values should better be encoded 
as multiple booleans, and modify the dataset accordingly. Explain and justify your 
decisions about each field.

Task 3: Determine whether any other demographic fields than age were 
oversampled. While the names of the columns are largely cryptic, you can probably 
safely assume that a field with qualitative answers indicating degree of an opinion 
are dependent variables surveyed rather than demographic independent variables. 
For example:

list(pew.q1.unique())

['Very happy', 'Pretty happy', 'Not too happy', "(VOL) Don't know/
Refused"]

You may need to consult outside data sources to make judgments for this task. 
For example, you should be able to find the rough population distribution of US 
timezones (in 2010) to compare to the dataset distribution.

list(pew.timezone.unique())

['Eastern', 'Central', 'Mountain', 'Pacific']
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Task 4: Some fields, such as q1 presented in Task 3, are clearly ordinally encoded. 
While it is not directly possible to assign relative ratios for (Very happy:Pretty 
happy) versus (Pretty happy:Not too happy), the ranking of those three values is 
evident, and calling them ordinal 1, 2, and 3 is reasonable and helpful. You will, 
of course, also have to encode refusal to answer in some fashion. Re-encode all 
relevant fields to take advantage of this intuitive domain knowledge you have.

Denouement
Quality is never an accident. It is always the result of intelligent effort.
–John Ruskin

Topics covered in this chapter: Missing Data (revisited); Bias; Class Imbalance; 
Normalization; Scaling; Overweighting; Cyclicity; Bespoke Validation.

In this chapter, we focused on the problem of bias in data. Datasets rarely, if ever, 
completely represent a population; rather they skew and select from that population 
to form a certain kind of picture. Sometimes this bias is intentional and well-founded 
as a way of filling parameter spaces. Other times it simply reflects the distribution 
of quantities or classes in the underlying reality. In this case, it is both the inherent 
virtue of our data and a pitfall in our analysis. But at other times still, elements of the 
data collection, collation, transcription, or aggregation can introduce biases that are 
more subtle and may need to be remediated in some manner for our analyses and 
modeling of the data. Detecting bias is the first step toward addressing it.

Related to bias, but somewhat parallel as a concern, are cyclicities in data. Very often 
a particular series of data—when the data is ordered in some manner, often as a time 
series—has components of “signal” and “variation” that can be usefully separated. A 
signal is, in some sense, a kind of bias, in that it provides an expectation that at time 
T there is a higher probability the measurement will be close to M. Identifying the 
signals is often an important aspect of data analysis—they are often not a priori—but 
identifying the deviations from the signal also provides an additional channel of 
interesting information.

The prior chapter on anomaly detection provided hints about identifying data 
that is generically statistically unlikely within a collection of values. But very often 
we want to look at problems that are more domain-specific. We are often able to 
take advantage of expectations we have about patterns in clean data that might be 
violated by the data we actually have. These patterns might only be represented by 
custom code that algorithmically expresses these expectations but that cannot be 
formulated in terms of generic statistical tests.

In the next chapter, we turn to the important and subtle question of imputing data.
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6
Value Imputation

I’m a substitute for another guy
I look pretty tall but my heels are high
The simple things you see are all complicated
I look pretty young, but I’m just back-dated, yeah
–Pete Townsend

Data can be missing or untrusted in a variety of ways, and for a variety of reasons. 
These ways are discussed especially in Chapter 4, Anomaly Detection, and Chapter 
5, Data Quality. Sometimes your best option for dealing with bad data is simply to 
discard it. However, many times it is more useful to impute values in some manner, 
in order to retain the rest of the features within an observation. From the perspective 
of this chapter, let us assume that all data values identified as untrusted—even if 
initially present with bad values—have already been explicitly marked as missing.

When imputing data, it is important to keep a good record of the difference between 
values you have invented (imputed) and those that arrived with the original 
dataset. This record might take the form of an explicit annotation to each data 
item, depending on what your data formats enable. The most usual way to keep 
records is by maintaining versions of your data as you clean them in various ways, 
and maintaining (and versioning) explicit scripts that perform the modifications 
repeatably.
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Generally, data comes grouped as many records or observations. The tabular form 
that we ultimately require for machine learning and many statistical purposes is clear 
this way. One row is an “observation,” at least loosely, and each column represents 
a feature we wish, ideally, to have for every observation. Even data that is initially 
stored in a hierarchical or otherwise non-tabular structure needs to be translated to a 
record-oriented representation before we do most analyses on it. The initial form will 
still be partitioned in some record-like manner: maybe separate files, or separate top-
level keys for nested data, or separate partitions based on some task-specific purpose.

The decision to impute values versus discard records need not be all or nothing. It 
might be the case that we have decided that some records are possible or desirable 
to save and others are not. Several considerations are generally present in our 
decision, whether done by record or for the problem generally. The predominant 
emphasis in these considerations assumes a machine learning use of a dataset; 
visualizations or analytics that are not “machine learning” per se worry about 
imputation much less often, but definitely sometimes. Some issues to consider 
include:

•	 Do you have a lot of data? If your data is limited, conserving every record 
possible can be especially important. Machine learning models, mutatis 
mutandis, are that much happier the more data they have to work with. If 
you have millions—or even tens of thousands—of records left after you 
discard those with missing data, you may be able to worry less about 
imputation.effectiveness If you only have hundreds of records, every one feels 
precious; of course, with fewer records, flawed imputation can also have a 
disproportionate effect.

•	 Do you have knowledge or suspicion that missing data occurs in a biased 
way? If the missing records are likely to concern observations that have a 
different characteristic or pattern than the overall dataset, it can be especially 
important to salvage them. Perhaps one sensor location or one time frame 
is closely associated with missing data. That location or time is likely to be 
needed to well capture some aspect of the domain modeled.

•	 Following on the bias issue, you may decide that it is OK to discard those 
records with missing data that belong to the “random flaw” subset, but that 
those records with systematic missing data are crucial since they address a 
different region of the parameter space of the problem.

•	 Do your records have many or few features? A record with five features 
and two of them missing is unlikely to retain much useful weight for good 
models. A record with one feature missing out of fifty or a thousand is 
much more likely to be worth remediating.
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•	 What is the role of the missing value? If the target feature is missing from 
a supervised learning training set—i.e. for a classification or regression 
problem—imputation is very unlikely to do you much good. It is much 
more likely to be useful to impute an input feature. However, even there, 
the role of that input feature in the problem or domain can vary; a particular 
feature can be pivotal from a “business purpose” perspective, whether or not 
it is actually the most predictive feature. Imputing a feature of central task 
importance is generally unwise.

The first two sections of this chapter look at single-value imputation. This fits 
straightforwardly with what we always think of as imputation. The last section looks 
at oversampling and undersampling, which are whole-dataset modifications. Both 
organizationally and conceptually, it is worth addressing those under the topic of 
imputation. The goal with sampling is to produce a dataset that we believe better 
resembles the reality we are trying to model—exactly what imputation is about.

Typical-Value Imputation
And there’s another marketing ploy
Typical girl gets the typical boy
–Ari Up, Paloma McLardy, Tessa Pollitt, and Viv Albertine

Concepts:

•	 Identifying values to impute
•	 Central tendency within a dataset
•	 Mean, median, geometric mean, and multi-modal data
•	 Population-based central tendency
•	 Neighboring data expressing a tendency

effectiveness 

A well-known and compelling essay about how very large datasets 
turn out to solve many of our problems for us is The Unreasonable 
Effectiveness of Data, by Alon Halevy, Peter Norvig, and Fernando 
Periera.

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/35179.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/35179.pdf
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Pretty much the simplest thing we can do is assume a missing value is similar to the 
general trend for that same feature. In some cases, domain knowledge may inform 
us as to what a reasonable default is, in the absence of specific information about a 
particular record. Absent that background, however, the data that exists can provide 
guidance for imputation.

Typical Tabular Data
Let us look at the Dermatology Data Set available from the UCI Machine Learning 
Repository. This data contains 34 measurements of 366 patients, with each one 
diagnosed as having one of six skin conditions. Most of the features are ordinal 
coded measures of the severity of one feature observed.

We get this data in somewhat raw form. The dermatology.data file is a CSV with no 
headers. The dermatology.names file contains a bit more than its name might suggest. 
Beyond providing the feature names, it gives an additional exposition of the dataset, 
such as value coding, where unknown values occur, and a few other things, in prose. 
The dermatology.py file in this book’s repository contains some moderate massaging 
of the data into a data frame.

from src.setup import *
from src.dermatology import *
df.iloc[:, [0, 1, 2, 3, -2, -1]].sample(6)

       erythema    scaling    definite borders    itching    Age
—————————————————————————————————————————————————————————————————
247           2          2                   2          0     62
127           2          2                   2          2     44
230           3          2                   0          1     30
162           3          2                   2          2     22
159           3          2                   2          1     47
296           2          1                   1          3     19

https://archive.ics.uci.edu/ml/datasets/Dermatology
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                    TARGET
———————————————————————————
247              psoriasis
127          lichen planus
230    seboreic dermatitis
162          lichen planus
159    seboreic dermatitis
296      cronic dermatitis

A quick view of the sample rows does not reveal obviously missing data. We can 
investigate further to identify likely missing data. From the description provided, we 
know that observed severities are intended to be encoded as 0, 1, 2, or 3 (the feature 
“family history” as 0 or 1). Is anything outside this coding?

clean, suspicious = [], {}
for col in df.columns:
    values = df[col].unique()
    if set(values) <= {0, 1, 2, 3}:
        clean.append(col)
    else:
        suspicious[col] = values

Most fields are limited to the expected coding values.

print("No problem detected:")
pprint(clean[:8])
print(f"... {len(clean)-8} other fields")

No problem detected:
['erythema',
 'scaling',
 'definite borders',
 'itching',
 'koebner phenomenon',
 'polygonal papules',
 'follicular papules',
 'oral mucosal involvement']
... 25 other fields
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A few other fields fall outside the coding set. However, one of them is TARGET, which 
contains only reasonable names and spellings of the several conditions diagnosed. 
Age, for the most part, also contains reasonable human ages, except one value of 
'?' is also present there. This is the manner in which this dataset encodes missing 
data.missing

# Notice age has some expected ages and also a '?'
print("Suspicious:")
pprint(suspicious)

Suspicious:
{'Age': array(['55', '8', '26', '40', '45', '41', '18', '57', '22', '30', '20',
               '21', '10', '65', '38', '23', '17', '51', '42', '44', '33', '43',
               '50', '34', '?', '15', '46', '62', '35', '48', '12', '52', '60',
               '32', '19', '29', '25', '36', '13', '27', '31', '28', '64', '39',
               '47', '16', '0', '7', '70', '37', '61', '67', '56', '53', '24',
               '58', '49', '63', '68', '9', '75'], dtype=object),
 'TARGET': array(['seboreic dermatitis', 'psoriasis', 'lichen planus',
                  'cronic dermatitis', 'pityriasis rosea',
                  'pityriasis rubra pilaris'], dtype=object)}

missing

The Pandas library, in particular, by default recognizes a variety of 
string values as meaning “missing.” You can manually configure, 
per column, what values count as missing within pandas.read_
csv() and other functions that infer data types. As of this writing, 
and Pandas 1.0, these defaults are exactly these strings: '', '#N/A', 
'#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan', 
'1.#IND', '1.#QNAN', '<NA>', 'N/A', 'NA', 'NULL', 'NaN', 
'n/a', 'nan', and 'null'.

Other libraries may or may not perform similar inference/
guessing, and those that do will probably use a different collection 
of default strings. For data formats that directly encode floating-
point values, often a NaN (“not a number”) value, which is part 
of the IEEE-754 specification for floating-point numbers, is used 
to identify missing data. Philosophical attitudes vary about the 
correctness of this encoding, but you will definitely see it often. 
At other times, “special” values occur, such as -1 (hopefully for a 
measure that must be positive) or 99999 (hopefully for a measure 
expected to be orders of magnitude lower). 
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Having identified the somewhat unusual value used by this dataset for missing 
data, we should often re-encode it using a more standard approach. In particular, 
converting the string value ages to floating-point numbers with NaN used for the 
missing data is a very common style, and one that Pandas treats in some convenient 
and useful ways. To accomplish this in Pandas, we first substitute a known 
“missing” value for the '?', then cast the column to floating-point. We can see that 
several rows have adjusted values.

# Assign missing ages marked with '?' as None
df.loc[df.Age == '?', 'Age'] = None  # or NaN
# Convert string/None ages to floating-point
df['Age'] = df.Age.astype(float)
# Display those rows with missing ages
df.loc[df.Age.isnull()].iloc[:, -4:]

              inflammatory     band-like    Age                 TARGET
    monoluclear inflitrate    infiltrate
———————————————————————————————————————————————————————————————————————
33                       0             0    NaN              psoriasis
34                       0             0    NaN       pityriasis rosea
35                       0             0    NaN    seboreic dermatitis
36                       0             3    NaN          lichen planus
262                      3             0    NaN      cronic dermatitis
263                      2             0    NaN      cronic dermatitis
264                      3             0    NaN      cronic dermatitis
265                      3             0    NaN      cronic dermatitis

The question arises as to what value we might impute as “typical” for this dataset. 
358 rows have specific ages, all in the reasonable range of human lifespans. Eight 
rows have missing values. There are a number of familiar ways of identifying the 
“central tendency” of a data collection. Ones that stand out are mode, median, mean, 
geometric mean, and less often, harmonic mean. In Pandas specifically, only the 
first three of these are built-in methods. For geometric mean or harmonic mean you 
will generally use scipy.stats.gmean or scipy.stats.hmean (neither is difficult to 
construct as a custom function). In a different programming language or tool, these 
details will vary, but the concept will be the same.

Geometric mean is useful when data covers several orders of magnitude. Often these 
are the same kinds of data you would plot using a log scale axis. Measurements 
concerning exponential growth are often appropriately “averaged” with geometric 
mean. Harmonic mean is useful when you are comparing rates of action. For 
example, if you have a feature that measures the velocity of some objects, the typical 
value is best measured as harmonic mean. 
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Keep in mind that these several averages are often numerically close to each other, 
and since an imputation is a guess to begin with, the choice among them may be 
striving for a false precision.precision

For data collections that have a more or less linear distribution, including a normal 
distribution, one of the more commonplace averages is probably appropriate. We 
might try the modal age of the patients as a good representation. We encounter in 
this dataset a multi-modal distribution, which is common in small data. Moreover, 
with ages between 0 and 80 years, and only 358 data points, the data is generally 
“lumpy.” Mode is probably not a good approach (but could be if one value clearly 
predominated).

df.Age.mode()

0    40.0
1    50.0
dtype: float64

We can use a quick plot to get a better sense of the distribution of ages, and perhaps 
an idea about what value might be typical. Axis labels and ticks are omitted because 
we want only an overall sense of the distribution in our exploration.

(df.Age
   .value_counts()
   .sort_index()
   .plot(kind="bar", yticks=[], xticks=[], 
         title="Age distribution of patients "
               f"({df.Age.min():.0f} to {df.Age.max():.0f})")
);

precision

False precision (also called overprecision, fake precision, misplaced 
precision, and spurious precision) occurs when numerical data 
are presented in a manner that implies better precision than is 
justified; since precision is a limit to accuracy, this often leads to 
overconfidence in the accuracy, named precision bias. 
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Figure 6.1: Age distribution of patients (0 to 75)

In this case, nothing particularly jumps out as a likely candidate. There are a few 
peaks only slightly less than the two modes, and no prevalent pattern to the noisy 
data.

Most likely mean or median are more representative. These values come out as 
reasonably close to each other here, although both are notably different from both 
modes.

df.Age.mean(), df.Age.median()

(36.29608938547486, 35.0)

However, we might also attempt to use domain knowledge to make more informed 
choices about a value to impute. For example, the metadata describing this dataset 
indicates that it was developed by several Turkish researchers and published in 1998. 
Patient confidentiality prohibits disclosure of more precise details, but we might 
consult historical demographic data, such as this table obtained from Statista, based 
on World Trade Organization datasets. 

https://www.statista.com/
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The median age in Turkey in 1998 appears to have been approximately 24 years old.

Year Median Age Year Median Age
1950 19.7 1990 21.7
1955 19.4 1995 23.0
1960 19.6 2000 24.5
1965 18.4 2005 26.4
1970 18.5 2010 28.2
1975 19.1 2015 29.8
1980 19.5 2020 31.6
1985 20.5

(Source: WTO, 2018; 2020 projected)

Of course, if our domain knowledge ran deeper than this population information, 
we might also have knowledge about general age correlations with skin conditions. 
As a non-expert, I tend to assume that such conditions generally increase with 
age, but good imputation should have a basis beyond only a vague hunch. For the 
purpose of this book, let us impute unknown values as the median age within the 
data itself.

df.loc[df.Age.isnull(), 'Age'] = df.Age.median()
df.Age.value_counts().head()

35.0    22
50.0    17
40.0    17
36.0    16
27.0    16
Name: Age, dtype: int64

Imputed 35-year-olds become a bit over-represented, but not dramatically so. And 
age-related tendencies should be middling for these imputed observations.
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Locality Imputation
Trends and locality are clearly related, in some sense. For example, in a time series, 
the measurement taken at one particular minute is “local” to the measurement taken 
at the next minute by the same instrument. That is, assuming a roughly minute-
scale measurement frequency; in a domain I worked in for a number of years—
molecular dynamics—time steps are roughly femtoseconds (10-15), and a minute is 
vastly outside the range of any achievable simulation. Conversely, in geology or 
cosmology, minutes are immeasurably small when sequencing epochs. In any case, 
linear or sequential locality is addressed in the next section on trend imputation.

Locality in general, however, is not specifically about sequence. For example, in a 
dimensional space—whether directly representing a physical space, or concerning 
a parameter or phase space—locality might simply be “closeness” in the space. 
Imputing values based on the other values that are nearby is often a reasonable way 
of filling in data we do not actually have. In some cases, locality-based imputation is 
more likely to represent the underlying data than is assuming a global default value.

For example, another dataset available from the UCI Machine Learning Repository 
is a collection of handwritten digits that might be recognized by an optical character 
recognition application. These particular scanned images include anti-aliasing, 
so that the actual strokes in black ink are typically surrounded by gray pixels of 
varying darkness. While adjacent boundaries between dark and light do occur, often 
intermediate grays exist between black and white pixels. In photographic images, 
intermediate colors between regions of an image are even more common.

I have modified a subset of the UCI digit images by randomly dropping out some 
pixels. In this representation, a missing grayscale value is represented by -1. The 
actual scanned pixel values are between 0 (white) and 16 (black). Let us take a look 
at the dataset briefly. We can see that it is 50 samples of 8 × 8 images. Each of the 
positions in the 8 × 8 array is a small integer.

print("Array shape:", digits.shape)

Array shape: (50, 8, 8)

https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
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Each digit array has a few -1 values in it. We can get a sense of the missing data by 
visualizing the pixels with shades along with values. Several samples are shown, 
with each missing pixel containing an ‘x’ inside it.

show_digits(digits)

Figure 6.2: Visualizing some digits
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If we wished to, we could apply sophisticated techniques for edge detection, 
convolutional filters, or the like, which might find better-imputed pixels. However, 
for this demonstration, we will simply assume each missing pixel is the mean value 
of its neighbors. Of course, whether to weight diagonals the same as horizontal and 
vertical neighbors is an additional decision. So is, potentially, a different weight for 
horizontal versus vertical, or up versus down, and so on.

# Coded for clarity, not for best vectorized speed
# Function definition only; used in later cell
def fill_missing(digit):
    digit = digit.copy()
    missing = np.where(digit == -1)
    for y, x in zip(*missing): # Pull off x/y position of pixel
        # Do not want negative indices in slice
        x_start = max(0, x-1)
        y_start = max(0, y-1)
        # No harm in index larger than size
        x_end = x+2
        y_end = y+2
        # What if another -1 is in region? Remove all the -1s
        region = digit[y_start:y_end, x_start:x_end].flatten()
        region = region[region >=0]
        total = np.sum(region) 
        avg = total // region.size
        digit[y, x] = avg
    return digit

The function fill_missing() simply creates a single new digit based on adjacent 
digits. We can easily construct a new dataset by looping through the samples in the 
original one.

new = np.empty_like(digits)
for n in range(new.shape[0]):
    new[n] = fill_missing(digits[n])

show_digits(new)
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Figure 6.3: Digits with missing values imputed

As everywhere in this book, my intention is to promote thought about the best way 
to improve data quality, with the flawed resources available in actual data. The 
specific adjacency averaging that I perform in the sample code is often a reasonable 
approach—and apparently performs very well in the example—but you must always 
formulate a clear intention about what goal you have with your imputation; as well, 
think about how your particular approach might affect the modeling or analysis you 
perform later. Perhaps a different approach to imputation would work better with 
your selection of model.
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Let us turn to trends in data, both time series and other kinds of linear trends.

Trend Imputation
The longer you stand in line, the greater the likelihood that you are standing in the 
wrong line.
–Anonymous

Concepts:

•	 Types of trends (regressions)
•	 Fill
•	 Linear
•	 Time-sensitive
•	 Non-local
•	 Correlated with another variable
•	 Working through a larger example: aggregation of timestamps by class
•	 Judging whether context is sufficient for imputation
•	 Static trend equivalent to central value imputation
•	 Trends other than time series
•	 Polynomial-fit trends imputation

The most obvious, and probably the most widely addressed, trend that data 
scientists use for imputation is time series data. If we make observations on a 
relatively regular schedule—every femtosecond, every second, every minute, every 
year, every century, or whatever—it is reasonable, to a first approximation, to guess 
that a missing observation is similar to the timestamped observations nearby to 
it. One very common use of trend imputation is in financial models; for example, 
market trades of securities may have irregular spacing of events (either missing data, 
or trades being less common than the tick frequency). However, the same concerns 
arise with many other domains as well.

There are several general approaches to trend imputation available. These include 
forward-fill, backward-fill, local regression, time-sensitive regression, non-local 
regression, and correlational imputation. One caveat in all the imputations I discuss 
in this section is that they cannot deal with high-frequency signals that have a shorter 
periodicity than the gaps in the missing data. 
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For example, if something can fluctuate on a stochastic 10-hertz frequency, one-
second-spaced observations are going to be of little value for imputation. Obviously, 
to some degree it depends on the strength of overlapping signals, but this is a 
concern to keep in mind.

Types of Trends
Forward-/backward-fill: Assume that a missing value is the same as the value 
before/after it in the sequence. The Pandas Series.fillna() method can perform 
this imputation, as can the tidyr package’s fill() function in the R tidyverse.

Local regression: Assume there is a continuous function connecting the observations 
adjacent to the missing one. Most of the time we simply assume a linear function; for 
example, we take the mean of those adjacent observations to fill the missing value. In 
concept, we can impute a value based on adjacent points being samples for a non-
linear function, however.

Time-sensitive regression: Even if we look only at values adjacent to missing ones, 
if those adjacent values represent datetimes, we might take advantage of the actual 
chronological spacing of observations. If all observations are evenly spaced in time, 
this is moot. The general intuition here is that values are likely to change more in a 
longer time period than in a shorter one.

Non-local regression: Within a series, a regression can be global or windowed over a 
wider range than adjacent elements. Again, a linear regression is common, and is the 
simplest approach, but other functional forms for regression are possible as well. A 
global or windowed regression may be less sensitive to random local fluctuations in 
underlying trends. Of course, the missing datum might have been such a fluctuation 
itself, so this approach—and most others for trend imputation—amounts to a minor 
degree of smoothing of variability.

Correlation imputation: It may be that the data in one column (feature) with missing 
values is significantly correlated with the data in one or more other columns. If this is 
the case, it may be that models downstream should recognize the cross-correlation, 
for example by decomposition and dimensionality reduction. But as an initial 
imputation step, assuming values based on correlations is often useful.

In somewhat technical terms, we can note that imputation usually reduces 
heteroscedasticity since almost every kind of imputation follows a trend, not 
variability from that trend. For almost all data science purposes, that is desirable, 
or at least acceptable, but we should avoid stating many kinds of statistical 
generalizations on imputed data (usually using the raw data for those purposes 
instead).

***
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Let us look at a very simple time series example first, to illustrate several of these 
approaches. We simply construct a small Pandas Series with date-level resolution, 
but uneven spacing of observation dates. The first observation has a dramatically 
different value than later ones, mostly to emphasize that the implied global slope is 
different from the local differential between elements.

date_series

2001-01-01   -10.0
2001-01-05     1.0
2001-01-10     2.0
2001-02-01     NaN
2001-02-05     4.0
dtype: float64

Forward- or backward-fill are straightforward.

date_series.ffill()  # or .bfill()

2001-01-01   -10.0
2001-01-05     1.0
2001-01-10     2.0
2001-02-01     2.0
2001-02-05     4.0
dtype: float64

Local regression, or called plainly “averaging,” is also easy.

date_series.interpolate('linear')

2001-01-01   -10.0
2001-01-05     1.0
2001-01-10     2.0
2001-02-01     3.0
2001-02-05     4.0
dtype: float64

In Pandas (and in other tools), we can weight a trend based on time increments. This 
is still a local operation (in the sense of adjacent values), but it is a weighted average 
based on the greater nearness of 2001-02-01 to 2001-02-05 than to 2001-01-10. That 
is, the extreme value of -10 that is non-adjacent is not utilized.

date_series.interpolate('time')
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2001-01-01   -10.000000
2001-01-05     1.000000
2001-01-10     2.000000
2001-02-01     3.692308
2001-02-05     4.000000
dtype: float64

Given that this series is monotonically ascending, we can perform a simplified 
regression merely by drawing a line from the initial point to the final point. This is 
not a least-squares linear regression, but it emphasizes the gap between uniform 
and time-based interpolation. The imputed value of 0.5 for February 1 might seem 
out of place, but if we visualize the global trend, it makes sense. The OLS (ordinary 
least-squares) value would also fall significantly below the time interpolated value, 
because one initial value is much lower than others later in the series.

plot_filled_trend(date_series)

Figure 6.4: Global imputation from linear trend

We can also look for correlations among features to impute missing values. For 
example, in the dermatology data used earlier in this chapter, some observed 
features are clearly correlated with the Age feature that is occasionally missing. In 
this case, all of the medical observations are ordinal, but analogous approaches 
would apply to continuous features. In particular, the feature follicular horn plug 
is strongly (and monotonically) negatively correlated with patient age. We might 
simply assign each missing age based on the ordinal value of that other feature. Let 
us calculate the mean ages for each of the follicular horn plug degrees. 
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from src.dermatology import derm
feat = 'follicular horn plug'
age_groups = derm.groupby(feat).Age.mean()
age_groups

follicular horn plug
0    37.696429
1    20.400000
2    10.625000
3     9.750000
Name: Age, dtype: float64

A few lines of moderately dense Pandas code can assign to each missing Age based 
on the mean age of their grouping by the ordinal feature. It happens that in this 
particular dataset, all the missing ages are among patients with zero degree of 
“follicular horn plug,” but other data would likely be different (or perhaps there is 
something in the collection or collation methodology that caused this correlation).

# The row labels for rows with missing Age
missing = derm.loc[derm.Age.isnull()].index  

# Assign Age based on mapping the feature
derm.loc[missing, 'Age'] = derm[feat].map(age_groups)

# Look at filled data for a few features
derm.loc[missing, [feat, 'scaling', 'itching', 'Age']].head(3)

     follicular horn plug   scaling   itching         Age
——————————————————————————————————————————————————————————
33                      0         2         0   37.696429
34                      0         1         0   37.696429
35                      0         2         2   37.696429

The precision at which Pandas calculated the mean age is not meaningful, but there 
is also no special benefit in explicitly reducing it.

A Larger Coarse Time Series
The City of Philadelphia, in the U.S. state of Pennsylvania, provides a wonderful 
resource called OpenDataPhilly, which is “a catalog of open data in the Philadelphia 
region. In addition to being the official open data repository for the City, it includes 
datasets from many organizations in the region.” The dataset we work with in this 
section is valuable and of good quality, but it also contains enough nuance that a 
number of cleanup steps will be required to shape it for our purpose.

https://www.opendataphilly.org/
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The particular real-world dataset we will discuss in this section concerns the tax-
assessed market value of each property. I obtained this data by passing an SQL 
query over an HTTPS interface and getting back a JSON result. The particular 
query was:

SELECT parcel_number, year, market_value FROM assessments

A “parcel” is simply a tax/regulatory word for property under a common deed. I 
should be clear to note that OpenDataPhilly actually has complete information in 
this returned result (at the time of this writing), but I have artificially engineered a 
version with randomly missing values. The full data is in the file philly_house.json 
and the version with missing values is philly_missing.json, both in the repository 
for this book. Approximately 5% of the market values have been replaced with NaN 
for the missing data.

Understanding the Data
I believe the service limited results to fewer than the complete dataset; there are 
relatively few parcels included compared to the Philadelphia population. That 
question is not important for this section, but would likely be relevant to examine 
if we had other purposes in mind. Let us look at the dataset and do some basic 
forensics before imputation. It will take a number of steps to get “clean data” even 
when it was provided in rather good initial form.

parcl = pd.read_json('data/philly_missing.json')
parcl.sample(7, random_state=4) # Random state highlights details

        parcel_number   year   market_value
———————————————————————————————————————————
 1862     123018500.0   2014        96100.0
 3921     888301242.0   2015        15000.0
  617             NaN   2018            0.0
 1068     311033500.0   2018        16500.0
11505     888301508.0   2015        15000.0
 3843     252327300.0   2014            NaN
10717     314204200.0   2016        41800.0

The general idea of the dataset is that each parcel has a market value in each of 
several years. We can see in the sample shown that some parcel_number values are 
missing and some market_value values are missing. The latter was in the data as I 
got it; each of those rows has some year, but a zero for market value. The missing 
market values were constructed by me artificially. 
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Let us get a sense of the distribution of these things.

nparcel = len(parcl[parcl.parcel_number.isnull()])
nmarket = len(parcl[parcl.market_value.isnull()])

print(f"All rows:  {len(parcl):>8,}")
print(f"No parcel: {nparcel:>8,}")
print(f"No market: {nmarket:>8,}")

All rows:    18,290
No parcel:    1,140
No market:      965

In the example, I have no idea why some results are returned with no parcel number, 
but under a stipulated goal of analyzing price trends over time, we cannot make any 
use of those. The missing parcel numbers are a characteristic of the data as I obtained 
it, not of my modifications. Let us discard them as unhelpful to our analysis. We also 
wonder, after this exclusion, what the typical price variation is for one property over 
the five years included. Perhaps we would like to know the standard deviation in 
terms of thousand-dollar groups. We calculate this in the next cell. 

Notice that there are usually (but not always) five different years associated with each 
parcel. So the sum of the value counts shown partially below adds up to a little bit 
more than one-fifth of the total number of filtered rows.

parcl = parcl[parcl.parcel_number.notnull()]

print(f"Remaining rows: {len(parcl):,}")

stds = parcl.groupby('parcel_number')['market_value'].std()
(stds // 1000 * 1000).value_counts().head()

Remaining rows: 17,150
0.0       2360
7000.0     114
6000.0     109
2000.0     103
3000.0      83
Name: market_value, dtype: int64



Value Imputation

[ 320 ]

It jumps out that the most common standard deviation, by far, seems to be the zero 
dollar range. Since we are rounding, that might be an actual zero, or it might simply 
be an amount less than 1,000 dollars. We should look more closely.

stds[stds == 0].count()

2309

The bulk of those parcels whose market value changed by a small amount in fact 
changed by exactly zero over the five years (at least as assessed). Moreover, the 
zero-change situation is around two-thirds of all the data. Of course, some of those 
zero-change parcels might have no change partially because they have missing data. 
Pandas usually ignores missing data for aggregations. It is not clear what the best 
remediation is for parcels that have, for example, four identical market values and 
one missing market value. Looking at a few of them can inform our intuition.

First, let us clean our data frame a bit more. Now that all the NaN values have been 
removed, we hope that all the parcel numbers are integers. We could also benefit 
from the years being actual years rather than merely integers.

parcl['parcel_number'] = parcl.parcel_number.astype(np.uint32)
parcl['year'] = pd.to_datetime(parcl.year, format="%Y")
parcl.head()

    parcel_number         year   market_value
——————————————————————————————————————————————
0       213302600   2016-01-01       196800.0
1       213302600   2015-01-01       196800.0
2       213302600   2014-01-01       196800.0
3       213308200   2018-01-01       198000.0
4       213308200   2017-01-01       198000.0

Some slightly tangled Pandas code can tell us how often the zero-change parcels 
have missing data, and how much missing data parcels have. There are certainly 
other ways than the particular fluent code below to arrive at this answer, but 
the style is typical of data frame operations in many libraries, so it is worth 
understanding.

(parcl
     # Look at those parcels with zero STD among years
     # We calculated those standard deviations as 'stds'
     # The '.index' for non-deviation to find parcels
     .loc[parcl.parcel_number.isin(stds[stds == 0].index)]
     # Group by which parcel we are looking at
     .groupby('parcel_number')
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     # We care about market values for parcel
     .market_value
     # Aggregation is count of different market values
     .agg('count')
     # Summarize rather than show individual parcels
     .value_counts()
)

5    1767
4     473
3      66
2       3
Name: market_value, dtype: int64

Removing Unusable Data
If fewer than four observations (years) exist, the parcel is not usable for the 
downstream analysis. This is a domain-specific judgment for this problem. 
Obviously, this is not any universal rule, but simply task-driven. We can remove 
those problem parcels with some more Pandas code. The following code is largely 
similar to the last example, but it uses descriptive temporary names rather than a 
fluent style. Neither style is per se better, but you will certainly encounter both in 
other data scientists’ or developers’ code.

One subtlety to notice in this code is that the Pandas .groupby() operation ignores 
missing data for aggregations, even just for counting. So if a group has three numeric 
values and two NaNs (that is, five rows matching the category generically), not only 
will .mean() give the average of the three non-missing values, but .count() will give 
the answer 3, not 5. The method .size() will include NaNs.

# Parcels that have no change between years (bool array)?
nochange = parcl.parcel_number.isin(stds[stds == 0].index)

# Parcel data grouped by parcel
by_parcel = parcl[nochange].groupby('parcel_number')

# Aggregate on number of market values and compare with 4
few_vals = by_parcel.market_value.count() < 4

# The parcel numbers that have fewer than 4 market values 
few_index = few_vals[few_vals == True].index

# What are the actual row numbers we wish to drop?
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drop_rows = parcl[parcl.parcel_number.isin(few_index)].index

# New name and DataFrame holds the non-dropped rows
parcl2 = parcl.drop(drop_rows)

# We trim from 17,150 rows to 16,817
parcl2

        parcel_number         year   market_value
——————————————————————————————————————————————————
    0       213302600   2016-01-01       196800.0
    1       213302600   2015-01-01       196800.0
    2       213302600   2014-01-01       196800.0
    3       213308200   2018-01-01       198000.0
  ...             ...          ...            ...
18286       661010710   2016-01-01       215000.0
18287       661010710   2015-01-01       215000.0
18288       661010710   2014-01-01       215000.0
18289       661010720   2018-01-01       215000.0
16817 rows × 3 columns

Let us turn to actual trend imputation. By stipulation, when all but one year shows 
one common market value, the remaining year (with a missing value) should be 
imputed as the same value. In some sense this is the “null trend,” but it is also the 
same action as the correlation imputation above. Treating the parcel number as a 
categorical variable (which it is “ontologically,” albeit with many classes), what 
we impute is a typical value that is also exactly the mean, median, min, max, and 
mode for the class.

Imputing Consistency
The approach here is not the only possible one. For example, if we decided that 
housing values generally increased between 2014 and 2018 in Philadelphia, then 
even absent knowledge of a particular year for a particular parcel, we might impute 
that trend. However, this alternate approach is only easy to make sense of if the 
missing year is either the first or last one. If all of the 2014, 2015, 2017, and 2018 
values are the same for a parcel, a linear global trend really will not inform us 
about that parcel in 2016.

# Aggregate group to find parcels w/ exactly four years
# The 'by_parcel' group already assumes no change
four_vals = by_parcel.market_value.count() == 4
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# The parcel numbers that have 4 market values
four_index = four_vals[four_vals == True].index

# Row numbers of parcels to impute on
impute_rows = parcl2[parcl2.parcel_number.isin(four_index)].index

# Group parcels only for parcels with 4 market values
by_four = parcl2.loc[impute_rows].groupby('parcel_number')

# Impute the mean (or identically median, etc) to rows
new_vals = by_four.market_value.mean()

# A mapping of SOME parcel numbers to value
new_vals

parcel_number
42204300     30800.0
42205300     33900.0
42206800     30800.0
42207200     30800.0
              ...   
888301511    15000.0
888301512    15000.0
888301814    15000.0
888301815    15000.0
Name: market_value, Length: 473, dtype: float64

There is a detail that the above code elided. We looked for places where one parcel 
has four non-missing values under the assumption that that probably means there 
is one NaN for some market value matching that parcel. However, technically that 
is not necessarily true. If a parcel has only four rows in total, that indicates an entire 
row is missing, not only the market value associated with that row. The next block 
of code fills in these common group values, but we add a couple of lines to show 
where it is simply reassigning the same value to the four existing rows.

In order to allow detection and display of the unusual condition we wish to note, 
the next code is an explicit loop. It is generally more idiomatic Pandas practice—
or data frames generally—to vectorize the operation for speed. We could do 
that in Pandas using another .groupby() accompanied by a slightly magical 
.transform(lambda x: x.fillna(x.mean())). 
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For fewer than 20,000 rows of data, the speed difference is not important, but for 
millions of rows it would be.

# We keep a history of changes in different DFs
parcl3 = parcl2.copy()

# Loop through the new filled values by parcel
for n, (index, val) in enumerate(new_vals.items()):
    # Assignment will fill multiple rows, most redundantly
    parcl3.loc[parcl3.parcel_number == index, 'market_value'] = val
    # Did we start with only four rows in total?
    if len(parcl3.loc[parcl3.parcel_number == index]) == 4:
        print(f"Parcel #{index} has only 4 rows total (all 
${val:,.0f})")

Parcel #352055600 has only 4 rows total (all $85,100)
Parcel #541286700 has only 4 rows total (all $116,600)
Parcel #621431100 has only 4 rows total (all $93,800)

The cleaning we have done in this section has been relatively detailed. We should 
check our work. We would like parcl3 to contain the same number of rows as parcl2 
since the missing value imputation should not change that. We also know that there 
are 473 parcels that are acted on by the last bit of code. However, three of those 
were places where only four rows existed to start with. So if things went right, there 
should be 470 rows modified between the versions, in all cases substituting a value 
for a NaN.

assert len(parcl2) == len(parcl3) == 16_817

(parcl3[parcl3.market_value.notnull() &
       (parcl2.market_value != parcl3.market_value)]
     .sort_values('parcel_number'))

        parcel_number         year   market_value
——————————————————————————————————————————————————
1733         42204300   2018-01-01        30800.0
3718         42205300   2017-01-01        33900.0
1306         42206800   2014-01-01        30800.0
1346         42207200   2014-01-01        30800.0
...               ...          ...            ...
11517       888301511   2018-01-01        15000.0
11525       888301512   2015-01-01        15000.0
 7802       888301814   2016-01-01        15000.0
14156       888301815   2015-01-01        15000.0
470 rows × 3 columns
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Interpolation
The section has gone quite a long way before actually arriving at trend imputation. 
However, understanding datasets initially is always requisite, and other cleaning 
is very often required before we can perform trend imputation itself. Imputation 
requires a moderate degree of cleanliness before it becomes possible. Fortunately, 
the actual trend imputation is extremely compact in Pandas and other similar data 
frame tools.

Filling in values will require two steps in the approach we choose here. Linear (local) 
interpolation feels reasonable as an approach here. With only five timesteps, and 
most market values not actually changing at all in the dataset, any kind of global 
regression is not supportable for the example.

The default Pandas .interpolate() gives us almost what we want; however, it 
will not address a missing first element. Since it operates in a forward fashion, 
the method defaults to forward-fill for trailing elements. In order to ensure a first 
element is imputed as well, we need to follow up with a backward-fill.

There is a trick here to watch out for. If we simply interpolated on the entire data 
frame, that would likely fill in some values based on the prior parcel. Specifically, 
if the first year associated with a parcel is NaN, we would get a meaningless trend 
between the last value of the prior parcel and the first value of the next parcel. 
Hence we need to operate in a group-based way.

A simple preview of what we will do can be seen in a small Series, first with only 
interpolation, then adding back-fill.

s = pd.Series([None, 1, 2, None, 3, 4, None])
s.interpolate()

0    NaN
1    1.0
2    2.0
3    2.5
4    3.0
5    4.0
6    4.0
dtype: float64

s.interpolate().bfill()

0    1.0
1    1.0
2    2.0
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3    2.5
4    3.0
5    4.0
6    4.0
dtype: float64

Let us put the pieces together. We first make sure we order correctly by parcel 
number and year, then interpolate, then back-fill.

# Sort data to keep parcels together & years in order
parcl4 = parcl3.sort_values(['parcel_number', 'year'])

# Interpolate per group
parcl4['market_value'] = (
    parcl4
    .groupby('parcel_number')
    .market_value
    .transform(pd.DataFrame.interpolate))

# Back fill per group
parcl4['market_value'] = (
    parcl4
    .groupby('parcel_number')
    .market_value
    .transform(pd.DataFrame.bfill))

Now that we have (probably) completed our cleanup and trend imputation, we 
should do a sanity check on our data frame.

print(f"Total rows after operations: {len(parcl4):,}")

# Overlooked missing data
parcl4.loc[parcl4.market_value.isnull()]

Total rows after operations: 16,817
        parcel_number         year   market_value
——————————————————————————————————————————————————
16461       571291500   2018-01-01            NaN
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This final check reveals that there is one parcel for which only one year of data exists, 
and that hence has no trend to interpolate. Most likely we want to discard this row 
from our analysis as well. Before we leave this section, we can assure ourselves that 
this unusual row is not an artifact of our filtering and imputing, but is rather present 
in the original data itself.

# As read from disk (other than missing parcels)
parcl.loc[parcl.parcel_number == 571291500]

        parcel_number         year   market_value
——————————————————————————————————————————————————
16461       571291500   2018-01-01            NaN

Non-Temporal Trends
This book tries to use real-world data as much as possible. The odd accidents, 
patterns, and weird corners of real datasets are worth getting a feel for. Synthetic 
data—beyond the very short examples used to illustrate an API narrowly—risks 
missing some of the messiness. For this section, nonetheless, I invent a whimsical 
and fictional dataset that I believe has an interesting structure. Apologies go out in 
advance to the solid-state physicists or quantum chemists among my readers who 
might note that even a comic book metal cannot behave in the manner I purport.

Lex Luthor Laboratories has done a number of experiments that involve shining 
lasers at various forms of kryptonite, in their ever-nefarious efforts to defeat 
Superman and rule the world. In particular, they notice that many types of 
kryptonite gain a broad visual band of luminance when exposed to lasers of various 
wavelengths. Kryptonite being in scarce supply, they have not managed to test the 
behavior of all the element’s types at all laser wavelengths. Moreover, the kilowatt 
lasers they used are each in some specific frequency, but they may hypothetically 
wish to develop weapons using different kinds of lasers than those used in the tests.

A data frame contains observations made by the lab. The units are measured in 
directional candela rather than overall lumens because lasers are focused in a single 
direction.

krypt = pd.read_fwf('data/excited-kryptonite.fwf')
krypt
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       Laser_type_kw    Subtype    Wavelength_nm    Kryptonite_type
————————————————————————————————————————————————————————————————————
  0      Helium–neon        NaN            632.8              Green
  1      Helium–neon        NaN            543.5              Green
  2      Helium–neon        NaN            593.9              Green
  3      Helium–neon        NaN            611.8              Green
...              ...        ...              ...                ...
 95          Excimer        ArF            193.0               Gold
 96          Excimer        KrF            248.0               Gold
 97          Excimer       XeCL            308.0               Gold
 98          Excimer        XeF            353.0               Gold

       candela_per_m2
——————————————————————
  0           415.837
  1               NaN
  2           407.308
  3           401.305
...               ...
 95           611.611
 96               NaN
 97           608.125
 98               NaN

99 rows × 5 columns

A visualization will make it evident that, at least within the range of laser 
wavelengths tested, each type of kryptonite tested—green, red, and gold—seems 
to have a different, more or less log-linear response curve. It remains possible that 
xenologenetic metals, being what they are, will have surprising characteristics under 
untested wavelengths. At a first pass, though, we basically have a regression problem.

plot_kryptonite()

Figure 6.5: Luminance response of kryptonite types by wavelength
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For this section, we are not necessarily interested in the full regression, but simply in 
imputing the missing observations. In the table and the plot, you can see that some 
lasers in the test suite do not have available data against some types of kryptonite. 
For example, the helium-neon laser at 1520 nm was only tested against gold and red 
kryptonite, and the CO2 laser at 9400 nm was only tested against the green and red 
kryptonite.

(krypt[
    (krypt.Wavelength_nm > 1500) & 
    (krypt.Wavelength_nm < 10000)]
.sort_values('Wavelength_nm'))

       Laser_type_kw    Subtype    Wavelength_nm    Kryptonite_type
———————————————————————————————————————————————————————————————————
  5      Helium–neon        NaN           1520.0              Green
 38      Helium–neon        NaN           1520.0                Red
 71      Helium–neon        NaN           1520.0               Gold
  6      Helium–neon        NaN           3391.3              Green
...              ...        ...              ...                ...
 72      Helium–neon        NaN           3391.3               Gold
 28              CO2        NaN           9400.0              Green
 61              CO2        NaN           9400.0                Red
 94              CO2        NaN           9400.0               Gold

       candela_per_m2
——————————————————————
  5               NaN
 38           497.592
 71           616.262
  6           444.054
...               ...
 72           624.755
 28           514.181
 61           334.444
 94               NaN

9 rows × 5 columns

While the two measures are directly computable from each other, electromagnetic 
frequencies in the visible range occupy a more linear numeric range, whereas 
wavelengths span several orders of magnitude. For our purposes, it might be 
friendlier to work with laser frequencies.

λ = krypt.Wavelength_nm / 10**9   # Wavelength in meters
c = 299_792_458                   # Speed of light in m/s
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krypt['Frequency_hz'] = c/λ

# Plot frequency vs luminance
plot_kryptonite(df=krypt, logx=False,
                independent='Frequency_hz')

Figure 6.6: Luminance response of kryptonite types by frequency

Visually, on a linear-linear plot using frequency, there clearly seems to be bend in 
the response curve for red kryptonite, and perhaps for the green as well. Clearly the 
data is noisy, and does not closely match any smooth curve; whether this is because 
of the physical properties of the element or limitations in the experimental setup we 
do not know currently. With this motivation, we might perform a polynomial fit of 
order higher than one.

# Only perform the polyfit on the non-missing data
kr_vals = (krypt[krypt.candela_per_m2.notnull()]
           .sort_values('Frequency_hz'))

# Do a fit for each kryptonite color
for color in ('Red', 'Green', 'Gold'):
    # Limit to the color being fit
    kcolor = kr_vals.loc[kr_vals.Kryptonite_type == color]
    x = kcolor["Frequency_hz"]
    y = kcolor["candela_per_m2"]
    coef2, coef1, offset = np.polyfit(x, y, deg=2)
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    # Print out the discovered coefficients
    print(f"{color:>5s} (hz → nit): "
          f"{coef2:.1e}*x^2 + {coef1:.1e}*x + {offset:.1e}")

    # Use coefficients to fill missing values
    kmissing = krypt.loc[krypt.candela_per_m2.isnull() & 
                         (krypt.Kryptonite_type == color)]
    x = kmissing.Frequency_hz
    krypt.loc[x.index, 'candela_per_m2'] = (
                            coef2*x**2 + coef1*x + offset)

  Red (hz → nit): -2.6e-28*x^2 + 5.5e-13*x + 3.5e+02
Green (hz → nit): 1.4e-28*x^2 + -2.7e-13*x + 5.0e+02
 Gold (hz → nit): -4.1e-30*x^2 + 2.8e-15*x + 6.2e+02

Plotting again with the missing data imputed based on the polynomial fit, none of 
the new points appear obviously out of place. Whether they are correct is, of course, 
something that requires much more domain knowledge. At least our regression 
behaves as we expected it to.

plot_kryptonite(df=krypt, logx=False,
                independent='Frequency_hz')

Figure 6.7: Luminance response with missing data imputed

By imputation, we have “filled in” all explicitly missing values, which makes many 
statistical tests and machine learning algorithms possible that are not without doing 
this. Let us turn now to a more global issue of sampling.
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Sampling
Concepts:

•	 Categorical variables and discretized continuous variables
•	 Balancing target class values
•	 Sampling without replacement
•	 Sampling with replacement
•	 Oversampling by duplication
•	 Fuzzy statistical oversampling

Sampling is modification of a dataset in order to rebalance it in some manner. An 
imbalance can reflect either the data collection techniques used or the underlying 
pattern of the phenomenon you are measuring. This imbalance can be particularly 
clear when a variable is categorical and there is an obvious explicit count of the 
class distribution. A special kind of sampling is time series resampling, which is 
discussed in Chapter 7, Feature Engineering.

An imbalance can also be relevant where the distribution of a continuous variable 
is merely uneven. This is very common, since many quantities—in some sense, 
probably most quantities one can measure—are distributed unevenly, such as in 
a normal distribution or beta distribution. For this purpose, we exclude extremely 
“long-tailed” distributions such as power law distributions or exponential 
distributions. That is, a continuous value that simply has peaks within a 
comparatively narrow range presents a different issue than a value that spans many 
orders of magnitude. Often it is useful to transform a long-tailed distribution into a 
more linear one, for example by taking the log of the original values or discretizing 
the values into quantiles.

A simple example of a roughly normal distribution is human heights. Drilling into 
the details, the actual data is probably somewhat bimodal based on sex, and may 
have additional second-order patterns by nationality, age, and so on. For this simple 
illustration, the imbalance itself is sufficient for illustration. Obviously, humans vary 
in height, but even between the shortest newborn and the tallest adult, it is less than 
a 5x difference. Among adults only (excluding some very rare, very short people), it 
is almost always within 1.5x. In other words, height is essentially a linear quantity; 
but it is not one that is uniformly distributed.
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The examples in this section will shift to using the R Tidyverse rather than Python. 
Python data frame libraries—both Pandas and others—make everything shown 
equally easy; the switch is made under the assumption that more readers are more 
familiar with Python, as an effort to encourage readers to think about the concepts 
rather than the libraries narrowly.

%load_ext rpy2.ipython

We can read in a dataset containing physical measurements of 25,000 (simulated) 
humans. For our purposes here, we just want to look at how height is distributed.

%%R -o humans
library('tidyverse')
humans <- read_csv('data/height-weight.csv')
humans

── Column specification ───
cols(
  Height = col_double(),
  Weight = col_double()
)

# A tibble: 25,000 x 2
   Height Weight
    <dbl>  <dbl>
 1   167.   51.3
 2   182.   61.9
 3   176.   69.4
 4   173.   64.6
 5   172.   65.5
 6   174.   55.9
 7   177.   64.2
 8   178.   61.9
 9   172.   51.0
10   170.   54.7
# ... with 24,990 more rows

Dividing the heights into regular numeric increments, we definitely see a vaguely 
Gaussian distribution, at least inasmuch as middling heights occur much more often 
than the shorter or taller ranges. 

http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_020108_HeightsWeights#References
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_020108_HeightsWeights#References
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Even so, all humans in this sample—and almost all adults generally—are in the 
narrow range from 153 cm to 191 cm.

humans.hist(figsize=(10,3), bins=12);

Figure 6.8: Histograms showing the distribution of height and weight

%%R
table(cut(humans$Height, breaks = 5))

(153,161] (161,168] (168,176] (176,183] (183,191] 
      145      4251     14050      6229       325 

If height were the target we were trying to predict from other features (for example, 
nutrition, nationality, gender, age, income, and so on), for many kinds of machine 
learning models, the rare classes (“very short”, “very tall”) would nearly or 
absolutely never be predicted from other features. There are simply too many people 
who are similar in those other measures to the small number of very short people 
(about 0.5% in the sample) that the default prediction would simply be “somewhat 
short” if not even just “average.”

Note, however, that a similar problem exists if regions of the parameter space 
of the independent variables are imbalanced. For example, if Indonesia or the 
Netherlands each had only a few samples in the hypothetical training set (but 
other nations many), we would be able to make little use of the fact that residents 
of those countries (as of this writing) had the shortest and tallest average heights, 
respectively. Moreover, if the small number of samples included especially short 
Dutch people or especially tall Indonesian people, the presence of the class value 
might bias the prediction in exactly the opposite direction from what we would like.
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Undersampling
The devil is in the details.
–Einstürzende Neubauten

Let us look at a dataset that uses actual categorical values rather than artificially 
discretized ranges. The UCI Machine Learning 1997 Car Evaluation Data Set is useful 
here. The original dataset uses a variety of categorical words for ordinal values, such 
as the trunk being “small”, “med”, or “big”, or the price of maintenance being “low”, 
“med”, “high”, or “vhigh”. These are converted to sequential integers for this book. 
However, the overall rating that we will focus on is left as descriptive words, even 
though it is also in an obvious implicit order.

%%R
cars <- read_csv('data/cars.csv', 
                 col_types = cols("i", "i", "i", "i", "i", "i", "f"))
cars

# A tibble: 1,728 x 7
    price_buy  price_maintain  doors  passengers  trunk  safety  rating      
        <int>           <int>  <int>       <int>  <int>   <int>  <fct>       
 1          1               0      3           6      0       0  Unacceptable
 2          2               2      3           6      2       1  Acceptable  
 3          2               2      5           2      1       1  Unacceptable
 4          0               1      3           2      2       1  Unacceptable
 5          2               1      5           2      0       1  Unacceptable
 6          3               1      2           6      2       1  Acceptable  
 7          0               2      4           4      0       0  Unacceptable
 8          1               2      2           4      2       0  Unacceptable
 9          1               0      4           4      0       1  Acceptable  
10          1               3      3           2      0       0  Unacceptable
# ... with 1,718 more rows

Imagine that we were trying to predict the “acceptability” of a car based on other 
recorded characteristics it has. It stands out that in the first ten rows, a large number 
are unacceptable. Let us look at the overall class distribution of the rating.

%%R
table(cars$rating)

Unacceptable   Acceptable    Very Good         Good 
        1210          384           65           69 

https://archive.ics.uci.edu/ml/datasets/Car+Evaluation
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The evaluators of these cars are perhaps rather fussy in finding so very few of them 
good or very good. In any case, this shows a strong imbalance in the rating feature, 
which we will perhaps use as the target in our classification model. We would like 
to clean our training data in a manner likely to produce higher-quality models. 
Keep in mind that different specific modeling techniques are more, or less, likely 
to be improved by sampling techniques than others. For example, linear models 
are largely insensitive to class imbalance, while K-nearest neighbor models tend 
to be highly sensitive to these issues. But even within a generalization of that sort, 
different sampling, of different datasets and domains, will be effective to varying 
degrees. The choice of downstream model matters a lot.

If three things hold, undersampling is unproblematic:

•	 We have a great many rows in the dataset;
•	 Even the uncommon classes have a reasonable number of samples;
•	 The parameter space is well covered by the samples.

If we are lucky enough to have all these conditions hold, simply selecting a sample 
size of the smallest class is adequate. However, if we cannot reach these conditions—
in particular, if the smallest classes are a bit too small—permitting a degree of 
imbalance is generally not terrible. 50:1 imbalance is likely to be a problem; 2:1 is 
likely to be unimportant. For our car evaluation, let us attempt to find 100 samples 
from each class, but settle for as many as we have. Having fewer than 100 samples 
of the uncommon classes in this dataset does not give us very much leeway.

%%R
unacc <- sample(which(cars$rating == "Unacceptable"), 100)
acc <- sample(which(cars$rating == "Acceptable"), 100)
good <- sample(which(cars$rating == "Good"), 69)
vgood <- sample(which(cars$rating == "Very Good"), 65)
samples <- slice(cars, c(vgood, good, acc, unacc))
samples

# A tibble: 334 x 7
    price_buy  price_maintain  doors  passengers  trunk  safety     rating   
        <int>           <int>  <int>       <int>  <int>   <int>      <fct>    
 1          0               1      2           6      2       2  Very Good
 2          0               0      4           4      2       2  Very Good
 3          1               0      3           6      1       2  Very Good
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 4          0               0      5           6      1       2  Very Good
 5          1               0      3           4      2       2  Very Good
 6          1               1      3           6      1       2  Very Good
 7          1               0      5           4      1       2  Very Good
 8          1               0      4           4      1       2  Very Good
 9          0               0      3           6      2       2  Very Good
10          1               1      4           6      2       2  Very Good
# ... with 324 more rows

Here we manually selected the number of rows available per class, and did not use 
higher-level libraries like DMwR (Data Mining with R), caret (Classification And 
REgression Training), or ROSE (Random Over-Sampling Examples), which would 
make the sampling somewhat more concise. These packages each include a variety 
of more sophisticated sampling techniques, some of which we will use shortly. In the 
Python world, the package imbalanced-learn is the go-to choice, and includes most 
of the techniques in the mentioned R packages.packages

packages

While there is much overlap between the tools available in R and 
Python, there are some differences in culture and focus between 
the languages and communities. On the one hand, R is most 
certainly more focused on statistics, and the breadth of libraries 
available in that area run deeper; the libraries for other areas are 
shallower in R, correspondingly.

Beyond the technical focus though, there is a notable philosophical 
difference in the programming language communities. Python 
tends to coalesce around common libraries with many contributors, 
or at least common APIs between libraries covering similar areas. 
R tends to grow many packages, each with relatively fewer 
contributors, with only partial overlap in functionality and less 
insistence on shared APIs among packages. NumPy, Pandas, scikit-
learn, and much more narrowly imbalanced-learn, are “standard” 
APIs. In contrast, in R, data.table, data.frame, and tibble compete 
with varying APIs and advantages; more narrowly, DMwR, caret, 
and ROSE likewise compete.
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Let us take a look at the distribution we obtained to make sure we did the intended 
thing.

%%R
samples %>%
  group_by(rating) %>%
  count()

# A tibble: 4 x 2
# Groups:   rating [4]
  rating           n
  <fct>        <int>
1 Unacceptable   100
2 Acceptable     100
3 Very Good       65
4 Good            69

Having only 60-some samples available at all from the uncommon classes is 
probably too sparse. To a large extent, a class having few samples simply cannot 
cover the parameter space of the features, no matter what technique we use. The 100 
samples we have selected from the larger classes is not very much larger, but we 
can reasonably hope that since the underlying populations are much larger, and our 
sampling is unbiased, these samples are less likely to wholly miss parameter regions.

While sampling is imperfect, we can at least avoid a target imbalance that is likely 
to bias our model by combining undersampling with oversampling. Let us take 150 
samples from each class by allowing replacement (and hence duplication from low-
count classes).

%%R
# Find indices for each class (dups OK)
indices <- unlist(
  lapply(
    # For each level of the rating factor,
    levels(cars$rating), 
    # sample with replacement 150 indices
    function(rating) {
      pred <- which(cars$rating == rating)
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      sample(pred, 150, replace = TRUE) }))

# Check that we have drawn evenly
slice(cars, indices) %>%
  group_by(rating) %>%
  count()

# A tibble: 4 x 2
# Groups:   rating [4]
  rating           n
  <fct>        <int>
1 Unacceptable   150
2 Acceptable     150
3 Very Good      150
4 Good           150

Oversampling
God dwells in the details.
–Ludwig Mies van der Rohe (cf. Gustave Flaubert)

When data is plentiful, undersampling is a quick way of producing more balanced 
training data for machine learning models. Most often, datasets do not cover your 
parameter space so well that you can simply throw away training data with pure 
undersampling. Even if you have quite a few observations, even the common classes 
will cluster around a prototypic region of the high-dimensional space. If you need 
to evaluate the parameter space as sensitively as possible, discarding data is risky. 
Of course, it can also merely be the case that with the type of model and amount of 
computational resources you have, you simply cannot train a model on a full dataset; 
if so, undersampling has an independent appeal, and class sensitivity in doing it is 
entirely a good thing.
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We have already seen how to perform the simplest kind of oversampling. In the 
car evaluation dataset, for example, we could simply sample with replacement up 
to the count of the most common class. Exactly that technique would create some 
noise in that most common class since some samples would be repeated and others 
omitted.sampling 

Another approach is simply duplicating uncommon classes as many times as are 
needed to make them reach approximate parity with the more common ones. For 
example:

# Read the raw data and count most common rating
cars = pd.read_csv('data/cars.csv')
cars2 = cars.copy()  # Modify a copy of DataFrame
most_common = max(cars2.rating.value_counts())

for rating in cars2.rating.unique():
    # A DataFrame of only one rating class
    rating_class = cars2[cars2.rating == rating]
    # Duplicate one less than overshooting most_common
    num_dups = (most_common // len(rating_class)) - 1
    for _ in range(num_dups):
        cars2 = pd.concat([cars2, rating_class])

cars2.rating.value_counts()

sampling

The most straightforward approach to resampling per class does 
not differentiate the most common class from other classes. This 
means that if the most common class has 100 items, resampling 
with replacement will omit approximately 36 of them in the 
resampled version, and duplicate other items. In contrast, 
resampling to 100 items from a class that has only 10 initial items 
will with near certainty represent each item at least once.

In concept, we could use extra code to do something somewhat 
more “fair.” We would create a copy of the original data. Then we 
would sample only max_class_size-current_class_size items 
from each other class. Then we would combine the untouched 
original with the new samples. This at least would make sure that 
every original appears at least once in the resulting data. While this 
approach might be an improvement, it remains less nuanced than 
approaches like SMOTE, discussed below.
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Unacceptable    1210
Good            1173
Very Good       1170
Acceptable      1152
Name: rating, dtype: int64

This approach brings each uncommon class as close to the frequency of the plurality 
class as is possible without being non-uniform in the duplication. That is, if we 
wanted exactly 1,210 Acceptable samples, we would duplicate some samples one 
more time than we had other samples. Allowing a very slight imbalance is a better 
approach.

More interesting than naive oversampling is a technique called Synthetic Minority 
Over-sampling TEchnique (SMOTE), and a closely related one called Adaptive 
Synthetic Sampling Method for Imbalanced Data (ADASYN). In R there are a 
number of choices for performing the SMOTE and similar techniques. Libraries 
include smotefamily, DMwR, and ROSE for a related but slightly different 
technique. For the next few code examples, however, we will use Python’s 
imbalanced-learn instead, if only because there are fewer choices among the libraries 
needed.

While there are some technical differences among several techniques in the SMOTE 
family, they all are generally similar. What they do is generate new data points using 
K-nearest neighbor techniques. Among the minority samples, they look at the 
several nearest neighbors in the parameter space of features, and then create a new 
synthetic sample within that region of the parameter space that is not identical to any 
existing observation. In an informal sense, we might call this “fuzzy” oversampling. 
Of course, the class or target assigned to this synthetic point is the same as that of 
the cluster of minority class observations already existing. The bottom line is that 
this kind of oversampling with fuzziness in feature values usually creates much 
more useful synthetic samples than does a crude oversampling.

As discussed above, the cars rating classes are starkly imbalanced.

cars.rating.value_counts()

Unacceptable    1210
Acceptable       384
Good              69
Very Good         65
Name: rating, dtype: int64
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Several similar oversampling techniques are available in imbalanced-learn. Read 
the documentation of the library for evolving details. All of them are built on top 
of the same scikit-learn API, and they may be included within scikit-learn pipelines 
and otherwise interoperate with that library. You do not need to use scikit-learn to 
use imbalanced-learn, except in the behind-the-scenes way that it utilizes K-nearest 
neighbors from that library.

Similar to the package name scikit-learn being imported under the module name 
sklearn, the installation package we use is named imbalanced-learn, but it is 
imported as imblearn.

# Only define the feature and target matrices, use in next cell
from imblearn.over_sampling import SMOTE

# Divide data frame into X features and y target
X = cars.drop('rating', axis=1)
y = cars['rating']

# Create the resampled features/target
X_res, y_res = SMOTE(k_neighbors=4).fit_resample(X, y)

Let us combine the features and target back into a DataFrame similar to the original.

synth_cars = X_res.copy()
synth_cars['rating'] = y_res
synth_cars.sample(8, random_state=2)
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      price_buy  price_maintain  doors  passengers  trunk  safety
——————————————————————————————————————————————————————————————————
 748          2               2      5           6      0       0
  72          0               3      2           6      0       1
2213          3               0      2           4      0       2
1686          2               3      5           2      0       0
3578          0               0      4           6      1       1
3097          0               0      2           4      0       2
4818          0               1      4           4      1       2
 434          2               3      5           6      2       0

             rating
————————————————————
 748   Unacceptable
  72   Unacceptable
2213     Acceptable
1686   Unacceptable
3578           Good
3097           Good
4818      Very Good
 434   Unacceptable

As we wish, the classes of the target are exactly balanced. We could alter the 
sampling strategy not to require an exact balance, but in this case exactness is 
reasonable.

synth_cars.rating.value_counts()

Good            1210
Very Good       1210
Unacceptable    1210
Acceptable      1210
Name: rating, dtype: int64
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A small point is worth noticing here. Unlike the several R libraries that perform 
SMOTE, imbalanced-learn retains the data type of the features. In particular, the 
ordinal integers of the features are kept as integers. This may or may not be what 
you want. Semantically, an evaluation of price_buy from “low” to “very high” could 
sensibly be encoded as a continuous value in the 0-3 range. However, the number of 
doors is semantically an integer. Still, if “more doors is better” for you as a consumer, 
there is likely no harm in a synthetic row with slightly nonsensible literal meaning.

More important than the direct interpretation of a given feature value is how useful 
the value is to your model. For many kinds of models, continuous variables provide 
more useful clustering, and most likely you will prefer to train on floating-point 
inputs. Let us cast our data types to floats and perform the resampling again, taking 
note of some of the new non-integral feature values. 

cars.iloc[:, :6] = cars.iloc[:, :6].astype(float)
cars.head()

   price_buy  price_maintain  doors  passengers  trunk  safety
———————————————————————————————————————————————————————————————
0        1.0             0.0    3.0         6.0    0.0    0.0
1        2.0             2.0    3.0         6.0    2.0    1.0
2        2.0             2.0    5.0         2.0    1.0    1.0
3        0.0             1.0    3.0         2.0    2.0    1.0
4        2.0             1.0    5.0         2.0    0.0    1.0

          rating
—————————————————
0   Unacceptable
1     Acceptable
2   Unacceptable
3   Unacceptable
4   Unacceptable

# Divide data frame into X features and y target
X = cars.drop('rating', axis=1)
y = cars['rating']

# Create the resampled features/target
X_, y_ = SMOTE().fit_resample(X, y)
pd.concat([X_, y_], axis=1).sample(6, random_state=4)
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     price_buy  price_maintain     doors  passengers   trunk  safety
—————————————————————————————————————————————————————————————————————
4304       1.0        0.158397  2.158397         6.0  2.0000     2.0
 337       3.0        0.000000  3.000000         4.0  0.0000     1.0
2360       2.0        2.000000  3.247795         4.0  2.0000     2.0
3352       0.0        1.000000  2.123895         4.0  2.0000     1.0
2064       0.0        3.000000  4.000000         6.0  1.8577     2.0
4058       1.0        0.000000  3.075283         6.0  2.0000     2.0

             rating
————————————————————
4304      Very Good
 337   Unacceptable
2360     Acceptable
3352           Good
2064     Acceptable
4058      Very Good

Exercises
For the exercises in this chapter, you will look first at evaluating the quality of 
imputed trends. In the second exercise, you will need to think about working with 
data that might be imbalanced in multiple features, not only in a single one.

Alternate Trend Imputation
In the kryptonite example in this chapter, we used a second-order polynomial fit 
on the input laser frequency to impute the missing values for candela per square 
meter. In some sense, it would definitely be simpler merely to use local interpolation, 
or even forward-fill or backward-fill. Most data frame libraries give us those local 
imputations “out of the box.”

The dataset is available at: 

https://www.gnosis.cx/cleaning/excited-kryptonite.fwf

You should quantify the differences between different imputation approaches. 
A good way to express the difference between samples is with root-mean-square 
deviation (RMSD), and for this exercise use that measure. Obviously, we do not 
know what the correct answer is for missing values, so we are only trying to evaluate 
how much different various approaches are from each other.

https://www.gnosis.cx/cleaning/excited-kryptonite.fwf
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There are a number of differences you should measure and compare, for each color/
type of kryptonite and for the aggregate of all colors:

•	 The RMSD between all points (original and imputed) and the second-order 
polynomial fit function itself.

•	 The RMSD between the original points and:
•	 A linear regression on them;
•	 A second-order polynomial fit;
•	 A third-order polynomial fit.
•	 Some other regression that you find relevant (perhaps from a 

machine learning library).

•	 The RMSD for only imputed points between polynomial fits of degrees 1, 2, 
and 3, and a local interpolation based on neighbors only.

•	 The RMSD for imputed points only between polynomial fits of varying 
degrees and a simple forward-fill.

Describe what you feel is the best strategy to defeat that pesky Superman.            

Balancing Multiple Features
The human height/weight data showed an imbalance in the numeric quantity 
Height. Weight shows a similar distribution. A version of this dataset with a fanciful 
target attached is available at:

https://www.gnosis.cx/cleaning/height-weight-color.csv

This data adds a column called Favorite that is roughly equally balanced, and 
merely generated at random from the collection {red, green, blue}.

humcol = pd.read_csv('data/height-weight-color.csv')
humcol.sample(6, random_state=1)

            Height      Weight   Favorite
——————————————————————————————————————————
21492   176.958650   72.604585        red
 9488   169.000221   79.559843       blue
16933   171.104306   71.125528        red
12604   174.481084   79.496237       blue
 8222   171.275578   77.094118      green
 9110   164.631065   70.557834      green

https://www.gnosis.cx/cleaning/height-weight-color.csv
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For this exercise, you wish to explore models to predict favorite color from height 
and weight. We saw earlier in this chapter the distribution of heights. Weight has a 
similar degree of imbalance between numeric ranges.

pd.cut(humcol.Weight, 5).value_counts().sort_index()

(44.692, 55.402]      125
(55.402, 66.06]      3708
(66.06, 76.717]     14074
(76.717, 87.375]     6700
(87.375, 98.033]      393
Name: Weight, dtype: int64

According to our stipulated hypothesis, height and weight might be predictive of 
favorite color. However, we also hypothesize that body mass index (BMI) might 
be predictive. This is deterministically derived from height and weight, but not 
according to the polynomial features derivation discussed in Chapter 7, Feature 
Engineering. Specifically, the BMI formula is:𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑘𝑘𝑚𝑚2 

Your task is to create a new dataset with synthetic samples, in which height alone, 
weight alone, and BMI are each represented by a relatively equal number of 
observations. For this purpose, assume that height, weight, and BMI each divide 
into five classes that you might informally call, for example, “very short”, “short”, 
“average”, “tall”, “very tall”, or similar names for the other features.

A simple way to approach this problem is simply to duplicate existing rows in a 
manner to increase the representation of their quantized classes. You might try that 
approach first. However, you should also try to use a technique such as SMOTE, 
ADASYN, or ROSE that generates novel synthetic samples that are representative of 
their height, weight, or BMI classes. As you generate these synthetic samples, you 
will need to assign an appropriate favorite color (this is straightforward when you 
merely duplicate rows; however, it will be more subtle as you create novel synthetic 
rows according to several different balancing requirements).

Given that the class imbalance is on the order of 100:1, but only among five classes 
per feature being balanced, each balancing operation, per feature, will increase the 
dataset size by approximately 4x. Think about whether those multiplications need to 
be chained, to produce a dataset approximately 4×4×4, or 64, times the original size. 
You should be able to arrive at a way of balancing independently by feature, thereby 
limiting the expansion to approximately 4+4+4, or 12, times the original size.
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Oversampling up to, say, 300,000 rows is not unduly unwieldy. However, if you 
had started with more than 25,000 observations, the multiplication might be so. 
Assuming your initial oversampling indeed produces something on the order of 
300,000 rows of data, undersample those 300k mostly synthetic samples down to 
only 100,000 in a manner that maintains rough class balance (precise balance is not 
required here; aim for less than 25% difference in row count per class).

As a final element of this exercise, if you are able to get to it, try to create an actual 
model of the relationship between height, weight, BMI, and the target favorite color. 
Specific modeling or machine learning techniques are outside the scope of this book, 
but they often are the purpose for which this book hopes to be helpful.

•	 How good of a prediction does your model make? 
•	 What prediction does your model make? Which people prefer which color, 

and how strongly?
•	 Which feature is most strongly predictive?

As a hint, I will indicate that a relatively strong pattern is embedded in the favorite 
color assignment. There is a lot of noise and randomness in there as well, as you 
would expect if we had actual survey data about favorite color. But there are also 
patterns that most likely do not actually exist between physical measurements and 
this preference.

Denouement
Never answer the question that is asked of you. Answer the question that you wish 
had been asked of you.
–Robert McNamara

Topics covered in this chapter: Central Tendency; Correlated Tendencies; Trend 
Imputation; Locality; Undersampling; Oversampling.

In this chapter we looked at two related, but slightly different, main concepts. On 
the one hand, it is often useful to impute individual values where data is missing. 
When we do this, we can use a variety of patterns in the data and/or facts we 
know about the underlying domain that the data is drawn from. Sometimes we 
impute values based on what is typical for a given variable, sometimes conditioning 
typicality on a particular region of parameter space. Other times we find trends in 
data that can be sequenced in some manner, and impute based on those trends.
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Under the second aspect, a kind of imputation occurs with sampling as well. In 
the case of oversampling, we straightforwardly impute entirely new synthetic 
samples, either simply by repeating existing ones or using aggregation techniques 
to extrapolate what is typical of an uncommon class. However, even in the case of 
undersampling, there is a kind of imputation going on. Undersampling a dataset 
does not change any individual values, but it absolutely changes the distribution 
of the remaining data. That is, after all, the whole point: we wish to create relative 
balance within a categorical or range variable that the original dataset does not 
follow.

For data science and data analysis, your burden is always to take the crude material 
that is presented to you in raw form, and give it a form suitable for modeling and 
analytic purposes. 

In the next chapter, we move on to looking at feature engineering and creation of novel 
synthetic features.
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7
Feature Engineering

People come to me as a data scientist with their data. Then my job becomes part data-
hazmat officer, part grief counselor.
–Anonymous

Chapter 6, Value Imputation looked at filling in missing values. In Chapter 5, Data 
Quality, we touched on normalization and scaling, which adjust values to artificially 
fit certain numeric or categorical patterns. Both of those earlier topics come close 
to the subject of this chapter, but here we focus more directly on the creation of 
synthetic features based on raw datasets. Whereas imputation is a matter of making 
reasonable guesses about what missing values might be, feature engineering is about 
changing the representational form of data, but in ways that are deterministic and often 
information-preserving (e.g. reversible). A simple example of a synthetic feature is 
the construction of BMI (body mass index) in the prior chapter.

There are many ways we might transform data. In a simple case, we might transform 
a numeric or string representation of a datetime into a native representation 
that makes many operations easier. For strings, we might produce canonical 
representations and/or treat them as categories (also called factors). Moreover, 
a single string can often contain several meaningful but independent pieces of 
information that are more usefully treated as separate variables. For numeric 
values, at times transforming them into distinct ranges, and hence into ordinal 
values, can sometimes help reveal a pattern that is muddied by too much precision. 
Of course, quantization is not among the reversible transformations; but good 
practice continues to recommend versioning data and scripting transformations 
for repeatability.
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While data type changes in the representation of individual features are important, 
we also sometimes wish to perform something more systematic with the 
parameter space and dimensionality of our dataset. One-hot encoding is a simple 
transformation that turns a single categorical feature into multiple numeric fields; 
this is often needed for specific statistical or modeling techniques. Polynomial 
features are synthetic features which combine multiple raw features in a manner that 
can often reveal meaningful interactions that cannot be seen in univariate features.

A completely systematic transformation is performed in a decomposition. Principal 
component analysis (PCA) and other techniques transform the entire parameter 
space in an information-preserving way. In itself, such a transformation does not 
gain or lose any information, but this is often coupled with dimensionality reduction 
where the bulk of the information can be gleaned from only a subset of these 
transformed dimensions. Depending on your purpose, such a transformation may 
make models more tractable and/or of better quality. 

***
Before we get to the sections of this chapter, let us run our standard setup code.

from src.setup import *
%load_ext rpy2.ipython

%%R 
library(tidyverse)

This chapter uses capabilities within scikit-learn more extensively than do other 
chapters. Everything that I demonstrate here using scikit-learn can certainly be 
accomplished in other ways as well. It just happens that scikit-learn builds in a great 
many of the tools one wants for feature engineering, in preparing data for a machine 
learning model. The APIs provided by scikit-learn are consistent and well-designed, 
so it certainly merits praise, in general, but the goal of this chapter is to explain 
underlying concepts.

Date/Time Fields
Time is a game played beautifully by children.
–Heraclitus

Concepts:

•	 Combining timestamp components
•	 Date/time operations in data frames
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•	 Time deltas
•	 Duplicated timestamps (selection versus averaging)
•	 Resampling and grouping
•	 Interpolation at missing timestamps

As an example of date encoding that is not as immediately useful as we would like, 
let us return to the temperature readings that have been used elsewhere in the book. 
For the different purpose elsewhere, we simply provided a read_glarp() function 
that performed a minor amount of data cleanup within the function. For this section, 
we will do some similar operations from the raw data.

The temperature data consists of several files, each containing measurements for a 
different automated thermometer that (usually) takes a reading every three minutes. 
Looking at one of those, we see the contents are arranged like this:

%%bash
zcat data/glarp/outside.gz | head -5

2003 07 25 16 04 27.500000
2003 07 25 16 07 27.300000
2003 07 25 16 10 27.300000
2003 07 25 16 13 27.400000
2003 07 25 16 16 27.800000

These files have no headers, but the several columns correspond to what you would 
intuitively parse as dates in 2003 and 2004. We can read in the file as either space-
delimited or as fixed-width, equivalently, for this particular format. Here we read it 
with Pandas as a space-delimited file.

temps = pd.read_csv('data/glarp/outside.gz', 
                    sep=' ', header=None, 
                    names=['year', 'month', 'day', 
                           'hour', 'minute', 'degrees'])
temps.head(5)

     Year   month   day   hour   minute   degrees
0    2003       7    25     16        4      27.5
1    2003       7    25     16        7      27.3
2    2003       7    25     16       10      27.3
3    2003       7    25     16       13      27.4
4    2003       7    25     16       16      27.8
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The particular problems or issues in this outside temperatures dataset are minor. 
However, there remain enough of them that it will allow us to use many of the most 
common techniques that you will need in working with time series data in general. 
The examples in this section all utilize Pandas, but other data frame libraries, in 
whatever language, will typically have similar capabilities.

Creating Datetimes
All the information we want is available in the data frame, but let us make it more 
useful. Many Pandas operations are especially convenient with DateTime indices, 
so we make that the index.

ts_fields = ['year', 'month', 'day', 'hour', 'minute']
temps.index = pd.to_datetime(temps[ts_fields])
temps.drop(columns=ts_fields, inplace=True)
temps

                         degrees
2003-07-25 16:04:00         27.5
2003-07-25 16:07:00         27.3
2003-07-25 16:10:00         27.3
2003-07-25 16:13:00         27.4
                ...          ...
2004-07-16 15:19:00         16.9
2004-07-16 15:22:00         16.8
2004-07-16 15:25:00         16.8
2004-07-16 15:28:00         16.4
169513 rows × 1 columns

Even though this data seems to be in time series order from a superficial look, 
there are many rows and it may not always be. Generally we would like to keep 
chronological data in order for many kinds of operations, including for producing 
graphs that might represent it. We could simply order the time series (the index in 
this case) as an idempotent operation, but before we do that, let us check whether 
that goal is already met.

temps.index.is_monotonic_increasing

False

We can probe into this by looking at the step differences—expressed in Pandas as a 
Timedelta—between successive rows.
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increments = temps.index.to_series().diff()
increments[increments < pd.Timedelta(minutes=0)]

2003-10-26 01:01:00   -1 days +23:03:00
dtype: timedelta64[ns]

The index is not monotonic, and there is one backward jump (it occurs one 
hour earlier than the actual Daylight Savings Time adjustment that year, but is 
presumably still related). We should reflect on the fact that data that are ordered by 
some field values are not necessarily represented that way in their actual on-disk 
format. Many formats, such as SQL databases, perform all sorts of optimizations 
that can ignore ordering assumptions unless imposed. Before we look further, let 
us explicitly order the data by its DateTimeIndex.

temps.sort_index(inplace=True)
temps.index.is_monotonic_increasing

True

Imposing Regularity
As you may have determined in an exercise in Chapter 5, Data Quality, there are 
missing timestamps where we would expect in the general “every three minutes” 
pattern. Let us first verify that such gaps actually exist, then remediate them to 
produce a more regular time series. What we do here is clearly related to value 
imputation; it differs in “inventing” entire rows rather than only individual data 
points. Recall that three-minute increments over slightly less than a year adds up 
to about 170,000 expected observations.

increments = temps.index.to_series().diff()
gaps = increments[increments > pd.Timedelta(minutes=3)]
gaps

2003-07-26 19:28:00   0 days 00:06:00
2003-07-27 09:10:00   0 days 00:06:00
2003-07-29 08:28:00   0 days 00:06:00
2003-07-29 11:43:00   0 days 00:06:00
                            ...      
2004-07-05 19:55:00   0 days 07:36:00
2004-07-06 09:28:00   0 days 00:06:00
2004-07-06 16:28:00   0 days 00:06:00
2004-07-14 04:04:00   0 days 00:06:00
Length: 160, dtype: timedelta64[ns]
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So indeed we have some gaps in our measurements. They are not all that numerous; 
only about one in a thousand measurements are adjacent to time increments more 
than three minutes apart. We do, however, see that while most gaps are the loss of a 
single measurement—i.e. six minutes rather than the expected three—at some places 
larger gaps exist. A few large gaps exist; the longest one is over a day. Others are 
measured in hours or minutes.

with show_more_rows():
    print(gaps.sort_values(ascending=False).head(15))

2003-12-11 03:04:00   1 days 13:48:00
2004-04-28 00:31:00   0 days 13:06:00
2004-07-05 19:55:00   0 days 07:36:00
2003-12-18 09:25:00   0 days 06:33:00
2003-12-06 09:25:00   0 days 06:24:00
2003-12-29 08:46:00   0 days 06:03:00
2003-12-11 14:19:00   0 days 04:42:00
2004-04-04 03:01:00   0 days 01:03:00
2004-06-30 18:13:00   0 days 00:33:00
2003-11-24 08:04:00   0 days 00:30:00
2003-10-11 17:13:00   0 days 00:27:00
2003-12-13 17:10:00   0 days 00:15:00
2004-06-30 03:07:00   0 days 00:12:00
2004-06-22 10:16:00   0 days 00:12:00
2004-07-02 09:22:00   0 days 00:12:00
dtype: timedelta64[ns]

A typical small gap looks something like the example below. An observation was 
missed at 2003-07-26 19:25:00 that we would generally expect to be present. This 
is missing data, but by its implied absence relative to a predictable sequence rather 
than being explicitly marked with some sentinel.

temps.loc['2003-07-26 19:22:00':'2003-07-26 19:28:00']

                         degrees
—————————————————————————————————
2003-07-26 19:22:00         27.5
2003-07-26 19:28:00         27.1

We can also look for cases where the gap between measurements is too short. There 
are few of them, but seeing those few will point to another problem.

small_steps = increments[increments < pd.Timedelta(minutes=3)]
small_steps.sort_values(ascending=False)
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2003-10-03 12:04:00   0 days 00:02:00
2003-12-24 15:10:00   0 days 00:00:00
2003-10-26 01:01:00   0 days 00:00:00
2003-10-26 01:07:00   0 days 00:00:00
                            ...      
2003-10-26 01:52:00   0 days 00:00:00
2003-10-26 01:55:00   0 days 00:00:00
2003-10-26 01:58:00   0 days 00:00:00
2003-10-26 01:31:00   0 days 00:00:00
Length: 22, dtype: timedelta64[ns]

The number of small gaps in the timestamps is only 22, but even more specifically, 
all of them except one are an actual zero time delta, which is to say duplicated 
datetime values. The one gap that is two minutes rather than the expected three will 
make the spacing of observations slightly irregular since later points will be at a one-
minute offset from the expected position.

As a domain judgment, we will decide that a one-minute difference is not significant 
to any analysis or modeling we do on the data. However, this is a judgment that 
we need to make, and will not be universal to every dataset. In particular, when we 
regularize relative to missing observations below, we will also shift the imputed 
times of measurement for many observations. For events tied to specific times rather 
than patterns of change in the data, this shift would probably be unacceptable.

The next cell is also an opportunity to illustrate a nice feature of the Pandas API. We 
will look at a slice of data surrounding the two-minute gap, but the ends of the slice 
are times that do not actually occur in the data themselves. Pandas is clever enough 
to know about chronological order, and choose all index values that are between 
particular datetimes, even if the ends are not themselves present. We are also able 
to write datetimes as either actual datetime objects or as strings (in any of several 
guessed string formats; using ISO-8601 is always the best choice, where possible).

temps.loc['2003-10-03 11:57':'2003-10-03 12:08']

                         degrees
——————————————————————————————————
2003-10-03 11:58:00         13.0
2003-10-03 12:02:00         12.8
2003-10-03 12:04:00         12.8
2003-10-03 12:07:00         12.8
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Duplicated Timestamps
Here we encounter another problem that is not uncommon with time series data. 
A small minority of rows in our data are indexed by identical timestamps. We 
are fortunate in this dataset that there are only 41 problem rows out of 170,000, 
so almost any approach here is probably fine. Note that in many cases, additional 
columns may be part of the explicit or implicit key. For example, if the other location 
temperatures were aggregated with the outside temperatures, a tidy data frame 
could include the location as a categorical column; in that case, we would typically 
expect many duplicate timestamps, but only one per category/location.

# Show all rows that are part of duplicate set
# Other 'keep' options will drop some or all duplicates
temps[temps.index.duplicated(keep=False)]

                         degrees
——————————————————————————————————
2003-10-26 01:01:00          1.9
2003-10-26 01:01:00          0.9
2003-10-26 01:07:00          1.9
2003-10-26 01:07:00          1.1
                ...          ...
2003-10-26 01:58:00          0.1
2003-12-24 15:10:00          6.4
2003-12-24 15:10:00         20.9
2003-12-24 15:10:00          6.4
41 rows × 1 columns

Most duplicates have a small value difference, one degree Celsius or less. However, 
something peculiar happens at 2003-12-24 15:10:00. There are three different values 
recorded at that same moment, two of them 6.4°C, but the remaining one is 20.9°C. 
Both our domain knowledge of outdoor temperatures in Colorado in December and 
the pattern of the data itself would probably lead us to discard this clear outlier. 
Quite likely, since several instruments were recording, most of them inside a 
heated house, this 20.9 reading is a transposition with a measurement of a different 
thermometer.

One option for us is to use Pandas’ method .drop_duplicates(). It gives us 
the option to keep the first row, keep the last row, or drop all rows with such 
ambiguity. We do not have a clear basis to decide among those options, but 
none would be harmful in this case, given the comparative infrequency of the 
duplicates. For example:
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no_dups = (temps
             .reset_index()  # De-dup on named column
             .drop_duplicates(keep='first', subset='index')
             .set_index('index'))

print(f"Length of original DataFrame: {len(temps):,}")
print(f"Length of de-duped DataFrame: {len(no_dups):,}")

# Check if datetime index is now unique
no_dups.index.is_unique

Length of original DataFrame: 169,513
Length of de-duped DataFrame: 169,492
True

Another approach to de-duplication of duplicated timestamps is to group aggregate 
common values. For example, if we are not sure which measurement is to be 
preferred, we could take the mean of the several values. This is probably irrelevant 
for this specific data, and probably wrong for the case we noted with an obvious 
outlier among the duplicates. But let us look at the API anyway:

mean_dups = temps.groupby(temps.index).mean()

print(f"Length of mean-by-duplicate: {len(mean_dups):,}")
mean_dups.index.is_unique

Length of mean-by-duplicate: 169,492
True

Adding Timestamps
As we have noted, there are gaps in the time series data. Most are single missing 
measurements on the expected three-minute schedule, but one is over a day, and 
several are numerous hours. We also have the issue noted where one gap is two 
minutes long rather than three minutes, which we are aware of but will not treat as 
critical for the current dataset.
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The typical way of adding more datetime rows is to resample the data to a desired 
frequency. For example, if we only wanted the temperature by month, but as a mean, 
we could do an operation like:

# See Pandas docs, it is easy to confuse M=month with m=minute
no_dups.resample('1M').mean()

     index      degrees
————————————————————————
2003-07-31    21.508462
2003-08-31    20.945075
2003-09-30    14.179293
2003-10-31    12.544181
       ...          ...
2004-04-30     7.708277
2004-05-31    14.357831
2004-06-30    15.420425
2004-07-31    20.527493
13 rows × 1 columns

Intuitively, such a lower frequency resampling is very similar to grouping. We can 
get the same effect using .groupby(). Here we use slightly tricky code in that we 
want the months in chronological order rather than alphabetical; one way to get 
that is to include the number in the grouping, but then drop it.

# Groupby both month number and name
by_month = no_dups.groupby(
    [no_dups.index.month, no_dups.index.month_name()])
# The mean temperature over the month
by_month = by_month.mean()
# Discard the month number now that result is sorted
by_month = by_month.droplevel(0)
# Name the index
by_month.index.name = 'month_name'
by_month

month_name     degrees
———————————————————————
   January    0.433968
  February   -0.209109
     March    7.848025
     April    7.708277
       ...         ...
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 September   14.179293
   October   12.544181
  November    2.332037
  December    0.667080
12 rows × 1 columns

We have done something a bit different here in that the average is over a named 
month rather than an actual chronological month. It makes little difference in this 
example since our data ranges over almost exactly a year. However, even here, we 
have averaged some numbers from July 2003 with some others from July 2004. If 
that matters, we could include the year in the grouping as well to avoid that. Of 
course, if we are looking for typical temperatures for a time of year, this may in 
fact be closer to our goal for multi-year data.

Although the starting point is different, September and October show identical 
means between the techniques (only July will be a little different). However, 
downsampling to monthly data is really not our declared task. Rather we wish to 
upsample slightly to fill in the missing three-minute increments. This is just as easy. 
Recall that we have started out with 169,513 observations before this conversion to 
a uniform three-minute frequency.

filled_temps = no_dups.asfreq('3T')
filled_temps

Index                    degrees
—————————————————————————————————
2003-07-25 16:04:00      27.5
2003-07-25 16:07:00      27.3
2003-07-25 16:10:00      27.3
2003-07-25 16:13:00      27.4
...                      ...
2004-07-16 15:19:00      16.9
2004-07-16 15:22:00      16.8
2004-07-16 15:25:00      16.8
2004-07-16 15:28:00      16.4
171349 rows × 1 columns

The method .asfreq() has an optional argument to back-fill or forward-fill. We 
have not used this, and therefore our data now contains a certain number of missing 
values (marked as NaN). Chapter 6, Value Imputation discusses strategies for filling 
and interpolation that we might use to guess values for the missing data. 
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We can see how many missing values there are:

sum(filled_temps.degrees.isnull())

1858

For the places where we added a single missing timestamp, any kind of filling or 
interpolation is probably sufficient. However, for the small number of larger gaps of 
multiple hours or even over a day, a linear interpolation almost surely does a poor 
job for the missing interval.

Remember the somewhat odd change in timestamp offset, where a single two-
minute increment occurred? One or more of the other gaps righted the minutes-after-
hour by the end of the time series, but some of the middle resampled measurements 
are shifted from their strict measurement time. One option here would be to 
upsample quite a bit to a one-minute frequency, and also combine that with a more 
sophisticated interpolation technique. Pandas provides—mostly by way of SciPy, 
if it is installed—a rich collection of interpolations: nearest, zero, slinear, quadratic, 
cubic, spline, barycentric, polynomial, krogh, piecewise_polynomial, pchip, akima, 
and from_derivatives.

One of these higher-order interpolations is likely to perform quite accurately on the 
few hour gaps, but obviously less well on the day-length gap. Let us upsample to 
one-minute frequency and then fill missing timestamps using spline interpolation.

one_minute_temps = no_dups.asfreq('1T')
one_minute_temps.index.name = 'Timestamp'
one_minute_temps

          Timestamp    degrees
———————————————————————————————
2003-07-25 16:04:00       27.5
2003-07-25 16:05:00        NaN
2003-07-25 16:06:00        NaN
2003-07-25 16:07:00       27.3
                ...        ...
2004-07-16 15:25:00       16.8
2004-07-16 15:26:00        NaN
2004-07-16 15:27:00        NaN
2004-07-16 15:28:00       16.4
514045 rows × 1 columns
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This high sampling frequency produces many rows and also many NaNs on the first 
pass.

one_minute_temps.interpolate(method='spline', order=3, 
                             inplace=True)
one_minute_temps.head()

          Timestamp       degrees
——————————————————————————————————
2003-07-25 16:04:00     27.500000
2003-07-25 16:05:00     27.082346
2003-07-25 16:06:00     27.079049
2003-07-25 16:07:00     27.300000
2003-07-25 16:08:00     27.072395

All values are filled with some imputed value here, but it is particularly interesting 
to look at the region around the missing day and a half at 2003-12-11.

(one_minute_temps
     .loc['2003-12-07':'2003-12-12', 'degrees']
     .plot(title="Spline interpolation of missing temps", 
           figsize=(12,3)));

Figure 7.1: Spline interpolation of missing temps

It is easy to see where the smooth trend was interpolated/imputed versus the much 
messier raw data (even though two-thirds of the “raw” data is actually imputed, but 
very locally). While the long gap around 2003-12-11 may not be accurate, it is not 
implausible and should not unduly affect models of the whole dataset. There is even 
a smaller few-hour gap a few hours after the long gap that is clearly relatively close 
to what the missing data would have been.
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Choosing the best interpolation technique is an art. A great deal depends on what 
cyclicities we expect in the time series data, if any. Indeed, it depends as well on 
whether the order of the data is a time series at all, or if it is some other type of 
sequence. The discussion in Chapter 5, Data Quality of detrending data is relevant. In 
the absence of domain knowledge that leads to an expectation of specific behavior, 
a simple linear interpolation of missing points limits the potential harm while not 
necessarily reaping much benefit. Where the data is time series data, using time-
sensitive regression makes sense; see Chapter 6, Value Imputation. However, where 
you have an expectation of a more complex, but regular, pattern in the gaps, using 
an interpolation technique such as spline, polynomial, or piecewise polynomial is 
likely to provide better value imputation.

Let us turn to data that is encoded inside strings, even where numeric or datetimes 
hope to emerge.

String Fields
Language is conceived in sin and science is its redemption.
–Willard Van Orman Quine

Concepts:

•	 Numeric abstraction of text
•	 Identification of embedded numbers
•	 String distance measures
•	 Phonetic canonicalization
•	 Categorical versus small distinct value count
•	 Uncommon values and factor levels
•	 Parsing non-atomic fields into varying data types

Data contained in string fields can have numerous meanings. In the worst of cases, 
for us, words can express complex, nuanced, logically connected meanings. But data 
science has no interest in books, articles, nor even in short free-form annotations. We 
only like categorical, numeric, ordinal, and date/time data. De minimis non curat lex.

Of course natural language processing (NLP) is a genuine and important area of data 
science, data analysis, and machine learning. That cannot be an extensive topic of 
this particular book, but a general point can be. To become data, a prose text must be 
transformed. 
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Word counts are numbers. N-gram frequency—word or letter sequences considered 
as a unit—can be dimensions of a parameter space. Transformation probabilities 
of state transitions in a Hidden Markov Model of a text are simply vectors. Large 
vocabularies can be embedded in smaller vector spaces as synthetic dimensions. 
Perhaps existing sentiment analysis models can be used to generate numeric 
characterizations of sentences or other segments of prose text.

Before we get to a brief digression on just a few of the encodings we might use for 
NLP, let us look at simpler uses for text. A great many string fields are very close 
to being data. For example, integers or floating-point numbers might happen to be 
represented as strings. It is very common, for example, to come across string data 
that is clearly intended to represent numbers but merely has cosmetic issues.

Let us read in a very small tabular dataset similar to one shown in Chapter 1, Tabular 
Formats.

df = pd.read_fwf('data/parts2.fwf')
df

   Part_No              Description              Maker      Price
———————————————————————————————————————————————————————————————————
0    12345     Wankle rotary engine   Acme Corporation   $ 555.55
1   No.678               Sousaphone      Marching Inc.   $ 333.33
2     2468           Feather Duster        Sweeps Bros    $ 22.22
3    #9922   Area 51 metal fragment     No Such Agency   $9999.99

Underneath the features Part_No and Price we can clearly see the intention to 
represent an integer and a floating-point number, respectively. We simply have a 
bit of extra text in the strings of both columns that defeated automatic recognition 
of these types by the Pandas library. We can clean up the individual columns, then 
try again to convert to their desired types. While we are cleaning up, we might 
impose a slightly narrower restriction than Pandas (or other libraries) would infer 
by default. For our purpose, we assume that part numbers are always positive and 
no higher than 216, which is to say unsigned 16-bit integers.

# Regular expression to strip all non-digits
df['Part_No'] = (df.Part_No
                     .str.replace(r'[^0-9]', '')
                     .astype(np.uint16))

# Remove spaces or $ from start of strings
df['Price'] = (df.Price
                   .str.lstrip("$ ")
                   .astype(float))
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df.dtypes

Part_No         uint16
Description     object
Maker           object
Price          float64
dtype: object

df

     Part_No              Description             Maker      Price
———————————————————————————————————————————————————————————————————
0      12345     Wankle rotary engine   Acme Corporation    555.55
1        678               Sousaphone      Marching Inc.    333.33
2       2468           Feather Duster        Sweeps Bros     22.22
3       9922   Area 51 metal fragment     No Such Agency   9999.99

Cleaning strings to allow them to convert to numbers can be fussy in its details, but 
in concept it does not amount to more than a little bit of eyeballing, and some trial 
and error, assuming each feature consists entirely of numbers “trying to get out.” 
In the subsections below, we will look at ways to do more than this by imposing 
equivalences of strings, treating strings as categorical, and dividing string fields into 
implicit subfields (each perhaps of their own type).

If you do determine that conversion to numbers is appropriate, it is worth keeping 
in mind what kinds of numbers they are. The Glossary entry for NOIR provides 
discussion of nominal, ordinal, interval, and ratio variables. This consideration is, 
of course, worthwhile even when the native data format is already numeric. In the 
example above, (by stipulation) we might know that Part_No:100 was added to the 
catalog earlier than was Part_No:200, but not what time duration separates them. 
Part_No:99 might have been added at more of a (negative) gap from Part_No:100 
than Part_No:100 is from Part_No:200. In this scenario, the variable is ordinal. In 
particular, we have no expectation that Part_No:100 + Part_No:200 has any specific 
relationship to Part_No:300 (nor any meaning at all). Of course, the numbers might 
also simply be random in relationship to catalog entry, and might best be left as 
strings.

In contrast to Part_No, we presume that Price entries will have ratio relationships 
among them. An item with Price:250 costs half as much as one with Price:500. If a 
buyer orders one Price:250 and one Price:500, they will generally be charged $750. 
Of course, that does not go so far as to indicate direct substitutability with the item 
that has Price:750, which the buyer does not want.
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Fuzzy Matching
Sometimes we have a short string field that is meant to represent a nominal/
categorical value. However, with the vagaries of data acquisition, different strings 
might be entered for observations meant to contain the same nominal value. There 
are numerous ways that the characters of the string might go wrong. Extremely 
common problems are non-canonical capitalization and spurious spacing. For 
features that are intended to be nominal, simply lower- or upper-casing the raw 
strings, and removing all spaces (either from the padding or also interior, depending 
on the particular expected values), is often a good policy.

While simple canonicalization of spaces and case will reveal many intended 
equivalences, we might also look at the edit distance between possibly similar 
strings. An exercise in Chapter 4, Anomaly Detection had you play with this possibility. 
Simple typos and misspellings are often captured by a short Levenshtein distance 
between pairs of strings. There are two problems with this kind of comparison; 
the same issues apply to Damerau-Levenshtein, Hamming, Jaro-Winkler, or other 
edit distance measures as with Levenshtein. One problem is that distances are not 
transitive. If the edit distance between A and B is 5, and the edit distance between 
B and C is 5, then the distance between A and C can be anywhere from 0 to 10. If 
6 is the threshold for “close enough equivalence,” it may not be clear whether to 
consider B as “A-like” or “C-like,” or both, or neither.

The greater problem with using edit distance is that it has quadratic complexity. 
That is—as the non-transitivity implies—the only way to find all similarities is to 
compare all the pairs of values to their respective pair edit distance. There may be 
a few shortcuts possible, for example if we identify collections of common prefixes, 
but generally we are required to accept this complexity. For the small example 
below, this would not be prohibitive, but for large datasets it would be.

Another approach that can often be useful is phonetic canonicalization. Often 
this approach is useful for names that may be transliterated in various ways, 
although the increasing prevalence of voice recognition systems with high fallibility 
probably presents additional opportunities. Most likely, voice recognition software 
will misidentify a word as something that sounds somewhat similar. While this 
approach may catch a class of typos as well, it is less consistent for that. The strings 
“GNU”and “GUN” are only one transposition apart, but their pronunciation is 
significantly different, for example.

A somewhat older (1918) phonetic canonicalization approach is called Soundex, 
and it works by substituting a common symbol for collections of similar sounds. For 
example, “b”, “f”, “p”, and “v” are all encoded in the same way. Building on that 
system is the 1990 Metaphone. 
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Metaphone allows for more complex rules, such as looking at letter clusters that 
typically have a certain sound that is not simply the addition of the individual letter 
sounds, or dropping certain letters in the context of other adjacent ones. These 
techniques primarily rely on consonant sounds, and vowels are often dropped from 
the encodings.

Double Metaphone goes further than Metaphone, and tries to account for more 
irregularities in English where words are borrowed from Slavic, Germanic, Celtic, 
Greek, French, Italian, Spanish, Chinese, and other origins. This gives a relatively 
complex ruleset; for example, it tests for approximately 100 different contexts for the 
use of the letter C. However, the algorithm remains linear over any dataset size, and 
is generally sequential in coding individual words. The “double” in the name of this 
technique comes from the fact that it produces both a primary canonicalization and 
many times also a secondary one using alternate rules. This allows for a more flexible 
equivalence comparison. For example, the secondary encoding of A may match the 
primary encoding of B, which is at least a hint about similarity.

Let us illustrate with a specific example. We have a dataset that has a number of 
similar family names that come from various languages but may represent the same 
person, or the same family, modulo transcription differences. In this example, the 
names are labeled by “similarity group” for presentation purposes, but in real data 
you are unlikely to have anything analogous to this. Just to make it look a bit more 
like a typical dataset, an extra column with numbers is also included. Whether or 
not we manage to unify these different spellings of what might be the same names, 
names form nominal variables since there are finitely many.

names = pd.read_csv('data/names.csv', index_col='Group')
names.head(8)

Group      Last_Name   Other_Data
——————————————————————————————————
1        Levenshtein          103
1       Levenschtein          158
1         Levenstein          110
2            Hagelin          136
2             Haslam          105
2           Haugland          190
2            Heislen          181
2             Heslin          106

If we use the Python Metaphone package, we can use the function 
doublemetaphone(), which produces a pair of primary/secondary encodings for 
every input string (the secondary may be blank). 
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The metaphone() function in the same package, or most other canonicalization 
libraries, will produce a single string to represent an input string. The library Fuzzy 
is a faster implementation, but seems to be limited to ASCII inputs, which will 
not work with the accented characters in some of our test names. We add these 
canonicalizations to the data frame.

from metaphone import doublemetaphone

metas = zip(*names.Last_Name.map(doublemetaphone))
names['meta1'], names['meta2'] = metas

Let us look at the similarity group 6 here, which contains a number of spelling 
variations on the same name.

with show_more_rows():
    print(names.loc[6])

Group  Last_Name  Other_Data meta1   meta2

6          Jeong         191   JNK     ANK
6           Jong         157   JNK     ANK
6          Chŏng         100   XNK        
6          Chung         123   XNK        
6           Jung         118   JNK     ANK
6          Joung         168   JNK     ANK
6          Chong         101   XNK        
6         Cheong         133   XNK        
6         Choung         104   XNK        

This very common Korean family name—in Hangul "정" , IPA (international 
phonetic alphabet) "/dʒʌŋ/" —is transliterated to English in numerous different 
ways, according to different style guides, and during different times historically. You 
may encounter any of those listed, but they all refer to the same underlying name; or 
they do if they refer to Korean names. It gets complicated. In South Korea, “Jeong” is 
currently canonical; in North Korea, “Jong”, is the current official transliteration.

As an example of the complication, the American feminist novelist Erica Jong is 
of Russian/Polish-Jewish ancestry, so you might expect her family name to have 
Yiddish origin. It turns out that it is actually that of her second husband, a Chinese-
American psychiatrist. The Chinese name is distantly related to the Korean one, but 
certainly not a mere different transcription. Similarly, the German name of Swiss 
psychoanalyst Carl Gustav Jung is not related to the Korean one. 
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We see the canonicalization “ANK” for several of these, including the German name 
pronounced as "/jʊŋ/"  (i.e. the “J” is pronounced similarly to an English “Y” in 
German, Yiddish, Swedish, Norwegian, Dutch, etc.).

There remain some name spellings where this technique does not unify them, even 
looking at secondary encodings. The initial “J” and the initial “Ch” are simply 
given a different representation. However, we have reduced many of the alternate 
spellings to a canonical representation. Let us look at another example. The former 
Libyan leader, (Muammar) Gaddafi, had a name that was transcribed in so many 
different ways by the English language press that the spelling variations became 
something of a humorous note. In Arabic it was "  in IPA it was "/ɡəˈdɑfi/"  or "/ɡəˈdæfi/" . Our double metaphone technique does quite well here, identifying , "قَذَّافيِّ 
nearly all variations as either the primary or secondary canonicalization. It may well 
be reasonable to your purpose to treat this as a common nominal value (the few 
encoded as “KTTF” will not be unified this way, nor will “KSF”/”KTSF”, but all 
others can be). This is perhaps a better example than the many different individual 
people named “Jeong” (or some variant spelling) since almost any English news 
article, which is perhaps our hypothetical document corpus, that used any of these 
spellings referred to the same human person.

with show_more_rows():
    print(names.loc[5])

       Last_Name  Other_Data  meta1  meta2
Group                                     
5        Gadaffi         197    KTF       
5         Gadafi         189    KTF       
5         Gadafy         181    KTF       
5        Gaddafi         163    KTF       
5        Gaddafy         179    KTF       
5        Gadhafi         112    KTF       
5        Gathafi         187    K0F    KTF
5       Ghadaffi         141    KTF       
5        Ghadafi         152    KTF       
5       Ghaddafi         192    KTF       
5       Ghaddafy         122    KTF       
5       Gheddafi         142    KTF       
5        Kadaffi         139    KTF       
5         Kadafi         188    KTF       
5        Kaddafi         192    KTF       
5        Kadhafi         121    KTF       
5        Kazzafi         193    KSF   KTSF
5       Khadaffy         148    KTF       
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5        Khadafy         157    KTF       
5       Khaddafi         134    KTF       
5         Qadafi         136    KTF       
5        Qaddafi         173    KTF       
5        Qadhafi         124    KTF       
5      Qadhdhafi         114   KTTF       
5      Qadhdhāfī         106   KTTF       
5       Qadthafi         186    KTF       
5        Qathafi         130    K0F    KTF
5       Quathafi         145    K0F    KTF
5        Qudhafi         158    KTF       

To round out our encoding, let us look at the few other names that have similar 
sounds, in several groups. Feel free to skim the next example; confessedly it enables 
jokes about Levenshtein distance and the author’s last name.

with show_more_rows():
    print(names.loc[names.index < 5])

          Last_Name  Other_Data   meta1  meta2
Group                                         
1       Levenshtein         103  LFNXTN       
1      Levenschtein         158  LFNXTN       
1        Levenstein         110  LFNSTN       
2           Hagelin         136    HJLN   HKLN
2            Haslam         105    HSLM       
2          Haugland         190   HKLNT       
2           Heislen         181     HLN       
2            Heslin         106    HSLN       
2           Hicklin         151    HKLN       
2          Highland         172   HHLNT       
2          Hoagland         174   HKLNT       
3           Schmidt         107     XMT    SMT
3             Shmit         167     XMT       
3             Smith         160     SM0    XMT
3             Smitt         181     SMT    XMT
3              Smit         192     SMT    XMT
4             Mertz         173    MRTS      
4              Merz         116     MRS      
4            Mertes         178    MRTS      
4             Hertz         188    HRTS      
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All of the Smith-like names can be unified as “XMT”, although we have to look 
at both the primary and secondary encodings to do so. The H-initial names do 
not strike us as necessarily all the same to start with, but we see some overlaps. 
Disappointingly, “Mertz” and “Merz” are not unified this way, notwithstanding that 
in German or Yiddish this author’s last name was probably a historical misspelling 
of ‘‘Mertz”.

The above examples of unifying nominal values focused on person names—family 
names in particular—but the technique is general to other cases where phonetic 
confusion or substitution might have occurred in the representation of categorical 
values.

Explicit Categories
Conceptually, there is a difference between a variable that merely has a small 
number of measured values and one that is actually categorical. Factor (categorical) 
variables allow us to express an intention about their use more accurately, but also 
enable a few additional APIs and performance optimizations. Most frequently, 
factors are associated with data stored as strings, but that need not be the case; the 
data type alone does not determine the matter. For example, we might have data 
on the houses in a housing development that looks like this:

Lot # Address Acres House Style
32849 111 Middle Rd 2 37
34210 23 High St 1 21
39712 550 Lowe Ave 3 22
40015 230 Cross St 1 21
32100 112 Middle Rd 1 14
30441 114 Middle Rd 2 22

We can use a small amount of domain knowledge to make a judgment on the 
nature of each feature. In particular, we can probably assume that Lot # is meant 
uniquely to describe a property. The Address is presumably similar. The fact that 
one field is an integer and the other a string is not as important as is the intent 
that the value represents something distinctive about each record. Even if one lot 
might occasionally be subdivided into multiple addresses, and other lots might be 
undeveloped with no address, generally we expect approximate distinctness of the 
values. The values may not be entirely unique across records, but they tend in that 
direction. These are not good candidates for factors.
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Let us think about house style and lot size (in acres) next. The house style is 
presumably selected from among a relatively small number of stock floor plans the 
developer has available. It is encoded as an integer, but it might well have been a 
short name used for the same intent (e.g. “Tudor Revival 4 BR”). We may need to 
account for future data in which houses were built on custom plans—or in any case, 
plans not from the developer’s portfolio—but that could be encoded with a name 
like “CUSTOM” or a sentinel number like -1. Most likely, the house style is best 
described as a categorical variable.

The variable Acres could mislead us if we only look at the data currently present. 
It is an integer with even fewer different values than House Style has. As domain 
knowledge, we know that new developments commonly are divided into fixed plot 
sizes (1-3 acres is unusually large for residential houses, but not absurd). However, 
over time, lots may become subdivided or aggregated in units that do not match 
the original allocations. The owners of 114 Middle Rd might sell 0.35 acres of their 
land to the adjacent owners of 112 Middle Rd, leaving both with non-integer and 
uncommon lot sizes. Most likely, we do not, in fact, wish to encode this variable as 
categorical, even though its initial values might suggest such. Probably floating-point 
numbers are most appropriate despite the variable holding only integers currently.

***

In an exercise in Chapter 4, Anomaly Detection, you were shown a dataset with a 
number of human names, many of which are probably misspellings of more common 
intended names. Using Pandas first, let us read in the data, then discard rows with 
uncommon names, then convert the string column Name to a categorical variable.

humans = pd.read_csv('data/humans-names.csv')
humans

           Name       Height      Weight
—————————————————————————————————————————
    0     James   167.089607   64.806216
    1     David   181.648633   78.281527
    2   Barbara   176.272800   87.767722
    3      John   173.270164   81.635672
  ...       ...          ...         ...
24996   Michael   163.952580   68.936137
24997     Marie   164.334317   67.830516
24998    Robert   171.524117   75.861686
24999     James   174.949129   71.620899
25000 rows × 3 columns
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For this purpose, we simply do not wish to look at rows with names occurring fewer 
than 10 times. We can see that this keeps the large majority of rows, but 417 are 
removed from the 25,000.

name_counts = humans.Name.value_counts()
uncommon = name_counts[name_counts < 10]
humans = (humans
              .set_index('Name')
              .drop(uncommon.index)
              .reset_index())
humans

           Name       Height      Weight
—————————————————————————————————————————
    0     James   167.089607   64.806216
    1     David   181.648633   78.281527
    2   Barbara   176.272800   87.767722
    3      John   173.270164   81.635672
  ...       ...          ...         ...
24579   Michael   163.952580   68.936137
24580     Marie   164.334317   67.830516
24581    Robert   171.524117   75.861686
24582     James   174.949129   71.620899
24583 rows × 3 columns

At this point, there are 18 unique names remaining, as seen below. They are stored 
slightly inefficiently as separate strings for each one, but in general all Pandas 
operations will behave perfectly fine. We might, for example, group by name to do 
some other operation. Moreover, libraries like scikit-learn will generally be happy to 
treat a collection of distinct strings as categorical (for many models; others will need 
a numeric encoding). Converting to factors in Pandas does little more than optimize 
storage size and make some selection operations faster. These are worthwhile goals, 
but have little effect on the available APIs. We will see below that R’s Tidyverse is 
somewhat more customized to factors.

humans['Name'] = humans.Name.astype('category')
humans.Name.dtype

CategoricalDtype(categories=['Barbara', 'David', 'Elizabeth', 'James',
                             'Jennifer', 'Jessica', 'John', 'Jon',
                             'Joseph', 'Linda', 'Marie', 'Mary',
                             'Michael', 'Patricia', 'Richard', 'Robert',
                             'Susan', 'William'],
                 ordered=False)
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Nothing about using this DataFrame really changes. In particular, you can pretend 
that Name remains a string field, but filters will run faster. As we see above, the dtype 
now exposes the category values as well, but the same information is generally 
available with Series.unique() even for string columns (albeit needing a linear scan 
of the entire column for strings, but looking up a single existing data structure for 
categorical columns).

humans[humans.Name == 'Mary']

        Name       Height      Weight
——————————————————————————————————————
   19   Mary   170.513197   71.145258
   35   Mary   175.783570   73.843096
   54   Mary   166.074242   70.826540
   61   Mary   175.258933   78.888337
  ...    ...          ...         ...
24532   Mary   172.602398   72.602118
24536   Mary   172.159574   70.383305
24547   Mary   173.902497   71.545191
24549   Mary   169.510964   71.460077
1515 rows × 3 columns

Let us look at the same dataset using R, which treats what it calls “factors” as more 
special. Albeit, in R as well, it is easy to convert back and forth between factor 
variables and their underlying data type (often underlying strings, but we treat 
integers, or even floats, as factors at times).

%%R
humans <- read_csv('data/humans-names.csv')
humans

── Column specification ──
cols(
  Name = col_character(),
  Height = col_double(),
  Weight = col_double()
)

# A tibble: 25,000 x 3
   Name      Height Weight
   <chr>      <dbl>  <dbl>
 1 James       167.   64.8
 2 David       182.   78.3
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 3 Barbara     176.   87.8
 4 John        173.   81.6
 5 Michael     172.   82.8
 6 William     174.   70.7
 7 Elizabeth   177.   81.2
 8 Joseph      178.   78.3
 9 Jessica     172.   64.5
10 William     170.   69.2
# ... with 24,990 more rows

In this Tidyverse version of our dataset, we will do something modestly different 
than we did with Pandas. First we will use mutate_at() in very much the same way 
as we did with .astype() in Pandas. Next we use a custom facility of factor variables. 
Here, all uncommon names are not discarded but are lumped together as a common 
value "UNCOMMON". This allows us to retain the other associated data columns (which 
obviously would have been possible in Pandas, but slightly less concise).

%%R
# Make the column Name into a factor variable
humans <- mutate_at(humans, vars(Name), factor) 

# Any values occurring fewer than 100 times will be 
# aggregated under the factor level "UNCOMMON"
humans['Name'] <- fct_lump_min(humans$Name, min = 100, 
                               other_level = "UNCOMMON")
humans

# A tibble: 25,000 x 3
   Name      Height Weight
   <fct>      <dbl>  <dbl>
 1 James       167.   64.8
 2 David       182.   78.3
 3 Barbara     176.   87.8
 4 John        173.   81.6
 5 Michael     172.   82.8
 6 William     174.   70.7
 7 Elizabeth   177.   81.2
 8 Joseph      178.   78.3
 9 Jessica     172.   64.5
10 William     170.   69.2
# ... with 24,990 more rows
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The only visible change is that the column type has changed, but this lets us ask 
about the levels of the factor variable, whereas the same call produces NULL for 
character columns.

%%R
levels(humans$Name)

 [1] "Barbara"   "David"     "Elizabeth" "James"     "Jennifer"  "Jessica"  
 [7] "John"      "Jon"       "Joseph"    "Linda"     "Marie"     "Mary"
[13] "Michael"   "Patricia"  "Richard"   "Robert"    "Susan"     "William"  
[19] "UNCOMMON" 

Here again, not all that much has changed in the tibble API. The ability to use 
fct_lump_min() and similar functions is specific to factor columns, but accessing 
them remains the same as before (just faster).

%%R
humans %>% filter(Name == "UNCOMMON")

# A tibble: 417 x 3
   Name     Height Weight
   <fct>     <dbl>  <dbl>
 1 UNCOMMON   172.   76.5
 2 UNCOMMON   167.   60.3
 3 UNCOMMON   182.   85.2
 4 UNCOMMON   176.   72.3
 5 UNCOMMON   174.   82.1
 6 UNCOMMON   170.   66.8
 7 UNCOMMON   171.   60.0
 8 UNCOMMON   171.   73.9
 9 UNCOMMON   171.   80.4
10 UNCOMMON   177.   73.3
# ... with 407 more rows
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Let us take a look at the distribution of observations now that uncommon names 
have been included in the catch-all “UNCOMMON” factor level.

%%R
ggplot(humans, aes(y = Name)) + geom_bar(stat = "count")

Figure 7.2: Distribution of name counts
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In the next section, strings are considered again, but in the sense they are used in 
natural language processing, as texts of human languages which we might transform 
into numeric representations.

String Vectors
Get rid of meaning.
–Kathy Acker

Concepts:

•	 Bag-of-words
•	 Word2Vec
•	 Cosine similarity
•	 Stop words, tokenization, lemmatization

Natural Language Processing (NLP) is a large subfield of data science. The topic is 
deserving of numerous good books of its own, and fortunately many indeed exist. 
For this book, we want to look only at one niche area; how can you encode strings 
of natural language into numeric features that machine learning models can accept 
as inputs and that statistical techniques can operate on?

Ordered historically, and in sophistication, there are two main methods of 
transforming a natural language text into a vector. In the simplest case, we can use a 
technique called “bag-of-words.” This is simple enough as a technique that we can 
easily create this representation ourselves with a few lines of code. The idea is first 
to construct a vocabulary for the entire corpus; that is, simply a collection of all the 
words it contains. Then we can represent each text within it by a vector of the length 
of the vocabulary, with each component dimension indicating the count of that 
word. It should be obvious that this can produce large vector sizes as corpora, and 
hence vocabularies, grow in size. Even though it loses order of words, this encoding 
can be quite effective in producing useful vectors capturing semantic distinctions.

For a highly simplified example, suppose you have several pet stores in your town. 
Each publishes a catalog, with varying numbers of mentions of the two words 
“dog” and “cat.” Having a particular kind of pet (among these) yourself, you wish 
to determine which is likely to be more relevant for your pet care needs. The vectors 
we generally use in NLP are likely to have hundreds or thousands of dimensions 
rather than two.
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Figure 7.3: Pet store vector space

In order to keep vocabularies at least relatively manageable, we can reduce words 
to simpler form. We can discard punctuation and canonicalize case to arrive at fewer 
words. Moreover, using the NLTK (Natural Language Toolkit) package, we can 
remove “stop words”—those usually small connecting words, pronouns, and a 
few others, that add little to the general semantics of a sentence. Clearly, these are 
often necessary for clarity of human communication, but a vector representation of 
meaning usually does better without them. For a simple example, let us choose a 
famous and powerful poem by an unfortunately politically authoritarian poet.

# William Butler Yeats
second_coming = """
Turning and turning in the widening gyre   
The falcon cannot hear the falconer;
Things fall apart; the centre cannot hold;
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Mere anarchy is loosed upon the world,
The blood-dimmed tide is loosed, and everywhere   
The ceremony of innocence is drowned;
The best lack all conviction, while the worst   
Are full of passionate intensity.

Surely some revelation is at hand;
Surely the Second Coming is at hand.   
The Second Coming! Hardly are those words out   
When a vast image out of Spiritus Mundi
Troubles my sight: somewhere in sands of the desert   
A shape with lion body and the head of a man,   
A gaze blank and pitiless as the sun,   
Is moving its slow thighs, while all about it   
Reel shadows of the indignant desert birds.   
The darkness drops again; but now I know   
That twenty centuries of stony sleep
Were vexed to nightmare by a rocking cradle,   
And what rough beast, its hour come round at last,   
Slouches towards Bethlehem to be born?
"""

The first step is to determine the simplified words, and thereby the vocabulary, for 
our vector encoding. First the poem itself is reduced to a sequence of more canonical 
words. This is a form of tokenization, but a very simplified form.

def simplify_text(text):
    stops = nltk.corpus.stopwords.words('english')
    words = re.findall(r'[a-z]+', text.lower())
    return [w for w in words if w not in stops]

poem = simplify_text(second_coming)
poem[:6]

['turning', 'turning', 'widening', 'gyre', 'falcon', 'cannot']

From here we would like a mapping from the vocabulary to index positions within 
the vector. The position of any particular word representation in the vector is 
irrelevant for this purpose, since each makes up an orthogonal axis of the vector. 
For example, it doesn’t matter if “gyre” was chosen to be the second or sixth or 
twentieth element of the vector. 
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Our goal will be to encode each fragment using such a vector. Trivially, a fragment 
might be a single word, but it might be a line, a paragraph, a stanza, or whatever 
other division we like. The below code first creates a mapping of words to index 
positions, then generates the bag-of-words vectors.

word2ndx = {w:n for (n, w) in enumerate(set(poem))}
print(f"Vector dimensions={len(word2ndx)}")

def make_vector(words, word2ndx=word2ndx):
    # Generate the vector of zero count per dimension
    vec = np.zeros(len(word2ndx), dtype=np.uint16)
    for word in words:
        # we might ignore unknown word or attempt 
        # to canonicalize it, here we raise exception
        assert word in word2ndx
        n = word2ndx[word]
        vec[n] += 1
    return vec

list(word2ndx.items())[:5]

Vector dimensions=84
[('centre', 0), ('loosed', 1), ('blank', 2), ('falconer', 3), 
('moving', 4)]

To illustrate this bag-of-words vectorization technique, we can encode each stanza 
as a vector.

for i, stanza in enumerate(second_coming.split('\n\n')):
    print(f"Stanza {i+1}:")
    print(make_vector(simplify_text(stanza)))

Stanza 1:
[1 2 0 1 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0
 1 1 0 1 1 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 0 0 0 1
 0 0 0 0 0 1 0 1 0 1]
Stanza 2:
[0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 2 0 1 1 1 1 1 0 1 0 0 0 0 2 0 1 1 0 1
 0 0 1 0 0 1 0 1 1 1 1 2 1 1 1 1 0 1 2 1 0 0 0 0 1 0 1 1 0 0 1 0 1 1 2 1 0
 1 1 1 1 1 0 1 0 1 0]
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These vectors represent a distinction between the “meaning” of the two stanzas. 
Surprisingly to me—I did not realize until writing this paragraph—there are no 
word repetitions other than the stop words. Within each stanza, various words are 
repeated, albeit only ever twice, not more than that. As human readers, we certainly 
get a different “feel” from each stanza and would characterize its overall meaning 
differently.

Generally a more powerful vectorization technique than bag-of-words is Word2Vec. 
This model allows you to create vectors of arbitrary dimensionality; but more 
importantly than that alone, Word2Vec uses a two-layer neural network that actually 
looks at the context of each word as defined by the words surrounding it. This winds 
up producing vectors that are curiously meaningful. Some commonly cited examples 
are the subtraction and addition of vectors with different components of their 
meaning. For example, trained on a large, typical English-language corpus, we will 
likely see: (𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑑𝑑𝑑𝑑𝑑𝑑) ≈ (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) 
Or: (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ≈ (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 
Depending on the corpus used in training, the second might be thrown off by 
the additional meaning of “turkey” as a flightless bird eaten especially in North 
America. But then, “china” is also a word for porcelain dishes, which could have 
a similar homonym effect.

Building on Word2vec is an improved version, called a “paragraph vector” by its 
original inventors, Quoc Le and Tomas Mikolov, but called Doc2Vec in the gensim 
package we utilize here. Gensim is a very useful NLP package for Python that 
contains a number of useful NLP modeling tools; it is well-optimized for speed in its 
underlying libraries. Also worth investigating is spaCy, which has a similar purpose, 
but with more pre-built models. For many purposes, either vectorization is mostly 
similar; Doc2Vec primarily adds the ability to tag each document (e.g. a sentence, or 
a paragraph, or a stanza, or an entire book) by some attribute such as its author. This 
tagging allows additional methods that characterize a tag (i.e. author) overall and 
compare it to other tags or novel texts.

For this discussion, we will look at a collection of 14,485 tweets about airlines. A 
corpus larger than the single poem we used above is useful, but there is no reason 
we could not use that in a similar way. This dataset has a number of things in 
addition to the tweets themselves. 
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Two such fields are name (of the account) and airline. The latter is somewhat 
redundant since it is determined based on the Twitter @ tag that the user themselves 
attached. Let us look at a few to get a sense.

db = sqlite3.connect('data/Airline-Tweets.sqlite')
cur = db.cursor()

sql = """
SELECT name, airline, text 
FROM Tweets 
"""
cur.execute(sql)
tweets = cur.fetchall()
pprint(tweets[5000:5003], width=60)

[('Paul_Faust',
  'United',
  '@united Love to report how horrible this flight is to '
  "your team. Let's make it worse...as they get to my "
  'seat...out of all snacks'),
 ('Jennsaint8',
  'Southwest',
  '@SouthwestAir any chance they will change this to '
  'include Northeast airports?  JetBlue has.'),
 ('_stephanieejayy',
  'Delta',
  '@JetBlue do you have any afternoon flights going from '
  'BQN to JFK? I only seem to find early morning flights.')]

It would definitely make sense to tag this corpus using the author; however, since 
each author will have written relatively few tweets, the more frequently occurring 
airline names are perhaps more interesting to use. This choice is not too important 
for this book, but just something to illustrate. We will use both tags to show the API.

from gensim.models.doc2vec import Doc2Vec, TaggedDocument

docs = []
for (author, airline, msg) in tweets:
    td = TaggedDocument(simplify_text(msg), [author, airline])
    docs.append(td)

# Require words occur at least 4x, look 2 words to each side
# The produced vector is 10 dimensional
model = Doc2Vec(docs, vector_size=10, window=2, min_count=4)
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Let us see how large our vocabulary is under the minimum count requirement 
and also look at a few of the example words.stems The ordering of words in the 
vocabulary is again of no significance, as it was not with bag-of-words. There are 
several thousands of words in the vocabulary, but we reduce the representation 
to an arbitrary dimensionality. Here we choose 10 dimensions, which is probably 
sufficient for these fairly stereotyped messages. A wider corpus with more semantic 
variation would probably benefit from higher dimensionality (the default if not 
specified is 100).

print("Number of words:", len(model.wv.vocab))
list(model.wv.vocab)[:7]

Number of words: 3359
['jetblue', 'new', 'ceo', 'seeks', 'right', 'balance', 'please']

The purpose of this code we have run is to now be able to represent any string we 
might create as 10 numeric features. Novel strings may only utilize terms in our 
vocabulary, but Gensim provides a mechanism to construct a larger vocabulary 
along with the model, including words that do not occur in the initial training set. 
Let us first look at the vector for an existing tweet, then for a novel message.

msg = tweets[11_001][2]
print(msg)
model.infer_vector(simplify_text(msg))

@AmericanAir thank you for responding rather quickly btw
array([ 0.01165844,  0.00964975, -0.08577796, -0.03201848,  0.00883767,
        0.13692749,  0.06367198,  0.02911634, -0.00109272, -0.16733222],
      dtype=float32)

stems

Identification of words is itself an important area of NLP. 
Inflectional forms of the “same” word are often best treated 
as the same base form. This is done either by stemming or by 
lemmatization. Stemming tries to identify a few letters making 
up a morphological root of a word by removing common affixes. 
Lemmatization goes further by using both grammatical context 
and phonemic relations. For example, a lemmatizer might 
canonicalize “dove” as a verb as “dive” (i.e. jump) but “dove” as a 
noun as “dove” (i.e. a bird). Either technique would tread the word 
“seek” in the example as being identical to “seeks”, “seeking”, et 
cetera. 
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Below we create a short novel message and obtain its vector. These dimensions have 
no particular meaning, but we are able to measure the relationships between them. 
We can also store this synthetic data in intermediate datasets that might be used 
for downstream modeling techniques; this latter is the most common use for this 
transformation.

badservice = model.infer_vector(['bad', 'service'])
badservice

array([-0.03352741,  0.0146618 , -0.03105226,  0.036326  ,  0.05287395,
        0.05780041, -0.05203189,  0.07293667, -0.01861257, -0.13574287],
      dtype=float32)

The Gensim library provides a rich set of functions to compare these representations, 
using cosine similarity (the cosine of the angle between two vectors) and other 
techniques. Just as one example, let us see which single words are closest to my short 
message, “bad service”. A small note is that I have frozen this next output; the neural 
network underlying Doc2Vec has state randomization, so each time it is trained, 
different vectors, and different connection weights in the underlying neural network, 
are produced. Here I display the result from one particular run, but other runs will 
vary in details.

model.wv.most_similar(['bad', 'service'])

[('terrible', 0.9658449292182922),
 ('clients', 0.9587224125862122),
 ('management', 0.9491853713989258),
 ('greeting', 0.9436992406845093),
 ('msy', 0.9382249116897583),
 ('pathetic', 0.9378621578216553),
 ('dropped', 0.9307988286018372),
 ('keeping', 0.9277007579803467),
 ('lack', 0.924517035484314),
 ('telling', 0.9227219223976135)]

Most of those words are directly negative; the ones that seem neutral or positive 
probably occur mostly in contexts that negate their ordinary meanings in some sense. 
For example, perhaps “management” is usually surrounded by negative adjectives 
in the tweets. We can also utilize the tags to get vectors that simply represent the 
collection of texts associated with the tag, as we do in the next cell. 
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We could make measurements from these vectors in the parameter space to those 
for additional airlines, or to particular texts expressing a sentiment, and this would 
illustrate the similarity of those various vectors.

airlines = ('Delta', 'United', 'JetBlue')
delta, united, jetblue = (model.docvecs[x] for x in airlines)
print(f"Delta:\n{delta}\n")
print(f"United:\n{united}\n")
print(f"JetBlue:\n{jetblue}\n")

Delta:
[ 5.578579   2.0885715 -5.8722963 -5.2461944  4.862418   6.6500683
  3.054988   2.5725224  3.1206055 -9.660177 ]

United:
[  0.62689006   2.9862213  -10.10382     -7.578535    -0.44318137
   3.9621575    2.9998243   -0.11659689  -2.9283297   -7.8558965 ]

JetBlue:
[ 0.04514389  0.03341183 -0.02691341  0.01708637  0.02028313 -0.03833938
 -0.0415993  -0.04835104 -0.05358113 -0.03369116]

How similar are what people tweet about these airlines, as a per-airline comparison?

from scipy.spatial.distance import cosine
print(f"Delta  | United  | {cosine(delta, united):.3f}")
print(f"Delta  | JetBlue | {cosine(delta, jetblue):.3f}")
print(f"United | JetBlue | {cosine(united, jetblue):.3f}")

Delta  | United  | 0.239
Delta  | JetBlue | 0.930
United | JetBlue | 0.787

We can see that Delta and United are quite similar in this analysis, but Delta and 
JetBlue are nearly as distant in vector space as is possible. That is, a value of zero 
would mean identical “sentiment” vectors, while a value of one would be maximally 
different. This is a good time to continue thinking about vector spaces in an 
abstract sense.
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Decompositions
After the entropy is accounted for, all that is left is noise.
–David Mertz

Concepts:

•	 Principal Component Analysis and other decompositions
•	 Whitening
•	 Dimensionality reduction
•	 Visualization with t-SNE and UMAP

A highly dimensional dataset—whether of high dimension because of the initial 
data collection or because of creation of extra synthetic features—may lend itself 
less well to modeling techniques. In these cases, it can be more computationally 
tractable, as well as more predictive, to work with fewer features. Feature selection 
is mostly outside the scope of this book, but is discussed briefly in the below section 
on Polynomial Features, which is the technique that increases the number of synthetic 
features most dramatically.

However, one special kind of “feature selection” is a decomposition of the parameter 
space of a feature set. These techniques presuppose that all features have been 
numerically encoded in some manner, perhaps via the technique discussed below 
in the One-Hot Encoding section. A decomposition creates synthetic features in a 
sense, but what it really does is create a new orthonormal basis (new axes) of the 
parameter space. The transformation in a decomposition is information-preserving 
and reversible if you keep the same number of dimensions as in the prior dataset. 
However, the purpose of a decomposition is most often to perform dimensionality 
reduction. When a decomposition is performed on multi-dimensional data, it 
concentrates the entropy of the data into the initial dimensions, leaving much less 
information content in the remaining dimensions; often, discarding the higher-
numbered dimensions does little harm to modeling metrics, or indeed improves 
them.
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The most common, and oldest, decomposition technique is principal component 
analysis (PCA), which was first developed by Karl Pearson in 1901. We will 
primarily focus on PCA in this section, but just keep in mind that other techniques 
might prove more powerful for specific datasets and domain characteristic 
distributions of values. Some of these other techniques include non-negative matrix 
factorization (NMF), latent Dirichlet allocation (LDA), independent component 
analysis (ICA), and t-distributed stochastic neighbor embedding (t-SNE). The 
last listed technique, t-SNE, is not reversible, however, so is not quite accurately 
characterized as a decomposition, but it is a dimensionality reduction that is very 
often useful for visualization, and we will look at an example of that. Conveniently, 
all of these decompositions (as well as others) are provided by scikit-learn; each is 
certainly available in other libraries as well, of course.

Rotation and Whitening
As an initial example, let us look at a dataset with just two features, and perform a 
decomposition on it. When we perform a decomposition we emphasize the “most 
important synthetic axes.” The result of this for PCA specifically is that, by definition, 
the variance decreases with each successive PCA feature. Whitening and sphering 
are synonyms meaning re-scaling these synthetic features.

With a decomposition, there can be a secondary de-emphasis of some features 
that is too strong. It depends on the specific kind of model used, but for many 
models a numeric feature ranging from 0 to 100 will simply have more effect than 
a feature varying from 0 to 1 just because it contributes bigger numbers to the 
calculation. Usually it is better to let a model select the importances of features than 
to judge them in advance with feature engineering. That is, a decomposition—or 
other feature engineering technique—might give a synthetic feature a numeric 
scale greater or less than some other feature, and hence a corresponding default 
weighting. It is best to avoid that, as we do below.

from src.whiten import data, show

# Only two initial features for illustration, 
# but in general we would have a high dimensionality
show(data, "Parameter space for two features", 
     "Raw Feature 1", "Raw Feature 2")
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Figure 7.4: Parameter space for two features

Here we have two features that are obviously pretty strongly correlated. In particular 
though, we notice that the variance is greater along a diagonal of roughly 45° than 
along the observed axes. PCA will reorient the data to make this axis of variance (i.e. 
the most entropy) the primary component.

from sklearn.decomposition import PCA
show(PCA().fit_transform(data), 
     "PCA Components", "Synthetic Axis 1", "Synthetic Axis 2")

Figure 7.5: PCA components
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We looked at scaling in more detail in Chapter 5, Data Quality. We could use those 
standard techniques to scale this “flattened” data, but this concern is common 
enough in PCA transforms that scikit-learn builds in an argument to do it 
automatically. This often saves us the need to rescale data a second time after the 
transform, and is generally a cleaner approach.

show(PCA(whiten=True).fit_transform(data), 
     "Whitened Components", "Synthetic Axis 1", "Synthetic Axis 2")

Figure 7.6: Whitened components

The use of “whitening” is closely analogous to the distinction between “white noise” 
and “pink noise” in acoustics and spectral analysis. Both kinds of noise represent a 
wide range of frequency values, but “pink” overemphasizes the red end of the visual 
spectrum. Similarly, a non-whitened PCA would overemphasize one particular axis.

Dimensionality Reduction
While a change to the orthonormal basis might in itself aid machine learning models, 
the more common use of decomposition is to reduce the number of dimensions 
while still retaining most of the information. As an example, let us use the widely 
available Wisconsin Breast Cancer dataset. This can be obtained from the UCI 
Machine Learning Repository, from Kaggle, or included with scikit-learn and other 
data science libraries. In summary, this dataset contains 30 numeric measurements 
of tumors, with a target characterization as benign or malignant. 
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It has 569 observations that are relatively well balanced between the target classes 
(212 malignant, 357 benign).

cancer = load_breast_cancer()
X_raw = StandardScaler().fit_transform(cancer.data)
y = cancer.target

If we try to make a prediction using a typical machine learning model, we can do 
pretty well with a naïve approach. In order to illustrate this, we perform a train/test 
split to avoid overfitting the specific data used to train the model. This is outside 
the direct scope of this discussion, but a line of code below performs that. We can 
also reduce the dimensionality using PCA, and the effect on the model quality is 
interesting. For this discussion, we will try selecting just one principal component, 
only two components, and four components, derived from the original 30 features. 
We whiten in each case to preserve scales of dimensions (this is generally moot for 
the PCA1 case).

X_pca1 = PCA(n_components=1, whiten=True).fit_transform(X_raw)
X_pca2 = PCA(n_components=2, whiten=True).fit_transform(X_raw)
X_pca4 = PCA(n_components=4, whiten=True).fit_transform(X_raw)

Using our three candidate feature matrices, let us see how well the corresponding 
K-neighbors models perform.

for X in (X_raw, X_pca1, X_pca2, X_pca4):
    X_train, X_test, y_train, y_test = (
        train_test_split(X, y, random_state=1))
    model = KNeighborsClassifier().fit(X_train, y_train)
    accuracy = model.score(X_test, y_test)
    error_rate = 100*(1-accuracy)
    print(f"Features | {X.shape=}\t| {error_rate=:.2f}%")

Features | X.shape=(569, 30) | error_rate=4.90%
Features | X.shape=(569, 1)  | error_rate=9.79%
Features | X.shape=(569, 2)  | error_rate=6.99%
Features | X.shape=(569, 4)  | error_rate=4.20%

An error rate of 4.90% on the raw data is not too unreasonable. In any case, let us 
consider that a baseline. With only one principal component, the error rate jumps 
to 9.79%; this is surprisingly good given how much information we discarded, and 
is better than we could have done utilizing any single raw feature. If we keep two 
principal components, the error rate falls to 6.99%, which is a sensible intermediate 
value. 
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However, what is intriguing is that with four principal components, we actually get 
a slightly better error rate, of 4.20%, than we achieved with the complete raw data. 
In essence, after the bulk of the entropy in the data is accounted for, all that is left is 
random noise.

This contrast between “entropy” and “noise,” while accurate, is also meant as a 
playful phrasing. Entropy and noise are treated as synonyms in many contexts, 
although “information content” is actually closer to the meaning of entropy. But 
the underlying point is that some of the variability in observations is due to the 
underlying natural (or artificial) phenomenon, and some of it is due exclusively to 
the random variation of sampling a finite population. Dimensionality reduction via 
decomposition has a tendency to pick out the signal from the noise. I will note that 
there remains trial and error here; for example, choosing five or six components rather 
than four becomes worse than the raw data again (on this exact model algorithm, 
with this exact train/test split, with these exact hyperparameters, et cetera).

Let us return to exactly what PCA does as a transformation. It simply determines 
multipliers for each of the raw dimensions to linearly derive the principal 
components. For example, in the breast cancer dataset, each observation is a 
vector of 30 numbers. Each of those numbers is multiplied by some constant, 
and those 30 products are added together to make up component 1. Likewise for 
component 2, with different multipliers. Let us create a table of these multipliers 
for n_components=3 to illustrate.

pca3 = PCA(n_components=3).fit(X_raw)
pd.DataFrame(pca3.components_.T, 
             index=cancer.feature_names, 
             columns=['pca_1', 'pca_2', 'pca_3'])

                               pca_1         pca_2         pca_3
—————————————————————————————————————————————————————————————————
            mean radius     0.218902     -0.233857     -0.008531
           mean texture     0.103725     -0.059706      0.064550
         mean perimeter     0.227537     -0.215181     -0.009314
              mean area     0.220995     -0.231077      0.028700
                    ...          ...           ...           ...
        worst concavity     0.228768      0.097964     -0.173057
   worst concave points     0.250886     -0.008257     -0.170344
         worst symmetry     0.122905      0.141883     -0.271313
worst fractal dimension     0.131784      0.275339     -0.232791
30 rows × 3 columns
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In other words, we can use the .transform() method of the fitted PCA object, but we 
can equivalently just perform the same calculation in plain NumPy.

row0_sk = pca3.transform(X_raw)[0]
row0_np = (pca3.components_ * X_raw[0]).sum(axis=1)
print(f"Row 0 as transform: {row0_sk}")
print(f"Row 0 as mul/sum:   {row0_np}")

Row 0 as transform: [ 9.19283683  1.94858307 -1.12316599]
Row 0 as mul/sum:   [ 9.19283683  1.94858307 -1.12316599]

Visualization
For different purposes, utilizing a different decomposition can be useful. Principal 
component analysis, however, remains the first technique you should try in most 
cases. One special use is when we want to generate useful visualizations of high-
dimensional parameter spaces into the two or three dimensions we can actually 
represent spatially. T-distributed Stochastic Neighbor Embedding (t-SNE) is a 
nonlinear dimensionality reduction technique for projecting high-dimensional data 
into two or three dimensions. Similar objects are modeled by nearby points and 
dissimilar objects are modeled by distant points, with high probability.

As an example of this visualization technique, let us look at a collection of 1,797 
handwritten digits scanned as 8×8 grayscale pixels. This collection is one of those 
published in the UCI Machine Learning Repository and distributed with scikit-
learn. What this amounts to is a 64-dimensional parameter space for the various 
pixel values. Relatively simple models like logistic regression can get good results in 
predictive accuracy on this dataset; convolutional neural networks do even better. 
Let us look at a few sample scans and import the underlying data.

digits = get_digits()

Figure 7.7: Sample digits
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We might try to simplify this 64-dimensional parameter space using PCA. That will 
indeed get us a two-dimensional visualization that shows reasonable differentiation 
of digits in this projected parameter space. There is certainly, for example, a region 
toward the top center of the plot below that is dominated by the digit 0. At the same 
time, there is strong overlap between the regions where digits occur, and somewhat 
loose differentiation.

pca_digits = PCA(n_components=2).fit_transform(digits.data)
plot_digits(pca_digits, digits, "PCA")

Figure 7.8: PCA decomposition of digit space

The scale units of the PCA dimensionality reduction, and those below of other 
techniques, have no specific numeric meaning. They are simply artifacts of the 
algorithms, but produce differentiated numbers that can be plotted, or used in 
statistics or modeling.
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In contrast, using t-SNE we achieve a much stronger result for this visualization. 
Correspondingly, modeling based on this projection will provide much more to 
work with. In this example, t-SNE plus logistic regression does not perform better 
than the logistic regression on the full feature space, but it is not that much worse 
with far less underlying data used to represent each observation. The cluster of 0 
digits at the center left, for example, is extremely strong, with a large gap between 
those and any other digits. A few others are less well separated, but in the ways we 
would tend to expect; a 9 drawn a certain way strongly resembles a 3, for example.

tsne_digits = TSNE(random_state=1).fit_transform(digits.data)
plot_digits(tsne_digits, digits, "t-SNE")

Figure 7.9: t-SNE decomposition

Uniform Manifold Approximation and Projection for Dimension Reduction 
(UMAP) is another technique with a similar motivation (but very different math) 
as t-SNE. UMAP often has additional advantages. Specifically, the distance between 
clusters—not only the closeness of observations within a cluster—is roughly 
preserved by UMAP, whereas t-SNE simply does not attempt to do that. In this 
particular scanned digits example, UMAP produces even tighter clusters than does 
t-SNE as well. 
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In fact, the clusters are tight enough that it is difficult or impossible to distinguish the 
many overlain digits within each cluster.

from umap import UMAP
umap_digits = UMAP(random_state=1).fit_transform(digits.data)
plot_digits(umap_digits, digits, "UMAP")

Figure 7.10: UMAP decomposition

In using a decomposition technique to generate synthetic features, you are not, of 
course, limited to using only those features. Depending on your specific needs, it can 
make sense to utilize a top few decomposed dimensions, but also add those into the 
same intermediate dataset with some original raw features, with one-hot-encoded 
features, with polynomial features, or with other types of synthetic data. This task-
specific construction of a dataset is likely to be most effective for the particular 
purpose you have in front of you. Obviously, a lot of gut feeling, some reasoning, 
and a lot of trial and error are needed to arrive at the best data to work with.

Let us look at turning continuous measurements into ordinal data, which can often 
increase the power of models.
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Quantization and Binarization
I only like two kinds of men, domestic and imported.
–Mae West

Concepts:

•	 Decreasing granularity
•	 Balancing bin size
•	 Setting thresholds

There are times when continuous—or even simply ordinal—data is more usefully 
represented by a small number of levels. At the limit of that, we may reduce a 
numeric range to just two values: True/False or 1/0 generally, but other values 
can work. At this limit, quantization is known as binarization. Using a quantization 
transformation is often useful when data as represented has more precision 
than is genuinely meaningful—either from the perspective of the accuracy of 
measurements, or from the perspective of utility to our data science task.

As a simple example for this section and the next one, I will use the results of a 
survey I conducted on students in a half-day tutorial on scikit-learn I gave at a 
conference. I sometimes use this same data in other training as a quick dataset for 
performing machine learning. What is presented here removes some of the features, 
but retains those useful for these sections. Like all data, this dataset is messy; some 
cleanup was done, but a few elements were deliberately eschewed to provide you 
a real-world mess (but not too dirty to be useful).

survey = pd.read_csv('data/ML-survey.csv')
survey.sample(6, random_state=1)

      Language   Experience     Age  Post_Secondary     Success
————————————————————————————————————————————————————————————————
 95        C++          1.0      57              12           7
 44     Python          7.0      24              11           5
 56          R          2.0      46               9          10
 97     Python          2.0      23               3           5
 69     Python          5.0      53               4           8
114     Python         25.0      76              23           1
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This data is simple enough. Some biographic data was collected about tutorial 
attendees, and they were asked to evaluate how successful the tutorial was on a 
1-10 scale. A tiny bit of domain knowledge will tell you that on ratings like this the 
distribution of responses is highly skewed. In essence, a 9 or 10 is a strong positive, 
and anything 7 or less is negative. A response of 8 is moderately positive. Perhaps 
one might hope for more uniformity across the range, but human psychology and a 
history of social pressures around how to respond to such evaluations make this so. 
These data follow this familiar pattern.

(survey
    .Success
    .value_counts()
    .sort_index()
    .plot(kind='bar', title="Distribution of Ratings"));

Figure 7.11: Distribution of ratings

Given the distribution of data, the known psychology of ratings, and a stipulated 
analytic purpose, we wish to treat the rated success simply as a binary value. This 
can be done very easily in Pandas—or almost identically in every other data frame 
library—by a simple comparison that creates a Boolean array. 
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These Boolean arrays are often used as filters or masks, but they can equally provide 
perfectly good values directly.

survey.Success >= 8

0       True
1       True
2       True
3      False
       ...  
112    False
113     True
114    False
115     True
Name: Success, Length: 116, dtype: bool

If you are working with raw arrays, in NumPy or other libraries, you may wish to 
use the scikit-learn class Binarizer. This utility always expects a two-dimensional 
matrix as input, but a matrix with a single column is perfectly acceptable.

from sklearn.preprocessing import Binarizer

# Set threshold anywhere *between* 7 and 8
binary_rating = Binarizer(threshold=7.5)

# Pass 2-D DataFrame, not Series
success = binary_rating.fit_transform(survey[['Success']])

# Maintaining versions is good practice
survey2 = survey.copy()
survey2['Success'] = success
survey2

       Language  Experience  Age  Post_Secondary  Success
——————————————————————————————————————————————————————————
  0      Python        20.0   53              13        1
  1      Python         4.0   33               7        1
  2      Python         1.0   31              10        1
  3      Python        12.0   60              12        0
...         ...         ...  ...             ...      ...
112      Python         4.0   35               4        0
113      Python         3.0   44               6        1
114      Python        25.0   76              23        0
115      Python        25.0   75              12        1
116 rows × 5 columns
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Binary values are well-suited for the Success measure. For other columns, we 
would like to treat them somewhat differently. Let us look at how the amount of 
post-secondary education of attendees was distributed; we will treat it somewhat 
differently.

(survey2
    .Post_Secondary
    .plot(kind="hist", bins=20,
          title="Distribution of Education"));

Figure 7.12: Distribution of education

There are two apparent outliers in the data. One respondent claimed 23 years of 
post-secondary education. That same respondent happens to be visible above as row 
114, and the respondent reported being 76 years old. Given that the survey intention 
and description were along the lines of noting a doctorate or equivalent profession 
degree as 10 years, the 23 is somewhat suspicious; possibly this same person has a 
Ph.D., M.D., and J.D. to add to that number, but more likely there was some failure 
in communicating the intention, or an entry error. Nonetheless, for our binning, we 
will just stipulate that that person will go in the most-education category.
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The second outlier is -12, which is simply a nonsensical value. The intention, in any 
case, was that no college education would be noted as zero, not by some subtraction 
for years-until-college. Perhaps a third-grader attended and felt that was the best 
description. Or again, more likely there was a data entry error. We will simply code 
this as the least-education category, in this case. For another purpose, you might 
reflect on techniques discussed in Chapter 6, Value Imputation to treat the illegal 
value. Rather than preserve the exact years of education, we will only store values 
corresponding to “least-education”, “mid-education”, and “most-education”—
numerically coded just as 0, 1, and 2. Our project documentation should describe 
this mapping.

To divide the data into roughly equally sized bins based on the amount of education, 
we can use the scikit-learn class KBinsDiscretizer. As elsewhere in the scikit-
learn API, we first create a parameterized instance of the class, then perform a 
.fit_transform() to transform the data.

from sklearn.preprocessing import KBinsDiscretizer

# Create a binner with 3 balanced bins
edu_bin = KBinsDiscretizer(n_bins=3, 
                           encode='ordinal', 
                           strategy='quantile')

# Bin the Post_Secondary column
level = edu_bin.fit_transform(survey2[['Post_Secondary']])

# In this version, rename the binned field "Education"
survey3 = survey2.copy()
survey3['Education'] = level.astype(np.uint8)
survey3.drop('Post_Secondary', axis=1, inplace=True)
survey3.sample(8, random_state=2)

      Language   Experience  Age  Success  Education
—————————————————————————————————————————————————————
24      Python          3.0   28        1          0
89      Python         12.0   46        0          2
28      Python          3.0   31        1          1
56           R          2.0   46        1          2
 2      Python          1.0   31        1          2
53      Python         10.0    3        1          2
45      Python          1.0   31        0          2
79  JavaScript          1.0   32        1          1
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We can see generally that Education values are 0, 1, or 2 as anticipated. We can look 
in more detail to see what cut-offs were selected and how many respondents fall into 
each category.

Note that although I am describing these as categories (and expect a mapping 
documenting the keys), these are clearly ordinally arranged, not categorical.

print("Education cut-offs:")
print(edu_bin.bin_edges_[0], '\n')
print("Count per bin:")
print(survey3.Education.value_counts())

Education cut-offs:
[-12.           4.33333333   7.          23.        ] 

Count per bin:
2    44
0    39
1    33
Name: Education, dtype: int64

For education, we allowed the utility to decide the cut-points for balanced bins. 
However, perhaps we would rather divide into fixed numeric ranges for a particular 
feature. Let us try that approach for the Experience value (intended to reflect years 
of programming experience). KBinsDiscretizer can simply be instantiated with 
different parameters to achieve this. Again we need to document that numbers 0, 
1, 2, 3, and 4 are used to denote experience ranges rather than raw years; however, 
here we retain the same column name in the new dataset version.

# Create a binner with 5 bins of same numeric range
exp = KBinsDiscretizer(n_bins=5, 
                       encode='ordinal', 
                       strategy='uniform')

# Bin the Experience column
exp_level = exp.fit_transform(survey3[['Experience']])

# Retain the Experience name, but new meaning
survey4 = survey3.copy()
survey4['Experience'] = exp_level.astype(np.uint8)
survey4.sample(8, random_state=3)
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      Language   Experience  Age  Success  Education
—————————————————————————————————————————————————————
 83     MATLAB            1   37        0          2
  5     Python            0   32        1          0
  6     Python            0   34        0          2
 42     MATLAB            0   31        0          2
100     Python            0   47        0          2
 97     Python            0   23        0          0
 40     Python            1   33        1          2
 25          R            0   36        1          0

The result of using the “uniform” strategy for binning produces strongly imbalanced 
bins. However, that is perfectly reasonable in many cases, including most likely this 
one. In our broader purpose, rounding the amount of experience to rough multiples 
of 5 years might be a good simplification. If we varied this technique modestly, we 
could make those cuts at exactly 5 years, but approximately that range was obtained 
by regularly cutting the data itself.

print("Experience cut-offs:")
print(exp.bin_edges_[0], '\n')
print("Count per bin:")
print(survey4
        .Experience.value_counts()
        .sort_index())

Experience cut-offs:
[ 0.   5.4 10.8 16.2 21.6 27. ] 

Count per bin:
0    93
1    14
2     4
3     1
4     4
Name: Experience, dtype: int64

In each of the prior quantizations, we encoded values as ordinals. However, another 
approach is sometimes better. We might consider the different numeric ranges of a 
value as genuinely categorically different, rather than as ordinals or even as purely 
quantitative. Education was treated in an ordinal way, since the increments were 
uneven. But experience is simply continuous but quantized. To an approximation, 
recovering the original measurement is simply multiplying each value by 5.4, in 
that case. 
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For certain measurements, different values may reflect different domains or regimes. 
For those, we can use one-hot encoding, which is discussed in the next section but is 
available as a parameter of KBinsDiscretizer as well.

Although I believe it is fanciful for this example, let us stipulate that “Young”, 
“Mid_Age”, and “Old” tutorial attendees are wholly different kinds that we wish 
to distinguish (your author will be lumped into the last of those domains). Before 
we do that, however, we have to handle a data quality issue. Some age values look 
suspicious.

survey4.Age.describe()[['mean', 'min', 'max']]

mean    36.965517
min      3.000000
max     99.000000
Name: Age, dtype: float64

survey[survey.Age < 10]

   Language  Experience Age Post_Secondary  Success
————————————————————————————————————————————————————
53   Python        10.0   3              9        9
85   Python         3.0   3             10        6

There was conceivably a 99-year-old in the tutorial, but there were certainly no 
3-year-old attendees. Although the 99-year-old was probably an inaccurate entry, 
the 3-year-olds are provably wrong from the data itself, since their programming 
experience and post-secondary education each exceed their age. I will assume that 
these are 30-something attendees who made data entry errors, and impute an age 
of 35 to both of them (not far from the median or mean age of all attendees, which I 
might also reasonably use).

# Create next version and impute for bad data
survey5 = survey4.copy()
survey5.loc[survey5.Age == 3, 'Age'] = 35

# Create a binner with 3 bins to 3 columns
# Note: a sparse array with "onehot"
age_bin = KBinsDiscretizer(n_bins=3, 
                           encode='onehot-dense', 
                           strategy='quantile')

# Bin and split the Age column
age = age_bin.fit_transform(survey5[['Age']])



Feature Engineering

[ 406 ]

age = age.astype(np.uint8).T
survey5 = survey5.assign(Young=age[0], 
                         Mid_Age=age[1], 
                         Old=age[2])
survey5.drop('Age', axis=1, inplace=True)
survey5.sample(8, random_state=4)

      Language  Experience  Success  Education  Young  Mid_Age  Old
————————————————————————————————————————————————————————————————————
13      Python           0        0          2      0        1    0
 2      Python           0        1          2      0        1    0
25           R           0        1          0      0        1    0
16      Python           0        1          0      0        0    1
19      Python           0        0          1      0        0    1
79  JavaScript           0        1          1      0        1    0
 5      Python           0        1          0      0        1    0
24      Python           0        1          0      1        0    0

Having created synthetic columns for age ranges using one-hot encoding, this is a 
good point to turn to the next section that discusses one-hot encoding in general. 
We will continue to work with this survey dataset that we have massaged and 
transformed in stages.

One-Hot Encoding
If once a man indulges himself in murder, very soon he comes to think little of 
robbing; and from robbing he next comes to drinking and Sabbath-breaking, and 
from that to incivility and procrastination. Once [begun] upon this downward path, 
you never know where you are to stop. Many a man has dated his ruin from some 
murder or other that perhaps he thought little of at the time.
–Thomas de Quincey

Concepts:

•	 Avoiding artificial ordering
•	 Synthetic boolean features
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Very commonly, we work with features that have a number of class values encoded 
in them. For many models or other statistical techniques, we require features to 
be encoded as numbers. An easy way to do that is by encoding values as numeric 
ordinals. For example, in the survey data, we could encode the language feature by 
mapping Python=1, R=2, JavaScript=3, and so on. While those values are numeric, 
we often get better quality if we do not impose an artificial ordering to the categories. 
Different programming languages have no inherent or obvious ordering among 
them.

The encoding of class values may not be as meaningful strings, but may already 
use a range of small integers. This can falsely suggest ordinality to a variable. We 
should consult documentation and domain knowledge to determine if that is a 
reasonable interpretation for a particular feature. Symmetrically, of course, strings 
sometimes actually do encode clearly ordinal values; e.g. “Poor”, “Good”, “Best” 
in an evaluation of something (the meaningful order is unlikely to be the “natural” 
order of those strings, such as alphabetical).

To encode one feature with multiple values, we can transform it into multiple 
features, one for each class value. The “one-hot” in the name of this encoding 
indicates that exactly one of these new features will have a one, and the others will 
be zeros (or alternately True/False, depending on your programming language and 
library). The favorite programming language column of the survey dataset is a good 
candidate for one-hot encoding.

In Pandas, the get_dummies() function transforms a data frame into one-hot 
encoding. In scikit-learn, the class OneHotEncoder performs the same task, but is 
not limited to working with Pandas (anything matrix-like works). In both APIs, 
you have a variety of options to provide the naming of the new features, whether 
to use dense or sparse arrays for storage, whether to omit one category (to reduce 
multicollinearity), and in Pandas which columns to encode. By default, Pandas will 
look for all string or categorical columns, but you can tweak that; for example, you 
may want to force one-hot encoding of an integer column.

For presentation, we display a transposed data frame with a sample of a few rows 
and the encoded language features as rows. We can see that most samples (here 
shown as columns) have a 1 in the Lang_Python feature, and 0 for other features. 
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A few of the samples have their “one-hot” in a different feature.

survey6 = pd.get_dummies(survey5, prefix="Lang")
survey6.sample(10, random_state=3).T.tail(8)

                  83  5  6  42  100  97  40  25  115  103
——————————————————————————————————————————————————————————
       Lang_C++    0  0  0   0    0   0   0   0    0    0
Lang_JavaScript    0  0  0   0    0   0   0   0    0    0
    Lang_MATLAB    1  0  0   1    0   0   0   0    0    0
    Lang_Python    0  1  1   0    1   1   1   0    1    0
         Lang_R    0  0  0   0    0   0   0   1    0    1
     Lang_Scala    0  0  0   0    0   0   0   0    0    0
        Lang_VB    0  0  0   0    0   0   0   0    0    0
Lang_Whitespace    0  0  0   0    0   0   0   0    0    0

The scikit-learn API is similar to other transformers we have looked at. We simply 
create a parameterized instance, then fit and/or transform data using it. Under this 
API, the metadata such as suggested feature names lives in the encoded object and 
the raw encoded data is a plain NumPy array.

from sklearn.preprocessing import OneHotEncoder
lang = survey5[['Language']]
enc = OneHotEncoder(sparse=False).fit(lang)
one_hot = enc.transform(lang)
print(enc.get_feature_names())
print("\nA few encoded rows:")
print(one_hot[80:90])

['x0_C++' 'x0_JavaScript' 'x0_MATLAB' 'x0_Python' 'x0_R' 'x0_Scala'
 'x0_VB' 'x0_Whitespace']

A few encoded rows:
[[0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 1.]
 [0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0.]]
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With our transformation, we have arrived at a dataset with more features, but 
ones better suited to our downstream purposes. Let us look at just one row since 
the DataFrame has become too wide to display easily in this space. The particular 
encodings we have performed all give us small, non-negative integers, in this 
example, but this could easily be combined with other continuous numeric variables, 
perhaps with those scaled to a similar numeric range as these small numbers.

with show_more_rows():
    print(survey6.loc[0])

Experience         3
Success            1
Education          2
Young              0
Mid_Age            0
Old                1
Lang_C++           0
Lang_JavaScript    0
Lang_MATLAB        0
Lang_Python        1
Lang_R             0
Lang_Scala         0
Lang_VB            0
Lang_Whitespace    0
Name: 0, dtype: int64

One-hot encoding is one small step toward increasing dimensionality with synthetic 
features. Next we turn to a truly giant leap with polynomial features.

Polynomial Features
In the final analysis, a drawing simply is no longer a drawing, no matter how 
self-sufficient its execution may be. It is a symbol, and the more profoundly the 
imaginary lines of projection meet higher dimensions, the better.
–Paul Klee

Concepts:

•	 Generating synthetic features
•	 The curse of dimensionality
•	 Feature selection
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Generating polynomial features can create a large number of new synthetic features. 
The basic idea behind this transformation is simple: we add new features that are 
the multiplicative product of up to N of the existing features. In the scikit-learn 
version we will use in this section, PolynomialFeatures does a multiplication 
of all combinations of parameters (up to specified degree). It is, of course, easy 
enough to create multiplicative, or other, combinations of features manually. The 
PolynomialFeatures wraps up identifying all combinations and providing a general 
transformer object with useful metadata, in one API that is familiar to users of other 
scikit-learn classes.

Constructing polynomial features is often the main reason we need subsequently 
to winnow features using feature selection. Reducing 30 raw features to 15, for 
example, is unlikely to be hugely important to most models. But reducing the 496 
synthetic features in the below example becomes important to both the power of 
a model and computational resources used. If we construct a much larger number 
of synthetic polynomial features, the imperative for feature selection becomes that 
much stronger. It is quite common that a combination of polynomial expansion 
combined with feature selection produces greatly stronger models than raw features 
can.

Scikit-learn provides a detail about whether to create the squares (or cubes, etc.) of 
single features, which is not terribly important in an overall data pipeline most of 
the time. I generally feel there is no harm in including those terms, and occasionally 
there is benefit. If the interactions_only option is not used, the number of produced 
features is:

#𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑁𝑁 𝑁 (𝑁𝑁 𝑁 𝑁)2 +1  

For example, for 30 raw dimensions, we obtain 496 polynomial features, at degree 2; 
for 100 raw features, we get 5,151. In this section, we return to the Wisconsin Breast 
Cancer dataset also used earlier in this chapter. Recall that it has 30 numeric features 
(and one binary target).

cancer = load_breast_cancer()
X_raw = MinMaxScaler().fit_transform(cancer.data)
y = cancer.target



Chapter 7

[ 411 ]

Generating Synthetic Features
Creating the polynomial features is simply another transform, much like all the 
other transformers in scikit-learn that we have looked at in this book. We only pay 
much attention in this section to the degree 2 polynomial, but for an illustration of 
the growth of synthetic features, several degrees are created in the loop below. We 
create both a dictionary of transformers and another of the resulting X arrays. While 
generating them, let us display how highly dimensional these synthetic features are.

poly = dict()
X_poly = dict()

print(f"Raw data set shape:  {cancer.data.shape}")

for n in [2, 3, 4, 5]:
    poly[n] = PolynomialFeatures(n)
    X_poly[n] = poly[n].fit_transform(X_raw)
    print(f"Degree {n} polynomial: {X_poly[n].shape}")

Raw data set shape:  (569, 30)
Degree 2 polynomial: (569, 496)
Degree 3 polynomial: (569, 5456)
Degree 4 polynomial: (569, 46376)
Degree 5 polynomial: (569, 324632)

Tens or hundreds of thousands of features are simply too much to be amenable to 
good modeling or analysis. Even the 496 features in the second-order polynomial are 
a bit shaky in practical terms. The degree 2 may not overwhelm memory (obviously 
it depends on the number of rows; this example is small), but it almost certainly will 
lead to the curse of dimensionality and models will be ineffective.

Let us take a look at what these synthetic features contain and how they are named. 
Since we have already scaled the original features into the interval [0, 1], the 
multiplicative combinations will remain in that range. We could scale the polynomial 
data again to re-normalize, but it will not be crucial in this case. 
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We can name these synthetic features however we like, of course; but 
PolynomialFeatures provides a convenient set of suggestions based on the raw 
feature names.

names = poly[2].get_feature_names(cancer.feature_names)

row0 = pd.Series(X_poly[2][0], index=names)
row0.sample(8, random_state=6)

mean compactness^2                       0.627323
radius error worst perimeter             0.238017
smoothness error worst concavity         0.090577
mean compactness worst concavity         0.450361
perimeter error                          0.369034
area error fractal dimension error       0.050119
radius error concavity error             0.048323
mean fractal dimension symmetry error    0.188707
dtype: float64

I chose a particular random state that gets a representative collection of feature 
names. In particular, some features are named as being a power of raw features, 
such as mean compactness^2. Others are simply the raw features themselves, such as 
perimeter error. Most of the synthetic features are multiplications of two raw ones, 
such as smoothness error worst concavity or mean compactness worst concavity. 
In concept, synthetic features representing ratios of features might be valuable as 
well, but they are not produced automatically. For multi-word feature names, it 
might be aesthetically preferable to use a delimiter like an asterisk or a comma rather 
than a space, but in any case, a multiplication is what is signified by those latter 
names.

With higher-order polynomials, the names of features grow more complex as well, 
of course. Varying combinations of up to four raw features are combined, including 
powers of individual raw dimensions as possible terms.

names = poly[4].get_feature_names(cancer.feature_names)
row0 = pd.Series(X_poly[4][0], index=names)
row0.sample(6, random_state=2)

mean texture mean symmetry concavity error worst fractal dimension      
0.000884
mean texture mean perimeter mean smoothness                             
0.007345
mean concave points compactness error worst perimeter^2                 
0.114747
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fractal dimension error worst radius worst perimeter worst symmetry     
0.045447
mean compactness mean fractal dimension worst area worst compactness    
0.133861
mean area worst compactness worst concave points^2                      
0.187367
dtype: float64

***

R mostly makes it similarly easy to generate polynomial features. A formula is a nice 
bit of R syntax that makes it concise to generate all the interaction terms. However, 
including the powers of the raw terms becomes somewhat cumbersome to express 
in a formula. It is possible, but a support function helps get it right. With a much 
simpler dataset, the below code generates degree 3 polynomial features from a tibble. 
The actual logic is no different with a higher-dimension X, merely the display is 
cleaner with this small example.

%%R 
X <- tibble(A = c(0.2, 0.3, 0.4), 
            B = c(0.1, -0.3, 0.5),
            C = c(-0.2, 0.3, 0.1))
formula = ~ .^3 
poly2 <- as.tibble(model.matrix(formula, data=X))
poly2

# A tibble: 3 x 8
  '(Intercept)'     A     B     C 'A:B' 'A:C' 'B:C' 'A:B:C'
          <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl>
1             1   0.2   0.1  -0.2  0.02 -0.04 -0.02  -0.004
2             1   0.3  -0.3   0.3 -0.09  0.09 -0.09  -0.027
3             1   0.4   0.5   0.1  0.2   0.04  0.05   0.02 

This example represents three rows of data, each one containing each of the three 
raw features, the pairwise product of each of the three raw features, and the 
product of all three raw features.

Feature Selection
Simply having a huge number of synthetic features is not yet of great utility, since 
to utilize them we probably have first to discard most of them. The “curse of 
dimensionality” can refer to several related problems with highly dimensional data. 
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In essence, model effectiveness and statistical meaning can become much worse as 
the number of parameter dimensions becomes too large. 

In deep neural networks, which are a special kind of machine learning design, you 
will sometimes encounter an input layer with higher dimensionality than this rule 
of thumb suggests. However, even there, the initial layers of such a network almost 
always serve to reduce dimensionality. Effectively, networks learn how to perform 
feature selection in their training. Hidden layers of neural networks often have 
hundreds of neurons, but rarely thousands. Often even deep networks, with many 
layers, have fewer than hundreds of neurons in each layer.

This is where feature selection comes in. We need to decide which of our numerous 
(mostly synthetic) features genuinely help our model, and which simply add 
noise. For a comparison, let us try to model the breast cancer data under various 
transformations. We also introduce selection of only the “best” features in this 
approach.

There are a number of approaches we can use to select the best features. The 
very simplest of these is univariate modeling of the predictive strength of each 
feature on its own. This is what is performed, for example, within scikit-learn by 
SelectKBest. In the presence of a huge number of features, this is sometimes a 
reasonable approach. However, a much more powerful technique is to eliminate 
features recursively based on a specific model object (i.e. a class and a collection of 
hyperparameters).

Within scikit-learn, RFE and RFECV perform recursive feature elimination. The latter 
class is more precise and much slower. The class name abbreviates “recursive feature 
elimination and cross-validation”. Plain RFE already repeatedly trains a model with 
decreasing numbers of features (e.g. 496 models trained for the degree 2 polynomial 
breast cancer data). RFECV takes that a step further by using feature importance 
under several different train/test splits and choosing the plurality order. By default 
that is five folds, and hence five models for each number of features considered (e.g. 
2,480 models trained for the degree 2 polynomial). Robustness under subsampling 
gives a reasonably strong confidence in the evaluation.

A very rough rule of thumb is that the number of columns should 
be no more than one-tenth the number of rows. This ratio depends 
upon the kind of model used, but different choices impose a 
stricter requirement than the rule of thumb, which is best treated 
as a lower bound. Moreover, even for datasets where you may 
have millions of observations, an approximate maximum of several 
hundred dimensions should be a goal.
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Within R, the caret package contains the pair of functions rfe() and rfeControl() to 
perform recursive feature elimination, optionally with cross-validation.

A limitation to keep in mind is that not all types of models provide a ranking of 
feature importances. For example, that concept is not relevant in the K-neighbors 
models that we used in illustrating decomposition for dimensionality reduction. 
Linear models provide coefficients, which are sufficiently equivalent to feature 
importances that they are also utilized in recursive feature elimination. In those 
models where we do not have explicit feature importances, it is still possible to do 
univariate feature selection and try various numbers of features that are strongest in 
a univariate correlation. It is certainly possible—even likely—that a reduced feature 
set will achieve a better metric this way. We simply have less scaffolding to support 
the search, in that case.

Let us look at a model type that exposes feature importances, and recursively 
eliminate features from the 496 in our degree 2 polynomial synthetic dataset. We set 
a number of hyperparameters to the model, and the specific feature selection and 
metric evaluation will vary if different ones are used. A few parameters at the end 
simply control execution context, and are not material to the model algorithm itself 
(i.e. using multiple CPU cores or initializing in a particular random state).

model = RandomForestClassifier(n_estimators=100, max_depth=5, 
                               n_jobs=4, random_state=2)

The next few lines of code have a lot to understand in them. We create an instance 
of the RFECV class that is parameterized with the particular estimator we wish 
to train repeatedly. In this case it is a random forest classifier (with specific 
hyperparameters), but any kind of model that exposes feature importances is equally 
suitable. We then fit the incorporated model numerous times, both as we decrease 
the number of features and also as we exclude folds for the cross-validation. Data 
about every one of these fitting and implicit scoring operations is stored in attributes 
of an RFECV instance, and are available for later inspection.

The most crucial attribute retained is the support, an array indicating which features 
are included in the optimal subset and which are not. We can use that attribute to 
filter the larger initial matrix to only include the columns that prove more useful to 
include than to exclude. That is saved as X_support in this code; we look at its shape 
to see that we have reduced features.

rfecv = RFECV(estimator=model, n_jobs=-1)
best_feat = rfecv.fit(X_poly[2], y)
X_support = X_poly[2][:, best_feat.support_]
X_support.shape

(569, 337)
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Here we can compare the quality of several different candidate feature sets. We fit 
against the raw data, then against the full polynomial data, then finally against that 
subset of columns of the polynomial data that passed feature elimination. Each time, 
a new model is fitted, then scored against split out test data. Note that we used the 
entire dataset in the RFECV to determine the best N (337 in our case), but the trained 
model we use for scoring only has access to the training rows to assure this is not 
simply overfitting.

for X in (X_raw, X_poly[2], X_support):
    X_train, X_test, y_train, y_test = (
        train_test_split(X, y, random_state=42))
    model.fit(X_train, y_train) 
    accuracy = model.score(X_test, y_test)
    error_rate = 100*(1-accuracy)
    print(f"Features | {X.shape=}\t| {error_rate=:.2f}%")

Features | X.shape=(569, 30)  | error_rate=2.80%
Features | X.shape=(569, 496) | error_rate=1.40%
Features | X.shape=(569, 337) | error_rate=0.70%

The error rate achieved by these different approaches is illuminating. Even with the 
raw features, the random forest model we use here is superior to the K-neighbors 
used earlier in this chapter. More relevant here is that we see a greatly improved 
error rate by using the polynomial features; we see a dramatically still better error 
rate when we winnow down those features only to those that are more predictive. 
In some cases we will select an order of magnitude fewer features than we started 
with to get a better metric result. Here it is only a moderate reduction in the number 
of features; the important element is that accuracy is thereby improved.

Another useful attribute created by the RFECV selection is the grid scores. These 
are the metric score obtained after each feature is successively eliminated. Or more 
accurately, it is the mean of the score under each fold excluding a portion of the 
data from the training. In any case, we see here a typical pattern. For very few 
features, the accuracy is low. For a moderate number it achieves nearly the best 
metric. Over the bulk of different feature counts, the metric is roughly a plateau. 
Choosing any N of those initial features along the plateau will provide a similar 
metric. Some particular number is optimal under the particular selection search, 
but often the exact number depends on small details such as random initializations. 
At times there is also a pattern wherein some range of number of features is clearly 
preferable, with a clear decline for additional features. 

(pd.Series(best_feat.grid_scores_)
     .plot(figsize=(10, 2.5), linewidth=0.75,
           title="#Features vs. Accuracy on 2-Polynomial Data"));
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Figure 7.13: Features versus accuracy on 2-polynomial data

Choosing a number of features near the start of the plateau reduces the size of 
synthetic data needed, but you must judge whether the plateau has an obvious start.

Exercises
The exercises below ask you to look for “continuous-like” results in discrete events, 
and then symmetrically to treat continuous or frequent events as measures of coarser 
time units. Both of these modifications to create synthetic features are commonly 
useful and appropriate in real-world datasets.

Intermittent Occurrences
This chapter discussed imposing regularity upon timestamp fields, but this exercise 
asks you to reverse that goal, in a way. There are times when events are inherently 
erratic in occurrence. For example, a Geiger counter measuring radiation produces 
a “click” (or other discrete signal) each time a threshold is reached for ionizing 
radiation being present. Similarly, we could measure the timestamp when each new 
bud appears within a grove of trees; the frequency of occurrences would correspond 
in some overall way to the growth rate, but the individual events are stochastically 
distributed. Other phenomena—for example, the Covid-19 pandemic (currently 
underway, at the time of this writing), with new diagnoses on particular days within 
each geopolitical region—have similar discrete events that indirectly define an 
overall pattern.

An artificial dataset is provided that contains events measured by any of five 
instruments over the one-year interval covering 2020. The recording of events occurs 
only at exact minutes, but that does not preclude multiple events occurring during 
the same minute. In general, the typical event frequency for each instrument is 
less frequent than once per minute. The five instruments are simply named as “A” 
through “E”. You are free to imagine this data describing one of the phenomena 
mentioned above, or whatever other domain you wish.
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The dataset is available at:

https://www.gnosis.cx/cleaning/events.sqlite

Records within the dataset will resemble the following few.

Timestamp Instrument
2020-07-04 11:28:00 A
2020-07-04 11:29:00 B
2020-07-04 11:31:00 C
2020-07-04 11:34:00 D
2020-07-04 11:28:00 A
2020-07-04 11:34:00 A

Notice that the data do not necessarily occur in chronological order. Moreover, the 
same timestamp may contain multiple events, either from the same or a different 
instrument. For example, in the table, 2020-07-04 11:28:00 measured two events 
from instrument A, and 2020-07-04 11:34:00 measured one event from instrument 
A and another event from instrument D. There are approximately one million events 
recorded in total.

Each instrument exhibits a different pattern in relation to time sequence. Create 
however many synthetic features you feel are necessary to reasonably characterize 
the behaviors in numeric form. However, do think of features as numbering in tens 
or hundreds, not in hundreds of thousands. Put these features into a tidy data frame 
that might be used for further statistical analysis or machine learning techniques. 
This data frame will have columns corresponding to the synthetic features you have 
decided to utilize.

Attempt to characterize the behavior of each instrument in general terms, using 
prose descriptions, or perhaps using mathematical functions. Be as specific as you 
feel the data warrants, but also describe the limitations or uncertainties of your 
characterization as well as possible.

Characterizing Levels
In this exercise, use the same dataset as in the prior exercise, which is available at:

https://www.gnosis.cx/cleaning/events.sqlite

As described above, each of five instruments measures discrete events occurring at 
specific timestamps. Events are discerned at one-minute accuracy, and the time series 
covers calendar year 2020. Some minutes have multiple events (from either the same 
or different instruments), and some have no events.

https://www.gnosis.cx/cleaning/events.sqlite
https://www.gnosis.cx/cleaning/events.sqlite
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Your goal in this exercise is to characterize each day of the year according to whether 
it is “low”, “medium”, or “high” in event frequency. You should characterize 
this quantized level both per individual instrument and for the day as a whole. 
You should decide what quantization strategy is most appropriate both for the 
cumulative frequencies and the per-instrument frequencies. Your choice of strategy 
is likely to depend upon the different distributions of events per each instrument.

You may assume that all five instruments measure something roughly 
commensurate in aggregating them. For example, if these events are the detection 
of a new bud on a tree—per one example in the previous exercise—the different 
instruments might be measuring different groves (but not buds versus leaves versus 
fruits, for example).

If you feel that the quantization of low/medium/high is not well suited to one or 
more of the instrument event distributions, characterize what problem or limitation 
you feel applies, and try to think of an alternate approach to characterizing the 
instrument behavior.

Denouement
And this old world is a new world
And a bold world
For me
–Nina Simone

Topics covered in this chapter: Date/Time Fields; String Fields; String Vectors; 
Decompositions; Quantization; One-Hot Encoding; Polynomial Features.

This chapter looked at many approaches to inventing new features. This stands in 
contrast to Chapter 6, Value Imputation, which was about inventing data points. Both 
techniques are important in their own ways, but they do something conceptually 
different. It often happens that the way we collect data, or are provided it, does not 
represent the most meaningful content of that data, yet better representations lurk 
within what we have.

Three general themes were presented in the creation of synthetic features. In one 
case, we sometimes have a single feature that, as represented, combines two or more 
basic features that can be easily pulled apart and represented separately. Similarly, 
but moving in the other direction, sometimes a small number of components that 
are directly present may be better combined into a single feature. A clear example 
for both of these moves is a datetime value that might be either several components, 
such as year, month, hour, or minute, or might be a single value.
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As a second theme, we looked at the parameter space in which observations live as 
vectors. As an abstract mathematical entity, the initial observations need not form 
the orthonormal basis (the dimensions) of an observation vector. Often transforming 
the basis of the parameter space produces dimensions that are more useful for 
statistics and machine learning. However, it is worth remembering that after such 
transformations, the synthetic features rarely have any human-meaningful sense to 
them, but are exclusively numeric measures.

As a third theme, we looked at synthetic features that emerge from the interaction 
of an initial feature with either its domain of values or with other initial features. 
Intuitively, there are quantities that are never directly measured: “heat index” 
is an interaction of summer temperature and humidity; “body mass index” is 
an interaction of human weight and height. At times, the interactions are more 
informative than are those things we directly measure. Using polynomial feature 
engineering, we can explore the space of all such interactions, but with the pitfall of 
sometimes arriving at unworkably many features. In that last circumstance, feature 
selection comes to our rescue.
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Closure

What You Know
This book hopes to have shown you a good range of the techniques you will need in 
preparing data for analysis and modeling. We addressed most of the most common 
data formats that you will encounter in your daily work. Hopefully, even if you use 
file or data formats this book could not specifically address, or even did not have the 
opportunity to mention, the general concepts and principles laid out will still apply. 
Only some libraries and interface details will vary. Particular formats can have 
particular pitfalls in the ways they facilitate data errors, but, obviously, data can go 
bad in numerous ways independent of representations and storage technologies.

Chapters 1, 2, and 3, respectively, looked at tabular, hierarchical, and “special” data 
sources. We saw specific tools and specific techniques for moving data from each 
of those sources into the tidy formats that are most useful for data science. Most of 
the examples shown used Python libraries, or simply its standard library; a smaller 
number used corresponding tools in R; and from time to time, we looked at other 
programming languages that one might use to perform similar tasks. Relatively 
often, I found it relevant to show command-line oriented techniques and tools that 
I, myself, often use. These are very commonly the simplest ways to perform some 
initial analysis, summarization, or pre-processing. They are available on nearly any 
Unix-like system, such as Linux, BSD, OS X, or the Windows Subsystem for Linux. 
However, I hope to have inspired ideas and conceptual frameworks for readers to 
utilize in approaching their data, much more than simply to have introduced those 
specific libraries, APIs, and tools I chose for my examples.

Past the ingestion stages, with sensitivity to some issues characteristic of their 
formats, we get into the many stages—ideally pipelined once they reach actual 
production—of identifying and remediating problems in data. In terms of 
identification, there are two general types of problems to look for, with many 
nuances among each. On the one hand, we might look for this or that individual 
datum—one isolated reading from one particular instrument, for example—that 
went wrong in some manner (recording, transcription, tabulation, and so on). 
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At times, as Chapter 4 focused on, we can identify—at least with reasonable 
likelihood—the existence of such problems. On the other hand, we may have more 
systematic problems with our data which describe the collection of all (or many) 
observations rather than individual data points. Most of the time, this comes down 
to bias of one sort or another; at times, however, there are also patterns or trends in 
data that are real, genuine, and reflect the underlying phenomena, but that are not 
the “data within the data” that most interest us. In Chapter 5, we looked at both bias 
and at techniques for normalization and detrending.

Having identified bias and discardable trends, the next stage of your pipeline will 
be—broadly speaking—making up data. I have emphasized throughout the book 
that versioning data and writing repeatable scripts or automated workflows is 
essential to good data science. When you impute values (Chapter 6) or engineer 
features (Chapter 7), you should always be conscious of the fact that the data is no 
longer raw but rather processed; you should be able to recover each significant stage 
in the pipeline and repeat all transformations. The assumptions you make about 
what values are reasonable to invent are always subject to later revision as you learn 
more. But there are absolutely times when data is missing—either absent in the raw 
data or determined to be sufficiently unreliable by analysis—that imputing good 
guesses about the missing data is good practice. Moreover, sometimes fields should 
be normalized, combined, and/or transformed in deterministic ways before final 
modeling or analysis.

The chapters of this book are arranged in something resembling the order of the 
stages of the pipelines you will develop in your data science practice. Obviously 
you need to determine which specific formats, techniques, and tools are relevant for 
your specific problems. Still, in rough order, these stages will be similar to the order 
of this book. I have drawn examples from numerous different domains, and used 
data of different “shapes.” Nonetheless, of course, your domain and your problem 
is, in many or most ways, entirely unlike those in the examples I have presented. I 
hope and believe you will find conceptual connections and food for thought from 
these other domains. The tasks facing you are far too broad and diverse to reduce 
to a small set of recipes, but they nevertheless fit inside a fairly small number of 
conceptual realms and overall purposes.

What You Don’t Know (Yet)
Almost nothing you have read in this book addresses which statistical tests or which 
machine learning models you should use. Whether a support vector machine, or a 
gradient boosted tree, or a deep neural network (DNN) is more applicable to your 
problem is something I am agnostic about throughout. 
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I have no idea and no opinion about whether a Kolmogorov–Smirnov, Anderson–
Darling, or Shapiro–Wilk test better tests for normality of your dataset (although 
from my sample, one might conclude that your test should have two mathematicians 
in its name). You should read other books to help you with those judgements.

Juxtaposed with this deliberate limitation is the fact those choices are mostly 
irrelevant to data cleaning. Regardless of what models you utilize, or what statistics 
you apply, you want the data that goes into them to be as clean as is possible. The 
entire pipeline this book recommends, and describes the stages of, will be both 
necessary for every analytic or modeling task, and be also nearly entirely the same, 
regardless of that final choice for the next stage of your pipelines. However, this 
paragraph comes with a tentative caveat.

A spectre is haunting the data science zeitgeist—the spectre of automation. 
Perhaps a large portion of data cleaning would be better performed by very clever 
machines—especially deep neural networks that are starting to dominate every 
domain—than by human data scientists. In fact, my original plan for this book was 
to include a chapter discussing using machine learning for data cleaning. Perhaps a 
complex trained model could make a better judgement of “anomaly” versus “reliable 
data” than can the relatively simple techniques I discuss. Perhaps additional layers in 
a deep network can implicitly separate signal from noise, or detrend the uninteresting 
parts of the signal. Perhaps normalization and engineered features are nothing more 
than much cruder versions of what a few fully connected, convolutional, or recurrent 
layers near the input layer of a DNN will do automatically.

These ideas of automation of data cleaning represent intriguing possibilities. As 
of right now, the contours of that automation are uncertain and in flux. A number 
of commercial cloud services—as of the middle of 2021—offer frontends and 
“systems” whose superficial descriptions make them sound similar to this spectre 
of automation, at least at the level of an elevator pitch. However, in my opinion, as 
of today, these services do far less in reality than their marketers insinuate: they are 
simply an aggregation of enough clustered machines to try out the same models, 
hyperparameters, data cleaning pipelines, etc. that you might perform sequentially 
yourself. You can—and quite likely should—rent massive parallelism for large data 
and sophisticated modeling pipelines, but this is still somehow ontologically shy of 
machines genuinely guiding analytic decisions.

Anything I might have written today on data cleaning automation would be out 
of date in a year. Still, look for my name, and the names of other data scientists 
who think about these issues, when you look for future writing, training materials, 
lectures, and so on. I hope to have much more to say about these ideas elsewhere. 
And look at the details of what those cloud providers genuinely offer by the 
time you read this; my caveats may become less relevant over time. I hope my 
recommendations throughout this text, however, will remain germane.
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Glossary
Ontology recapitulates philology. 
–Willard Van Orman Quine (c.f. Ernst Haeckel)

Accuracy
In a classification model, there are numerous metrics that might express the 
“goodness” of a model. Accuracy is often the default metric used, and is simply 
the number of right answers divided by the number of data points. For example, 
consider this hypothetical confusion matrix:

Predicted/Actual Human Octopus Penguin
Human 5 0 2
Octopus 3 3 3
Penguin 0 1 11

There are 28 observations of organisms, and 19 were classified accurately, hence the 
accuracy is approximately 68%. Other commonly used metrics are precision, recall, 
and F1 score.

Related concepts: F1 score, precision, recall

ActiveMQ
Apache ActiveMQ is an open source message broker. As with other message brokers, 
the aggregations of messages sent among systems is often a fruitful domain for data 
science analysis.

BeautifulSoup
Beautiful Soup is a Python library for parsing and processing HTML and XML 
documents, and also for handling not-quite-grammatical HTML that often occurs 
on the World Wide Web. Beautiful Soup is often useful for acquiring data via web 
scraping.
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Berkeley DB
Berkeley DB is an open source library for providing key/value storage systems.

Big data
The concept of “big data” is one that shifts with time, as computing and storage 
capabilities increase. Generally, big data is simply data that is too large to handle 
using “traditional” and simple tools. What tools are traditional or simple, in turn, 
varies with organization, project, and over time. As a rough guideline, data that can 
fit inside the memory on a single available server or workstation is “small data,” or 
at most “medium-sized data.”

As of 2021, a reasonably powerful single system might have 256 GiB, so big data is 
at least tens or hundreds of gigabytes (109) in size. Within a few years of this writing, 
the threshold for big data will be at least terabytes (1012), and already today some 
datasets reach into exabytes (1018).

Big-endian (see Endianness)
Data arranged into “words” (typically 32-bits), or other units, where the largest 
magnitude component (typically a byte) is stored in the last position.

BSON (Binary JSON)
BSON is a binary-encoded serialization of JSON-like documents.

caret (Classification And REgression 
Training)
The R package caret is a rich collection of functions for data splitting, pre-processing, 
feature selection, resampling, and variable importance estimation.

Cassandra
Apache Cassandra is an open source distributed database system that uses the 
Cassandra Query Language (CQL), rather than standard SQL, for queries. CQL 
and SQL are largely similar, but vary in specific details.



Glossary

[ 429 ]

Categorical variable (see NOIR)
Related concepts: continuous variable, interval variable, nominal variable, 
ordinal variable, ratio variable

chardet
The chardet module in Python, and analogous versions in other programming 
languages, applies a collection of heuristics to a sequence of bytes thought likely to 
encode text. If the protocol or format you encounter explicitly declares an encoding, 
try that first. As a fallback, chardet can often make reasonable guesses based on 
letter and n-gram frequencies that occur in a different language, and which byte 
values are permitted by a given encoding.

Chimera
In Greek mythology, a chimera is an animal combining elements of several 
dramatically disparate animals; most commonly, these include the head of a lion, 
the body of a goat, and the tail of a snake. In adapted uses as a generic but evocative 
adjective, anything that combines surprisingly juxtaposed elements together can be 
called chimerical; or metaphorically, the thing might be called a chimera.

Column
A single kind of data item that may have, and usually has, many exemplars, one 
per row (a.k.a. sample, observation, record, etc.). A column consists of ordered data 
items of the same data type but varying values. A number of synonyms are used for 
“columns” with slightly varying focus. Features emphasize the way that columns are 
used by machine learning algorithms. Field focuses on the data format used to store 
the data items. Measurement is used most often when a column collects empirical 
observations, often using some particular instrument. Variable is used when thinking 
of equational relationships among different columns (for example, independent 
versus dependent).

Overall, columns and rows form columnar or tabular data.

Synonyms: feature, field, measurement, variable
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Comma-separated values (CSV)
A representation of columnar data in which each line of text is separated by a 
newline character (or carriage return, or CR/LF). Within each line, data values are 
separated by commas. Values separated by other delimiters, such as a tab or |, are 
also often informally called CSV (the acronym, not the full words).

Variations on the format use several quoting and escaping conventions. String data 
items containing commas internally need to be either quoted (usually with quote 
characters) or escaped (usually with backslash); but if so, those characters, in turn, 
require special behaviors.

Continuous variable (see NOIR)
Related concepts: categorical variable, interval variable, nominal variable, ordinal 
variable, ratio variable

Coreutils (GNU Core Utilities)
A collection of shell-oriented utilities for processing text and data. The subset of these 
tools that was formerly contained in the separate textutils package, in particular, 
is relevant to processing textual data sources. These tools include cat, cut, fmt, fold, 
head, sort, tail, tee, tr, uniq, and wc. Other command-line tools such as grep, sed, 
shuf, and awk are also widely used in interaction with these tools.

Corpus (pl. corpora)
Corpus is a term from linguistics, but is used also in related natural language 
processing (NLP). It simply refers to a large “body” (the Latin root) of text covering 
a similar domain, such as a common publisher, genre, or dialect. In general, some 
sort of modeling or statistical analysis may apply to a particular body of text and, 
by extension, to texts of a similar domain.

CouchDB
Apache CouchDB is an open source document-oriented database. Internally, data 
in CouchDB is represented in JSON format.
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CrateDB
CrateDB is an open source document-oriented database. CrateDB occupies 
an overlapping space with MongoDB or CouchDB, but emphasizes real-time 
performance.

Curse of dimensionality
The phrase “curse of dimensionality” was coined by Richard E. Bellman in 1957. It 
applies to a number of different numeric or scientific fields. In relation to machine 
learning, in particular, the problem is that as the number of dimensions increases, 
the size of the parameter space they occupy increases even faster. Even very large 
datasets will occupy only a tiny portion of that parameter space defined by the 
dimensions. Models are fairly uniformly poor at predicting or characterizing regions 
of parameter space where they have few or no observations to train on.

A very rough rule of thumb is that you wish to have fewer than one-tenth as many 
dimensions/features as you do observations. However, even very large datasets 
perform best if feature engineering, dimensionality reduction, and/or feature 
selection can be used to reduce their parameter space to hundreds of dimensions 
(i.e. not thousands; often tens are better than hundreds).

However, as a flip side of the curse of dimensionality, we also sometimes see a 
“blessing of dimensionality.” Linear models especially can perform very poorly 
with only a few dimensions to work with. The very same types of models can 
become very good if it is possible to obtain or construct additional (synthetic) 
features. Generally, this blessing occurs when models move from, for example, 
5 to 10 features, not when they move from 100 to 200 features.

As John von Neumann famously quipped: “With four parameters I can fit an 
elephant, and with five I can make him wiggle his trunk.”

Data artifact
An unintended alteration of data, generally as a consequence of hardware or 
software bugs. Some artifacts can be caused by flaws in data collection instruments; 
others result from errors in transcription, collation, or data transfer. Data artifacts 
are often only detectable as anomalies in a dataset.
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Data frame
A data frame (sometimes “dataframe”) is an abstraction of tabular data provided 
by a variety of programming languages and software libraries. At heart, a data 
frame bundles together multiple data type homogeneous series or arrays (columns), 
enforcing a few regularities:

•	 All columns in a data frame have the same number of data items within them 
(some might be explicitly a “missing” sentinel).

•	 Each column has data items of the same data type.
•	 Data may be selected by indicating collections of rows and collections of 

columns.
•	 Predicates may be used to select row sets based on properties of data on a 

given row.
•	 Operations on columns are expressed in a vectorized way, operating 

conceptually on all elements of a column simultaneously.
•	 Both columns and rows may have names. In some libraries, rows are only 

named by index position, but all name columns descriptively.

Popular data frames libraries include Python Pandas and Vaex, R data.table and 
tibble, Scala DataFrame, and Julia DataFrames.jl.

data.frame
The data frame library that is included with a standard R distribution. The R 
standard data.frame is the oldest data frame object for R and remains widely used. 
However, either the Tidyverse tibble or the data.table library are generally preferable 
for new development, having been refined based on experience with data.frame.

See also: data frame, data.table, tibble

data.table
A popular data frame library for R. Philosophically, data.table tries to perform 
filtering, aggregation, and grouping all with standard arguments to its indexing 
operation. The data.table library has a somewhat different attitude than the 
Tidyverse, but is generally interoperable with it.

See also: tibble, data.frame
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Dataset
A dataset is simply a collection of related data. Often, if the data is tabular, it will 
consist of a table, but it may be a number of related tables. In related data that is 
arranged in hierarchical or other formats, one or more files (in varying formats) 
may constitute the dataset. Often, but not always, a dataset is distributed as a single 
archive file containing all relevant components of it.

Denormalization
Denormalization is the duplication of data within a database system to allow for 
more “locality” of data to queries performed. This will result in a larger storage 
size, but in many cases, also in faster performance of read queries. Denormalization 
potentially introduces data integrity problems where data in different locations 
falls out of sync.

DMwR (Data Mining with R)
The R package DMwR includes functions and data accompanying the book 
Data Mining with R, Learning with Case Studies, by Luis Torgo, CRC Press 2010. A 
wide variety of utilities are included, but from the perspective of this book, it is 
mentioned because of its inclusion of a SMOTE implementation.

DOM (Document Object Model)
The Document Object Model (DOM) is a language-neutral application programming 
interface (API) for working with XML or HTML documents. While the specification 
gives a collection of method names that might be implemented in any language, the 
inspiration and style is especially inspired by JavaScript.

Domain-specific knowledge
Much of data science, including even that part of it concerning this book’s topic, 
cleaning data, can be driven by “the shape of the data itself.” Certain data items may 
follow patterns or stand out as anomalous on a purely numeric or analytic basis. 
However, in many cases, accurate judgements about which data is important, or 
which is of greater importance, lies not in the data themselves but in knowledge 
we have about the domains the data describe.
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Domain-specific knowledge—or just “domain knowledge”—is what informs us of 
those distinctions that the data alone cannot reveal. Not all domain knowledge is 
extremely technical; the term might refer to topics that are more “common sense” as 
well. For example, it is general knowledge that outdoor temperatures in the northern 
hemisphere are usually higher in July than in January. A dataset that conflicted with 
this background knowledge would be suspicious even if the individual data values 
were all, in themselves, in a reasonable numeric range. Bringing that very common 
domain knowledge to a problem is important, where applicable.

Equally, some domain knowledge requires deep subject area expertise. Data in a 
psychological survey might show particular population distributions of subscales 
from the Minnesota Multiphasic Personality Inventory (MMPI). Some distributions 
might be implausible and indicate likely data integrity or sample bias problems, 
but a specialized knowledge is needed to judge that. Or radio astronomy data 
might show particular emission frequency bands from distant objects. A specialized 
knowledge is needed to determine whether that is consistent with expectations of 
Hubble redshift distances or might be data errors. Likewise in many domains.

Eagerness
In computer programming and computer science, sometimes the words “lazy” and 
“eager” are used to distinguish approaches to solving a larger problem. Commonly, 
for example, an algorithm might transform a large dataset. An eager program 
will process all the data at once. In contrast, a lazy program will only perform an 
individual transformation when that specific result is needed.

See also: laziness

Elasticsearch
Elasticsearch is a search engine based on the Lucene library. As part of implementing 
a search engine, Elasticsearch contains a document-oriented database or data store.

Endianness
Endianness in computer representations of numbers is typically either big-endian 
or little-endian. This refers to the scaled magnitude of composite values stored 
in a particular order. Most typically, the composite values are bytes, and they are 
arranged into “words” of 16-bits, 32-bits, 64-bits, or 128-bits (i.e. 2, 4, 8, or 16 bytes 
per word).
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For example, suppose we wish to store an (unsigned) integer value in a contiguous 
32-bit word. Computer systems and filesystems typically have an addressing 
resolution of 1 byte, not of individual bits directly, so this is 4 such slots in which 
scaled values may be stored. For example, we wish to store the number 1,908,477,236.

First, we can notice that since each byte stores values 0-255, this is a reasonable way 
to describe that number:

1,908,477,236 = (52×20) + (13×28) + (193×216) + (113 ×224)

Storing values in each of the 4 bytes in the word could use either of these approaches:

Byte-order Byte 1 Byte 2 Byte 3 Byte 4
Little-endian 52 13 193 113
Big-endian 113 193 13 52

Historically, most CPUs used only one of big-endian and little-endian word 
representation, but most modern CPUs offer switchable bi-endianess. Likewise, many 
libraries such as NumPy allow flexibility in reading and writing data of different 
endianness in storage format.

Formats other than computer words used to store numeric values may also be 
endian. Notably, different date formats can be big-endian, little-endian, or indeed 
middle-endian. For example, ISO-8601 date format prescribes big-endianness, for 
example, 2020-10-31. The year represents the largest magnitude, the month the next 
largest, and the day number the smallest resolution of a date. The extension to time 
components is similar.

In contrast, a common United States date format can read, for example, October 
31, 2020. A spelled-out month name indirectly represents a number here (numbers 
are also used with the same endianness and different delimiters; for example, 
10/31/2020). From an endianness perspective, this is middle-endian. The largest 
magnitude (year) is placed at the end, the next largest magnitude (month) at the 
start, and the smallest magnitude (day) in the middle. Clearly, a different middle-
endian format is also possible, but is not widely used (for example, 2020 31 Oct).

Much of the world outside of the United States uses a little-endian date 
representation, such as 31/10/2020. While the specific values in the representation 
of October 31 would disambiguate the endianness used, for dates such as October 
11 or November 10, this is not the case.
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F1 Score
In a classification model, there are numerous metrics that might express the 
“goodness” of a model. F1 score blends recall and precision, avoiding the extremes 
that occur in certain models, and is often a balanced metric. F1 score is derived as:

F1 = 2 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
Related concepts: accuracy, precision, recall

Feature (see Column)
Synonyms: column, field, measurement, variable

Field (see Column)
Synonyms: column, feature, measurement, variable

Fuzzy
Fuzzy is a Python library for analyzing phonetic similarity in English texts.

GDBM (GNU dbm)
GDBM is an open source library for providing key/value storage systems.

General Decimal Arithmetic Specification
The General Decimal Arithmetic Specification is a standard for implementation of 
arbitrary precision base-10 arithmetic and numeric representation. It incorporates 
configurable “contexts”, such as rounding rules in effect. The Python standard 
library decimal module, in particular, is an implementation of this standard.

Gensim
Gensim is an open source Python library for NLP, specifically around unsupervised 
topic modeling. Gensim contains an implementation of the word2vec algorithm and 
a few closely related variants of it.
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Gibibyte (GiB)
Metric prefixes are standardized in the International System of Units (SI), by the 
International Bureau of Weights and Measures (BIPM). Orders of magnitude—
powers of 10—are indicated by prefixes ranging from yotta- (1024) down to yocto- (10-

24). In particular, the multipliers of 103 (kilo-), 106 (mega-), and 109 (giga-) are almost 
right for dealing with typical quantities seen in computer storage.

However, for both historical and practical reasons, bytes of memory or storage are 
typically expressed as multiples of 210 (1024) rather than of 103 (1000). These numbers 
are relatively close, but while it is common to misname 210, 220, and 230 as kilobyte, 
megabyte, and gigabyte, these are wrong. Since 1998, the International Electrotechnical 
Commission (IEC) has standardized the use of kibibyte (KiB), mebibyte (MiB), and 
gibibyte (GiB) for accurate description of these powers of 2. For larger sizes, we also 
have tebibyte (TiB), pebibyte (PiB), exbibyte (EiB), zebibyte (ZiB), and yobibyte (YiB).

ggplot2
A popular book, The Grammar of Graphics (Statistics and Computing), by Leland 
Wilkinson (ISBN: 978-0387245447), first published in 2000, introduced a way of 
thinking about graphs and data visualizations that breaks down a graph into 
components that can be expressed independently. Changing one such orthogonal 
component may change the entire appearance of a graph, but will still reflect the 
same underlying data in a different manner.

The R library ggplot2 attempts to translate the concepts of that book into concrete 
APIs, and has been widely adopted by the R community. The Python libraries 
ggplot, to a strong degree, and Bokeh and Altair, to a somewhat lesser extent, also 
try to emulate Wilkinson’s “grammar.” Altair is, in turn, built on top of Vega-Lite 
and Vega, which have a similar goal to JavaScript libraries.

Glob
A common and simple pattern matching language that is most frequently used 
to identify collections of filenames. Both the Bash shell and libraries in many 
programming languages support this syntax.

GQL (Graph Query Language)
Graph Query Language is a (pending) standard for querying graph databases, 
based on the Cypher language developed by Neo4j for their product.
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Gremlin
Gremlin is a graph query language, distinct from GQL. Queries in Gremlin 
emphasize a “fluent programming” and functional style of description of nodes 
and classes of interest.

Halting problem
The halting problem is probably the most famous result in the theory of 
computation. Alan Turing proved in 1936 that there cannot exist any general-
purpose algorithm that answers the question “Will this program ever terminate?” 
For some programs, it is provable, of course, but in the general case it is not. Even 
running a program for any finite amount of time, N steps, does not answer the 
question, since it might yet terminate at step N+1.

In slightly more informal parlance, saying that a given task is “equivalent to the 
halting problem” is an idiomatic way of saying that it cannot be solved. At times, the 
phrase is used as a speculation about the difficulty of a problem, but at other times 
a mathematical proof is known that shows that solving the novel problem would 
imply a solution to the halting problem. Within this book, the phrase is used only 
in the strict sense, but with an affection for the jargon of computer science.

h5py
H5py is a Python library for working with hierarchical datasets stored in the HDF5 
format.

HDF Compass
HDF Compass is an open source GUI tool for examining the content of HDF5 data 
files.

Hierarchical data format (HDF5)
The Hierarchical Data Format (HDF5) is an open source file format that supports 
large, complex, heterogeneous data. HDF5 uses a hierarchical structure that allows 
you to organize data within a file in nested groups. The “leaf” of a hierarchy is a 
dataset. An HDF5 file may contain arbitrary and domain-specific metadata about 
each dataset or group. Since many HDF5 files contain (vastly) more data than will fit 
in computer memory, tools that work with HDF5 generally provide a means of lazily 
reading content so that most data remains solely on disk unless or until it is needed.
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Hyperparameter
In machine learning models, a general model type is often pre-configured before 
it is trained on actual data. Hyperparameters may comprise multipliers, numeric 
limits, recursion depths, algorithm variations, or other differences that still make up 
the same kind of model. Models can perform dramatically differently with different 
hyperparameters.

Idempotent
Idempotence is a useful concept in mathematics, computer science, and generally in 
programming. It means that calling the same function again on its own output will 
continue to produce the same answer. This is related to the even fancier concept in 
mathematics of an attractor.

Imager
Imager reads and writes many image formats and can perform a variety of analysis 
processing actions on such images programmatically within R. Images within the 
library are treated as 4-dimensional vectors with two spatial dimensions, one time 
dimension, and one color dimension. By including time as a dimension, imager can 
work with video as well.

imbalanced-learn
imbalanced-learn is an open source Python software library for sensitive 
oversampling data. It implements the SMOTE (Synthetic Minority Oversampling 
TEchnique) and ADASYN (Adaptive Synthetic) variations of those algorithms, as 
well as undersampling techniques. In the main, imbalanced-learn emulates the APIs 
of scikit-learn.

Imputation
The process of replacing missing data points with values that are likely, or at least 
plausible, to allow machine learning or statistical tools to process all observations.

Interval variable (see NOIR)
Related concepts: categorical variable, continuous variable, nominal variable, ordinal 
variable, ratio variable
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ISO-8601
ISO-8601 (Data elements and interchange formats – Information interchange – 
Representation of dates and times) is an international standard for the representation 
of dates and times. For example, generating one while writing this entry, using 
Python:

from datetime import datetime
datetime.now().isoformat()

'2020-11-23T14:43:09.083771'

jq
jq is a flexible and powerful tool for command-line filtering, searching, and 
formatting JSON, including JSON Lines.

JSON (Javascript Object Notation)
JSON is a language-independent and human-readable format for representation 
of the data structures and scalar values typically encountered in programming 
languages. It is widely used both as a data storage format and as a message format 
to communicate among services.

Jupyter
Project Jupyter is an open source library, written primarily in Python, but 
supporting numerous programming languages, to create, view, run, and edit 
“notebooks” for literate programming. This book was written using Jupyter Lab, 
and its notebooks can be obtained at the book’s repository. In literate programming, 
code and documentation are freely interspersed while both rendering as formatted 
documents and running as executable code. Whereas R Markdown achieves similar 
goals using lightly annotated plain text, Jupyter uses JSON as the storage format for 
its notebooks.

Jupyter supports both the somewhat older “notebook” interface and the more recent 
“JupyterLab” interface. Both work with the same underlying notebook documents.
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Kafka
Apache Kafka is an open source stream processor. As with other stream processors, 
and related message brokers, the aggregation of messages sent among systems is 
often a fruitful domain for data science analysis.

Kdb+
Kdb+ is a column-store database that was designed for rapid transactions. It is 
widely used within high-frequency trading.

Laziness
In computer programming and computer science, sometimes the words “lazy” and 
“eager” are used to distinguish approaches to solving a larger problem. Commonly, 
for example, an algorithm might transform a large dataset. An eager program 
will process all the data at once. In contrast, a lazy program will only perform an 
individual transformation when that specific result is needed.

See also: eagerness

LMDB (Lightning Memory-Mapped 
Database)
LMDB is an open source library for providing key/value storage systems.

Lemmatization
Canonicalization of words to their grammatical roots for natural language processing 
purposes. In contrast to stemming, lemmatization will look at the context a word 
occurs in to try to derive both the simplified form and the part of speech.

For example, the English word “dog” is used both as a noun for the animal, and 
occasionally as a verb meaning “annoy.” A lemmatization might produce:

we[PRON] dog[VERB] the[DET] dog[NOUN]

Related concept: stemming
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Little-endian (see Endianness)
Data arranged into “words” (typically 32-bits), or other units, where the largest 
magnitude component (typically a byte) is stored in the earliest position.

MariaDB
MariaDB is a popular open source relational database management system (RDBMS). 
It uses standard SQL for queries and interaction, and implements a few custom 
features on top of those required by SQL standards. At a point when the GPL-
licensed MySQL was purchased by Oracle, its creator Michael (Monty) Widenius 
forked the project to create MariaDB. Widenius’ elder daughter is named “My” and 
his younger daughter “Maria.”

MariaDB is API- and ABI-compatible with MySQL, but it adds a few features such 
as additional storage engines.

See also: MySQL

Matplotlib
Matplotlib is a powerful and versatile open source plotting library for Python. 
For historical reasons, its API originally resembled MATLAB’s, but a more object-
oriented approach is now encouraged. Numerous higher-level libraries and 
abstractions are built on top of Matplotlib, including Basemap, Cartopy, Geoplot, 
ggplot, holoviews, Seaborn, Pandas, and others.

Measurement (see Column)
Synonyms: column, feature, field, variable

Memcached
Software that keeps key/value associative arrays in memory for the purposes of 
caching or proxying slower server responses. Although contents of a memcached 
server are transient, snapshotted contents may be useful to analyze for data science 
purposes.
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Metaphone
Metaphone is an algorithm for the phonetic canonicalization of English words, 
published by Lawrence Philips in 1990. The same author later published Double 
Metaphone, and then Metaphone 3, each of which successively better takes 
advantage of known patterns in words derived from non-English languages. 
Metaphone, and its followups, are more precise than the early Soundex developed 
for the same purpose.

Mojibake
Mojibake is the nonsensical text that generally results from trying to decode text 
using a character encoding different from that used to encode it. Often this will 
produce individual characters that belong to a given language or alphabet, but in 
combinations that make no sense (sometimes to humorous effect). The word comes 
from Japanese, meaning roughly “character transformation.”

MonetDB
MonetDB is an open source column-oriented database management system that 
supports SQL and several other query languages or extensions.

MongoDB
MongoDB is a popular document-oriented database management system. It uses 
JSON-like storage of its underlying data, and both queries and responses use 
JSON documents. MongoDB uses a distinct query language that reflects its mostly 
hierarchical arrangement of data into linked documents.

MySQL
MySQL is a widely popular open source relational database management system 
(RDBMS). It uses standard SQL for queries and interaction, and implements a 
few custom features on top of those required by SQL standards. At a point when 
the GPL-licensed MySQL was purchased by Oracle, its creator Michael (Monty) 
Widenius forked the project to create MariaDB. Widenius’ elder daughter is named 
“My” and his younger daughter “Maria.”

See also: MariaDB
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Neo4j
Neo4j is an open source graph database and database management system.

netcdf4-python
netcdf4-python is a Python interface to the netCDF C library.

Network Common Data Form (NetCDF)
NetCDF (Network Common Data Form) is a set of software libraries and machine-
independent data formats that support the creation, access, and sharing of array-
oriented scientific data. It is built on top of HDF5.

NLTK (Natural Language Toolkit)
NLTK is a suite of tools for natural language processing in Python. It includes 
numerous corpora, tools for lexical analysis, for named entity recognition, a part of 
speech tagger, stemmers and lemmatizers, and a variety of other tools for NLP.

See also: gensim, spaCy

Node.js
Node.js is an open source, standalone JavaScript interpreter that runs outside of 
embedded JavaScript in web browsers. It can be used at the command line in the 
manner of scripting languages, with an interactive shell, or as a means to run server 
processes. The Node.js environment comes with an excellent package manager 
called npm (Node Package Manager) that allows you to install additional libraries 
easily (much like pip or conda for Python, RubyGems for Ruby, Cabal for Haskell, 
Pkg.jl: for Julia, Maven for Java, and so on).

Nominal variable (see NOIR)
Related concepts: categorical variable, continuous variable, interval variable, ratio 
variable
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NOIR (Nominal, Ordinal, Interval, Ratio)
The acronym NOIR is sometimes used as a mnemonic for different feature types. 
This is the French word for “black” but is especially associated, in English, with 
a style of “dark” literature or film. The acronym stands for Nominal/Ordinal/
Interval/Ratio.

Nominal or ordinal variables simply record which of a finite number of possible labels 
a data item records. This is sometimes called the classes of the variable.

Ordinal variables express a scale from low to high in the data values, but the spacing 
in the data may have little to no relationship to the underlying phenomenon. For 
example, perhaps a foot race records the first place, second place, third place, etc. 
winners, but not the times taken by each. First place crossed the line before second 
place, but we have no information on whether it was milliseconds sooner or hours 
sooner. Likewise between second and third position, which might differ significantly 
from the first gap.

The last variable types are continuous variables, but interval and ratio variables are 
importantly different. The difference is in whether there is a “natural zero” in the 
data. The domain zero need not always be numeric zero, but commonly it is. Acidity 
or alkalinity measured on the pH scale has a natural zero of 7, and generally values 
between 0 and 14 (although those are not sharp physical limits). If we used the pH 
measure as a feature, we might re-center to numeric zero to express actual ratios 
(albeit log ratios for this measure). It is reasonable to treat pH as a ratio variable.

As an example of an interval that is not a ratio, a newspaper article claimed that the 
temperature on a certain winter day, in some city, was twice as hot as in average 
years based on an artifact of the Fahrenheit scale in which a difference was between 
25 °F and 50 °F. This is nonsense as a ratio. It is perfectly useful to talk about the 
mean temperature or the standard deviation in temperature, but the numeric ratio 
is meaningless (in Celsius or Fahrenheit; in Kelvin or Rankine, it’s minimally 
meaningful, but rarely used to describe temperatures in the range that occur on 
the surface of the earth). In contrast, the ratio variable of rainfall has a natural zero, 
which is also numeric zero. Zero inches (or centimeters) of rain means there was 
none. 2 inches of rain is twice as much water falling as 1 inch of rain is.

NumPy
NumPy is an open source Python library for fast and vectorized computations 
on multi-dimensional arrays. Nearly all Python libraries that perform numeric 
or scientific computation rely on NumPy as an underlying support library. This 
includes tools in machine learning, modeling, statistics, visualization, and so on.
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Observation (see Row)
Synonyms: record, row, sample, tuple

Ontology
Ontology in philosophy is the study of “what there is.” In data science, an ontology 
describes not only what class/subclass and class/instance relationships exist among 
entities, but also the kinds of features an entity has. Perhaps most importantly, an 
ontology can describe the kinds of relationships that can exist among various entities.

When different kinds of observations can be made, describing the particular 
collection of features that pertain to that observation, and the particular data types 
and ranges of permissible values each can take on, is an element of the ontology of 
the data. Different tables, or data subsets, may have different feature sets and hence 
a different ontological role.

Ontology can be important for categorical data especially. Some labels may be 
instances of other labels, for example, with varying degrees of specificity. If one 
categorical variable indicates that the entity is “mammal,” another that it is “feline,” 
and another that it is “house cat,” those are all possibly descriptions of the identical 
entity under different taxonomic levels, and hence part of the ontology of the 
domain.

The relationships among entities can sometimes be derived from the data 
themselves, but often requires domain knowledge. These relationships can often 
inform the kinds of models or statistical analysis that make sense. For example, if 
the entity underlying a collection of data is a medical patient, parts of the ontology 
of the domain might concern whether several different features observed were 
collected with the same instrument, or from the same blood sample, or whether the 
observations were made on the same day. Even though the features might measure 
very different quantities, the “same-day” or “same-instrument” relationships can 
inform analysis.

See also: taxonomy

Ordinal variable (see NOIR)
Related concepts: categorical variable, continuous variable, interval variable, ratio 
variable
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OrientDB
OrientDB is an open source, multi-model database management system. It supports 
graph, document, key/value, and object models. Querying may use either Gremlin 
or SQL.

Orthonormal basis
Within a highly dimensional space, specifically a parameter space, the location of 
an observation point is simply a parameterized sum of each of the dimensions. For 
example, if we measure three features in an observation as having the values a, b, 
and c, we can express those measurements in 3-D parameter space, with orthogonal 
unit vectors 𝑥𝑥𝑥 , 𝑦𝑦𝑦 , and 𝑧𝑧𝑧 , as: 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜 𝑜𝑜𝑜𝑜𝑜 𝑜 𝑜𝑜𝑜𝑜𝑜 𝑜 𝑜𝑜𝑜𝑜𝑜 
However, the choice to represent the observation using those particular unit vectors, 𝑥𝑥𝑥 , 𝑦𝑦𝑦 , and 𝑧𝑧𝑧  is somewhat arbitrary. As long as we choose any orthonormal basis—that 
is, N mutually perpendicular unit vectors—we can equally well represent all the 
relationships among observations. For example:𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
Decompositions are a means of selecting an alternate orthonormal basis that 
distributes the data within the parameter space in a more useful way. Usually, 
this means in a way concentrating variance within the initial components (lowest 
numbered axes).

Pandas
Pandas is a widely popular, open source Python library for working with data 
frames. The name derives from the econometrics term “panel data.” Pandas is built 
on top of NumPy, but adds numerous additional capabilities. One of the great 
strengths of Pandas is working with time series data. But as with the underlying 
NumPy array library and other data frame libraries, most operations on columns 
are fast and vectorized.
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Parameter space
The parameter space of a set of observations with N features is simply an 
N-dimensional space in which each observation occupies a single point. By default, 
the vector bases that define the location of a point correspond directly with the 
features themselves. For example, in analyzing weather data, we might define 
“temperature” as the x-axis, “humidity” as the y-axis, and “barometric pressure” as 
the z-axis. Some portion of that 3-D space has points within it, and they form some 
pattern or shape that models might analyze and make predictions about.

Under decompositions of the features, we might choose a new orthonormal basis in 
which to represent the same data points in a rotated or mirrored N-dimensional space.

Parquet
Apache Parquet is an open source, column-oriented data storage format that 
originated in the Hadoop ecosystem, but is widely supported in other programming 
languages as well.

PDF (Portable Document Format)
Portable Document Format is a widely used format used to accurately represent the 
appearance of documents in a cross-platform, cross-device manner. For example, the 
same document will look nearly identical on a computer monitor, a personal printer, 
or from a professional press. Fonts, text, images, colors, and lines are some of the 
elements PDF renders to a page, whether displayed or printed. PDF was developed 
by Adobe, but is currently governed by the open and freely usable standard ISO 
32000-2.

Pillow (forked from PIL)
The Python Imaging Library reads and writes many image formats and can perform 
a variety of processing actions on such images programmatically within Python.

Poppler
An open source viewing and processing library for Portable Document Format 
(PDF). In particular, Poppler contains numerous command-line tools for converting 
PDF files to other formats, including text. Poppler is a fork of Xpdf that aims to 
incorporate additional capabilities.

See also: Xpdf
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PostgreSQL
PostgreSQL is a widely popular, open source relational database management 
system (RDBMS). It uses standard SQL for queries and interaction, and implements 
custom features and numerous custom data types on top of those required by SQL 
standards.

Precision
In a classification model, there are numerous metrics that might express the 
“goodness” of a model. Precision is also called “positive predictive value” and is the 
fraction of relevant observations among the predicted observations. More informally, 
precision answers the question “given it was predicted, how likely is the prediction 
to be accurate?”.

For example, consider this hypothetical confusion matrix:

Predicted/Actual Human Octopus Penguin
Human 5 0 2
Octopus 3 3 3
Penguin 0 1 11

In a binary problem, this can be expressed as:

Precision = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

For a multiclass problem, as in the confusion matrix, each label has its own precision. 
Given the 8 true humans in the dataset, 5 of them were correctly identified. However, 
2 non-humans were also so identified; in other words:

Precisionℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 55 + 2 ≈ 71% 

An overall precision for a model is often given by averaging (weighted or 
unweighted) the precision for each label.

Related concepts: accuracy, F1 score, recall
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PyTables
PyTables is a Python library for working with hierarchical datasets stored in the 
HDF5 format.

Query planner
When a query is formulated against a database, whether using SQL or another 
querying language, the database management system (DBMS) will internally create 
a set of planned steps involved in executing that query. Many DBMSs can expose 
these plans prior to executing them; users can use this information to judge the 
efficiency of database access (and possibly modify queries or refactor the databases 
themselves).

A query planner will make decisions about which indices to use, in what order, 
the style of search and comparisons across data that may live in many tables or 
documents, and other aspects of how a query may be executed efficiently. When 
accessing big datasets, the quality of a query planner can often differentiate different 
DBMSs.

R Markdown
R Markdown is a format and technology for literate programming. In literate 
programming, code and documentation are freely interspersed while both rendering 
as formatted documents and running as executable code. Whereas Jupyter 
notebooks, which have many of the same qualities, are stored as JSON documents, 
R Markdown is purely an extension of the easily human-readable and editable 
Markdown format, which lightly annotates plain text with regular punctuation 
characters to describe specific visual and conceptual elements. With R Markdown, 
code segments are also included as plain text by indicating their sections with a 
textual annotation.

RabbitMQ
RabbitMQ is an open source message broker. As with other message brokers, the 
aggregations of messages sent among systems is often a fruitful domain for data 
science analysis.
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Ratio variable (see NOIR)
Related concepts: categorical variable, continuous variable, interval variable, nominal 
variable, ordinal variable

Recall
In a classification model, there are numerous metrics that might express the 
“goodness” of a model. Recall is also called “sensitivity.” It is the fraction of true 
occurrences that are identified by a model.

For example, consider this hypothetical confusion matrix:

Predicted/Actual Human Octopus Penguin
Human 5 0 2
Octopus 3 3 3
Penguin 0 1 11

In a binary problem, this can be expressed as:

Recall = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

For a multiclass problem, as in the confusion matrix, each label has its own recall. 
There are 8 true humans in the dataset, and 5 of them were identified correctly. 
However, 3 humans failed to be identified (in the whimsical example, all were 
predicted to be octopi); in other words:

Recallℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 55 + 3 ≈ 62% 

An overall recall for a model is often given by averaging (weighted or unweighted) 
the recall for each label.

Related concepts: accuracy, F1 score, precision

Record (see Row)
Synonyms: observation, row, sample, tuple
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Redis (Remote Dictionary Server)
Redis is an open source, in-memory key/value database. Redis supports numerous 
data types and data structures, including strings, lists, maps, sets, sorted sets, 
HyperLogLogs, bitmaps, streams, and spatial indices.

Relational database management system 
(RDBMS)
An RDBMS is a system for storing data and implementing the relational model 
developed by E. F. Codd in 1970. Under this relational model, data is stored in tables, 
with each row constituting a tuple of values, the keys to those values named by the 
columns of the table. The term “relational” in the name pertains to the fact that data 
in one table may be related to data in other tables by declaring foreign key relations 
and/or by performing joins in the query syntax.

For several decades, all RDBMSs have supported the SQL querying language, 
sometimes with optional extension syntax related to their additional features or 
data types. Often, but not quite always, RDBMSs are used on multi-user distributed 
servers, with transactions used to orchestrate write actions among those multiple 
users.

Popular RDBMSs include PostgreSQL, MySQL, SQLite, Oracle, Microsoft SQL 
Server, IBM DB2, and others.

Requests
Requests is a full-featured, open source HTTP access library for Python. It is not 
included in the Python standard library, but is ubiquitous and generally preferred 
to tools included with minimal Python distributions.

REST (REpresentational State Transfer)
REST is a software educational style that normatively describes patterns of 
interactions between HTTP servers and clients. The adjective RESTful is also 
frequently used. Under this style, the HTTP methods GET, POST, PUT, and DELETE 
are clearly separated by their intended functions. A main emphasis of the style is 
statelessness: each request must contain all information needed to elicit a response, 
and that response should not be dependent on the sequence of prior actions that 
client made.
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rhdf5
rhdf5 is an R library for working with hierarchical datasets stored in the HDF5 
format.

rjson
rjson is an R library for working with JavaScript Object Notation (JSON).

ROSE (Random Over-Sampling Examples)
ROSE is an R package that creates synthetic samplings in the presence of class 
imbalance. It serves a similar purpose to SMOTE oversampling.

Row
A collection of data consisting of multiple named data items pertaining to the same 
entity. Depending on the context, the entity can be defined in various ways. For 
an object in the physical world, for example, it is common in scientific, and other, 
procedures to take a number of different measurements of that same object, and 
a row will describe that object. In simulations or other mathematical modeling, a 
row may contain the results of synthetic sampling of possible values. Considered 
from the point of view of the actual storage of the data, a focus on the tuple or record 
structure of the row are more emphasized.

The named data items collected about a single row are generally indicated in the 
columns of the data. Each column may have a different data type within it, but each 
different row within that column will share the data type but not generally the data 
value.

Synonyms: observation, record, sample, tuple

rvest
The rvest package for R is used to scrape and extract data from HTML web pages.

Sample (see Row)
Synonyms: observation, record, row, tuple
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Scikit-learn
Scikit-learn is a wide-ranging open source Python library for many machine learning 
(ML) and data science tasks. It implements a large number of ML models (both 
supervised and unsupervised), metrics, sampling techniques, decompositions, 
clustering algorithms, and other tools useful for data science. Throughout its 
capabilities, scikit-learn maintains a common API; many additional libraries have 
chosen to implement identical or compatible APIs as well.

Scipy.stats
Scipy.stats is a Python module in the NumPy ecosystem that implements many 
probability distributions and statistical functions.

Scrapy
Scrapy is a Python library for spidering and analyzing collections of web pages, 
including a high-performance engine to coordinate retrievals of many pages.

Seaborn
Seaborn is a Python data visualization library based on matplotlib. It provides a 
high-level interface for drawing attractive and informative statistical graphics.

SeqKit
SeqKit is a toolkit for manipulating files in the FASTA and FASTQ formats, which 
are used for storing nucleotide and protein sequences.

Signed integer
An integer represented in computer bits of some specific length. In signed integers, 
one bit is reserved to hold the sign (negative or positive) of an integer. The largest 
integer that can be represented, for N bits storing a number, is 2N – 1 – 1. The smallest 
integer that can be represented is –2N – 1.

The sizes of integers in many programming languages match the sizes of memory 
units in modern CPUs, and can be 8-bit, 16-bit, 32-bit, 64-bit, or 128-bit. Other bit 
lengths are rarely defined. 
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In data formats and databases, sizes might be defined by a number of decimal digits 
rather than binary bits. Some programming languages, such as Python, TCL, and 
Mathematica in their default integers, and numerous other programming languages 
using specific libraries, allow for arbitrary-precision integers that have no size 
bound. They do this by dynamically allocating more bits to store larger numbers as 
needed.

See also: unsigned integer

Solr
Apache Solr is a search engine based on the Lucene library. As a part of 
implementing a search engine, Solr contains a document-oriented database or 
data store.

spaCy
spaCy is an open source software library for advanced natural language processing. 
It is focused on production use and integrates with deep-learning frameworks.

SPARQL Protocol and RDF Query Language
Had J. B. S. Haldane lived later, he might have commented that free software 
developers have “an inordinate fondness for recursive acronyms” (YAML, GNU, 
and so on). SPARQL is a query language for RDF (Resource Description Framework), 
or the “semantic web.” It has been implemented for a variety of programming 
languages. SPARQL expresses queries in the form of “subject-predicate-object” 
triples. This has some similarity to key/value stores, but more to graph databases.

Sphering (see whitening)
Normalization of data under a decomposition.

Synonym: whitening

SQLAlchemy
SQLAlchemy is a Python library that provides an “object-relational mapping” 
between the tabular and relational structure of RDBMS tables and an object-oriented 
interface. 



Glossary

[ 456 ]

SQLAlchemy can use drivers for all popular SQL databases, and exposes a variety of 
methods for manipulating their data within Python.

SQLite
SQLite is a small, fast, self-contained, high-reliability, full-featured, SQL database 
engine that stores multiple data tables in single files. Bindings to access SQLite 
(version 3) are available for all popular programming languages. The library also 
comes with a command-line tool and shell for manipulation of data using only SQL.

State machine
A “finite-state machine,” “finite automaton,” or simply “state machine” is a model 
of computation in which the focus moves among a finite number of states or nodes 
based on a specific sequence of input.

STDOUT / STDERR / STDIN
In Unix-like command shells, there are three special files/streams called “standard 
output,” “standard error,” and “standard input.” They are ubiquitously abbreviated 
as “STDOUT,” “STDERR,” and “STDIN” respectively. Composed command-line 
tools treat these streams in special ways, and they are utilized widely. In particular, 
STDOUT is usually “data” output, while STDERR is usually “status” output, even 
though they may appear interspersed in terminal sessions.

Stemming
Canonicalization of words to their grammatical roots for natural language processing 
purposes. In contrast to lemmatization, stemming only treats words individually 
without their context, and hence can be less accurate.

Related concept: lemmatization

Structured data
While the term “unstructured data” is often used, it is somewhat of a misnomer. 
“Loosely structured,” or “semi-structured,” would be more accurate. For example, 
the paradigmatic example of textual data is at very least structured by the particular 
sequence in which words occur. 
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Quite likely, it is further organized by sequences belonging to chapters, separate 
messages, or other such units (themselves likely structured by sequence), and 
moreover usually a variety of metadata, such as author identity, subject line, forum, 
and thread, also pertain to the text itself.

Tab-separated values (TSV; see Comma-
separated values)
Delimited files where tabs are used as the line delimiter.

Tabula
Tabula-java is the underlying engine for the GUI tool Tabula. Other bindings 
include tabula-extractor for Ruby, tabula-py for Python, tabulizer for R, and tabula-js for 
Node.js. The engine and the tools that utilize it provide interfaces to extract tabular 
data represented in PDF documents.

Taxonomy
Taxonomy is, in some sense, a special aspect of ontology; it describes the hierarchical 
relationships among categories of entities. Some labels may be instances of other 
labels, for example, with varying degrees of specificity. If one categorical variable 
indicates the entity is a “mammal,” another that it is “feline,” and another that it is 
“house cat,” those are all possibly descriptions of the identical entity under different 
taxonomic levels, and hence part of the ontology of the domain.

While taxonomy is largely narrower than ontology, taxonomy also tends to 
indicate a focus on the more global level of the domain, not a narrow region of 
that domain. When one speaks of a taxonomy, it generally indicates an interest 
in all the relationships among all the classes of entities, and an expectation that 
those relationships will be tree-like and hierarchical. One might describe ontological 
features of a single entity, or a small collection of entities, but a taxonomy will 
normally describe the entire domain of all possible entities.

See also: ontology
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tibble
The R library tibble is an implementation of the data frame abstraction, but one 
that tries to do less than other libraries. Quoting from the official documentation:

Tibbles are data.frames that are lazy and surly: they do less (i.e. they don’t change 
variable names or types, and don’t do partial matching) and complain more (e.g. 
when a variable does not exist). This forces you to confront problems earlier, typically 
leading to cleaner, more expressive code.

See also: data.frame, data.table

Tidyverse
The Tidyverse is a collection of R packages that share a common philosophy of API 
design and that are designed to work well together. Core libraries of the Tidyverse 
are ggplot2, dplyr, tidyr, readr, purrr, tibble, stringr, and forcats. A variety of other 
optional packages are also designed to work well with the base collection.

At core, the Tidyverse has an attitude of making data into “tidy” forms, in the sense 
discussed at more length in Chapter 1, Tabular Formats. As well, the tools within the 
Tidyverse lend themselves to composition by piping data between methods in a 
“fluent programming” style.

Tuple (see Row)
Synonyms: observation, record, row, sample

Unsigned integer
An integer represented in computer bits of some specific length. In unsigned 
integers, no bits are reserved to hold the sign (negative or positive) of an integer, 
and hence only number zero through a maximum size can be represented. For N 
bits storing a number, the largest number representable is 2N – 1.

Sizes of integers in many programming languages match sizes of memory units in 
modern CPUs, and can be 8-bit, 16-bit, 32-bit, 64-bit, or 128-bit. Other bit lengths are 
rarely defined. In data formats and databases, sizes might be defined by a number of 
decimal digits rather than binary bits. 
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Some programming languages, such as Python, TCL, and Mathematica in their 
default integers, and numerous other programming languages using specific 
libraries, allow for arbitrary-precision integers that have no size bound. They do 
this by dynamically allocating more bits to store larger numbers as needed.

See also: signed integer

Variable (see Column)
Synonyms: column, feature, field, measurement

Web 0.5
The term “Web 0.5” is a neologism and back-construction from the term “Web 2.0.” 
The latter became popular as a term in the late 2000s. Whereas Web 2.0 was meant 
as an evolution of the World Wide Web into highly interactive, highly dynamic, 
visually rich content, Web 0.5 is meant to hearken back to the static, compact, and 
text-oriented web pages that were developed in the early 1990s. The writer Danny 
Yee publicized this term, to the minor extent it is used.

Web 0.5 web pages are intended primarily for human readership, in contrast to 
RESTful web services, which are primarily intended to communicate data among 
computer servers and applications. Their simplicity, however, also makes them 
easily accessible to web scraping techniques, where relevant.

Whitening
Normalization of data under a decomposition. Transformations such as Principle 
Component Analysis (PCA) reduce the variance of each subsequent component 
successively. Whitening is simply rescaling the data within each component to a 
common scale and center.

Synonym: sphering

XML (eXtensible Markup Language)
XML is a markup language that defines a grammar for representing documents 
and ancillary schema languages for defining dialects within that broad grammar. 
The content of XML is always text, and is, in principle, human-readable while also 
enforcing a strict structure for automated processing. In essence, XML defines a 
hierarchical format in which arbitrary elements may be arranged.
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XML is used widely in domains such as internal formats for office applications, for 
representing geospatial data, for message-passing among cooperating services, for 
scientific data, and for many other application uses.

Xpdf
An open source viewing and processing library for Portable Document Format. 
In particular, Xpdf contains several command-line tools for converting PDF files 
to other formats, including text. The Poppler fork aims to incorporate additional 
capabilities that the Xpdf authors consider out of scope for that project.

See also: Poppler

YAML
YAML is, light-heartedly, an acronym for either “YAML Ain’t Markup Language” 
or “Yet Another Markup Language.” It is intended as a highly human-readable 
and human-writable format that can represent most of the data structures and data 
types widely used in programming languages. Libraries supporting the reading 
and writing of YAML from or to native data structures are available for numerous 
programming languages.

Share your experience

Thank you for taking the time to read this book. If you enjoyed this book, help 
others to find it. Leave a review at https://www.amazon.com/dp/1801071292

https://www.amazon.com/dp/1801071292
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