

Cleaning Data for Effective
Data Science

Doing the other 80% of the work with Python, R,
and command-line tools

David Mertz

BIRMINGHAM—MUMBAI

Cleaning Data for Effective Data Science
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Producer: Shailesh Jain
Acquisition Editor – Peer Reviews: Saby D’silva
Project Editor: Rianna Rodrigues
Content Development Editor: Lucy Wan
Copy Editor: Safis Editing
Technical Editor: Aditya Sawant
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Presentation Designer: Pranit Padwal

First published: March 2021

Production reference: 1260321

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-129-1

www.packt.com

http://www.packt.com

Contributors

About the author
David Mertz, Ph.D. is the founder of KDM Training, a partnership dedicated
to educating developers and data scientists in machine learning and scientific
computing. He created a data science training program for Anaconda Inc. and was
a senior trainer for them. With the advent of deep neural networks, he has turned to
training our robot overlords as well.

He previously worked for 8 years with D. E. Shaw Research and was also a
Director of the Python Software Foundation for 6 years. David remains co-chair
of its Trademarks Committee and Scientific Python Working Group. His columns,
Charming Python and XML Matters, were once the most widely read articles in the
Python world.  

I give great thanks to those people who have helped make this book better.

First and foremost, I am thankful for the careful attention and insightful
suggestions of my development editor Lucy Wan, and technical reviewer
Miki Tebeka. Other colleagues and friends who have read and provided
helpful comments on parts of this book, while it was in progress, include
Micah Dubinko, Vladimir Shulyak, Laura Richter, Alessandra Smith,
Mary Ann Sushinsky, Tim Churches, and Paris Finley.

The text in front of you is better for their kindnesses and intelligence;
all error and deficits remain mine entirely.

I also thank the thousands of contributors who have created the Free
Software I used in the creation of this book, and in so much other work
I do. No proprietary software was used by the author at any point in the
production of this book. The operating system, text editors, plot creation
tools, fonts, programming languages, shells, command-line tools, and all
other software used belongs to our human community rather than to any
exclusive private entity.

About the reviewer
Miki Tebeka is the CEO of 353solutions, and he has a passion for teaching and
mentoring. He teaches many workshops on various technical subjects all over the
world and also mentored many young developers on their way to success. Miki is
involved in open source, has several projects of his own, and contributed to several
more, including the Python project and the Go project. He has been writing software
for 25 years.

Miki wrote Forging Python, Python Brain Teasers, Go Brain Teasers, Pandas Brain Teasers
and is an author in LinkedIn Learning. He’s an organizer of the Go Israel Meetup,
GopherCon Israel, and PyData Israel Conference.

[i]

Table of Contents
Preface� vii

PART I - Data Ingestion� 1
Chapter 1: Tabular Formats� 3

Tidying Up� 4
CSV� 9

Sanity Checks� 10
The Good, the Bad, and the Textual Data� 13

The Bad� 13
The Good� 18

Spreadsheets Considered Harmful� 21
SQL RDBMS� 29

Massaging Data Types� 30
Repeating in R� 34
Where SQL Goes Wrong (and How to Notice It)� 36

Other Formats� 42
HDF5 and NetCDF-4� 44

Tools and Libraries� 45
SQLite� 50
Apache Parquet� 52

Data Frames� 54
Spark/Scala� 56
Pandas and Derived Wrappers� 58
Vaex� 59
Data Frames in R (Tidyverse)� 61
Data Frames in R (data.table)� 63
Bash for Fun� 64

Exercises� 65
Tidy Data from Excel� 65
Tidy Data from SQL� 67

Denouement� 68

Table of Contents

[ii]

Chapter 2: Hierarchical Formats� 71
JSON� 72

What JSON Looks Like� 74
NaN Handling and Data Types� 78
JSON Lines� 82
GeoJSON� 85
Tidy Geography� 88
JSON Schema� 92

XML� 99
User Records� 100
Keyhole Markup Language� 102

Configuration Files� 108
INI and Flat Custom Formats� 109
TOML� 110
Yet Another Markup Language� 114

NoSQL Databases� 119
Document-Oriented Databases� 121

Missing Fields� 123
Denormalization and Its Discontents� 125

Key/Value Stores� 127
Exercises� 130

Exploring Filled Area� 130
Create a Relational Model� 131

Denouement� 133
Chapter 3: Repurposing Data Sources� 135

Web Scraping� 136
HTML Tables� 137
Non-Tabular Data� 140
Command-Line Scraping� 146

Portable Document Format� 148
Image Formats� 153

Pixel Statistics� 156
Channel Manipulation� 159
Metadata� 161

Binary Serialized Data Structures� 165
Custom Text Formats� 170

A Structured Log� 171
Character Encodings� 175

Exercises� 182
Enhancing the NPY Parser� 182
Scraping Web Traffic� 183

Table of Contents

[iii]

Denouement� 185

PART II - The Vicissitudes of Error� 187
Chapter 4: Anomaly Detection� 189

Missing Data� 191
SQL� 192
Hierarchical Formats� 196
Sentinels� 197

Miscoded Data� 201
Fixed Bounds� 205
Outliers� 210

Z-Score� 211
Interquartile Range� 216

Multivariate Outliers� 219
Exercises� 221

A Famous Experiment� 221
Misspelled Words� 223

Denouement� 225
Chapter 5: Data Quality� 227

Missing Data� 228
Biasing Trends� 232

Understanding Bias� 233
Detecting Bias� 236
Comparison to Baselines� 240
Benford’s Law� 244

Class Imbalance� 246
Normalization and Scaling� 253

Applying a Machine Learning Model� 256
Scaling Techniques� 257
Factor and Sample Weighting� 262

Cyclicity and Autocorrelation� 267
Domain Knowledge Trends� 271
Discovered Cycles� 278

Bespoke Validation� 282
Collation Validation� 283
Transcription Validation� 287

Exercises� 291
Data Characterization� 291
Oversampled Polls� 294

Denouement� 296

Table of Contents

[iv]

PART III - Rectification and Creation� 297
Chapter 6: Value Imputation� 299

Typical-Value Imputation� 301
Typical Tabular Data� 302
Locality Imputation� 309

Trend Imputation� 313
Types of Trends� 314
A Larger Coarse Time Series� 317

Understanding the Data� 318
Removing Unusable Data� 321
Imputing Consistency� 322
Interpolation� 325

Non-Temporal Trends� 327
Sampling� 332

Undersampling� 335
Oversampling� 339

Exercises� 345
Alternate Trend Imputation� 345
Balancing Multiple Features� 346

Denouement� 348
Chapter 7: Feature Engineering� 351

Date/Time Fields� 352
Creating Datetimes� 354
Imposing Regularity� 355
Duplicated Timestamps� 358
Adding Timestamps� 359

String Fields� 364
Fuzzy Matching� 367
Explicit Categories� 372

String Vectors� 379
Decompositions� 388
Rotation and Whitening� 389
Dimensionality Reduction� 391
Visualization� 394

Quantization and Binarization� 398
One-Hot Encoding� 406
Polynomial Features� 409

Generating Synthetic Features� 411
Feature Selection� 413

Table of Contents

[v]

Exercises� 417
Intermittent Occurrences� 417
Characterizing Levels� 418

Denouement� 419

PART IV - Ancillary Matters� 421
Closure� 423

What You Know� 423
What You Don’t Know (Yet)� 424

Glossary� 427
� 463
Index� 467

[vii]

Preface
In order for something to become clean, something else must become dirty.
–Imbesi’s Law of the Conservation of Filth

Doing the Other 80% of the Work
It is something of a truism in data science, data analysis, or machine learning that
most of the effort needed to achieve your actual purpose lies in cleaning your data.
The subtitle of this work alludes to a commonly assigned percentage. A keynote
speaker I listened to at a data science conference a few years ago made a joke—
perhaps one already widely repeated by the time he told it—about talking with a
colleague of his. The colleague complained of data cleaning taking up half of her
time, in response to which the speaker expressed astonishment that it could be so
little as 50%.

Without worrying too much about assigning a precise percentage, in my experience
working as a technologist and data scientist, I have found that the bulk of what
I do is preparing my data for the statistical analyses, machine learning models,
or nuanced visualizations that I would like to utilize it for. Although hopeful
executives, or technical managers a bit removed from the daily work, tend to have
an eternal optimism that the next set of data the organization acquires will be clean
and easy to work with, I have yet to find that to be true in my concrete experience.

Certainly, some data is better and some is worse. But all data is dirty, at least within
a very small margin of error in the tally. Even datasets that have been published,
carefully studied, and that are widely distributed as canonical examples for statistics
textbooks or software libraries, generally have a moderate number of data integrity
problems. Even after our best pre-processing, a more attainable goal should be to
make our data less dirty; making it clean remains unduly utopian in aspiration.

Preface

[viii]

By all means we should distinguish data quality from data utility. These descriptions
are roughly orthogonal to each other. Data can be dirty (up to a point) but still
be enormously useful. Data can be (relatively) clean but have little purpose, or at
least not be fit for purpose. Concerns about the choice of measurements to collect,
or about possible selection bias, or other methodological or scientific questions
are mostly outside the scope of this book. However, a fair number of techniques
I present can aid in evaluating the utility of data, but there is often no mechanical
method of remedying systemic issues. For example, statistics and other analyses
may reveal—or at least strongly suggest—the unreliability of a certain data field.
But the techniques in this book cannot generally automatically fix that unreliable
data or collect better data.

The code shown throughout this book is freely available. However, the purpose
of this book is not learning to use the particular tools used for illustration, but to
understand the underlying purpose of data quality. The concepts presented should
be applicable in any programming language used for data processing and machine
learning. I hope it will be easy to adapt the techniques I show to your own favorite
collection of tools and programming languages.

Types of Grime
There are roughly two families of problems we find in datasets. Not every problem
neatly divides into these families, or at least it is not always evident which side
something falls on without knowing the root cause. But in a general way, we can
think of structural problems in the formatting of data versus content problems in
the actual values recorded. On the structural branch a format used to encode a
dataset might simply “put values in the wrong place” in one way or another. On
the content side, the data format itself is correct, but implausible or wrong values
have snuck in via flawed instruments, transcription errors, numeric overflows, or
through other pitfalls of the recording process.

The several early chapters that discuss “data ingestion” are much more focused on
structural problems in data sources, and less on numeric or content problems. It is
not always cleanly possible to separate these issues, but as a question of emphasis
it makes sense for the ingestion chapters to look at structural matters, and for later
chapters on anomalies, data quality, feature engineering, value imputation, and
model-based cleaning to direct attention to content issues.

In the case of structural problems, we almost always need manual remediation of the
data. Exactly where the bytes that make up the data go wrong can vary enormously,
and usually does not follow a pattern that lends itself to a single high-level
description. Often we have a somewhat easier time with the content problems, but at
the same time they are more likely to be irremediable even with manual work.

Preface

[ix]

Consider this small comma-separated value (CSV) data source, describing a 6th
grade class:

Student#,Last Name,First Name,Favorite Color,Age
1,Johnson,Mia,periwinkle,12
2,Lopez,Liam,blue,green,13
3,Lee,Isabella,,11
4,Fisher,Mason,gray,-1
5,Gupta,Olivia,9,102
6,,Robinson,,Sophia,,blue,,12

In a friendly way, we have a header line that indicates reasonable field names and
provides a hint as to the meaning of each column. Programmatically, we may not
wish to work with the punctuation marks and spaces inside some field names, but
that is a matter of tool convenience that we can address with the APIs (application
programming interfaces; the functions and methods of a library) that data processing
tools give us (perhaps by renaming them).

Let us think about each record in turn. Mia Johnson, student 1, seems to have a
problem-free record. Her row has five values separated by four commas, and each
data value meets our intuitive expectations about the data type and value domain.
The problems start hereafter.

Liam Lopez has too many fields in his row. However, both columns 4 and 5 seem
clearly to be in the lexicon of color names. Perhaps a duplicate entry occurred or the
compound color “blue-green” was intended. Structurally the row has issues, but
several plausible remediations suggest themselves.

Isabella Lee is perhaps no problem at all. One of her fields is empty, meaning no
favorite color is available. But structurally, this row is perfectly fine for CSV format.
We will need to use some domain or problem knowledge to decide how to handle
the missing value.

Mason Fisher is perhaps similar to Isabella. The recorded age of -1 makes no sense
in the nature of “age” as a data field, at least as we usually understand it (but maybe
the encoding intends something different). On the other hand, -1 is one of several
placeholder values used very commonly to represent missing data. We need to know
our specific problem to know whether we can process the data with a missing age,
but many times we can handle that. However, we still need to be careful not to treat
the -1 as a plain value; for example, the mean, minimum, or standard deviation of
ages might be thrown off by that.

Preface

[x]

Olivia Gupta starts to present a trickier problem. Structurally her row looks perfect.
But “9” is probably not a string in our lexicon of color names. And under our
understanding of the data concerning a 6th grade class, we don’t expect 102 year
old students to be in it. To solve this row, we really need to know more about the
collection procedure and the intention of the data. Perhaps a separate mapping of
numbers to colors exists somewhere. Perhaps an age of 12 was mistranscribed as 102;
but also perhaps a 102 year old serves as a teaching assistant in this class and not
only students are recorded.

Sophia Robinson returns us to what looks like an obvious structural error. The row,
upon visual inspection, contains perfectly good and plausible values, but they are
separated by duplicate commas. Somehow, presumably, a mechanical error resulted
in the line being formatted wrongly. However, most high-level tools are likely to
choke on the row in an uninformative way, and we will probably need to remediate
the issue more manually.

We have a pretty good idea what to do with these six rows of data, and even re-
entering them from scratch would not be difficult. If we had a million rows instead,
the difficulty would grow greatly, and would require considerable effort before we
arrived at usable data.

Nomenclature
In this book I will use the terms feature, field, measurement, column, and
occasionally variable more-or-less interchangeably. Likewise, the terms row,
record, observation, and sample are also near synonyms. Tuple is used for the same
concept when discussing databases (especially academically). In different academic
or business fields, different ones of these terms are more prominent; and likewise
different software tools choose among these.

Conceptually, most data can be thought of as a number of occasions on which we
measure various attributes of a common underlying thing. In most tools, it is usually
convenient to put these observations/samples each in a row; and correspondingly to
store each of the measurements/features/fields pertaining to that thing in a column
containing corresponding data for other comparable things.

Inasmuch as I vary the use of these roughly equivalent terms, it is simply better
to fit with the domain under discussion and to make readers familiar with all the
terms, which they are likely to encounter in various places for a similar intention.
The choice among near synonyms is also guided by the predominant use within
the particular tool, library, or programming community that is currently being
discussed.

Preface

[xi]

In many cases, a general concept has a strong overlap with the particular name
a tool or library uses to implement or express that concept. Where relevant, I
attempt to use the small typographic distinctions in the names to indicate focus. For
example, I discuss data frames as a general paradigm for manipulating data, but refer
to DataFrame when discussing Pandas or other libraries that use that spelling for the
specific class used. Likewise, R’s data.frame object is a specific implementation of
the paradigm, and capitalization and punctuation will be adjusted for context.

Typography
As with most programming books, code literals will be set in a fixed width font,
whether as excerpts inline or as blocks of code between paragraphs. For example,
a code snippet, often a name, will appear as sklearn.pipeline.Pipeline. As a block,
it would appear as:

scaler = sklearn.preprocessing.RobustScaler()
scaler.fit(X)
X_scaled = scaler.transform(X_train)

Input and output within a shell will be displayed like this:

sqlite> CREATE TABLE mytable(a SMALLINT, b VARCHAR(10), c REAL);
sqlite> INSERT INTO mytable(a, b, c) VALUES('123', 456, 789);

Names of software libraries, tools, and terms that are used in a special or distinctive
sense within data science are shown with a dotted underline if they’re defined in
the Glossary. If not, these terms will be shown in boldface on first, or early, mention,
but generally in the default typeface as common nouns elsewhere. Italics are used in
places in the main text simply for emphasis of words or clauses in prose. In electronic
versions of this book, underline will show that there is an embedded link to an
external resource.

The names of software tools and libraries is a bit of a challenge to orthography
(i.e. spelling). Capitalization, or lack thereof, is often used in a stylized way, and
moreover sometimes these bits of software are rendered differently in different
contexts. For example Python is a good proper name for a programming language,
but the actual executable that launches a Python script is python in lower case. Tools
or libraries that will usually be typed in literal form, at a command line or as a name
in code, will be set in fixed width.

Still other tools have both an informal and a literal name. For example scikit-learn is
stylized in lowercase, but is not the actual imported name of the library, which
is sklearn. Moreover, the informal name would look out of place when referring to
subpackages such as sklearn.preprocessing.

Preface

[xii]

In general, the names of software libraries are actually pretty intuitive, but the
Glossary lists the name variants used in slightly different contexts in this book.

Taxonomy
Throughout this book, but especially in the first few chapters, I mention a large
number of software tools and libraries that you might encounter in your work as a
data scientist, developer, data analyst, or in another job title. The examples in the
code of this book only use a relatively small fraction of those tools, mostly Python,
and R, and a few libraries for those languages.

There are a much larger number of tools which you are fairly likely to encounter,
and to need to use during your work. While this book does not specifically attempt
to document the tools themselves, not even those tools that occur in many examples,
I think it is valuable for readers to understand the general role of tools they may
require in their specific tasks. When mentioning tools, I try to provide a general
conceptual framework for what kind of thing that tool is, and point in the direction
of the section or chapter that discusses purposes and tools most similar to it.
You most certainly do not need to be familiar with any large number of the tools
mentioned—potentially with none of them at all, not even the main programming
languages used in examples.

The main lesson is “Don’t Panic!”, as Douglas Adams famously admonishes. You
do not need to learn any specific tool discussed, but neither is any something
you cannot learn when you need to or wish to. The Glossary of this book provides
brief comments and definitions of terms and names used throughout this book, as
well.

aside

Sometimes, additional information or commentary is presented in
asides that look like this, with superscripts in the text to mark their
intended contexts.

Other times, tips, rules of thumb, and other things to remember look
like this.

Preface

[xiii]

Included Code
In this book, I will primarily use Python and associated tools, such as Pandas,
sklearn.preprocessing, and scipy.stats, to solve the data cleaning problems
presented. R, and its Tidyverse tools, will often be shown as code alternatives.
Some code samples will simply use Bash and the many text/data command-line
processing tools available. Examples from other programming languages are
occasionally mentioned, where relevant.

Quite a few additional libraries and tools are mentioned throughout this text, either
only to introduce them briefly or even only to indicate they exist. Depending on your
specific workplace, codebase, and colleagues, you may need to use some or all of
these, even if they are not the main tools shown in this book. The Glossary describes
(almost) all libraries mentioned, with brief descriptions of their purpose.

All of the code in this book is released to the Public Domain, or as Creative
Commons CC0 if your jurisdiction lacks a clear mechanism for placing content in the
Public Domain. The URL https://github.com/PacktPublishing/Cleaning-Data-for-
Effective-Data-Science contains the code directly printed in this book, and small
modules or libraries supporting the techniques demonstrated, under the same terms.
All of the datasets utilized are provided at the author’s website at https://www.
gnosis.cx/cleaning/. Some datasets may have different license terms, but only ones
with reasonably open terms for use and modification are utilized. Because datasets
are often large, this book will only reproduce directly very small datasets; I will often
show a few representative sections of larger data in the text.

Running the Book
This book is itself written using Jupyter notebooks. This manner of creation allows
for (almost) all the code within the book to be actively run before publication. The
repository given above provides instructions and configuration files for creating a
similar working environment. Code samples shown will usually be accompanied
by the actual output of running them. For example, Python code:

from src.intro_students import data, cleaned
print(data)

Student#,Last Name,First Name,Favorite Color,Age
1,Johnson,Mia,periwinkle,12
2,Lopez,Liam,blue,green,13
3,Lee,Isabella,,11
4,Fisher,Mason,gray,-1

https://creativecommons.org/share-your-work/public-domain/cc0/
https://github.com/PacktPublishing/Cleaning-Data-for-Effective-Data-Science
https://github.com/PacktPublishing/Cleaning-Data-for-Effective-Data-Science
https://www.gnosis.cx/cleaning/
https://www.gnosis.cx/cleaning/
https://jupyter.org/

Preface

[xiv]

5,Gupta,Olivia,9,102
6,,Robinson,,Sophia,,blue,,12

cleaned

Student_No Last_Name First_Name Favorite_Color Age
 1 Johnson Mia periwinkle 12.0
 2 Lopez Liam blue-green 13.0
 3 Lee Isabella <missing> 11.0
 4 Fisher Mason gray NaN
 5 Gupta Olivia sepia NaN
 6 Robinson Sophia blue 12.0

Likewise in this configuration, I can run R code equally well. At times the code
samples will show data being transferred between the R and Python kernels.

%load_ext rpy2.ipython

%%R -i cleaned
library('tibble')
Select and rename columns
tibble(First=cleaned$First_Name,
 Last=cleaned$Last_Name,
 Age=cleaned$Age)

A tibble: 6 x 3
 First Last Age
 <chr> <chr> <dbl>
1 Mia Johnson 12
2 Liam Lopez 13
3 Isabella Lee 11
4 Mason Fisher NaN
5 Olivia Gupta NaN
6 Sophia Robinson 12

Command-line tools will also be shown within code cells, for example:

%%bash
sed s/,,/,/g data/students.csv |
 cut -f2,3 -d, |
 tail -n +2 |
 tr , ' ' |
 sort

Preface

[xv]

Fisher Mason
Gupta Olivia
Johnson Mia
Lee Isabella
Lopez Liam
Robinson Sophia

The code in this book was run using the following versions of the main
programming languages used (Python and R). Other tools like Bash, shell utilities,
or Scala in one section, are also used, but the first two are very stable across versions
and should not vary in behavior. The large majority of the code shown will work at
least a few versions back for the main languages; most likely the code will continue
to work for several versions forward (but the future is unwritten). Specific libraries
used, and the number touched on is numerous, may possibly change behaviors.

import sys
sys.version

'3.9.0 | packaged by conda-forge | (default, Oct 14 2020, 22:59:50)
\n[GCC 7.5.0]'

%%R
R.version.string

[1] "R version 4.0.3 (2020-10-10)"

Using this Book
Slovenliness is no part of data science...cleanliness is indeed next to godliness.
–cf. John Wesley

This book is intended to be suitable for use either by a self-directed reader or
in more structured academic, training, or certification courses. Each chapter is
accompanied by exercises at the bottom that ask readers or students to complete
tasks related to what they just learned in the preceding material. The book
repository contains additional discussion of some exercises, but will avoid
presenting explicit solutions for mere copy-paste.

Instructors are encouraged to contact the author if they wish to plan course material
around this book. Under a consulting arrangement, I am happy to provide solution
code, suggestions on use of the exercises and other content, and so on.

Preface

[xvi]

The datasets and supporting materials for this book are available at the repository
described above, and will be needed to engage fully with some of the more open
ended problems presented. These extra materials will allow more interactive use of
the book, and accompanying materials, than reading only would allow. However,
sufficient explanation to understand the content based on the written material only
will also be provided in the text.

Throughout this book I am strongly opinionated about a number of technical
questions. I do not believe it will be difficult to distinguish my opinions from
the mere facts I also present. I have worked in this area for a number of years, and
I hope to share with readers the conclusions I have reached. Of course, even book
authors are fallible beings, and if you decide to disagree with claims I make, I hope
and wish that you will gain great benefit both from what you learn anew and what
you are able to reformulate in strengthening your own opinions and conclusions.

This book does not use heavy mathematics or statistics, but there are references
to concepts therein from time to time. Some concepts are described briefly in
the Glossary. Readers who want to brush up on these concepts might consider these
books:

•	 Think Stats: Exploratory Data Analysis in Python, Allen B. Downey, 2014
(O’Reilly Media; available both in free PDF and HTML versions, and as a
printed book).

•	 All of Statistics: A Concise Course in Statistical Inference, Larry Wasserman,
2004 (Springer).

This book is also not focused on the ethics of data visualization, but I have tried to
be conscientious in using plots, which I use throughout the text. Good texts that
consider these issues include:

•	 Data Visualization: A practical introduction, Kieran Healy, 2018 (Princeton
University Press; a non-final draft is available free online).

•	 The Visual Display of Quantitative Information, Edward Tufte, 2001 (Graphics
Press; all four of Tufte’s visualization books are canonical in the field).

Data Hygiene
Throughout this book, I show you a variety of ways to modify datasets from the
original versions you receive. Sometimes these transformations are between data
formats or in-memory representations. At other times we impute, massage, sample,
aggregate, or collate data.

https://greenteapress.com/thinkstats2/thinkstats2.pdf
https://socviz.co/index.html
https://www.edwardtufte.com/tufte/books_be

Preface

[xvii]

Every time some transformation is made on data, we bring in certain assumptions or
goals of our own; these may well be—and ideally should be—well motivated by task
purpose or numeric and statistical analysis. However, they remain assumptions that
could be wrong.

It is crucial to good practice of data science to version datasets as we work with
them. When we draw some conclusion, or even simply when we prepare for the
next transformation step, it is important to indicate which version of the data
this action is based on. There are several different ways in which datasets may be
versioned.

If a dataset is of moderate size, and if the transformations made are not themselves
greatly time consuming, versioning within program flow is a good choice. For
example, in Python-like pseudo-code:

data1 = read_format(raw_data)
data2 = transformation_1(data1)
data3 = transformation_2(data2)
... etc ...

When you use any version, anywhere else in a large program, it is clear from the
variable name (or lookup key, etc.) which version is involved, and problems can be
more easily diagnosed.

If a dataset is somewhat larger in size—to the point where keeping a number of near-
copies in memory is a resource constraint—it is possible instead to track changes
simply as metadata on the working dataset. This does not allow simultaneous access
to multiple versions in code, but is still very useful for debugging and analysis.
Again, in pseudo-code:

data = Annotated(read_format(raw_data))
inplace_transform_1(data)
data.version = "Transformed by step 1"
... actions on data ...
inplace_transform_2(data)
data.version = "Transformed by step 2"
... etc ...

At any part of an overall program, you can at least verify the version (or other
metadata) associated with the dataset.

Preface

[xviii]

For transformations that you wish to persist longer than the run of a single program,
use of version control systems (VCSs) is highly desirable. Most VCSs allow a
concept of a branch where different versions of files can be maintained in parallel. If
available, use of this capability is often desirable. Even if your dataset versions are
strictly linear, it is possible to revert to a particular earlier version if necessary. Using
accurate and descriptive commit messages is a great benefit to data versioning.

Most VCSs are intelligent about storing as few bytes as possible to describe
changes. It is often possible for them to calculate a “minimal change set” to describe
a transformation rather than simply storing an entirely new near-copy for each
version. Whether or not your VCS does this with the formats you work with,
data integrity and data provenance should be a more prominent concern than the
potential need to allocate more disk space. Of late, Git is the most popular VCS;
but the advice here can equally be followed using Apache Subversion, Mercurial,
Perforce, Microsoft Visual SourceSafe, IBM Rational ClearCase, or any other modern
VCS. Indeed, an older system like Concurrent Versions System (CVS) suffices for this
purpose.

Exercises
None of the exercises throughout this book depend on using any specific
programming language. In the discussion, Python is used most frequently, followed
by R, with occasional use of other programming languages. But all exercises simply
present one or more datasets and ask you to perform some task with that. Achieving
those goals using the programming language of your choice is wonderful (subject to
any constraints your instructor may provide if this book is used in formal pedagogy).

The toy tabular data on students given as an example is available at:

https://www.gnosis.cx/cleaning/students.csv

For this exercise, create a cleaned up version of the data following the assumptions
illustrated in the code samples shown. Use your favorite programming language
and tools, but the goal has these elements:

•	 Consistent doubled commas should be read as a single delimiter.
•	 Missing data in the Favorite Color field should be substituted with the

string <missing>.
•	 Student ages should be between 9 and 14, and all other values are considered

missing data.

https://www.gnosis.cx/cleaning/students.csv

Preface

[xix]

•	 Some colors are numerically coded, but should be unaliased. The mapping is:

Number Color Number Color
1 beige 6 alabaster
2 eggshell 7 sandcastle
3 seafoam 8 chartreuse
4 mint 9 sepia
5 cream 10 lemon

Using the small test dataset is a good way to test your code. But try also manually
adding more rows with similar, or different, problems in them, and see how well
your code produces a reasonable result. We have not discussed tools to accomplish
this exercise yet, although you likely have used a programming language capable
of solving it. Try to solve it now, but you can come back to this after later chapters
if you prefer.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/
PacktPublishing/Cleaning-Data-for-Effective-Data-Science. We also have other
code bundles from our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801071291_ColorImages.pdf.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book’s title in
the subject of your message. If you have questions about any aspect of this book,
please email us at questions@packtpub.com.

https://github.com/PacktPublishing/Cleaning-Data-for-Effective-Data-Science
https://github.com/PacktPublishing/Cleaning-Data-for-Effective-Data-Science
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801071291_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801071291_ColorImages.pdf

Preface

[xx]

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit http://authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can understand
what you think about our products, and our authors can see your feedback on their
book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://packtpub.com

PART I

Data Ingestion

[3]

1
Tabular Formats

Tidy datasets are all alike, but every messy dataset is messy in its own way.
–Hadley Wickham (cf. Leo Tolstoy)

A great deal of data both does and should live in tabular formats; to put it flatly, this
means formats that have rows and columns. In a theoretical sense, it is possible to
represent every collection of structured data in terms of multiple “flat” or “tabular”
collections if we also have a concept of relations. Relational database management
systems (RDBMSs) have had a great deal of success since 1970, and a very large
part of all the world’s data lives in RDBMSs. Another large share lives in formats that
are not relational as such, but that are nonetheless tabular, wherein relationships may
be imputed in an ad hoc, but uncumbersome, way.

As the Preface mentioned, the data ingestion chapters will concern themselves
chiefly with structural or mechanical problems that make data dirty. Later in the
book we will focus more on content or numerical issues in data.

This chapter discusses tabular formats including CSV, spreadsheets, SQL databases,
and scientific array storage formats. The last sections look at some general concepts
around data frames, which will typically be how data scientists manipulate tabular
data. Much of this chapter is concerned with the actual mechanics of ingesting
and working with a variety of data formats, using several different tools and
programming languages. The Preface discusses why I wish to remain language-
agnostic—or multilingual—in my choices. Where each format is prone to particular
kinds of data integrity problems, special attention is drawn to that. Actually
remediating those characteristic problems is largely left until later chapters; detecting
them is the focus of our attention here.

Tabular Formats

[4]

As The Hitchhiker’s Guide to the Galaxy is humorously inscribed: “Don’t Panic!”. We
will explain in much more detail the concepts mentioned here.

We run the setup code that will be standard throughout this book. As the Preface
mentions, each chapter can be run in full, assuming available configuration files
have been utilized. Although it is not usually best practice in Python to use import *,
we do so here to bring in many names without a long block of imports:

from src.setup import *
%load_ext rpy2.ipython

%%R
library(tidyverse)

With our various Python and R libraries now available, let us utilize them to start
cleaning data.

Tidying Up
After every war someone has to tidy up.
–Maria Wisława Anna Szymborska

Concepts:

•	 Tidiness and database normalization
•	 Rows versus columns
•	 Labels versus values

Hadley Wickham and Garrett Grolemund, in their excellent and freely available
book R for Data Science, promote the concept of “tidy data.” The Tidyverse collection
of R packages attempt to realize this concept in concrete libraries. Wickham and
Grolemund’s idea of tidy data has a very close intellectual forebear in the concept of
database normalization, which is a large topic addressed in depth neither by them
nor in this current book. The canonical reference on database normalization is C.
J. Date’s An Introduction to Database Systems (Addison Wesley; 1975 and numerous
subsequent editions).

https://r4ds.had.co.nz/

Chapter 1

[5]

In brief, tidy data carefully separates variables (the columns of a table, also called
features or fields) from observations (the rows of a table, also called samples). At
the intersection of these two, we find values, one data item (datum) in each cell.
Unfortunately, the data we encounter is often not arranged in this useful way, and
it requires normalization. In particular, what are really values are often represented
either as columns or as rows instead. To demonstrate what this means, let us
consider an example.

Returning to the small elementary school class we presented in the Preface, we
might encounter data looking like this:

students = pd.read_csv('data/students-scores.csv')
students

 Last Name First Name 4th Grade 5th Grade 6th Grade
0 Johnson Mia A B+ A-
1 Lopez Liam B B A+
2 Lee Isabella C C- B-
3 Fisher Mason B B- C+
4 Gupta Olivia B A+ A
5 Robinson Sophia A+ B- A

This view of the data is easy for humans to read. We can see trends in the scores
each student received over several years of education. Moreover, this format might
lend itself to useful visualizations fairly easily:

Generic conversion of letter grades to numbers
def num_score(x):
 to_num = {'A+': 4.3, 'A': 4, 'A-': 3.7,
 'B+': 3.3, 'B': 3, 'B-': 2.7,
 'C+': 2.3, 'C': 2, 'C-': 1.7}
 return x.map(lambda x: to_num.get(x, x))

This next cell uses a “fluent” programming style that may look unfamiliar to some
Python programmers. I discuss this style in the section below on data frames. The
fluent style is used in many data science tools and languages.

Tabular Formats

[6]

For example, this is typical Pandas code that plots the students’ scores by year:

(students
 .set_index('Last Name')
 .drop('First Name', axis=1)
 .apply(num_score)
 .T
 .plot(title="Student score by year")
 .legend(bbox_to_anchor=(1, .75))
);

Figure 1.1: Student scores by year

This data layout exposes its limitations once the class advances to 7th grade, or if
we were to obtain 3rd grade information. To accommodate such additional data,
we would need to change the number and position of columns, not simply add
additional rows. It is natural to make new observations or identify new samples
(rows) but usually awkward to change the underlying variables (columns).

The particular class level (e.g. 4th grade) that a letter grade pertains to is, at heart,
a value, not a variable. Another way to think of this is in terms of independent
variables versus dependent variables, or in machine learning terms, features versus
target. In some ways, the class level might correlate with or influence the resulting
letter grade; perhaps the teachers at the different levels have different biases, or
children of a certain age lose or gain interest in schoolwork, for example.

Chapter 1

[7]

For most analytic purposes, this data would be more useful if we made it tidy
(normalized) before further processing. In Pandas, the DataFrame.melt() method
can perform this tidying. We pin some of the columns as id_vars, and we set a name
for the combined columns as a variable and the letter grade as a single new column.
This Pandas method is slightly magical and takes some practice to get used to. The
key thing is that it preserves data, simply moving it between column labels and
data values:

students.melt(
 id_vars=["Last Name", "First Name"],
 var_name="Level",
 value_name="Score"
).set_index(['First Name', 'Last Name', 'Level'])

First Name Last Name Level Score
 Mia Johnson 4th Grade A
 Liam Lopez 4th Grade B
 Isabella Lee 4th Grade C
 Mason Fisher 4th Grade B

 Isabella Lee 6th Grade B-
 Mason Fisher 6th Grade C+
 Olivia Gupta 6th Grade A
 Sophia Robinson 6th Grade A
18 rows × 1 columns

In the R Tidyverse, the procedure is similar. A tibble, which we see here, is simply a
kind of data frame that is preferred in the Tidyverse:

%%R
library('tidyverse')

studentsR <- read_csv('data/students-scores.csv')
studentsR

── Column specification ───
cols(
 'Last Name' = col_character(),
 'First Name' = col_character(),
 '4th Grade' = col_character(),
 '5th Grade' = col_character(),
 '6th Grade' = col_character()
)

Tabular Formats

[8]

A tibble: 6 x 5
 'Last Name' 'First Name' '4th Grade' '5th Grade' '6th Grade'
 <chr> <chr> <chr> <chr> <chr>
1 Johnson Mia A B+ A-
2 Lopez Liam B B A+
3 Lee Isabella C C- B-
4 Fisher Mason B B- C+
5 Gupta Olivia B A+ A
6 Robinson Sophia A+ B- A

Within the Tidyverse, specifically within the tidyr package, there is a function
pivot_longer() that is similar to Pandas’ .melt(). The aggregation names and values
have parameters spelled names_to and values_to, but the operation is the same:

%%R
studentsR <- read_csv('data/students-scores.csv')
studentsR %>%
 pivot_longer(c('4th Grade', '5th Grade', '6th Grade'),
 names_to = "Level",
 values_to = "Score")

── Column specification ───
cols(
 'Last Name' = col_character(),
 'First Name' = col_character(),
 '4th Grade' = col_character(),
 '5th Grade' = col_character(),
 '6th Grade' = col_character()
)

A tibble: 18 x 4
 'Last Name' 'First Name' Level Score
 <chr> <chr> <chr> <chr>
 1 Johnson Mia 4th Grade A
 2 Johnson Mia 5th Grade B+
 3 Johnson Mia 6th Grade A-
 4 Lopez Liam 4th Grade B
 5 Lopez Liam 5th Grade B
 6 Lopez Liam 6th Grade A+
 7 Lee Isabella 4th Grade C
 8 Lee Isabella 5th Grade C-
 9 Lee Isabella 6th Grade B-

Chapter 1

[9]

10 Fisher Mason 4th Grade B
11 Fisher Mason 5th Grade B-
12 Fisher Mason 6th Grade C+
13 Gupta Olivia 4th Grade B
14 Gupta Olivia 5th Grade A+
15 Gupta Olivia 6th Grade A
16 Robinson Sophia 4th Grade A+
17 Robinson Sophia 5th Grade B-
18 Robinson Sophia 6th Grade A

The simple example above gives you a first feel for tidying tabular data. To
reverse the tidying operation that moves variables (columns) to values (rows), the
pivot_wider() function in tidyr can be used. In Pandas there are several related
methods on DataFrames, including .pivot(), .pivot_table(), and .groupby()
combined with .unstack(), which can create columns from rows (and do many
other things too).

Having looked at the idea of tidiness as a general goal for tabular, let us begin looking
at specific data formats, starting with comma-separated values and fixed-width files.

CSV
Speech sounds cannot be understood, delimited, classified and explained except in the
light of the tasks which they perform in language.
–Roman Jakobson

Concepts:

•	 Delimited and fixed-width data
•	 Parsing problems
•	 Heuristics and “eyeballing”
•	 Inferring data types
•	 Escaping special characters
•	 Families of related CSV files

Delimited text files, especially comma-separated values (CSV) files, are ubiquitous.
These are text files that put multiple values on each line and separate those values
with some semi-reserved character, such as a comma. They are almost always the
exchange format used to transport data between other tabular representations, but
a great deal of data both starts and ends life as CSV, perhaps never passing through
other formats.

Tabular Formats

[10]

Reading delimited files is not the fastest way of reading from disk into RAM
memory, but it is also not the slowest. Of course, that concern only matters for
large-ish datasets, not for the small datasets that make up most of our work as data
scientists (small nowadays means roughly “fewer than 100k rows”).

There are a great number of deficits in CSV files, but also some notable strengths.
CSV files are the format second most susceptible to structural problems. All formats
are generally equally prone to content problems, which are not tied to the format
itself. Spreadsheets like Excel are, of course, by a very large margin, the worst format
for every kind of data integrity concern.

At the same time, delimited formats—or fixed-width text formats—are also almost
the only ones you can easily open and make sense of in a text editor or easily
manipulate using command-line tools for text processing. Thereby delimited files
are pretty much the only ones you can fix fully manually without specialized readers
and libraries. Of course, formats that rigorously enforce structural constraints do
avoid some of the need to do this. Later in this chapter, and in the next two chapters, a
number of formats that enforce structure more are discussed.

One issue that you could encounter in reading CSV or other textual files is that the
actual character set encoding may not be the one you expect, or the default on your
current system. In this age of Unicode, this concern is diminishing, but only slowly,
and archival files continue to exist. This topic is discussed in Chapter 3, Repurposing
Data Sources, in the section Custom Text Formats.

Sanity Checks
As a quick example, suppose you have just received a medium-sized CSV file, and
you want to perform a quick sanity check on it. At this stage, we are concerned about
whether the file is formatted correctly at all. We can do this with command-line tools,
even if most libraries are likely to choke on them (such as shown in the next code
cell). Of course, we could also use Python, R, or another general-purpose language if
we just consider the lines as text initially:

Use try/except to avoid full traceback in example
try:
 pd.read_csv('data/big-random.csv')
except Exception as err:
 print_err(err)

ParserError
Error tokenizing data. C error: Expected 6 fields in line 75, saw 8

Chapter 1

[11]

What went wrong there? Let us check.

%%bash
What is the general size/shape of this file?
wc data/big-random.csv

 100000 100000 4335846 data/big-random.csv

Great! 100,000 rows; but there is some sort of problem on line 75 according to Pandas
(and perhaps on other lines as well). Using a single piped Bash command that counts
commas per line might provide insight. We could absolutely perform this same
analysis in Python, R, or other languages; however, being familiar with command-
line tools is a benefit to data scientists in performing one-off analyses like this:

%%bash
cat data/big-random.csv |
 tr -d -c ',\n' |
 awk '{ print length; }' |
 sort |
 uniq -c

 46 3
 99909 5
 45 7

So we have figured out already that 99,909 of the lines have the expected 5 commas.
But 46 have a deficit and 45 a surplus. Perhaps we will simply discard the bad lines,
but that is not altogether too many to consider fixing by hand, even in a text editor.
We need to make a judgement, on a per problem basis, about both the relative effort
and reliability of automation of fixes versus manual approaches. Let us take a look
at a few of the problem rows:

%%bash
grep -C1 -nP '^([^,]+,){7}' data/big-random.csv | head

74-squarcerai,45,quiescenze,12,scuoieremo,70
75:fantasmagorici,28,immischiavate,44,schiavizzammo,97,sfilzarono,49
76-interagiste,50,repentagli,72,attendato,95
--
712-resettando,58,strisciato,46,insaldai,62
713:aspirasse,15,imbozzimatrici,70,incanalante,93,succhieremo,41
714-saccarometriche,18,stremaste,12,hindi,19
--
8096-squincio,16,biascicona,93,solisti,70
8097:rinegoziante,50,circoncidiamo,83,stringavate,79,stipularono,34

Tabular Formats

[12]

Looking at these lists of Italian words and integers of slightly varying numbers of
fields does not immediately illuminate the nature of the problem. We likely need
more domain or problem knowledge. However, given that fewer than 1% of rows
are a problem, perhaps we should simply discard them for now. If you do decide
to make a modification such as removing rows, then versioning the data, with
accompanying documentation of change history and reasons, becomes crucial to
good data and process provenance.

The next cell uses a regular expression to filter the lines in the “almost CSV” file.
The pattern may appear confusing, but regular expressions provide a compact way
of describing patterns in text. The match in pat indicates that from the beginning of
a line (^) until the end of that line ($) there are exactly five repetitions of character
sequences that do not include commas, each followed by one comma ([^,]+,):

import re
pat = re.compile(r'^([^,]+,){5}[^,]*$')
with open('data/big-random.csv') as fh:
 lines = [l.strip().split(',')
 for l in fh if re.match(pat, l)]
pd.DataFrame(lines)

 0 1 2 3 4 5
 0 infilaste 21 esemplava 15 stabaccavo 73
 1 abbadaste 50 enartrosi 85 iella 54
 2 frustulo 77 temporale 83 scoppianti 91
 3 gavocciolo 84 postelegrafiche 93 inglesizzanti 63

99905 notareschi 60 paganico 64 esecutavamo 20
99906 rispranghiamo 11 schioccano 44 imbozzarono 80
99907 compone 85 disfronderebbe 19 vaporizzavo 54
99908 ritardata 29 scordare 43 appuntirebbe 24
99909 rows × 6 columns

In the code we managed, within Python, to read all rows without formatting problems.
We could also have used the pd.read_csv() parameter error_bad_lines=False to
achieve the same effect, but walking through it in plain Python and Bash gives you a
better picture of why they are excluded.

Chapter 1

[13]

The Good, the Bad, and the Textual Data
Let us return to some virtues and deficits of CSV files. Here when we mention
CSV, we really mean any kind of delimited file. And specifically, text files that store
tabular data nearly always use a single character for a delimiter, and end rows/
records with a newline (or carriage return and newline in legacy formats). Other
than commas, probably the most common delimiters you will encounter are tabs
and the pipe character, |. However, nearly all tools are more than happy to use an
arbitrary character.

Fixed-width files are similar to delimited ones. Technically they are different in
that, although they are line-oriented, they put each field of data in specific character
positions within each line. An example is used in the next code cell below. Decades
ago, when Fortran and Cobol were more popular, fixed-width formats were more
prevalent; my perception is that their use has diminished in favor of delimited
files. In any case, fixed-width textual data files have most of the same pitfalls and
strengths as do delimited ones.

The Bad
Columns in delimited or flat files do not carry a data type, being simply text values.
Many tools will (optionally) make guesses about the data type, but these are subject
to pitfalls. Moreover, even where the tools accurately guess the broad type category
(i.e. string vs. integer vs. real number), they cannot guess the specific bit length
desired, where that matters.

Likewise, the representation used for “real” numbers is not encoded—most systems
deal with IEEE-754 floating-point numbers of some length, but occasionally decimals
of some specific length are more appropriate for a purpose.

The most typical way that type inference goes wrong is where the initial records
in some dataset have an apparent pattern, but later records deviate from this. The
software library may infer one data type but later encounter strings that cannot be
cast as such. “Earlier” and “later” here can have several different meanings.

Tabular Formats

[14]

For out-of-core data frame libraries like Vaex and Dask (Python libraries) that read
lazily, type heuristics might be applied to a first few records (and perhaps some
other sampling) but will not see those strings that do not follow the assumed pattern.
However, later might also mean months later, when new data arrives.partnum

Most data frame libraries are greedy about inferring data types—although all will
allow manual specification to shortcut inference.

For many layouts, data frame libraries can guess a fixed-width format and infer
column positions and data types (where it cannot guess, we could manually specify).
But the guesses about data types can go wrong. For example, viewing the raw text,
we see a fixed-width layout in parts.fwf:

%%bash
cat data/parts.fwf

Part_No Description Maker Price (USD)
12345 Wankle rotary engine Acme Corporation 555.55
67890 Sousaphone Marching Inc. 333.33
2468 Feather Duster Sweeps Bros 22.22
A9922 Area 51 metal fragment No Such Agency 9999.99

Reading this with Pandas correctly infers the intended column positions for the
fields:

df = pd.read_fwf('data/parts.fwf', nrows=3)
df

 Part_No Description Maker Price (USD)
0 12345 Wankle rotary engine Acme Corporation 555.55
1 67890 Sousaphone Marching Inc. 333.33
2 2468 Feather Duster Sweeps Bros 22.22

df.dtypes

partnum

For example, in a former job of mine, we received client data about
commercial products that had a “part number.” That number was
an actual integer, for many months, until it was not; it became a
string that sometimes mixed letters with numerals. Unfortunately,
other tooling had already made a wrong assumption about the
undocumented data type (in this case an SQL schema, but it could
be other code as well).

Chapter 1

[15]

Part_No int64
Description object
Maker object
Price (USD) float64
dtype: object

We deliberately only read the start of the parts.fwf file. From those first few rows,
Pandas made a type inference of int64 for the Part_No column.

Let us read the entire file. Pandas does the “right thing” here: Part_No becomes
a generic object, i.e. string. However, if we had a million rows instead, and the
heuristics Pandas uses, for speed and memory efficiency, happened to limit
inference to the first 100,000 rows, we might not be so lucky:

df = pd.read_fwf('data/parts.fwf')
df

 Part_No Description Maker Price (USD)
0 12345 Wankle rotary engine Acme Corporation 555.55
1 67890 Sousaphone Marching Inc. 333.33
2 2468 Feather Duster Sweeps Bros 22.22
3 A9922 Area 51 metal fragment No Such Agency 9999.99

df.dtypes # type of 'Part_No' changed

Part_No object
Description object
Maker object
Price (USD) float64
dtype: object

R tibbles behave the same as Pandas, with the minor difference that data type
imputation always uses 1,000 rows and will discard values if inconsistencies occur
thereafter. Pandas can be configured to read all rows for inference, but by default
reads a dynamically determined number. Pandas will sample more rows than R
does, but still only approximately tens of thousands. The R collections data.frame
and data.table are likewise similar. Let us read in the same file as above using R:

%%R
read_table('data/parts.fwf')

── Column specification ───
cols(
 Part_No = col_character(),
 Description = col_character(),

Tabular Formats

[16]

 Maker = col_character(),
 'Price (USD)' = col_double()
)
A tibble: 4 x 4
 Part_No Description Maker 'Price (USD)'
 <chr> <chr> <chr> <dbl>
1 12345 Wankle rotary engine Acme Corporation 556.
2 67890 Sousaphone Marching Inc. 333.
3 2468 Feather Duster Sweeps Bros 22.2
4 A9922 Area 51 metal fragment No Such Agency 10000.

Again, the first three rows are consistent with an integer data type, although this is
inaccurate for later rows:

%%R
read_table('data/parts.fwf',
 n_max = 3,
 col_types = cols("i", "-", "f", "n"))

A tibble: 3 x 3
 Part_No Maker 'Price (USD)'
 <int> <fct> <dbl>
1 12345 Acme Corporation 556.
2 67890 Marching Inc. 333.
3 2468 Sweeps Bros 22.2

Delimited files—but not so much fixed-width files—are prone to escaping issues.
In particular, CSVs specifically often contain descriptive fields that sometimes
contain commas within the value itself. When done right, this comma should be
escaped. It is often not done right in practice.

CSV is actually a family of different dialects, mostly varying in their escaping
conventions. Sometimes, spacing before or after commas is treated differently across
dialects as well. One approach to escaping is to put quotes around either every
string value, or every value of any kind, or perhaps only those values that contain
the prohibited comma. This varies by tool and by the version of the tool. Of course,
if you quote fields, there is potentially a need to escape those quotes; usually, this is
done by placing a backslash before the quote character when it is part of the value.

Chapter 1

[17]

An alternate approach is to place a backslash before those commas that are not
intended as a delimiter but rather as part of a string value (or a numeric value
that might be formatted, e.g. $1,234.56). Guessing the variant can be a mess, and
even single files are not necessarily self-consistent between rows, in practice (often
different tools or versions of tools have touched the data).

Tab-separated and pipe-separated formats are often chosen with the hope of
avoiding escaping issues. This works to an extent. Both tabs and pipe symbols
are far less common in ordinary prose. But both still wind up occurring in text
occasionally, and all the escaping issues come back. Moreover, in the face of
escaping, the simplest tools sometimes fail. For example, the Bash command cut -d,
will not work in these cases, nor will Python’s str.split(','). A more custom
parser becomes necessary, albeit a simple one compared to full-fledged grammars.
Python’s standard library csv module is one such custom parser.

The corresponding danger for fixed-width files, in contrast to delimited ones, is
that values become too long. Within a certain line position range you can have any
codepoints whatsoever (other than newlines). But once the description or name
that someone thought would never be longer than, say, 20 characters becomes 21
characters, the format fails.

A special consideration arises around reading datetime formats. Data frame libraries
that read datetime values typically have an optional switch to parse certain columns
as datetime formats. Libraries such as Pandas support heuristic guessing of datetime
formats; the problem here is that applying a heuristic to each of millions of rows can
be exceedingly slow. Where a date format is uniform, using a manual format specifier
can make it several orders of magnitude faster to read. Of course, where the format
varies, heuristics are practically magic; and perhaps we should simply marvel that
the dog can talk at all rather than criticize its grammar. Let us look at a Pandas
attempt to guess datetimes for each row of a tab-separated file:

%%bash
Notice many date formats
cat data/parts.tsv

Part_No Description Date Price (USD)
 12345 Wankle rotary 2020-04-12T15:53:21 555.55
 67890 Sousaphone April 12, 2020 333.33
 2468 Feather Duster 4/12/2020 22.22
 A9922 Area 51 metal 04/12/20 9999.99

Let Pandas make guesses for each row
VERY SLOW for large tables

Tabular Formats

[18]

parts = pd.read_csv('data/parts.tsv',
 sep='\t', parse_dates=['Date'])
parts

 Part_No Description Date Price (USD)
0 12345 Wankle rotary 2020-04-12 15:53:21 555.55
1 67890 Sousaphone 2020-04-12 00:00:00 333.33
2 2468 Feather Duster 2020-04-12 00:00:00 22.22
3 A9922 Area 51 metal 2020-04-12 00:00:00 9999.99

We can verify that the dates are genuinely a datetime data type within the
DataFrame:

parts.dtypes

Part_No object
Description object
Date datetime64[ns]
Price (USD) float64
dtype: object

We have looked at some challenges and limitations of delimited and fixed-width
formats; let us look at their considerable advantages as well.

The Good
The biggest strength of CSV files, and their delimited or fixed-width cousins, is the
ubiquity of tools to read and write them. Every library dealing with data frames or
arrays, across every programming language, knows how to handle them. Most of
the time the libraries parse the quirky cases pretty well. Every spreadsheet program
imports and exports as CSV. Every RDBMS—and most non-relational databases
as well—imports and exports as CSV. Most programmers’ text editors even have
facilities to make editing CSV easier. Python has a standard library module called
csv that processes many dialects of CSV (or other delimited formats) as a line-by-line
record reader.

The fact that so very many structurally flawed CSV files live in the wild shows that
not every tool handles them entirely correctly. In part, that is probably because the
format is simple enough to almost work without custom tools at all. I have myself, in
a “throw-away script,” written print(",".join([1,2,3,4]), file=csv) countless
times; that works well, until it doesn’t. Of course, throw-away scripts become fixed
standard procedures for data flow far too often.

Chapter 1

[19]

The lack of type specification is often a strength rather than a weakness. For example,
the part numbers mentioned a few pages ago may have started out always being
integers as an actual business intention, but later on a need arose to use non-integer
“numbers.” With formats that have a formal type specifier, we generally have to
perform a migration and copy to move old data into a new format that follows the
loosened or revised constraints.

One particular case where a data type change happens especially often, in my
experience, is with finite-width character fields. Initially, some field is specified as
needing 5, or 15, or 100 characters for its maximum length, but then a need for a
longer string is encountered later, and a fixed table structure or SQL database needs
to be modified to accommodate the longer length. Even more often—especially with
databases—the requirement is under-documented, and we wind up with a dataset
filled with truncated strings that are of little utility (and perhaps permanently
lost data).

Text formats in general are usually flexible in this regard. Delimited files—but not
fixed-width files—will happily contain fields of arbitrary length. This is similarly
true of JSON data, YAML data,config XML data, log files, and some other formats that
simply utilize text, often with line-oriented records. In all of this, data typing is very
loose and only genuinely exists in the data processing steps. That is often a great
virtue.

A related “looseness” of CSV and similar formats is that we often indefinitely
aggregate multiple CSV files that follow the same informal schema. Writing a
different CSV file for each day, or each hour, or each month, of some ongoing data
collection is very commonplace. Many tools, such as Dask and Spark, will seamlessly
treat collections of CSV files (matching a glob pattern on the file system) as a single
dataset. Of course, in tools that do not directly support this, manual concatenation
is still not difficult. But under the model of having a directory that contains an
indefinite number of related CSV snapshots, presenting it as a single common object
is helpful.

config

YAML usually contains relatively short configuration information
rather than data in the prototypic sense. TOML is a similar format
in this regard, as is the older INI format. All of these are really
intended for hand editing, and hence are usually of small size, even
though good APIs for reading and writing their data are common.
While you could put a million records into any of these formats,
you will rarely or never encounter that in practice.

Tabular Formats

[20]

The libraries that handle families of CSV files seamlessly are generally lazy and
distributed. That is, with these tools, you do not typically read in all the CSV files at
once, or at least not into the main memory of a single machine. Rather, various cores
or various nodes in a cluster will each obtain file handles to individual files, and the
schema information will be inferred from only one or a few of the files, with actual
processing deferred until a specific (parallel) computation is launched. Splitting
processing of an individual CSV file across cores is not easily tractable, since a reader
can only determine where a new record begins by scanning until it finds a newline.

While details of the specific APIs of libraries for distributed data frames is outside
the scope of this book, the fact that parallelism is easily possible given an initial
division of data into many files is a significant strength for CSV as a format.
Dask in particular works by creating many Pandas DataFrames and coordinating
computation upon all of them (or those needed for a given result) with an API that
exactly copies the same methods of individual Pandas objects:

Generated data files with random values
from glob import glob
Use glob() function to identify files matching pattern
glob('data/multicsv/2000-*.csv')[:8] # ... and more

['data/multicsv/2000-01-27.csv',
 'data/multicsv/2000-01-26.csv',
 'data/multicsv/2000-01-06.csv',
 'data/multicsv/2000-01-20.csv',
 'data/multicsv/2000-01-13.csv',
 'data/multicsv/2000-01-22.csv',
 'data/multicsv/2000-01-21.csv',
 'data/multicsv/2000-01-24.csv']

We read this family of CSV files into one virtualized DataFrame that acts like a Pandas
DataFrame, even if loading it with Pandas would require more memory than our local
system allows. In this specific example, the collection of CSV files is not genuinely too
large for a modern workstation to read into memory; but when it becomes so, using
some distributed or out-of-core system like Dask is necessary to proceed at all:

import dask.dataframe as dd
df = dd.read_csv('data/multicsv/2000-*-*.csv',
 parse_dates=['timestamp'])
print("Total rows:", len(df))
df.head()
Total rows: 2592000

 Timestamp id name x y
0 2000-01-01 00:00:00 979 Zelda 0.802163 0.166619

Chapter 1

[21]

1 2000-01-01 00:00:01 1019 Ingrid -0.349999 0.704687
2 2000-01-01 00:00:02 1007 Hannah -0.169853 -0.050842
3 2000-01-01 00:00:03 1034 Ursula 0.868090 -0.190783
4 2000-01-01 00:00:04 1024 Ingrid 0.083798 0.109101

When we require some summary to be computed, Dask will coordinate workers
to aggregate on each individual DataFrame, then aggregate those aggregations.
There are more nuanced issues of which operations can be reframed in this “map-
reduce” style and which cannot, but that is the general idea (and the Dask or Spark
developers have thought about this for you so you do not have to):

df.mean().compute()

id 999.965606
x 0.000096
y 0.000081
dtype: float64

Having looked at some pros and cons of working with CSV data, let us turn to
another format where a great deal of data is stored. Unfortunately, for spreadsheets,
there are almost exclusively cons.

Spreadsheets Considered Harmful
Drugs are bad, m’kay. You shouldn’t do drugs, m’kay. If you do them you’re bad,
because drugs are bad, m’kay. It’s a bad thing to do drugs, so don’t be bad by doing
drugs, m’kay.
–Mr. Mackay (South Park)

Concepts:

•	 Non-enforced field/column identity
•	 Computational opacity
•	 Semi-tabular data
•	 Non-contiguous data
•	 Invisible data and data type discrepancies
•	 User interface as attractive nuisance

Edward Tufte, that brilliant doyen of information visualization, wrote an essay
called The Cognitive Style of PowerPoint: Pitching Out Corrupts Within. Among his
observations is that the manner in which slide presentations, and PowerPoint
specifically, hides important information more than it reveals it was a major or even
main cause of the 2003 Columbia space shuttle disaster. PowerPoint is anathema to
clear presentation of information.

https://www.edwardtufte.com/tufte/powerpoint

Tabular Formats

[22]

To no less of a degree, spreadsheets in general, and Excel in particular, are anathema
to effective data science. While perhaps not as much as in CSV files, a great share
of the world’s data lives in Excel spreadsheets. There are numerous kinds of data
corruption that are the special realm of spreadsheets. As a bonus, data science
tools read spreadsheets much more slowly than they do every other format, while
spreadsheets also have hard limits on the amount of data they can contain that other
formats do not impose.

Most of what spreadsheets do to make themselves convenient for their users makes
them bad for scientific reproducibility, data science, statistics, data analysis, and
related areas.computation Spreadsheets have apparent rows and columns in them, but
nothing enforces consistent use of them, even within a single sheet. Some particular
feature often lives in column F for some rows, but the equivalent thing is in column
H for other rows, for example. Contrast this with a CSV file or an SQL table; for these
latter formats, while all the data in a column is not necessarily good data, it generally
must pertain to the same feature.

computation

Another danger of spreadsheets is not around data ingestion, per
se, at all. Computation within spreadsheets is spread among many
cells in no obvious or easily inspectable order, leading to numerous
large-scale disastrous consequences (loss of billions in financial
transactions; a worldwide economic planning debacle; a massive
failure of Covid-19 contact tracing in the UK). The European
Spreadsheet Risks Interest Group is an entire organization devoted
to chronicling such errors. They present a number of lovely quotes,
including this one:

There is a literature on denial, which focuses on illness
and the fact that many people with terminal illnesses
deny the seriousness of their condition or the need to take
action. Apparently, what is very difficult and unpleasant
to do is difficult to contemplate. Although denial has only
been studied extensively in the medical literature, it is
likely to appear whenever required actions are difficult or
onerous. Given the effortful nature of spreadsheet testing,
developers may be victims of denial, which may manifest
itself in the form of overconfidence in accuracy so that
extensive testing will not be needed.
–Ray Panko, 2003

https://www.businessinsider.com/excel-partly-to-blame-for-trading-loss-2013-2
https://www.businessinsider.com/excel-partly-to-blame-for-trading-loss-2013-2
https://theconversation.com/the-reinhart-rogoff-error-or-how-not-to-excel-at-economics-13646
https://www.bbc.com/news/technology-54423988
https://www.bbc.com/news/technology-54423988
http://www.eusprig.org/
http://www.eusprig.org/
https://arxiv.org/abs/0804.0941

Chapter 1

[23]

Moreover, every cell in a spreadsheet can have a different data type. Usually, the
type is assigned by heuristic guesses within the spreadsheet interface. These are
highly sensitive to the exact keystrokes used, the order cells are entered, whether
data is copy/pasted between blocks, and numerous other things that are both hard
to predict and that change between every version of every spreadsheet software
program. Infamously, for example, Excel interprets the gene name SEPT2 (Septin
2) as a date (at least in a wide range of versions). Compounding the problem,
the interfaces of spreadsheets make determining the data type for a given cell
uncomfortably difficult.

Let us start with an example. The screenshot below is of a commonplace and
ordinary-looking spreadsheet. Yes, some values are not aligned in their cells exactly
consistently, but that is purely an aesthetic issue. The first problem that jumps out
at us is the fact that one sheet is being used to represent two different (in this case
related) tables of data. Already this is going to be difficult to make tidy:

Figure 1.2: Excel pitfalls

In procedural programming (including object-oriented
programming), actions flow sequentially through code, with
clear locations for branches or function calls; even in functional
paradigms, compositions are explicitly stated. In spreadsheets it
is anyone’s guess what computation depends on what else, and
what data ranges are actually included. Errors can occasionally be
found accidentally, but program analysis and debugging are nearly
impossible. Users who know only, or mostly, spreadsheets will
likely object that some tools exist to identify dependencies within
a spreadsheet; this is technically true in the same sense as that
many goods transported by freight train could also be carried on
a wheelbarrow.

Tabular Formats

[24]

If we simply tell Pandas (or specifically the supporting openpyxl library) to try
to make sense of this file, it makes a sincere effort and applies fairly intelligent
heuristics. It does not crash, to its credit. Other DataFrame libraries will be similar,
with different quirks you will need to learn. But what went wrong that we can see
initially?

Default engine 'xlrd' might have bug in Python 3.9
pd.read_excel('data/Excel-Pitfalls.xlsx',
 sheet_name="Dask Sample", engine="openpyxl")

 Timestamp id name x
0 2000-01-01 00:00:00 979 Zelda 0.802163
1 2000-01-01 0:00:01 1019.5 Ingrid -0.349999
2 2000-01-01 00:00:02 1007 Hannah -0.169853
3 2000-01-01 00:00:03 1034 Ursula 0.86809
4 timestamp id name y
5 2000-01-01 00:00:02 1007 Hannah -0.050842
6 2000-01-01 00:00:03 1034 Ursula -0.190783
7 2000-01-01 00:00:04 1024 Ingrid 0.109101

Right away we can notice that the id column contains a value 1019.5 that was
invisible in the spreadsheet display. Whether that column is intended as a floating-
point or an integer is not obvious at this point. Moreover, notice that visually the
date on that same row looks slightly wrong. We will come back to this.

As a first step, we can, with laborious manual intervention, pull out the two separate
tables we actually care about. Pandas is actually a little bit too smart here—it will, by
default, ignore the data typing actually in the spreadsheet and do inference similar to
what it does with a CSV file. For this purpose, we tell it to use the data type actually
stored by Excel. Pandas’ inference is not a panacea, but it is a useful option at times
(it can fix some, but not all, of the issues we note below; however, other things are
made worse). For the next few paragraphs, we wish to see the raw data types stored
in the spreadsheet itself:

df1 = pd.read_excel('data/Excel-Pitfalls.xlsx',
 nrows=5, dtype=object, engine="openpyxl")
df1.loc[:2]	# Just look at first few rows

 Timestamp id name x
0 2000-01-01 00:00:00 979 Zelda 0.802163
1 2000-01-01 00:00:01 1019.5 Ingrid -0.349999
2 2000-01-01 00:00:02 1007 Hannah -0.169853

Chapter 1

[25]

We can read the second implicit table as well by using the pd.read_excel()
parameter skiprows:

pd.read_excel('data/Excel-Pitfalls.xlsx', skiprows=7,
engine="openpyxl")

 Timestamp id name y
0 2000-01-01 00:00:02 1007 Hannah -0.050842
1 2000-01-01 00:00:03 1034 Ursula -0.190783
2 2000-01-01 00:00:04 1024 Ingrid 0.109101

If we look at the data types read in, we will see they are all Python objects to preserve
the various cell types. But let us look more closely at what we actually have:

df1.dtypes

timestamp datetime64[ns]
id object
name object
x object
dtype: object

The timestamps in this particular small example are all reasonable to parse with
Pandas. But real-life spreadsheets often provide something much more ambiguous,
often impossible to parse as dates. Look above at Figure 1.2 to notice that the data
type is invisible in the spreadsheet itself. We can find the Python data type of the
generic object stored in each cell:

Look at the stored data type of each cell
tss = df1.loc[:2, 'timestamp']
for i, ts in enumerate(tss):
 print(f"TS {i}: {ts}\t{ts.__class__.__name__}")

TS 0: 2000-01-01 00:00:00 Timestamp
TS 1: 2000-01-01 00:00:01 Timestamp
TS 2: 2000-01-01 00:00:02 Timestamp

Tabular Formats

[26]

The Pandas to_datetime() function is idempotentidempotent and would have run if we
had not specifically disabled it by using dtype=object in the pd.read_excel() call.
However, many spreadsheets are far messier, and the conversion will simply not
succeed, producing an object column in any case. Particular cells in a column might
contain numbers, formulae, or strings looking nothing like dates (or sometimes
strings looking just enough like date string that a human, but not a machine, might
guess the intent; say “Decc 23,, 201.9”).

Let’s look at using pd.to_datetime():

pd.to_datetime(tss)

0 2000-01-01 00:00:00
1 2000-01-01 00:00:01
2 2000-01-01 00:00:02
Name: timestamp, dtype: datetime64[ns]

Other columns pose a similar difficulty. The values that look identical in the
spreadsheet view of the id column are actually a mixture of integers, floating-point
numbers, and strings. It is conceivable that such was the intention, but in practice it
is almost always an accidental result of the ways that spreadsheets hide information
from their users. By the time these datasets arrive on your data science desk, they
are merely messy, and the causes are lost in the sands of time. Let us look at the
data types in the id column:

Look at the stored data type of each cell
ids = df1.loc[:3, 'id']
for i, id_ in enumerate(ids):
 print(f"id {i}: {id_}\t{id_.__class__.__name__}")

idempotent

The word and concept idempotent is a useful one in mathematics,
computer science, and programming in general. It means that
calling the same function again on its own output will continue
to produce the same answer. This is related to the even fancier
concept in mathematics of an attractor. In ordinary programming
terms, this means that you do not have to worry as much about
potentially modifying a value repeatedly in an idempotent way,
which may emerge from the vicissitudes of program flow. In other
words, whatever the initial x is, you know that: python pd.to_
datetime(x) == pd.to_datetime(pd.to_datetime(x))

Chapter 1

[27]

id 0: 979 int
id 1: 1019.5 float
id 2: 1007 int
id 3: 1034 str

Of course, tools like Pandas can type cast values after reading them, but we require
domain-specific knowledge of the dataset to know what cast is appropriate. Let us
cast data using the .astype() method:

ids.astype(int)

0 979
1 1019
2 1007
3 1034
Name: id, dtype: int64

Putting together the cleanup we mention, we might carefully type our data in a
manner similar to the following:

Only rows through index '3' are useful
We are casting to more specific data types
based on domain and problem knowledge
df1 = df1.loc[0:3].astype(
 {'id': np.uint16,
 'name': pd.StringDtype(),
 'x': float})
datetimes require conversion function, not just type
df1['timestamp'] = pd.to_datetime(df1.timestamp)
print(df1.dtypes)

timestamp datetime64[ns]
id uint16
name string
x float64
dtype: object

df1.set_index('timestamp')

 timestamp id name x
2000-01-01 00:00:00 979 Zelda 0.802163
2000-01-01 00:00:01 1019 Ingrid -0.349999
2000-01-01 00:00:02 1007 Hannah -0.169853
2000-01-01 00:00:03 1034 Ursula 0.868090

Tabular Formats

[28]

What makes spreadsheets harmful is not principally their underlying data formats.
Non-ancient versions of Excel (.xlsx), LibreOffice (OpenDocument, .ods), and
Gnumeric (.gnm) have all adopted a similar format at the byte level. That is, they all
store their data in XML formats, then compress those to save space. As I mentioned,
this is slower than other approaches, but that concern is secondary.

If one of these spreadsheet formats were used purely as an exchange format among
structured tools, they would be perfectly suitable to preserve and represent data. It
is instead the social and user interface (UI) elements of spreadsheets that make them
dangerous. The “tabular” format of Excel combines the worst elements of untyped
CSV and strongly typed SQL databases. Rather than assigning a data type by
column/feature, it allows type assignments per cell.

Per-cell typing is almost always the wrong thing to do for any data science purpose.
It neither allows flexible decisions by programming tools (either using inference or
type declaration APIs) nor does it enforce consistency of different values that should
belong to the same feature at the time data is stored. Moreover, the relatively free-
form style of entry in the UIs of spreadsheets does nothing to guide users away from
numerous kinds of entry errors (not only data typing, but also various misalignments
within the grid, accidental deletions or insertions, and so on). Metaphorically, the
danger posed by spreadsheet UIs resembles the concept in tort law of an “attractive
nuisance”—they do not directly create the harm, but they make harm exceedingly
likely with minor inattention.

Unfortunately, there do not currently exist any general-purpose data entry tools
in widespread use. Database entry forms could serve the purpose of enforcing
structure on data entry, but they are limited for non-programmatic data exploration.
Moreover, the use of structured forms, whatever the format where the data might be
subsequently stored, currently requires at least a modicum of software development
effort, and many general users of spreadsheets lack this ability. Something similar to
a spreadsheet, but that allowed locking data type constraints on columns, would be
a welcome addition to the world. Perhaps one or several of my readers will create
and popularize such tools.

For now, the reality is that many users will create spreadsheets that you will need to
extract data from as a data scientist. This will inevitably be more work for you than
if you were provided a different format. But think carefully about the block regions
and tabs/sheets that are of actual relevance, about the problem-required data types
for casts, and about how to clean unprocessable values. With effort the data will
enter your data pipelines.

We can turn now to well structured and carefully date typed formats; those stored in
relational databases.

Chapter 1

[29]

SQL RDBMS
At the time, Nixon was normalizing relations with China. I figured that if he could
normalize relations, then so could I.
–E. F. Codd (inventor of relational database theory)

Concepts:

•	 Python DB-API and SQL drivers
•	 Data type impedance mismatches
•	 Manually casting to exact data types
•	 Truncation and overflow
•	 Wrapping versus clipping

Relational database management systems (RDBMSs) are enormously powerful and
versatile. For the most part, their requirement of strict column typing and frequent
use of formal foreign keys and constraints is a great boon for data science. While
specific RDBMSs vary greatly in how well normalized, indexed, and designed they
are—not every organization has or utilizes a database engineer specifically—even
somewhat informally assembled databases have many desirable properties for data
science. Not all relational databases are tidy, but they all take you several large steps
in that direction.

Working with relational databases requires some knowledge of Structured Query
Language (SQL). For small data, and perhaps for medium-sized data, you can get
by with reading entire tables into memory as data frames. Operations like filtering,
sorting, grouping, and even joins can be performed with data frame libraries.
However, it is much more efficient if you are able to do these kinds of operations
directly at the database level; it is an absolute necessity when working with big
data. A database that has millions or billions of records, distributed across tens or
hundreds of related tables, can itself quickly produce the hundreds of thousands of
rows (tuples) that you need for the task at hand. But loading all of these rows into
memory is either unnecessary or simply impossible.

There are many excellent books and tutorials on SQL. I do not have a specific one to
recommend over others, but finding a suitable text to get up to speed—if you are not
already—is not difficult. The general concepts of GROUP BY, JOIN, and WHERE clauses
are the main things you should know as a data scientist.

Tabular Formats

[30]

If you have a bit more control over the database you pull data from, knowing
something about how to intelligently index tables, and optimize slow queries by
reformulation and looking at EXPLAIN output, is helpful. However, it is quite likely
that you, as a data scientist, will not have full access to database administration. If
you do have such access: be careful!

For this book, I use a local PostgreSQL server to illustrate APIs. I find that
PostgreSQL is vastly better at query optimization than is its main open source
competitor, MySQL. Both behave equally well with careful index tuning, but
generally PostgreSQL is much faster for queries that must be optimized on an ad
hoc basis by the query planner. In general, almost all of the APIs I show will be
nearly identical across drivers in Python or in R (and in most other languages)
whether you use PostgreSQL, MySQL, Oracle DB, DB2, SQL Server, or any other
RDBMS. The Python DB-API, in particular, is well standardized across drivers.
Even the single-file RDBMS SQLite3, which is included in the Python standard
library, is almost DB-API compliant (and .sqlite is a very good storage format).

Within the setup.py module that is loaded by each chapter and is available
within the source code repository, some database setup is performed. If you run
some of the functions contained therein, you will be able to create generally the
same configuration on your system as I have on the one where I am writing this.
Actual installation of an RDBMS is not addressed in this book; see the instructions
accompanying your database software. But a key and simple step is creating a
connection to the database:

Similar with adapter other than psycopg2
con = psycopg2.connect(database=db, host=host,
 user=user, password=pwd)

This connection object will be used in subsequent code in this book. We also create
an engine object that is an SQLAlchemy wrapper around a connection that adds
some enhancements. Some libraries like Pandas require using an engine rather
than only a connection. We can create that as follows:

engine = create_engine(
 f'postgresql://{user}:{pwd}@{host}:{port}/{db}')

Massaging Data Types
I used the Dask data created earlier in this chapter to populate a table with the
following schema. These metadata values are defined in the RDBMS itself. Within
this section, we will work with the elaborate and precise data types that relational
databases provide:

Chapter 1

[31]

Column Data Type Data Width
index integer 32
timestamp timestamp without time zone None
id smallint 16
name character 10
x numeric 6
y real 24

This is the same data structure created in the previous Dask discussion, but I have
somewhat arbitrarily imposed more specific data types on the fields. The PostgreSQL
“data width” shown is a bit odd; it mixes bit length with byte length depending on
the type. Moreover, for the floating-point y, it shows the bit length of the mantissa,
not of the entire 32-bit memory word. But in general we can see that different
columns have different specific types.

When designing tables, database engineers generally try to choose data widths that
are sufficient for the purpose, but also as small as the requirement allows. If you
need to store billions of person ages, for example, a 256-bit integer could certainly
hold those numbers, but an 8-bit integer can also hold all the values that can occur,
using 1/32 as much storage space.

Using the Python DB-API loses some data type information. It does pretty well,
but Python does not have a full range of native types. The fractional numbers are
accurately stored as either Decimal or native floating-point, but the specific bit
lengths are lost. Likewise, the integer is a Python integer of unbounded size. The
name strings are always 10 characters long, but for most purposes we probably want
to apply str.rstrip() (strip whitespace at right end) to take off the surrounding
whitespace:

Function connect_local() spelled out in Chapter 4 (Anomaly Detection)
con, engine = connect_local()
cur = con.cursor()
cur.execute("SELECT * FROM dask_sample")
pprint(cur.fetchmany(2))

[(3456,
 datetime.datetime(2000, 1, 2, 0, 57, 36),
 941,
 'Alice ',
 Decimal('-0.612'),
 -0.636485),
 (3457,

Tabular Formats

[32]

 datetime.datetime(2000, 1, 2, 0, 57, 37),
 1004,
 'Victor ',
 Decimal('0.450'),
 -0.687718)]

Unfortunately, we lose even more data type information using Pandas (at least as
of Pandas 1.0.1 and SQLAlchemy 1.3.13, current as of this writing). Pandas is able
to use the full type system of NumPy, and even adds a few more custom types
of its own. This richness is comparable to—but not necessarily identical to—the
type systems provided by RDBMSs (which, in fact, vary from each other as well,
especially in extension types). However, the translation layer only casts to basic
string, float, int, and date types.

Let us read a PostgreSQL table into Pandas, and then examine what native data types
were utilized to approximate that SQL data:

df = pd.read_sql('dask_sample', engine, index_col='index')
df.tail(3)

index timestamp id name x y
 5676 2000-01-02 01:34:36 1041 Charlie -0.587 0.206869
 5677 2000-01-02 01:34:37 1017 Ray 0.311 0.256218
 5678 2000-01-02 01:34:38 1036 Yvonne 0.409 0.535841

The specific dtypes within the DataFrame are:

df.dtypes

timestamp datetime64[ns]
id int64
name object
x float64
y float64
dtype: object

Although it is a bit more laborious, we can combine these techniques and still work
with our data within a friendly data frame, but using more closely matched types
(albeit not perfectly matched to the database). The two drawbacks here are:

•	 We need to make manual decisions about the best type for each column
•	 Operations in Pandas will be much slower with object columns

Chapter 1

[33]

Let us endeavor to choose better data types for our data frame. We probably need
to determine the precise types from the documentation of our RDBMS, since few
people have the PostgreSQL type codes memorized. The DB-API cursor object has
a .description attribute that contains column type codes:

cur.execute("SELECT * FROM dask_sample")
cur.description

(Column(name='index', type_code=23),
 Column(name='timestamp', type_code=1114),
 Column(name='id', type_code=21),
 Column(name='name', type_code=1042),
 Column(name='x', type_code=1700),
 Column(name='y', type_code=700))

We can introspect to see the Python types used in the results. Of course, these do not
carry the bit lengths of the database with them, so we will need to manually choose
them. Datetime is straightforward enough to put into Pandas’ datetime64[ns] type:

rows = cur.fetchall()
[type(v) for v in rows[0]]

[int, datetime.datetime, int, str, decimal.Decimal, float]

Working with Decimal numbers is tricker than other types. Python’s standard library
decimal module complies with IBM’s General Decimal Arithmetic Specification;
unfortunately, databases do not. In particular, the IBM 1981 spec (with numerous
updates) allows each operation to be performed within some chosen “decimal
context” that gives precision, rounding rules, and other things. This is simply
different from having a decimal precision per column, with no specific control of
rounding rules. We can usually ignore these nuances; but when they bite us, they can
bite hard. The issues arise more in civil engineering and banking/finance than they
do with data science as such, but these are concerns to be aware of.

In the next cell, we cast several columns to specific numeric data types with specific
bit widths:

Read the data with no imposed data types
df = pd.DataFrame(rows,
 columns=[col.name for col in cur.description],
 dtype=object)

Assign specific int or float lengths to some fields
types = {'index': np.int32, 'id': np.int16, 'y': np.float32}
df = df.astype(types)

http://speleotrove.com/decimal/

Tabular Formats

[34]

Cast the Python datetime to a Pandas datetime
df['timestamp'] = pd.to_datetime(df.timestamp)
df.set_index('index').head(3)

index timestamp id name x y
 3456 2000-01-02 00:57:36 941 Alice -0.612 -0.636485
 3457 2000-01-02 00:57:37 1004 Victor 0.450 -0.687718
 3458 2000-01-02 00:57:38 980 Quinn 0.552 0.454158

We can verify those data types are used.

df.dtypes

index int32
timestamp datetime64[ns]
id int16
name object
x object
y float32
dtype: object

The Pandas “object” type hides the differences of the underlying classes of the
Python objects stored. We can look at those more specifically:

pprint({repr(x): x.__class__.__name__
 for x in df.reset_index().iloc[0]})

{"'Alice '": 'str',
 '-0.636485': 'float32',
 '0': 'int64',
 '3456': 'int32',
 '941': 'int16',
 "Decimal('-0.612')": 'Decimal',
 "Timestamp('2000-01-02 00:57:36')": 'Timestamp'}

Repeating in R
For the most part, the steps for reading in SQL data in R are similar to those in
Python. And so are the pitfalls around getting data types just right. We can see that
the data types are the same rough approximations of the actual database types as
Pandas produced. Obviously, in real code you should not specify passwords as
literal values in the source code but use some tool for secrets management:

Chapter 1

[35]

%%R
require("RPostgreSQL")
drv <- dbDriver("PostgreSQL")
con <- dbConnect(drv, dbname = "dirty",
 host = "localhost", port = 5432,
 user = "cleaning", password = "data")
sql <- "SELECT id, name, x, y FROM dask_sample LIMIT 3"
data <- tibble(dbGetQuery(con, sql))
data

A tibble: 3 x 4
 id name x y
 <int> <chr> <dbl> <dbl>
1 941 "Alice " -0.612 -0.636
2 1004 "Victor " 0.45 -0.688
3 980 "Quinn " 0.552 0.454

What is interesting to look at is that we might produce data frames that are not
directly database tables (nor simply the first few rows, as in examples here), but
rather some more complex manipulation or combination of that data. Joins are
probably the most interesting case here since they take data from multiple tables.
But grouping and aggregation is also frequently useful, and might reduce a million
rows to a thousand summary descriptions, for example, which might be our goal:

%%R
sql <- "SELECT max(x) AS max_x, max(y) AS max_y,
 name, count(name)
 FROM dask_sample
 WHERE id > 1050
 GROUP BY name
 ORDER BY count(name) DESC
 LIMIT 12;"
Here we simply retrieve a data.frame
rather than convert to tibble
dbGetQuery(con, sql)

 max_x max_y name count
1 0.733 0.768558 Hannah 10
2 0.469 0.849384 Norbert 10
3 0.961 0.735508 Wendy 9
4 0.950 0.673037 Quinn 8
5 0.892 0.853494 Michael 7
6 0.772 0.989233 Yvonne 7

Tabular Formats

[36]

7 0.958 0.859792 Patricia 6
8 0.953 0.865918 Ingrid 6
9 0.998 0.980781 Oliver 6
10 0.050 0.501860 Laura 6
11 0.399 0.808572 Alice 5
12 0.604 0.826401 Kevin 5

Where SQL Goes Wrong (and How to Notice It)
For the following example, I started with a dataset that described Amtrak train
stations in 2012. Many of the fields initially present were discarded, but some
others were manipulated to illustrate some points. Think of this as “fake data”
even though it is derived from a genuine dataset. In particular, the column Visitors
is invented whole cloth; I have never seen visitor count data, nor do I know if it is
collected anywhere. It is just numbers that will have a pattern:

amtrak = pd.read_sql('bad_amtrak', engine)
amtrak.head()

 Code StationName City State Visitors
0 ABB Abbotsford-Colby Colby WI 18631
1 ABE Aberdeen Aberdeen MD 12286
2 ABN Absecon Absecon NJ 5031
3 ABQ Albuquerque Albuquerque NM 14285
4 ACA Antioch-Pittsburg Antioch CA 16282

On the face of it—other than the telling name of the table we read in—nothing looks
out of place. Let us look for problems. Notice that the tests below will, in a way, be
anomaly detection, which is discussed in a later chapter. However, the anomalies we
find are specific to SQL data typing.

String fields in RDBMSs are prone to truncation if specific character lengths are
given. Modern database systems also have a VARCHAR or TEXT type for unlimited
length strings, but often specific lengths are used in practice. To a certain degree,
database operations can be more efficient with known text lengths, so the choice is
not simple foolishness. But whatever the reason, you will find such fixed lengths
frequently in practice. In particular, the StationName column is defined as CHAR(20).
The question is: is that a problem?

Chapter 1

[37]

Knowing the character length will not automatically answer the question we care
about. Perhaps Amtrak regulation requires a certain length of all station names. This
is domain-specific knowledge that you may not have as a data scientist. In fact, the
domain experts may not have it either, because it has not been analyzed or because
rules have changed over time. Let us analyze the data itself.

Moreover, even if a database field is currently variable length or very long, it is quite
possible that a column was altered over the life of a database, or that a migration
occurred. Unfortunately, multiple generations of old data that may each have been
corrupted in their own ways can obscure detection.

One place you may encounter this problem data history is with dates in older
datasets where two-digit years were used. The “Y2K” issue had to be addressed two
decades ago for active database systems—for example, I spent the calendar year of
1998 predominantly concerned with this issue—but there remain some infrequently
accessed legacy data stores that will fail on this ambiguity. If the character string '34'
is stored in a column named YEAR, does it refer to something that happened in the
20th century or an anticipated future event a decade after this book is being written?
Some domain knowledge is needed to answer this.

Some rather concise Pandas code can tell us something useful. A first step is cleaning
the padding in the fixed-length character field. The whitespace padding is not
generally useful in our code. After that we can look at the length of each value, count
the number of records per length, and sort by those lengths, to produce a histogram:

amtrak['StationName'] = amtrak.StationName.str.strip()
hist = amtrak.StationName.str.len().value_counts().sort_index()
hist

4 15
5 46
6 100
7 114
 ...
17 15
18 17
19 27
20 116
Name: StationName, Length: 17, dtype: int64

Tabular Formats

[38]

The pattern is even more striking if we visualize it. Clearly station names bump up
against that 20 character width. This is not quite yet a smoking gun, but it is very
suggestive:

hist.plot(kind='bar',
 title="Lengths of Station Names");

Figure 1.3: Histogram showing lengths of station names

We want to be careful not to attribute an underlying phenomenon as a data artifact.
For example, in preparing this section, I started analyzing a collection of Twitter
2015 tweets. Those naturally form a similar pattern of “bumping up” against
140 characters—but I realized that they do this because of a limit in the accurate
underlying data, not as a data artifact. However, the Twitter histogram curve looks
similar to that for station names. I am aware that Twitter doubled its limit in 2018; I
would expect an aggregated collection over time to show asymptotes at both 140 and
280, but as a “natural” phenomenon.

If the character width limit changed over the history of our data, we might see a
pattern of multiple soft limits. These are likely to be harder to discern, especially
if those limits are significantly larger than 20 characters to start with. Before we
absolutely conclude that we have a data artifact rather than, for example, an Amtrak
naming rule, let us look at the concrete data.

Chapter 1

[39]

This is not impractical when we start with a thousand rows, but it becomes more
difficult with a million rows. Using Pandas’ .sample() method is often a good way to
view a random subset of rows matching some filter, but here we just display the first
and last few:

amtrak[amtrak.StationName.str.len() == 20]

 Code StationName City State Visitors
28 ARI Astoria (Shell Stati Astoria OR 27872
31 ART Astoria (Transit Cen Astoria OR 22116
42 BAL Baltimore (Penn Stat Baltimore MD 19953
50 BCA Baltimore (Camden St Baltimore MD 32767
...
965 YOC Yosemite - Curry Vil Yosemite National Park CA 28352
966 YOF Yosemite - Crane Fla Yosemite National Park CA 32767
969 YOV Yosemite - Visitor C Yosemite National Park CA 29119
970 YOW Yosemite - White Wol Yosemite National Park CA 16718
116 rows × 5 columns

It is reasonable to conclude from our examined data that truncation is an authentic
problem here. Many of the samples have words terminated in their middle at
character length. Remediating it is another decision and more effort. Perhaps we can
obtain the full texts as a followup; if we are lucky the prefixes will uniquely match
full strings. Of course, quite likely, the real data is just lost. If we only care about
uniqueness, this is likely not to be a big problem (the three-letter codes are already
unique). However, if our analysis concerns the missing data itself we may not be
able to proceed at all. Perhaps we can decide in a problem-specific way that prefixes
nonetheless are a representative sample of what we are analyzing.

A similar issue arises with numbers of fixed lengths. Floating-point numbers might
lose desired precision, but integers might wrap and/or clip. We can examine the
Visitors column and determine that it stores a 16-bit SMALLINT. Which is to say, it
cannot represent values greater than 32,767. Perhaps that is more visitors than any
single station will plausibly have.

Tabular Formats

[40]

Or perhaps we will see data corruption:

max_ = amtrak.Visitors.max()
amtrak.Visitors.plot(
 kind='hist', bins=20,
 title=f"Visitors per station (max {max_})");

Figure 1.4: Histogram showing visitors per station

In this case, the bumping against the limit is a strong signal. An extra hint here is
the specific limit reached. It is one of those special numbers you should learn to
recognize. Signed integers of bit-length N range from -2N-1 up to 2N-1-1. Unsigned
integers range from 0 to 2N. 32,767 is 216-1. However, for various programming
reasons, numbers one (or a few) shy of a data type bound also frequently occur.
In general, if you ever see a measurement that is exactly one of these bounds, you
should take a second look and think about whether it might be an artifactual number
rather than a genuine value. This is a good rule even outside the context of databases.

A possibly more difficult issue to address is when values wrap instead. Depending
on the tools you use, large positive integers might wrap around to negative integers.
Many RDBMSs—including PostgreSQL—will simply refuse transactions with
unacceptable values rather than allowing them to occur. But different systems vary.
Wrapping on sign is obvious in the case of counts that are non-zero by their nature,
but for values where both positive and negative numbers make sense, detection is
harder.

Chapter 1

[41]

For example, in this Pandas Series example, which is cast to a short integer type, we
see values around positive and negative 15 thousand, both as genuine elements and
as artifacts of a type cast:

ints = pd.Series(
 [100, 200, 15_000, 50_000, -15_000, -50_000])
ints.astype(np.int16)

0 100
1 200
2 15000
3 -15536
4 -15000
5 15536
dtype: int16

In a case like this, we simply need to acquire enough domain expertise to
know whether the out-of-bounds values that might wrap can ever be sensible
measurements. I.e. is 50,000 reasonable for this hypothetical measure? If all
reasonable observations are of numbers in the hundreds, wrapping at 32,000 is
not a large concern. It is conceivable that some reasonable value got there as a wrap
from an unreasonable one; but wrong values can occur for a vast array of reasons,
and this would not be an unduly large concern.

Note that integers and floating-point numbers only come, on widespread
computer architectures, in sizes of 8, 16, 32, 64, and 128 bits. For integers those
might be signed or unsigned, which would halve or double the maximum number
representable. These maximum values representable within these different bit
widths are starkly different from each other. A rule of thumb, if you can choose the
integer representation, is to leave an order-of-magnitude padding from the largest
magnitude you expect to occur. However, sometimes even an order of magnitude
does not set a good bound on unexpected (but accurate) values.

For example, in our hypothetical visitor count, perhaps a maximum of around
20,000 was reasonably anticipated, but over the years, that got as high as 35,000,
leading to the effect we see in the Figure 1.4 plot (of hypothetical data). Allowing
for 9,223,372,036,854,775,807 (263-1) visitors to a station might have seemed like
unnecessary overhead to the initial database engineers. However, a 32-bit integer,
with a maximum of 2,147,483,647 (231-1), would have been a better choice, even
though the actual maximum remains far larger than will ever be observed.

Let us turn now to some other data formats you are likely to work with, generally
binary data formats, often used for scientific requirements.

Tabular Formats

[42]

Other Formats
Let a hundred flowers bloom; let a hundred schools of thought contend.
–Confucian saying

Concepts:

•	 Binary columnar data files
•	 Hierarchical array data
•	 Single-file RDBMS

A variety of data formats that you may encounter can be used for holding tabular
data. For the most part these do not introduce any special new cleanliness concerns
that we have not addressed in earlier sections. Properties of the data themselves are
discussed in later chapters. The data type options vary between storage formats, but
the same kinds of general concerns that we discussed with RDBMSs apply to all of
them. In the main, from the perspective of this book, these formats simply require
somewhat different APIs to get at their underlying data, but all provide data types
per column. The formats addressed herein are not an exhaustive list, and clearly
new ones may arise or increase in significance after the time of this writing. But
the principles of access should be similar for formats not discussed.

The closely related formats HDF5 and NetCDF (discussed below) are largely
interoperable, and both provide ways of storing multiple arrays, each with metadata
associated and also allowing highly dimensional data, not simply tabular 2-D
arrays. Unlike with the data frame model, arrays within these scientific formats are
of homogeneous type throughout. That is, there is no mechanism (by design) to
store a text column and a numeric column within the same object, nor even numeric
columns of different bit-widths. However, since they allow multiple arrays in the
same file, full generality is available, just in a different way than within the SQL
or data frame model.

SQLite (discussed below) is a file format that provides a relational database,
consisting potentially of multiple tables, within a single file. It is extremely widely
used, being present and used everywhere from every iOS and Android device up
to the largest supercomputer clusters. An interface for SQLite is part of the Python
standard library and is available for nearly all other programming languages.

Apache Parquet (discussed below) is a column-oriented data store. What this
amounts to is simply a way to store data frames or tables to disk, but in a manner
that optimizes common operations that typically vectorize along columns rather than
along rows.

Chapter 1

[43]

A similar philosophy motivates columnar RDBMSs like Apache Cassandra
and MonetDB, both of which are SQL databases, simply with different query
optimization possibilities. kdb+ is an older, and non-SQL, approach to a similar
problem. PostgreSQL and MariaDBMariaDB also both have optional storage formats
that use column organization. Generally, these internal optimizations are not direct
concerns for data science, but Parquet requires its own non-SQL APIs.

There are a number of binary data formats that are reasonably widely used, but I
do not specifically discuss them in this book. Many other formats have their own
virtues, but I have attempted to limit the discussion to the handful that I feel you are
most likely to encounter in regular work as a data scientist. Some additional formats
are listed below, with characterization mostly adapted from their respective home
pages. You can see in the descriptions which discussed formats they most resemble,
and generally the identical data integrity and quality concerns apply as in the
formats I discuss. Differences are primarily in performance characteristics: how big
the files are on disk, how fast can they be read and written under different scenarios,
and so on:

•	 Feather (and Arrow): Feather is basically a direct serialization of the Arrow
in-memory format for storage on disk with a very thin adaptor layer. Apache
Arrow is a development platform for in-memory analytics. It specifies a
standardized language-independent columnar memory format for flat and
hierarchical data, organized for efficient analytic operations on modern
hardware, as described by the Arrow documentation.

•	 Apache Avro: Avro is a data serialization system that provides rich data
structures, a compact, fast, binary data format, and a container file, to
store persistent data. It integrates with dynamic languages without code
generation being needed (unlike in similar systems such as Thrift and
Protocol Buffers). (Paraphrased from the Apache Avro documentation.)

MariaDB

MariaDB is a fork of MySQL, created by MySQL creator Monty
Widenius. It was motivated by intellectual property freedom
concerns after Oracle acquired MySQL in 2009. For the most part,
the design and features are similar to those of MySQL, although
some advanced features have diverged since that split. You may be
using MariaDB, in fact, even if you are unaware of doing so, since
the shell tool and drivers still generally retain the name mysql for
compatibility.

https://arrow.apache.org/docs/
https://avro.apache.org/docs/1.3.3/

Tabular Formats

[44]

•	 bcolz: bcolz provides columnar, chunked data containers that can be
compressed either in-memory and on-disk. Column storage allows for
efficiently querying tables, as well as for cheap column addition and
removal. It is based on NumPy, and uses it as the standard data container to
communicate with bcolz objects, but it also comes with support for import/
export facilities to/from HDF5/PyTables tables and Pandas dataframes, as
described by the bcolz documentation.

•	 Zarr: Zarr provides classes and functions for working with N-dimensional
arrays that behave like NumPy arrays but whose data is divided into chunks
and each chunk is compressed. If you are already familiar with HDF5 then
Zarr arrays provide similar functionality, but with some additional flexibility,
as described by the Zarr documentation.

HDF5 and NetCDF-4
There is a slightly convoluted history of the Hierarchical Data Format (HDF), which
was begun by the National Center for Supercomputing Applications (NCSA) in
1987. HDF4 was significantly over-engineered and is far less widely used now.
HDF5 simplified the file structure of HDF4. It consists of datasets, which are
multidimensional arrays of a single data type, and groups, which are container
structures holding datasets and other groups. Both groups and datasets may have
attributes attached to them, which are any pieces of named metadata. What this
does, in effect, is emulate a file system within a single file. The nodes or “files”
within this virtual file system are array objects. Generally, a single HDF5 file will
contain a variety of related data for working with the same underlying problem.

The Network Common Data Form (NetCDF) is a library of functions for storing
and retrieving array data. The project itself is nearly as old as HDF and is an open
standard that was developed and supported by a variety of scientific agencies. As of
version 4, it supports using HDF5 as a storage back-end; earlier versions used some
other file formats, and current NetCDF software requires continued support for
those older formats. Occasionally NetCDF-4 files do enough special things with their
contents that reading them with generic HDF5 libraries is awkward.

Generic HDF5 files typically have an extension of .h5, .hdf5, .hdf, or .he5. These
should all represent the same binary format, and other extensions occur sometimes
too. Some corresponding extensions for HDF4 also exist. Oddly, even though
NetCDF can consist of numerous underlying file formats, they all seem standardized
on the .nc extension.

https://github.com/Blosc/bcolz
https://zarr.readthedocs.io/en/stable/tutorial.html

Chapter 1

[45]

Tools and Libraries
Although I generally do not rely on GUI tools, in the case of viewing the fairly
complex structure of HDF5, they can help. For example, a file from NASA’s Earth
Science Data collection is included in this book’s sample data repository. Users
can freely register to obtain datasets from NASA, which in aggregate is petabytes
of information. This particular HDF5/NetCDF file contains datasets for surface
pressure, vertical temperature profiles, surface and vertical wind profiles, tropopause
pressure, boundary layer top pressure, and surface geopotential for a 98-minute
period. In particular, some of the data is spatially 3-dimensional.

A view of a small portion of the data using the open source viewer HDF Compass
illustrates some of the structure. The particular dataset viewed is 1 of 16 in the file.
This DELP dataset is about pressure thickness, and contains both an array of 32-bit
values and 8 attributes describing the dataset. You can see in the screenshot below
that this particular GUI tool presents the 3rd dimension as a selection widget, and the
first two dimensions in a tabular view.

Figure 1.5: HDF Compass NASA data

https://hdf-compass.readthedocs.io/en/latest/index.html

Tabular Formats

[46]

Within Python, there are two popular open source libraries for working with HDF5,
PyTables and h5py. For working with NetCDF specifically, there is a netcdf4-python
library as well. If you wish to read data from HDF5 files, and not to add NetCDF
specific metadata, one of the general HDF5 tools is fine (h5py handles special
metadata better than PyTables).

PyTables and h5py have moderately different attitudes. H5py stays close to the
HDF5 spec itself while PyTables attempts to provide a higher-level “Pythonic”
interface. PyTables has the advantage that its data model borrows from, and
acknowledges, a library for XML access that this author wrote way back in 2000;
however, that advantage may be less relevant for general readers than for me
personally. In the R world, the library rhdf5 is available.

In libraries for working with HDF5 data, a degree of laziness is allowed when
dealing with large datasets. In the Python interfaces, datasets are virtualized NumPy
arrays; importantly you can perform slice operations into these arrays, and only
actually read into memory the indicated data. You may be dealing with terabytes of
underlying information but process or modify only megabytes at a time (or at all),
with efficient reading and writing from regions of on disk arrays.

The names for data files used by NASA are verbose but contain detailed indication
in the names themselves of the nature of the datasets within them. Let us open one
file and take a look at a summary of its datasets. We will show the dataset name, its
dimensions, its data type, its shape, and the “units” attribute that these all happen to
have. In general, attributes may have any names, but NASA has conventions about
which to use:

import h5py
h5fname = ('data/earthdata/OMI-Aura_ANC-OMVFPITMET'
 '_2020m0216t225854-o82929_v003'
 '-2020m0217t090311.nc4')

data = h5py.File(h5fname, mode='r')

for name, arr in data.items():
 print(f"{name:6s} | {str(arr.shape):14s} | "
 f"{str(arr.dtype):7s} | {arr.attrs['units'][0]}")

DELP | (1494, 60, 47) | float32 | Pa
PBLTOP | (1494, 60) | float32 | Pa
PHIS | (1494, 60) | float32 | m+2 s-2
PS | (1494, 60) | float32 | Pa
T | (1494, 60, 47) | float32 | K
TROPPB | (1494, 60) | float32 | Pa

Chapter 1

[47]

U | (1494, 60, 47) | float32 | m s-1
U10M | (1494, 60) | float32 | m s-1
V | (1494, 60, 47) | float32 | m s-1
V10M | (1494, 60) | float32 | m s-1
lat | (1494, 60) | float32 | degrees_north
lev | (47,) | int16 | 1
line | (1494,) | int16 | 1
lon | (1494, 60) | float32 | degrees_east
sample | (60,) | int16 | 1
time | (1494,) | float64 | seconds since 1993-01-01 00:00:00

We can lazily create a memory view into only part of one of the dataset arrays. In the
example, we have opened in read-only mode, but if we had opened using the 'r+'
or 'a' modes we could change the file. Use the 'w' mode with extreme caution since
it will overwrite an existing file. If the mode allows modification on disk, calling
data.flush() or data.close() will write any changes back to the HDF5 source.

Let us create a view of only a small section of the 3-dimensional V dataset. We are
not particularly concerned here with understanding the domain of the data, but
just demonstrating the APIs. In particular, notice that we have used a stride in one
dimension to show that the general NumPy style of complex memory views is
available. Only the data referenced is actually put into main memory while the rest
stays on disk:

A 3-D block from middle of DELP array
middle = data['V'][::500, 10:12, :3]
middle

array([[[17.032158 , 12.763597 , 3.7710803],
 [16.53227 , 12.759642 , 4.1722884]],

 [[4.003829 , -1.0843939 , -6.7918572],
 [3.818467 , -1.0030019 , -6.6708655]],

 [[-2.7798688 , 0.24923703, 20.513933],
 [-2.690715 , 0.2226392 , 20.473366]]], dtype=float32)

If we modify the data in the view middle, it will be written back when we flush or
close the handle (if not in read-only mode). We might also use our data slice for other
computations or data science purposes. For example, perhaps such a selection acts as
tensors that are input into a neural network.

Tabular Formats

[48]

In a simpler case, perhaps we simply want to find some statistics or reduction/
abstraction on the data:

middle.mean(axis=1)

array([[16.782215 , 12.76162 , 3.9716845],
 [3.911148 , -1.0436978 , -6.7313614],
 [-2.735292 , 0.23593812, 20.493649]], dtype=float32)

Working with HDF5 files in R—or most any other language—is generally similar to
doing so from Python. Let us take a look with the R library rhdf5:

%%R -i h5fname
library(rhdf5)
h5ls(h5fname)

 group name otype dclass dim
0 / DELP H5I_DATASET FLOAT 47 x 60 x 1494
1 / PBLTOP H5I_DATASET FLOAT 60 x 1494
2 / PHIS H5I_DATASET FLOAT 60 x 1494
3 / PS H5I_DATASET FLOAT 60 x 1494
4 / T H5I_DATASET FLOAT 47 x 60 x 1494
5 / TROPPB H5I_DATASET FLOAT 60 x 1494
6 / U H5I_DATASET FLOAT 47 x 60 x 1494
7 / U10M H5I_DATASET FLOAT 60 x 1494
8 / V H5I_DATASET FLOAT 47 x 60 x 1494
9 / V10M H5I_DATASET FLOAT 60 x 1494
10 / lat H5I_DATASET FLOAT 60 x 1494
11 / lev H5I_DATASET INTEGER 47
12 / line H5I_DATASET INTEGER 1494
13 / lon H5I_DATASET FLOAT 60 x 1494
14 / sample H5I_DATASET INTEGER 60
15 / time H5I_DATASET FLOAT 1494

You may notice that the order of dimensions is transposed in R versus Python, so we
have to account for that in our selection of a region of interest. However, generally
the operation of slicing in R is very similar to that in NumPy. The function h5save()
is used to write data that was modified back to disk.

%%R -i h5fname
V = h5read(h5fname, 'V')
V[1:2, 10:12, 10:11]

Chapter 1

[49]

, , 1

 [,1] [,2] [,3]
[1,] 17.69524 17.23481 16.57238
[2,] 12.46370 12.44905 12.47155

, , 2

 [,1] [,2] [,3]
[1,] 17.71876 17.25898 16.56942
[2,] 12.42049 12.40599 12.43139

The NASA data shown does not use group hierarchies, only top-level datasets. Let us
look at a toy data collection that nests groups and datasets.

make_h5_hierarchy() # initialize the HDF5 file
f = h5py.File('data/hierarchy.h5', 'r+')
dset = f['/deeply/nested/group/my_data']
print(dset.shape, dset.dtype)

(10, 10, 10, 10) int32

We see that we have a 4-dimensional array of integer data. Perhaps some metadata
description was attached to it as well. Let us also view—and then modify—some
section of the data since we have opened in 'r+' mode. After we change the data,
we can write it back to disk. We could similarly change or add attributes in a regular
dictionary style, for instance:

dset.attrs[mykey] = myvalue

Let us show a slice from the dataset.

for key, val in dset.attrs.items():
 print(key, "→", val)
print()
print("Data block:\n", dset[5, 3, 2:4, 8:])

author David Mertz
citation Cleaning Data Book
shape_type 4-D integer array

Data block:
 [[-93 -53]
 [18 -37]]

Tabular Formats

[50]

Now we modify the same slice of data we displayed, then close the file handle to
write it back to disk:

dset[5, 3, 2:4, 8:] = np.random.randint(-99, 99, (2, 2))
print(dset[5, 3, 2:4, 8:])
f.close() # write change to disk

[[-45 -76]
 [-96 -21]]

We can walk the hierarchy in Python’s h5py package, but it is somewhat manual to
loop through paths. R’s rhdf5 provides a nice utility function, h5ls(), that lets us see
more of the structure of this test file:

%%R
library(rhdf5)
h5ls('data/hierarchy.h5')

 group name otype dclass dim
0 / deeply H5I_GROUP
1 /deeply nested H5I_GROUP
2 /deeply/nested group H5I_GROUP
3 /deeply/nested/group my_data H5I_DATASET INTEGER 10 x 10 x 10 x 10
4 /deeply path H5I_GROUP
5 /deeply/path elsewhere H5I_GROUP
6 /deeply/path/elsewhere other H5I_DATASET INTEGER 20
7 /deeply/path that_data H5I_DATASET FLOAT 5 x 5

SQLite
In essence, SQLite is simply another RDBMS from the point of view of a data
scientist. For a developer or systems engineer, it has some special properties, but for
readers of this book, you will get data from an SQLite file via SQL queries. Somewhat
similarly to HDF5, an SQLite file—often given extensions .sqlite, .db, or .db3 (but
not as standardized as with some file types)—can contain many tables. In SQL, we
automatically get joins and subqueries to combine data from multiple tables, whereas
there is no similar standard for combining data from multiple HDF5 datasets.

The SQLite3 data format and server is extremely efficient, and queries are usually
fast. As with other SQL databases, it operates with atomic transactions that succeed or
fail in their entirety. This prevents a database from reaching a logically inconsistent
state. However, it does not have a concurrent access model.

Chapter 1

[51]

Or rather, it does not allow multiple simultaneous writers to a common database
in the way that server-based RDBMSs do. Many reader clients may open the same
file simultaneously without difficulty; it only bogs down when many clients wish
to perform write transactions. There are ways to address this situation, but they are
outside the scope of this particular book.

An important advantage of SQLite over other RDBMSs is that distributing the single
file that makes up the database is dead simple. With other systems, you need to add
credentials, and firewall rules, and the like, to give new users access; or alternately
you need to export the needed data to another format, typically CSV, that is both
slow and somewhat lossy (i.e. data types).

Data typing in SQLite is something of a chimera. There are few basic data types,
which we will discuss. However, unlike nearly every other SQL database, SQLite
carries data types per value, not per column. This would seem to run into the
same fragility that was discussed around spreadsheets, but in practice it is far less
of a problem than with those. One reason the types-per-value is not as much of
a concern is because of the interface used to populate them; it is highly unusual
to edit individual values in SQLite interactively, and far more common to issue
programmatic SQL commands to INSERT or UPDATE many rows with data from a
common source.

However, apart from the data types, SQLite has a concept called type affinity.
Each column is given a preferred type that does not prevent other data types from
occurring, but does nudge the preference toward the affinity of the column. We can
run the tool sqlite from the command line to get to the interactive SQLite prompt.
For example (adapted from SQLite documentation):

sqlite> CREATE TABLE mytable(a SMALLINT, b VARCHAR(10), c REAL);
sqlite> INSERT INTO mytable(a, b, c) VALUES('123', 456, 789);

Here a row will be inserted with an integer in the a column, TEXT in the b column,
and a floating-point in the c column. SQL syntax itself is loosely typed, but the
underlying database makes type/casting decisions. This is true of other RDBMSs
too, but those are stricter about column data types. So we can also run this in SQLite,
which will fail with other databases:

sqlite> INSERT INTO mytable(a, b, c) VALUES('xyz', 3.14, '2.71');

Let us see what results:

sqlite> SELECT * FROM mytable;
123|456|789.0
xyz|3.14|2.71

Tabular Formats

[52]

The SQLite interactive shell does not make data types entirely obvious, but running
a query in Python will do so.

import sqlite3
db = sqlite3.connect('data/affinity.sqlite')
cur = db.cursor()
cur.execute("SELECT a, b, c FROM t1")
for row in cur:
 print([f"{x.__class__.__name__} {x}" for x in row])

['int 123', 'str 456', 'float 789.0']
['str xyz', 'str 3.14', 'float 2.71']

Column a prefers to hold an integer if it is set with something it can interpret as an
integer, but will fall back to a more general data type if required. Likewise, column
c prefers a float, and it can interpret either an unquoted integer or a float-like string
as such.

The actual data types in SQLite are exclusively NULL, INTEGER, REAL, TEXT, and BLOB.
However, most of the type names in other SQL databases are aliases for these
simple types. We see that in the example, where VARCHAR(10) is an alias for TEXT
and SMALLINT is an alias for INTEGER. REAL values are always represented as 64-bit
floating-point numbers. Within INTEGER values, bit lengths of 1, 2, 3, 4, 6, or 8 are
chosen for storage efficiency. There is no datetime type in SQLite storage, but time-
oriented SQL functions are happy to accept any of TEXT (ISO-8601 strings), REAL
(days since November 24, 4714 B.C), or INTEGER (seconds since 1970-01-01T00:00:00).

The overall takeaway for working with SQLite databases is that possibly a little
extra care is needed in double-checking your data types when reading data, but for
the most part you can pretend it is strongly typed per column. Truncation, clipping,
and wrap-around issues will not occur. There is no actual decimal data type, but only
aliases; for data science—versus accounting or finance—this is rarely a concern. But
usual caveats about floating-point rounding issues will apply.

Apache Parquet
The Parquet format grew out of the Hadoop ecosystem, but at heart is simply an
optimized, column-oriented file format for storing table-like data. Parquet has a type
system that focuses on numeric types. It is not quite as simplified as SQLite but also
eschews providing every possible bit length, as NumPy or C/C++ do, for example.
All integer types are signed. Everything that is not numeric is a byte-array that is
cast for the needed purpose at the application level (i.e. not the storage format level).

Chapter 1

[53]

Having grown out of Hadoop tools, Parquet is especially well optimized for parallel
computation. A Parquet “file” is actually a directory containing a number of data
files, with a _metadata file in that directory describing the layout and other details.

%%bash
ls -x data/multicsv.parq

 _common_metadata _metadata part.0.parquet part.10.parquet
 part.11.parquet part.12.parquet part.13.parquet part.14.parquet
 part.15.parquet part.16.parquet part.17.parquet part.18.parquet
 part.19.parquet part.1.parquet part.20.parquet part.21.parquet
 part.22.parquet part.23.parquet part.24.parquet part.25.parquet
 part.26.parquet part.27.parquet part.28.parquet part.29.parquet
 part.2.parquet part.3.parquet part.4.parquet part.5.parquet
 part.6.parquet part.7.parquet part.8.parquet part.9.parquet

Sometimes the file system is a parallel and distributed system such as Hadoop File
System (HDFS) that further supports computational efficiency on large datasets. In
such case, Parquet does various clever sharding of data, efficient compression (using
varying strategies), optimization of contiguous reads, and has been analyzed and
revised to improve its typical use cases, for both speed and storage size.

Some of the tools or libraries supporting Parquet are Apache Hive, Cloudera
Impala, Apache Pig, and Apache Spark, all of which live in the parallel computation
space. However, there are available interfaces for Python and R as well (and other
languages). Many of the higher-level tools address Parquet data with an SQL layer.

For Python, the libraries pyarrow and fastparquet provide a direct interface to the
file format. While these libraries are general, they are designed primarily to translate
Parquet data into data frames (usually Pandas, sometimes Dask, Vaex, or others).
Within the R world, sparklyr is an interface into Spark but requires a running Spark
instance (a local installation is fine). The arrow package is a direct reader, similar to
the Python libraries.

In general, if you are working with genuinely big data, the Hadoop or Spark tools—
accompanied by appropriate computing clusters—are a good choice. Dask is an
approach to parallelism on Python, which is very good; other approaches like MPI
are available for R, Python, and many other languages. However, Hadoop and Spark
are the tools to which the most attention has been paid in regard to efficient and
large scale parallel computation.

Tabular Formats

[54]

Even if you only need to worry about medium-sized data (hundred of thousands
to millions of rows) rather than big data (hundreds of millions to billions of rows),
Parquet is still a fast format to work with. Moreover, it has the generally desirable
property of typing data by column that makes data at least one small step closer to
being clean and tidy.

As an example, let us read the medium-sized dataset we generated earlier with Dask.
Both Pandas and Dask will use either pyarrow or fastparquet, depending on what is
installed.

pd.read_parquet('data/multicsv.parq/')

index timestamp id name x y
 0 2000-01-01 00:00:00 979 Zelda 0.802163 0.166619
 1 2000-01-01 00:00:01 1019 Ingrid -0.349999 0.704687
 2 2000-01-01 00:00:02 1007 Hannah -0.169853 -0.050842
 3 2000-01-01 00:00:03 1034 Ursula 0.868090 -0.190783

86396 2000-01-10 23:59:56 998 Jerry 0.589575 0.412477
86397 2000-01-10 23:59:57 1011 Yvonne 0.047785 -0.202337
86398 2000-01-10 23:59:58 1053 Oliver 0.690303 -0.639954
86399 2000-01-10 23:59:59 1009 Ursula 0.228775 0.750066
2592000 rows × 5 columns

We could distribute the above read using dask.dataframe and just the same syntax,
i.e. dd.read_parquet(...). For large datasets this could keep the inactive segments
out of core and distribute work over all the cores on the local machine. However,
for medium to small data like this, Pandas is faster in avoiding the coordination
overhead.

Although we have utilized the concept of data frames already, using both Python
with Pandas and R with tibbles, it is worth looking at just what the underlying
abstraction consists of. We will briefly look at a number of different data frame
implementations in varying programming languages to understand what they have
in common (which is a lot).

Data Frames
Whenever you set out to do something, something else must be done first.
—Murphy’s (First) Corollary

Chapter 1

[55]

Concepts:

•	 Filter/transform/group/aggregate
•	 Spark data frames
•	 Pandas and derivatives
•	 Other Python data frames
•	 R Tidyverse
•	 R data.tables
•	 The Unix philosophy

A large number of libraries across almost as many programming languages support
the data frame abstraction. Most data scientists find this abstraction to be powerful
and even their preferred way of processing data. Data frames allow an easy
expression of many of the same fundamental concepts or operations as does SQL,
but within the particular programming language and memory space of the rest of
their program. SQL—even when it actually addresses a purely local database such
as SQLite—is always more of a “remote fetch” than interactive exploration that data
frames allow.

These operations consist, in the main, of filtering, grouping, aggregation, sorting,
and vectorized function application. Generally, all data frame libraries allow for a
“fluent” programming style that chains together these operations in some order to
produce a final result; that final (or at least working) result is usually itself either
a data frame or a scalar value. Sometimes a visualization is relevant for such a
processed result, and most data frame tools integrate seamlessly with visualization
libraries.

The goal, of course, of these fluent chained operations is to describe a reproducible
workflow. Exploration of various data modifications can be built up step by step,
with intermediate results often providing hints that you might have gone wrong or
a degree of reassurance that your path is correct. At the end of that exploration, you
will have an expression of a composite transformation of data that can be reused
with new data from the domain and problem you are addressing. Comments in code
and accompanying these chains, or pipelines, always make life easier for both you
and other readers of code.

Those libraries that are distributed and/or out-of-core allow working with large
datasets rather seamlessly, which is to say that the data frame abstraction scales
almost unboundedly, even if particular libraries have some rough limits. In
this section, I will present similar code using a number of data frame libraries,
commenting briefly on the strengths, weaknesses, and differences among them.

Tabular Formats

[56]

This book generally utilizes Python with Pandas, and to a somewhat lesser extent R
with tibbles. We will see the conceptual and usage similarity of those libraries with
other libraries in Python/R (Vaex, data.table), and even with other programming
languages such as Scala/Spark or Bash with coreutils. Many data scientists use
Spark in particular; whatever specific tools you use, the concepts throughout
should translate easily, especially where data frame approaches are available.

Most of the code in this book will use Pandas. Python is, as of this writing, the
most widely used language for data science, and Pandas is, by a large margin, its
most widely used data frame library. In fact, several of the “competing” libraries
themselves utilize Pandas as an internal component. However, in this section, I
would like to illustrate and emphasize how similar all of these libraries are. For that
purpose, I am going to perform the same task using a number of these libraries.

There are a great many operations and pipelines, many quite complex, that can
be accomplished with data frames. This brief section is not a tutorial on any of
the specific libraries, but only a glimpse into the shared style of expressing data
manipulation and the smaller differences among the different tools.

With each data frame library, we will do the following:

1.	 Filter based on a comparison of two columns, x and y
2.	 Vectorize derived value from one column of the comparison, y
3.	 Group data having common value in another column, name
4.	 Aggregate data in a grouped column, x
5.	 Sort data based on a computed column, Mean_x
6.	 For illustration, display the first 5 rows of result

Spark/Scala
As a starting point, I would like to illustrate a pipeline of steps using the distributed
computing framework, Spark, and its native programming language, Scala. Bindings
into Spark from Python, R, and other languages also exist, but incur a certain
degree of translation overhead that slows operations. This pipeline takes the sample
Dask dataset shown in other examples in this chapter and performs all of the basic
operations mentioned on the dataset.setup

Chapter 1

[57]

The next few lines were run inside the Spark shell. For the composition of this book,
a local instance of Hadoop and Spark were running, but this could as easily be a
connection to a remote cluster. Upon launch you will see something similar to this:

Spark context Web UI available at http://popkdm:4040
Spark context available as 'sc' (master = local[*], app id =
local-1582775303458).
Spark session available as 'spark'.
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ '/ __/ '_/
 /___/ .__/_,_/_/ /_/_\ version 2.4.5
 /_/

Using Scala version 2.11.12 (OpenJDK 64-Bit Server VM, Java 11.0.6)
Type in expressions to have them evaluated.
Type :help for more information.

In the shell, we can read in the collection of CSV files in a common directory.
Many other data sources are likewise available under a similar interface. We allow
inference of data types and use of the column headers to name fields. The pipe
symbols (|) are simply part of the Spark shell interface to indicate a continuation line;
they are not themselves the Scala code:

scala> val df = spark.read. // Local file or Hadoop resource
 | options(Map("inferSchema"->"true","header"->"true")).
 | csv("data/multicsv/") // Directory of multiple CSVs
df: org.apache.spark.sql.DataFrame = [
 timestamp: timestamp, id: int ... 3 more fields]

setup

Configuring and replicating the environment used by this book
for the Python and R code is described in the accompanying
repository. However, configuring Hadoop and Spark are
separate steps that are not quite so easy to encapsulate in a few
configuration files. The steps are not difficult, but you will need to
follow the official documentation accompanying these tools, or
other tutorials available online.

Tabular Formats

[58]

The fluent code below simply performs the intended steps in order:

scala> df. // Working with loaded DataFrame
 | filter($"x" > ($"y" + 1)). // x more than y+1 (per row)
 | groupBy($"name"). // group together same name
 | agg(avg($"x") as "Mean_x"). // mean within each group
 | sort($"Mean_x"). // order data by new column
 | show(5)

+------+------------------+
| name| Mean_x|
+------+------------------+
Ray	0.6625697073245446
Ursula	0.6628107271270461
Xavier	0.6641165295855926
Wendy	0.6642381725604264
Kevin	0.664836301676443
+------+------------------+
only showing top 5 rows

Pandas and Derived Wrappers
A number of libraries either emulate the Pandas API or directly utilize it as a
dependency. Dask and Modin both directly wrap Pandas, and partition one native
DataFrame into many separate Pandas DataFrames. A method on the native
DataFrame is usually dispatched to the underlying corresponding Pandas method
per DataFrame. Although Modin can use either Dask or Ray as its parallel/cluster
execution back-end, Modin differs from Dask in being eager in its execution model.

Dask is a general-purpose execution back-end, with its dask.dataframe subpackage
being only one component. Much of what Dask does is similar to the library Ray,
which Modin may also use if desired (benchmarks as of this writing mildly favor
Ray, depending on the use case). Most Pandas API method calls in Dask initially
only build a directed acyclic graph (DAG) of the required operations. Computation
is only performed when the .compute() method of a built DAG is called. The
example below uses Dask, but it would look exactly the same with Modin except for
the final .compute() and an initial import modin.pandas as pd.

cuDF is another library that follows Pandas’ API very closely, but it executes
methods on CUDA GPUs. Since the underlying execution is on an entirely different
kind of chip architecture, cuDF does not share code with Pandas nor wrap Pandas.
But almost all API calls will be identical, but often vastly faster if you have a recent
CUDA GPU on your system.

Chapter 1

[59]

Like Pandas and Modin, cuDF is eager in its execution model:

import dask.dataframe as dd
dfd = dd.read_csv('data/multicsv/*.csv', parse_dates=['timestamp'])

The operations in the Pandas style below look very similar to those in Spark. The
accessor .loc overloads several selection styles, but a predicate filter is such a
permitted one. Another is used on the same line to select columns, i.e. a sequence
of names. Grouping is nearly identical, other than the capitalization of the method
name. Pandas even has an .agg() method to which we could pass a mean function
or the string 'mean'; we just chose the shortcut. Columns are not automatically
renamed in aggregation, so we do that to match more precisely. Instead of sorting
and showing, we take the 5 smallest in a single method. In effect, the conceptual
elements are identical, and spelling varies only mildly:

(dfd
 .loc[dfd.x > dfd.y+1, # Row predicate
 ['name', 'x']] # Column list
 .groupby("name") # Grouping column(s)
 .mean() # Aggregation
 .rename(columns={'x': 'Mean_x'}) # Naming
 .nsmallest(5, 'Mean_x') # Selection by order
).compute() # Concretize

Name Mean_x
Ray 0.662570
Ursula 0.662811
Xavier 0.664117
Wendy 0.664238
Kevin 0.664836

Vaex
Vaex is a Python library completely independent of Pandas, but that uses a largely
similar API. A fair amount of code will just work identically with either style of
data frame, but not so much that you can simply drop in one for the other. The
philosophy of Vaex is somewhat different from Pandas. On the one hand, Vaex
emphasizes lazy computation and implicit parallelism; expressions are eagerly
evaluated, but with attention to not touching those portions of data that are not
needed for a given operation. This goes hand in hand with the mostly out-of-core
operation. Rather than reading data into memory, Vaex memory maps the data on
disk, only loading those parts required for an operation.

Tabular Formats

[60]

Vaex consistently avoids making data copies, in effect expressing selections as views.
It has a concept of expressions and of virtual columns. For example, a computation on
several columns, even if assigned to a new column, does not use any significant new
memory since only the functional form is stored rather than the data. Only when
that data is needed is the computation performed, and only for those rows affected.
The overall result is that Vaex can be very fast on large datasets; however, Vaex
parallelizes only over multiple cores on one machine, not over clusters of machines.

Because of its memory-mapped approach, Vaex does not really want to deal directly
with CSV files internally. Unlike serialized Feather or HDF5, which put each datum
at a predictable location on disk, CSV is inherently ragged in layout on disk. While
a .read_csv() method will read a single file into memory, for working with a
family of CSVs in a directory, you will want to convert them to a corresponding
family of HDF5 files. Fortunately, the method .read_csv_and_convert() does this
automatically for you. The result is that the first time you read such a collection, the
conversion takes a while, but subsequent opens utilize the existing HDF5 files and
open instantly (no actual read into memory, just memory maps):

import vaex
dfv = vaex.read_csv_and_convert('data/multicsv/*.csv', copy_
index=False)

Another difference from Pandas is that Vaex data frames are tidy (as described
at the start of this chapter). Many operations on Pandas rely on their row index,
which might even be a hierarchical index comprising multiple nested columns.
The “index,” such as it is, in Vaex is simply the row number. You can do filtering,
and grouping, and sorting, and so on, but always based on regular columns. This
philosophy is shared with tibble and data.table in R, both of which reject that aspect
of the older data.frame:

print(
dfv
 [dfv.x > dfv.y + 1] # Predicate selection of rows
 [['name', 'x']] # List selection of columns
 .groupby('name') # Grouping
 .agg({'x': 'mean'}) # Aggregation
 .sort('x') # Sort (Vaex does not have .nsmallest() method)
 .head(5) # First 5
)

 # name x
 0 Ray 0.66257
 1 Ursula 0.662811
 2 Xavier 0.664117

Chapter 1

[61]

 3 Wendy 0.664238
 4 Kevin 0.664836

Let us remove those temporary HDF5 files for discussion of libraries other than Vaex:

%%bash
rm -f data/multicsv/*.hdf5

Let us now turn to analogous data frame options within R.

Data Frames in R (Tidyverse)
In the Tidyverse, tibbles are the preferred data frame objects, and dplyr is an
associated library for—often chained—pipelined data manipulations. The way that
dplyr achieves a fluent style is not based on chained method calls. Indeed, object-
oriented programming is rarely used in R in general. Instead, dplyr relies on the
“pipe” operator (%>%), which treats the result of the prior expression as the first
argument to the next function called. This allows for rewriting compact but deeply
nested expressions, such as the following:

round(exp(diff(log(x))), 1)

In fluent style this becomes:

x %>%
 log() %>%
 diff() %>%
 exp() %>%
 round(1)

First we can read in the collection of CSV files that was generated earlier. The 2.5
million total rows in this data are still medium-sized data, but the patterns in the
below code could be applied to big data:

%%R
files <- dir(path = "data/multicsv/", pattern = "*.csv", full.names =
TRUE)
read_csv_quiet <- function(file) {
 read_csv(file, col_types = cols("T", "n", "f", "n", "n"), progress
= FALSE) }

data <- files %>%
 # read_csv() on each file, reduce to one DF with rbind
 map(read_csv_quiet) %>%

Tabular Formats

[62]

 # If this were genuinely large data, we would process each file
individually
 reduce(rbind)

data

A tibble: 2,592,000 x 5
 timestamp id name x y
 <dttm> <dbl> <fct> <dbl> <dbl>
 1 2000-01-01 00:00:00 979 Zelda 0.802 0.167
 2 2000-01-01 00:00:01 1019 Ingrid -0.350 0.705
 3 2000-01-01 00:00:02 1007 Hannah -0.170 -0.0508
 4 2000-01-01 00:00:03 1034 Ursula 0.868 -0.191
 5 2000-01-01 00:00:04 1024 Ingrid 0.0838 0.109
 6 2000-01-01 00:00:05 955 Ingrid -0.757 0.308
 7 2000-01-01 00:00:06 968 Laura 0.230 -0.913
 8 2000-01-01 00:00:07 945 Ursula 0.265 -0.271
 9 2000-01-01 00:00:08 1020 Victor 0.512 -0.481
10 2000-01-01 00:00:09 992 Wendy 0.862 -0.599
... with 2,591,990 more rows

The dplyr pipes into functions that filter, modify, group, and aggregate data look
nearly identical to the chained methods used in other data frame libraries. A few
function names are slightly different than in other libraries, but the steps performed
are identical:

%%R
summary <- data %>%
 filter(x > y+1) %>% # Predicate selection of rows
 select(name, x) %>% # Selection of columns
 group_by(name) %>% # Grouping
 # Aggregation and naming
 summarize(Mean_x = mean(x)) %>%
 arrange(Mean_x) %>% # Sort data
 head(5) # First 5

summary

'summarise()' ungrouping output (override with '.groups' argument)
A tibble: 5 x 2
 name Mean_x
 <fct> <dbl>
1 Ray 0.663

Chapter 1

[63]

2 Ursula 0.663
3 Xavier 0.664
4 Wendy 0.664
5 Kevin 0.665

Data Frames in R (data.table)
Outside the Tidyverse, the main approach to working with tabular data in modern
R is data.table. This is a replacement for the older, but standard, R data.frame. I do
not separately discuss data.frame in this book since new code should always prefer
either tibbles or data.tables.

Unlike most other approaches to data frames, data.table does not use a fluent or
chained style. Instead, it uses an extremely compact general form of DT[i, j, by]
that captures a great many of the manipulations possible. Not every collection of
operations can be expressed in a single general form, but a great many of them
can. Moreover, because data.table is able to optimize over the entire general form,
it can often be significantly faster on large datasets than those libraries performing
operations in a sequenced manner.

Each element of the general form may be omitted to mean “everything.” If used, the
i is an expression describing the rows of interest; often this i will consist of several
clauses joined by logic connectors & (and), | (or), and ! (not). Row ordering may also
be imposed within this expression (but not on derived columns). For example:

dt[(id > 999 | date > '2020-03-01') & !(name == "Lee")]

The column selector j can refer to columns, including derived columns:

dt[, .(id, pay_level = round(log(salary), 1)]

Finally, the by form is a grouping description that allows for calculations per row
subset. Groups can follow either categorical values or computed cuts:

dt[, mean(salary), cut(age, quantile(age, seq(0,100,10)))]

Putting those forms together, we can produce the same summary as with other data
frame libraries. However, the final ordering has to be performed as a second step:

%%R
library(data.table)

dt <- data.table(data)
summary <- dt[

Tabular Formats

[64]

 i = x > y + 1, # Predicate selection of rows
 # Aggregation and naming
 j = .(Mean_x = mean(x)),
 by = .(name)] # Grouping

Sort data and first 5
summary[order(Mean_x), .SD[1:5]]

 name Mean_x
1: Ray 0.6625697
2: Ursula 0.6628107
3: Xavier 0.6641165
4: Wendy 0.6642382
5: Kevin 0.6648363

Bash for Fun
For readers who are accustomed to performing pipelined filtering and aggregation
at the command line, the piped or fluent style used by data frames will seem very
familiar. In fact, it is not difficult to replicate our example using command-line
tools. The heavy lifter here is awk, but the code it uses is very simple. Conceptually,
these steps exactly match those we used in data frame libraries. The small tools that
combine, using pipes, under the Unix philosophy, can naturally replicate the same
basic operations used in data frames:

%%bash
COND='{if ($4 > $5+1) print}'
SHOW='{for(j in count) print j,sum[j]/count[j]}'
AGG='{ count[$1]++; sum[$1]+=$2 }'" END $SHOW"

cat data/multicsv/*.csv | # Create the "data frame"
 grep -v ^timestamp | # Remove the headers
 awk -F, "$COND" | # Predicate selection
 cut -d, -f3,4 | # Select columns
 awk -F, "$AGG" | # Aggregate by group
 sort -k2 | # Sort data
 head -5 # First 5

Ray 0.66257
Ursula 0.662811
Xavier 0.664117
Wendy 0.664238
Kevin 0.664836

Chapter 1

[65]

Jeroen Janssens wrote a delightful book entitled Data Science at the Command Line
that is both wonderfully written and freely available online. You should also buy
the printed or ebook edition to support his work. In this subsection, and at various
places in this book, I make only small gestures in the direction of the types of
techniques that that book talks about in detail.

The data frame and fluent programming style is a powerful idiom, and is especially
widely used in data science. Every one of the specific libraries I discuss are excellent
choices with equivalent power. Which fits you best is largely a matter of taste, and
perhaps of what your colleagues use.

Exercises
Putting together much of what we have learned in this chapter, the below exercises
should allow you to utilize the techniques and idioms you have read about.

Tidy Data from Excel
An Excel spreadsheet with some brief information on awards given to movies is
available at:

https://www.gnosis.cx/cleaning/Film_Awards.xlsx

In a more fleshed-out case, we might have data for many more years, more types of
awards, more associations that grant awards, and so on. While the organization of this
spreadsheet is much like a great many you will encounter “in the wild,” it is very little
like the tidy data we would rather work with. In the simple example, only 63 data
values occur, and you could probably enter them into the desired structure by hand
as quickly as coding the transformations. However, the point of this exercise is to
write programming code that could generalize to larger datasets of similar structure:

Figure 1.6: Film awards spreadsheet

https://www.datascienceatthecommandline.com/
https://www.gnosis.cx/cleaning/Film_Awards.xlsx

Tabular Formats

[66]

Your task in this exercise is to read this data into a single well-normalized data
frame, using whichever language and library you are most comfortable with. Along
the way, you will need to remediate whatever data integrity problems you detect.
As examples of issues to look out for:

•	 The film 1917 was stored as a number, not a string, when naïvely entered into
a cell.

•	 The spelling of some values is inconsistent. Olivia Colman’s name is
incorrectly transcribed as “Coleman” in one occurrence. There is a spacing
issue in one value you will need to identify.

•	 Structurally, an apparent parallel is not really so. Person names are
sometimes listed under the name of the association, but other times under
another column. Film names are sometimes listed under association, other
times elsewhere.

•	 Some column names occur multiple times in the same tabular area.

When thinking about good data frame organization, think of what the independent
and dependent variables are. In each year, each association awards for each category.
These are independent dimensions. A person name and a film name are slightly
tricky since they are not exactly independent, but at the same time some awards are
to a film and others to a person. Moreover, one actor might appear in multiple films
in a year (not in this sample data, but do not rule it out). Likewise, at times multiple
films have used the same name at times in film history. Some persons are both
director and actor (in either the same or different films).

Once you have a useful data frame, use it to answer these questions in summary
reports:

•	 For each film involved in multiple awards, list the award and year it is
associated with.

•	 For each actor/actress winning multiple awards, list the film and award
they are associated with.

•	 While not occurring in this small dataset, sometimes actors/actresses win
awards for multiple films (usually in different years). Make sure your code
will handle that situation.

•	 It is manual work, but you may want to research and add awards given in
other years; in particular, adding some data will show actors with awards for
multiple films. Do your other reports correctly summarize the larger dataset?

Chapter 1

[67]

Tidy Data from SQL
An SQLite database with roughly the same brief information as in the prior
spreadsheet is available at:

https://www.gnosis.cx/cleaning/Film_Awards.sqlite

However, the information in the database version is relatively well normalized
and typed. Also, additional information has been included on a variety of entities
included in the spreadsheet. Only slightly more information is included in this
schema than in the spreadsheet, but it should be able to accommodate a large
amount of data on films, actors, directors, and awards, and the relationships among
those data:

sqlite> .tables
actor award director org_name

As was mentioned in the prior exercise, the same name for a film can be used more
than once, even by the same director. For example, Abel Gance used the title J’accuse!
for both his 1919 and 1938 films with connected subject matter:

sqlite> SELECT * FROM director WHERE year < 1950;
Abel Gance|J'accuse!|1919
Abel Gance|J'accuse!|1938

Let us look at a selection from the actor table, for example. In this table we have a
column gender to differentiate beyond name. As of this writing, no transgender actor
has been nominated for a major award both before and after a change in gender
identity, but this schema allows for that possibility. In any case, we can use this field
to differentiate the “actor” versus “actress” awards that many organizations grant:

sqlite> .schema actor
CREATE TABLE actor (name TEXT, film TEXT, year INTEGER, gender
CHAR(1));

sqlite> SELECT * FROM actor WHERE name="Joaquin Phoenix";
Joaquin Phoenix|Joker|2019|M
Joaquin Phoenix|Walk the Line|2006|M
Joaquin Phoenix|Hotel Rwanda|2004|M
Joaquin Phoenix|Her|2013|M
Joaquin Phoenix|The Master|2013|M

https://www.gnosis.cx/cleaning/Film_Awards.sqlite

Tabular Formats

[68]

The goal in this exercise is to create the same tidy data frame that you created in
the prior exercise and answer the same questions that were asked there. If some
questions can be answered directly with SQL, feel free to take that approach instead.
For this exercise, only consider awards for the years 2017, 2018, and 2019. Some
others are included in an incomplete way, but your reports are for those years:

sqlite> SELECT * FROM award WHERE winner="Frances McDormand";
Oscar|Best Actress|2017|Frances McDormand
GG|Actress/Drama|2017|Frances McDormand
Oscar|Best Actress|1997|Frances McDormand

Denouement
All models are wrong, but some models are useful.
–George Box

Topics covered in this chapter: Delimited Files; Spreadsheet Dangers; RDBMS;
HDF5; Data Frames.

This chapter introduced the data formats that make up the large majority of all
the structured data in the world. While I do not have hard data, exactly, on this
breakdown of data volume—nor can anyone, apart perhaps from some three-letter
agencies specializing in bulk data acquisition—I still feel like it is a safe assertion.
Between all the scientific data stored in HDF5 and related formats, all the business
data stored in spreadsheets, all the transactional data stored in SQL databases,
and everything exported from almost everywhere to CSV, this makes up almost
everything a working data scientist encounters on a regular basis.

In presenting formats, we addressed the currently leading tools for ingestion of those
data sources in several languages. The focus throughout this book will remain on
Python and R, which are the main programming languages for data science. Perhaps
that will change in the future, and almost certainly some new libraries will arise for
addressing this huge bulk of data in faster and more convenient ways. Even so, most
of the conceptual issues about the strengths and limits of formats—concerns largely
about data types and storage artifacts—will remain for those new languages and
libraries. Only spelling will change mildly.

An extended, but nonetheless dramatically incomplete, discussion looked at the
data frame abstraction used in a great many tools. Here again, new variations may
arise, but I am confident that the general abstraction will be the primary one used in
data science for several decades after this writing. In presenting a number of slightly
different libraries, I have only scratched the surface of any one of them.

Chapter 1

[69]

In fact, even if this entire chapter was about just one of the mentioned libraries, it
would be incomplete compared with those excellent books that spend their whole
length discussing one particular data frame library. Nonetheless, I hope that this
introduction to thinking about data processing problems in terms of the steps of
filtering, grouping, aggregation, naming, and ordering will serve readers well in
their articulation of many ingestion tasks.

One limit of the data frame abstraction that we used in reading all the formats
discussed in this chapter is that none look at data streaming in any meaningful way.
For the most part, data science needs are not streaming needs, but occasionally
they overlap. If your needs lie at that particular edge, check the documentation
for streaming protocols like ActiveMQ, RabbitMQ, and Kafka (among others);
but your concern will not chiefly be in the data formats themselves, but rather in
event processing, and in evolving detection of anomalies and bad data, such as is
discussed in Chapters 4 and 5, and perhaps value imputation, discussed in Chapter 6.

In the next chapter, we turn to data formats that are hierarchically organized rather
than tabular.

[71]

2
Hierarchical Formats

No gods, no masters.
–Louis Auguste Blanqui

When we utilize machine learning models, and indeed when we perform general
statistical analyses, we almost always assume our data is tabular. Observations and
features; rows and columns. And yet, there are a number of very popular ways of
storing data that resemble trees rather than plowed fields. Data objects belong to
other data objects which belong to yet other data objects, with no specific limit on
the depth or names of branches. Both for economy of understanding and, in the case
of database systems, for efficiency of access, hierarchical data formats very often
make more sense for a broad class of data.

There are many domains that simply map more naturally to hierarchies than to
tables. Yes, the relational algebra—the conceptual structure that underpins SQL and
relational databases—is in some way able to represent every possible structure. But it
feels awkward for naturally hierarchical data. For example, file systems have nested
paths that eventually lead to actual files at their leaves. Directories along the way
might have indefinitely many subdirectories, with names at every level expressing
something meaningful, until we get to the files, which may themselves have
hierarchical, tabular, or other arrangements of data.

Likewise, if we make a graph of connected web pages—or indeed of any kind of
network, whether social, electronic communications, ecological interactions, or
another—it is closer to a hierarchy than to a table. Yes, not all, or most, graphs are
directed acyclic graphs (DAGs), but still less are they rows and columns.

Hierarchical Formats

[72]

Or imagine you had a “book of life” that described many biological organisms,
organized by Linnaean taxonomy—domain, kingdom, phylum, class, order, family,
genus, species (and perhaps sometimes subspecies, superfamily, subfamily, or tribe,
for example). Not only is this hierarchical structure important data, but the leaf
attributes are largely different for varying species. Information on the dentation
of prokaryotes is not going to be relevant. Teeth are only attributes of organisms
within the Chordata phylum, and mostly only within the subphylum Vertebrata.
Correspondingly, attributes about hyphae are only relevant within the Fungi,
Oomycota, or Actinobacteria (crossing domains, kingdoms, and phyla, but still
only within a small fragment of the hierarchy).

For better or worse, when we do data science with hierarchical data sources, that
generally means that we construct a tabular abstraction of the underlying data.
Depending on our purpose, either or both of the leaf attributes and branching
structure might be relevant. In either case, we want to encode these as columns of
variables and rows of records. This contrasts somewhat with many purposes outside
of data science; for other purposes, it is often simply a matter of “drilling down” into
the relevant leaf or distant branch and presenting or modifying the small amount of
information at that level. Data science is much more often about generalizing over
many different data points, concerning many different objects.

Before we get to the sections of this chapter, let us run our standard setup code:

from src.setup import *
%load_ext rpy2.ipython

%%R
library(tidyverse)

Now let us dive into JavaScript Object Notation as the first hierarchical format of this
chapter.

JSON
She’s a germ free adolescent
Cleanliness is her obsession
Cleans her teeth ten times a day
Scrub away scrub away scrub away
The S.R. way...
–Poly Styrene

Chapter 2

[73]

Concepts:

•	 JSON is a syntax not a semantics
•	 REST queries and responses
•	 The command-line tool jq
•	 Safe JSON readers
•	 NaNs, Infinities, and overflows
•	 Aggregating JSON records
•	 Working with large, deeply nested JSON
•	 Extracting a tabular summary of JSON data
•	 Validating structure with JSON Schema

JavaScript Object Notation (JSON) is a widely used data exchange format. As the
name suggests, it is a format derived from JavaScript, but it is strictly language-
neutral. JSON is currently specified by Internet Engineering Task Force (IETF) RFC
8259. While it can be and is used for many purposes, it is especially prevalent as a
way for computer services to communicate with each other. Hence, a large share
of JSON data consists of transient messages that do not necessarily ever live on
permanent storage such as files on disk or values in a database. Of course, sometimes
those messages are logged or somehow stored, and become fruitful for data science
purposes.

JSON is supported by a great many programming languages, in their standard
library, as built-ins, or with widely available libraries for those languages. In syntax,
JSON is very similar to, but neither exactly a superset nor subset of, native data
structures in JavaScript, and to a large extent to those in Python. An important thing
to understand about JSON is that it specifies a syntax, but not a semantics. Each
language has to make decisions about how to process text conforming with JSON
grammar.

There are exactly four value types defined in JSON, and three literal values.
Whitespace is ignored throughout JSON.

•	 false, true, and null are literal values.
•	 An object is a grammatical structure that is enclosed in curly braces, { and },

with strings for keys, separated by a colon from values of any syntactic type.
Multiple key/value pairs are separated by commas.

•	 An array is a grammatical structure that is enclosed in square brackets, [
and], with any syntactic values separated by commas.

Hierarchical Formats

[74]

•	 A number optionally starts with a minus sign, followed by a sequence of
digits, optionally followed by a fractional part after a decimal portion,
optionally followed by an exponent. This is mostly the same as the spelling
of numbers in languages like Python, R, JavaScript, Julia, C, etc., but slightly
more restrictive.

•	 A string is a grammatical structure enclosed by double quotes (the code point
U+0022) that may contain almost any characters. Unicode code points may
be indicated as, for example, \u0022, and a few special characters must be
escaped with a backslash.

For example, the following fragment utilizes all four value types. The example
contains an object with a string key, whose value is an array containing one each
of the literal values, and two numbers:

{"key": [true, false, null, 15, 55.66]}

What JSON Looks Like
JSON is frequently used to interactively communicate messages among computer
systems. On my local machine, I have a small demonstration web service running.
In the book repository, the directory node-server/ contains all the code to launch
it. It happens to be written in JavaScript/Node, but it could be written in any
programming language. The key thing about it is that it provides a Representational
State Transfer (RESTful) interface in which clients may send JSON messages and will
receive other JSON messages back. The short document shown in the output below
is fairly typical of such uses:

A response to an HTTP request
response = requests.get('http://localhost:3001/users')

Show status code, content-type, and JSON body
print(response.status_code, response.headers['Content-Type'])
response.text
200 application/json; charset=utf-8

'{"1":{"name":"Guido van Rossum","password":"unladenswallow","details
":{"profession":"ex-BDFL"}},"2":{"name":"Brendan Eich","password":"no
ntransitiveequality","details":{"profession":"Mozillan"}},"3":{"name
":"Ken Thompson","password":"p/q2-q4!","details":{"profession":"Unix
Creator"}}}'

Chapter 2

[75]

Whitespace is not significant in JSON, but it can definitely make it more readable for
human examination. For example, a small function in the setup module for this book
can do that:

pprint_json(response.text)

{
 "1": {
 "name": "Guido van Rossum",
 "password": "unladenswallow",
 "details": {
 "profession": "ex-BDFL"
 }
 },
 "2": {
 "name": "Brendan Eich",
 "password": "nontransitiveequality",
 "details": {
 "profession": "Mozillan"
 }
 },
 "3": {
 "name": "Ken Thompson",
 "password": "p/q2-q4!",
 "details": {
 "profession": "Unix Creator"
 }
 }
}

A command-line tool called jq is very useful for working with JSON data, either
streamed or on disk. A data scientist or developer who frequently works with
JSON should consider learning the slightly arcane, but compact, query language jq
provides; that is outside the scope of this book, however. The home page for the tool,
as of the time of writing, contains a very nice blurb for it:

jq is like sed for JSON data - you can use it to slice and filter and map and transform
structured data with the same ease that sed, awk, grep and friends let you play with
text.

https://stedolan.github.io/jq/

Hierarchical Formats

[76]

One very simple task jq can accomplish is pretty-printing (indentation, line breaks,
colorization, and so on):

with open('data/3001.json', 'w') as fh:
 fh.write(response.text)

!jq . data/3001.json

{
 "1": {
 "name": "Guido van Rossum",
 "password": "unladenswallow",
 "details": {
 "profession": "ex-BDFL"
 }
 },
 "2": {
 "name": "Brendan Eich",
 "password": "nontransitiveequality",
 "details": {
 "profession": "Mozillan"
 }
 },
 "3": {
 "name": "Ken Thompson",
 "password": "p/q2-q4!",
 "details": {
 "profession": "Unix Creator"
 }
 }
}

Despite its close similarity to native spelling of data structures in Python and
JavaScript (and other languages), you must use a read/parse function to convert
JSON to native data. At times, a function like eval() in JavaScript, Python, or some
other languages will successfully convert a string to native data. However, this is a
very bad idea; on the one hand, it sometimes fails (even within JavaScript). The other
hand is more crucial: trying this can potentially execute malicious code contained
within JSON (or pseudo-JSON). Almost all programming languages have JSON
readers/parsers as part of their standard library or widely available.

Chapter 2

[77]

For example, in JavaScript, using the Node.js runtime we could write:

%%bash
js="
const fs = require('fs');
let raw = fs.readFileSync('data/3001.json');
let users = JSON.parse(raw);
console.log(users);
"
echo $js | node

{ '1':
 { name: 'Guido van Rossum',
 password: 'unladenswallow',
 details: { profession: 'ex-BDFL' } },
 '2':
 { name: 'Brendan Eich',
 password: 'nontransitiveequality',
 details: { profession: 'Mozillan' } },
 '3':
 { name: 'Ken Thompson',
 password: 'p/q2-q4!',
 details: { profession: 'Unix Creator' } } }

In Python, the equivalent is:

with open('data/3001.json') as fh:
 # Could also call 'json.load(fh)' to read file
 raw = fh.read()
 users = json.loads(raw)
users

{'1': {'name': 'Guido van Rossum',
 'password': 'unladenswallow',
 'details': {'profession': 'ex-BDFL'}},
 '2': {'name': 'Brendan Eich',
 'password': 'nontransitiveequality',
 'details': {'profession': 'Mozillan'}},
 '3': {'name': 'Ken Thompson',
 'password': 'p/q2-q4!',
 'details': {'profession': 'Unix Creator'}}}

Hierarchical Formats

[78]

In R, we do not have a direct equivalent for the dictionary or hashmap structure as
a standard data structure. Hence the representation is as a named list (generally a
nested one). Here we only display the third element of that list for illustration:

%%R
library(rjson)
result <- fromJSON(file = "data/3001.json")
result[3]

$'3'
$'3'$name
[1] "Ken Thompson"

$'3'$password
[1] "p/q2-q4!"

$'3'$details
$'3'$details$profession
[1] "Unix Creator"

Other programming languages will have different spellings, but libraries or standard
functions can convert between native data and JSON.

NaN Handling and Data Types
The semi-formal description of the grammar of JSON had a covert purpose
underlying its direct information. Readers might notice things that are missing from
it. In particular, there is a single syntactic type named “number,” but there are no
distinctions among integers, floating-points, decimals, complex numbers, fractions/
rationals, or the bit length of represented numbers. The decision of how to interpret
numeric values is strictly left to libraries, or to individual users.

It may not be as obvious, but there are also some important floating-point “numbers”
missing altogether. IEEE-754 floating-point numbers include the special values
Not-a-Number (NaN) and Infinity/-Infinity. To be pedantic, the binary standard
represents a great many distinct bit patterns as meaning “NaN,” although just one
each for +Infinity and -Infinity (negative zero is another oddball number, but is
less important). JSON cannot represent those values, even though many or most
programming languages have a way of spelling those values; in programming
languages, typically NaN has a single spelling, such as NaN, rather than millions of
them for all the bit patterns.

Chapter 2

[79]

In Python, the standard library and other common JSON parsers make a heuristic
assumption that numbers that contain either a decimal point or an exponent are
intended to represent floating-points, and numbers without them are meant to
represent integers. There are edge cases where these assumptions can fail. Numbers
like 1e309 that would fit perfectly well and exactly into Python’s unlimited-size
integers are treated as floats, and fail as such (they could, however, be spelled with
hundreds of trailing zeros and no decimal point to be interpreted as integers).
Probably more often relevant is that by treating JSON numbers as floats, their
precision is limited to the native floating-point type. In 64-bits, this works out to
17 decimal digits; in 32-bits it is only 9 digits. Readers normally simply lose this
potential precision.

A simple example shows some of these overflow or truncation issues. Here, Python
and R are identical; other languages may behave differently (but most are similar):

An interpreted float, an overflow, and a truncation
json_str = "[1e308, 1e309, 1.2345678901234567890]"
json.loads(json_str)

[1e+308, inf, 1.2345678901234567]

%%R -i json_str
options(digits = 22)
fromJSON(json_str)

[1] 1.000000000000000010979e+308 Inf
[3] 1.234567890123456690432e+00

An inclination you could easily be forgiven is to think that this issue is no more
than inherent in the nature of floating-point rounding. After all, the value that is
10308 is also only approximate, as we see in the long representation in the R output.
However, Python at least provides a natural alternative that more closely matches
the JSON number syntax in the decimal module. Unfortunately, producing values of
the type Decimal in the standard library is cumbersome (but possible). Fortunately,
the third-party module simplejson makes this easy, as we see below:

simplejson.loads(json_str, use_decimal=True)

[Decimal('1E+308'), Decimal('1E+309'), Decimal('1.2345678901234567890')]

Other languages, such as JavaScript and R, lack a standard decimal or unlimited
precision data type, and will simply lose precision in representing some syntactically
valid JSON numbers.

Hierarchical Formats

[80]

A wrinkle in this story is that the default “JSON” libraries in languages like Python
do not actually read and write JSON by default. They read a superset of JSON, but
that might include the additional literals NaN, Infinity, and -Infinity. The JSON5
proposal includes these extensions and a few others, but is not an official standard
currently. The Python standard library, for example, does not support literals of nan,
Nan inf, +Infinity, or other spellings that might seem reasonable; at least not as
of this writing. Exactly what literals other languages and libraries support is up to
them, and may change. Let us try some special values:

specials = "[NaN, Infinity, -Infinity]"
vals = json.loads(specials)
vals

[nan, inf, -inf]

Several libraries in R represent these special IEEE-754 values in a manner different
from what Python libraries do. I use rjson in these examples, but RJSONIO and
jsonlite use similar conventions. The R solution to the underspecification is to spell
its special values as strings with special suggestive values, as in the third line of
output below:

%%R -i vals
vals = c(NaN, Inf, -Inf)
print(vals)
print("R version of 'enhanced JSON':")
rjson_str = toJSON(vals) # function from rjson library
print(rjson_str)

[1] NaN Inf -Inf
[1] "R version of 'enhanced JSON':"
[1] "[\"NaN\",\"Inf\",\"-Inf\"]"

This technique fails on round-tripping, even within rjson itself, unless you write
custom code to interpret strings. We read back the content simply as strings rather
than as special numeric values:

%%R
print("Read back in 'enhanced JSON':")
fromJSON(rjson_str)

[1] "Read back in 'enhanced JSON':"
[1] "NaN" "Inf" "-Inf"

Chapter 2

[81]

We can see strict JSON-compliant behavior using the JavaScript reader:

%%bash
js="JSON.parse('[NaN, Infinity, -Infinity]');"
echo $js | node | cat

undefined:1
[NaN, Infinity, -Infinity]
 ^

SyntaxError: Unexpected token N in JSON at position 1
 at JSON.parse (<anonymous>)
 at [stdin]:1:6
 at Script.runInThisContext (vm.js:122:20)
 at Object.runInThisContext (vm.js:329:38)
 at Object.<anonymous> ([stdin]-wrapper:6:22)
 at Module._compile (internal/modules/cjs/loader.js:778:30)
 at evalScript (internal/bootstrap/node.js:590:27)
 at Socket.<anonymous> (internal/bootstrap/node.js:323:15)
 at Socket.emit (events.js:203:15)
 at endReadableNT (_stream_readable.js:1145:12)

We can also use a slightly misnamed, and cumbersome, parameter (parse_constant)
to enforce strict mode in the Python standard library. This catches only those specific
values of special floating-point numbers spelled in the manner shown below:

json.loads("[NaN, Infinity, -Infinity]", parse_constant=lambda _:
"INVALID")

['INVALID', 'INVALID', 'INVALID']

In other words, not just any hypothetical literal outside these particular spellings will
be handed to the parse_constant function:

try:
 json.loads("[nan, +Inf, Foobar]", parse_constant=lambda _:
"INVALID")
except Exception as err:
 print_err(err)

JSONDecodeError
Expecting value: line 1 column 2 (char 1)

Hierarchical Formats

[82]

The tool jq has an odd “semi-strict” behavior. Infinity is recognized, under several
spellings, but is not treated as the actual IEEE-754 value “infinity.” None of these
choices are right or wrong per se, but incompatibilities are dangers to stay alert for:

%%bash
echo "[NaN, inf, -Infinity]" | jq .

[
 null,
 1.7976931348623157e+308,
 -1.7976931348623157e+308
]

JSON Lines
In the next subsection, we look at JSON documents of substantial size and structure.
However, as we saw in the slightly fanciful example in the previous subsection,
JSON is often used to encode small bundles of data. One area where we very often
encounter “small bundles of data” is in log files, such as are discussed in Chapter 7,
Feature Engineering, Chapter 3, Repurposing Data Sources, and other places in this book.
The entries in log files are generally similar, and are usually arranged one per line;
however, frequently, different entries are required to hold different fields. This tends
to require a lot of conditional logic when parsing a log file.

JSON streaming is a very useful and widely used approach to reducing this burden.
Since whitespace is ignored in JSON, every document can be contained in a single
line (newlines encoded as \n), and any structures and field names can be expressed
with JSON syntactic structures. This does not remove all conditional logic since the
disposition of a particular entry will still often depend on the data inside it, but at
least it removes the concern from the parsing step itself.

To be precise, the syntax called Newline Delimited JSON (ndjson) or JSON Lines
is one of several approaches to aggregating (small) JSON documents. Newline
delimitation is the most widely used style, and is easiest to work with using
command-line text processing tools which are usually line-oriented. However, you
may encounter several other styles occasionally:

•	 Record separator-delimited: The Unicode character INFORMATION
SEPARATOR TWO (U+001E) used as a delimiter (RFC 7464), that is,
newlines may occur inside JSON document entries.

Chapter 2

[83]

•	 Concatenated JSON: No delimiters used, and each JSON entry is an object
or array. This allows a streaming parser to recognize the matching } or
] that will terminate the top-level structure. Every JSON Lines stream is
automatically also a concatenated JSON stream.

•	 Length-prefixed JSON: Each entry consists of an integer indicating the
number of bytes in the remainder of the entry, followed by a JSON object
or array (in principle, a string would work too). This has an advantage over
plain concatenation in that the reader does not need to test on each character
read whether a structure is completed.

Let us consider a JSON Lines example based on one in the current version of the
Wikipedia article on JSON streaming. The lines are somewhat larger than the width
of these margins, so a small Bash pipeline will format for a presentation length. As
shown, each line is displayed with a leading integer (which is not part of the line)
and subsequent displayed lines without a leading number are part of the same line
on disk (many text editors use a similar approach):

%%bash
cat -n data/jsonlines.log | fmt -w55 | tr -d " "

1 {"ts":"2020-06-18T10:44:13",
"logged_in":{"username":"foo"},
"connection":{"addr":"1.2.3.4","port":5678}}
2 {"ts":"2020-06-18T10:44:15",
"registered":{"username":"bar","email":"bar@example.com"},
"connection":{"addr":"2.3.4.5","port":6789}}
3 {"ts":"2020-06-18T10:44:16",
"logged_out":{"username":"foo"},
"connection":{"addr":"1.2.3.4","port":5678}}
4 {"ts":"2020-06-18T10:47:22",
"registered":{"username":"baz","email":"baz@example.net"},
"connection":{"addr":"3.4.5.6","port":7890}}

The three JSON documents, one per line, contain somewhat different fields. All share
the fields "ts" and "connection" to mark when they occurred, and from what client
address. Different kinds of events, however, require different additional fields. This
can allow command-line processing.

https://en.wikipedia.org/wiki/JSON_streaming

Hierarchical Formats

[84]

For example, using generic text processing tools, we might list (as a JSON document)
the username and email of all newly registered users:

%%bash
Extract registrations
grep "registered" data/jsonlines.log |
 sed 's/^.*registered"://' |
 sed 's/}.*/}/'

{"username":"bar","email":"bar@example.com"}
{"username":"baz","email":"baz@example.net"}

You’ve probably noticed already that the above command line could have gone
wrong (because we did not choose the best tool). If a registration object contained
nested objects (that is, more closing braces, }) we would not match the "registered"
event that we actually wanted. For that matter, if some "username" field were the
string "registered", we would go awry as well. To do this correctly, we need to
actually parse the JSON. Here again, from the command line, jq is a useful tool:

%%bash
jq '.registered | select(.username != null)' data/jsonlines.log

{
 "username": "bar",
 "email": "bar@example.com"
}
{
 "username": "baz",
 "email": "baz@example.net"
}

Most likely, following initial exploration of a dataset, for which these command-line
tools are useful, we would like to perform these kinds of tasks in a general-purpose
programming language. A third-party Python module called jsonlines exists, but
simply using the standard library is more than sufficient, as we see below:

with open('data/jsonlines.log') as log:
 for line in log:
 record = json.loads(line)
 if 'registered' in record:
 user = record['registered']
 if 'username' in user:
 print(user)

Chapter 2

[85]

{'username': 'bar', 'email': 'bar@example.com'}
{'username': 'baz', 'email': 'baz@example.net'}

In a more fleshed-out version, of course, we would do something beyond just
printing out the registrant information. If one of the other variants for JSON
streaming were used rather than JSON Lines, the code would be somewhat more
difficult, but still reasonable to program manually.

GeoJSON
GeoJSON is a format for encoding a variety of geographic data structures that
is described in IETF RFC 7946. This book is not able to address the numerous
programming and data issues that are specific to Geographic Information Systems
(GISes). A variety of specialized programming tools, books, and other learning
material is available to explore this field. For our purposes, we merely need to
understand that a GeoJSON file is a JSON file that often contains a large amount of
data, and is moderately nested. In contrast to some other formats JSON is used for,
the hierarchies available in GeoJSON are not of unlimited depth, but simply consist
of a variety of optional keys at several levels of nesting.

The particular data we will utilize in this subsection was generated by Eric Celeste
from data published by the United States Census Bureau, describing the counties in
the United States. The public domain data was originally provided by the Census
Bureau as shapefiles (.shp). The GeoJSON discussed here, and the Keyhole Markup
Language (KML) discussed in the next section, are mechanical transformations of
the original data (the data should be equivalent). For the example here, I’ve used the
lowest resolution shape definitions, which nonetheless amounts to fairly substantial
data.

Notice that the JSON file we read, from the 2010 census, was encoded as ISO-8859-
1. In those days of yore, we were young and naïve, and the then-current JSON
standard had not yet mandated encoding as UTF-8. See Chapter 3, Repurposing
Data Sources, for a discussion on determining and working with different character
encodings; I, myself, in fact, had to utilize those techniques to determine how to read
this data without raising exceptions. Let us explore the concepts slightly:

with open('data/gz_2010_us_050_00_20m.json', encoding='ISO-8859-1') as
fh:
 counties = json.load(fh)

counties.keys()

dict_keys(['type', 'features'])

Hierarchical Formats

[86]

At the top level, the JSON object has a key called "type" and another called
"features". The former is simply a descriptive string, the latter where the bulk of
the data on the 3221 counties in the United States in 2010 lives, as we deduce from
the output below:

counties['type'], type(counties['features']), len(counties['features'])

('FeatureCollection', list, 3221)

Let us look at one of those features. We can see that it has some metadata under the
key "properties". The main data is the geographic position of the boundaries of the
particular county, under the key "geometry". The higher-resolution data files contain
the same metadata and structure of their data; the difference is that the shapes are
defined by polygons with more sides, which hence more accurately describe the
shape of the county in question. What we use is more than large enough to support
the examples. The actual shape, in Python terms, is a list-of-lists-of-lists:

counties['features'][999]

{'type': 'Feature',
 'properties': {'GEO_ID': '0500000US19153',
 'STATE': '19',
 'COUNTY': '153',
 'NAME': 'Polk',
 'LSAD': 'County',
 'CENSUSAREA': 573.795},
 'geometry': {'type': 'Polygon',
 'coordinates': [[[-93.328614, 41.507824],
 [-93.328486, 41.49134],
 [-93.328407, 41.490921],
 [-93.41226, 41.505549],
 [-93.790612, 41.511916],
 [-93.814282, 41.600448],
 [-93.815527, 41.863419],
 [-93.698032, 41.86337],
 [-93.347933, 41.863104],
 [-93.348681, 41.600999],
 [-93.328614, 41.507824]]]}}

Each leaf list is simply a longitude/latitude position, a list of those is a polygon,
but a county potentially has discontiguous regions that need multiple polygons to
define.

Chapter 2

[87]

As I have mentioned, there are a plethora of tools for GIS and geospatial data
processing. These include a more specialized Python module called geojson;
within the broader Python GIS space, Cartopy is a well-maintained package with
many capabilities, and is built on top of PROJ, NumPy, and Shapely. Among
other capabilities, these types of GIS tools allow visualization of longitude/
latitude coordinates onto many map projections, with optional rendering of
geographic and political features, and calculations based on Haversine distances
rather than inaccurate Cartesian distances. To focus just on the JSON data though,
with apologies to the cartographers among my readers, let us make a flat-footed
rendering to visualize USA counties.

The code below simply creates a Matplotlib figure and axis, loops through each
of the features in the GeoJSON data, drills down to the coordinates, and maps the
counties as patches. Visualization helps us understand the “shape” of the data we
are working with. The details of the Matplotlib API are not important here. The
relevant aspect is the way that we descend into the nested data that was read from
JSON. For example:

polk = counties['features'][999]['geometry']['coordinates'][0]

This would load the list-of-lists describing the boundaries of Polk County, Iowa:

fig, ax = plt.subplots(figsize=(8, 5))
patches, colors, ncolor = [], [], 8

for n, county in enumerate(counties['features']):
 # Only use first polygon if multiple discontiguous regions
 poly = np.array(county['geometry']['coordinates'][0])
 poly = poly.reshape(-1, 2)
 polygon = Polygon(poly)
 patches.append(polygon)
 colors.append(n % ncolor)

p = PatchCollection(patches, cmap=cm.get_cmap('Greys', ncolor))
p.set_array(np.array(colors))
ax.add_collection(p)

ax.set_ylim(24, 50)
ax.set_ylabel("Latitude")
ax.set_xlim(-126, -67)
ax.set_xlabel("Longitude")
ax.set_title("Counties of the United States");

Hierarchical Formats

[88]

Figure 2.1: Plot of counties of the United States

This is certainly not the best map of the United States, but the contours as a plot
help us understand the dataset.

Tidy Geography
As an example of utilizing this data, apart from the visualization, we would like to
create a tabular data frame that has the following columns:

•	 State name
•	 County name
•	 Area (square kilometers of land)
•	 Northernmost latitude
•	 Southernmost latitude
•	 Westernmost longitude
•	 Easternmost longitude

Chapter 2

[89]

This subsection will demonstrate a bit more code than most do. When dealing
with hierarchical data, it is difficult to avoid some messiness. Testing various data
attributes at various levels almost always requires loops or recursion, temporary
containers, lookups and memorization of data, and a number of steps that can often
be handled at a much higher level with methods of a tidy data frame.

For a starting point, we can notice that the USA census provides (land) area
measurements in square miles; we can use the conversion constant 2.59 for

𝑚𝑚𝑚𝑚2 𝑘𝑘𝑘𝑘2⁄ .
A less direct conversion is determining the state name from the Federal Information
Processing Standards (FIPS) code given for the state. Looking online at government
data sources, we can locate a tab-separated description of this correspondence that
we can use:

fips = pd.read_csv('data/FIPS.tsv', sep='\t')
fips

 Name Postal Code FIPS
───
0 Alabama AL 1
1 Alaska AK 2
2 Arizona AZ 4
3 Arkansas AR 5
...
51 Guam GU 66
52 Northern Mariana Islands MP 69
53 Puerto Rico PR 72
54 Virgin Islands VI 78
55 rows × 3 columns

We would like to transform this DataFrame into a Series that takes a key of FIPS
and maps to the state name. Once we have crawled the data and levels of the JSON
hierarchy, we can make that mechanical transformation:

fips_map = fips.set_index('FIPS').Name
fips_map

FIPS
1 Alabama
2 Alaska
4 Arizona
5 Arkansas
 ...
66 Guam

Hierarchical Formats

[90]

69 Northern Mariana Islands
72 Puerto Rico
78 Virgin Islands
Name: Name, Length: 55, dtype: object

Luckily for the task at hand, we know we need to descend at fixed depths to find
the data items of interest. In other situations, we may wish to use a recursive
approach instead, with nested function calls corresponding to nested keys at
indeterminate depth. We can simply loop through counties, much as we did to
create the visualization, and gather data into plain lists as a first step.

In order to factor out the processing a bit, let us first define a function called
extremes() that will take the collection of polygons and return the extremes for
the cardinal directions:

def extremes(coords):
 lat, lon = [], []
 # Expect a list of lists of lists
 for region in coords:
 for point in region:
 lat.append(point[1])
 lon.append(point[0])
 # We are assuming western hemisphere here
 north = max(lat)
 south = min(lat)
 east = max(lon)
 west = min(lon)
 return north, south, east, west

Next we would like a function to produce a DataFrame from the GeoJSON
dictionary.

def county_summary(features):
 geo_id = []
 state, county_name, area = [], [], []
 north, south, east, west = [], [], [], []

 for county in features:
 props = county['properties']
 polys = county['geometry']['coordinates']
 geo_id.append(props['GEO_ID'])
 # District of Columbia not US state (default to None)

Chapter 2

[91]

 state_name = fips_map.get(int(props['STATE']), None)
 state.append(state_name)
 county_name.append(props['NAME'])
 area.append(props['CENSUSAREA'] * 2.59)
 n, s, e, w = extremes(polys)
 north.append(n)
 south.append(s)
 east.append(e)
 west.append(w)

 df = pd.DataFrame({
 'geo_id': geo_id,
 'state': state,
 'county': county_name,
 'area': area,
 'northmost': north,
 'southmost': south,
 'eastmost': east,
 'westmost': west
 })
 return df.set_index('geo_id')

Although the code is fairly straightforward, it has enough in it that we would like to
provide a sanity check in a unit test:

def test_counties(df):
 assert (df.northmost > df.southmost).all()
 assert (df.westmost < df.eastmost).all()
 assert (df.area > 0).all()

We can convert the JSON hierarchy into a tidy data frame using the county_summary()
function we’ve just written, and check our boundary assumptions:

census_counties = county_summary(counties['features'])

Sanity checks (if no assertion violated, we are happy)
test_counties(census_counties)
census_counties

Hierarchical Formats

[92]

 state county area northmost
geo_id
0500000US01001 Alabama Autauga 1539.58924 32.7074
0500000US01009 Alabama Blount 1669.96984 34.2593
0500000US01017 Alabama Chambers 1545.01529 33.1081
0500000US01021 Alabama Chilton 1794.49186 33.0719

0500000US51021 Virginia Bland 926.50775 37.2935
0500000US51027 Virginia Buchanan 1302.15617 37.5378
0500000US51037 Virginia Charlotte 1230.95189 37.2488
0500000US51041 Virginia Chesterfield 1096.33923 37.5626

 southmost eastmost westmost
geo_id
0500000US01001 32.3408 -86.4112 -86.9176
0500000US01009 33.7653 -86.3035 -86.9634
0500000US01017 32.7285 -85.1234 -85.5932
0500000US01021 32.6617 -86.375 -87.0192

0500000US51021 36.9524 -80.8546 -81.4622
0500000US51027 37.0417 -81.7384 -82.3059
0500000US51037 36.6979 -78.4433 -78.9046
0500000US51041 37.2227 -77.2442 -77.8551

3221 rows × 7 columns

Exactly what analysis or modeling is relevant at this point is driven by your task.
But in general, obtaining tidy data will be a similar matter of crawling through the
hierarchical structure and pulling out relevant information from varying levels.

JSON Schema
When we tidied some GeoJSON data in the previous subsection, we made a number
of assumptions about exactly which keys we would encounter at which levels, nested
within objects. If these assumptions had been violated, various exceptions would
be raised, or other errors would occur, in the processing functions. It is, of course,
possible to check for these situations with conditional branches, exception handling,
use of methods like Python’s dict.get(), and other similar techniques. However,
code that is cluttered with a great many such error handling constructs can have its
underlying processing logic obscured.

Chapter 2

[93]

One approach to enforcing assumptions about JSON documents is to use a JSON
Schema to validate documents prior to passing them to data extraction functions.
Configure Unify Execute (CUE) is a promising newer approach to validation, but I
do not address it in this book. A JSON Schema is itself a JSON document following
certain specifications. At its simplest, it needs to specify a type for the JSON being
validated. Within that, it can indicate what keys might occur inside objects, which
are required, the cardinality of arrays, and a number of other elements, including
recursive structures. An approach of “validate, then process” is often useful; here
validation merely describes the structure of a JSON document. It is not intended
to make any claims about it containing good data, such as is discussed in Chapter 4,
Anomaly Detection, and Chapter 5, Data Quality.

The examples below use the Python third-party module jsonschema, but wrap its
API in a slightly different function, not_valid(), imported from this book’s setup.py
module. This function will return False if everything is fine, but returns a descriptive
error message if a problem was encountered. For example, we might validate the
USA county data using the official GeoJSON schema:

response = requests.get('https://geojson.org/schema/GeoJSON.json')
geojson_schema = json.loads(response.text)

if msg := not_valid(counties, geojson_schema):
 print(msg)
else:
 print("Everything is Happy!")

Everything is Happy!

As hoped, the United States Census department data is valid. The GeoJSON schema
is quite large, so I present as an example below a smaller one I developed myself. The
small “user database” web server that was queried above sends user records that are
expected to follow a certain format, but the format, as development usually occurs,
might only be informally specified in email threads and telephone conversations
between developers. Before running scripts to process these user records, it is useful
to identify users or potential user documents that will violate the assumptions
embedded in our code logic.

https://cuelang.org/

Hierarchical Formats

[94]

Let us see what information we can obtain from our example schema:

user_schema = json.loads("""
{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "$id": "http://kdm.training/user-schema.json",
 "title": "User",
 "description": "A User of Our Computer System",
 "type" : "object",
 "required": ["name", "password"],
 "properties" : {
 "name" : {"type" : "string"},
 "password": {
 "description": "Use special characters and mixed case",
 "type": "string"},
 "lucky_numbers": {
 "description": "Up to 6 favorite numbers 1-100",
 "type": "array",
 "items": {
 "type": "number",
 "minimum": 1,
 "maximum": 100
 },
 "uniqueItems": true,
 "minItems": 0,
 "maxItems": 6
 }
 }
}
""")

This simple “User” schema does not exercise all the capabilities in JSON Schema,
but it is a good representation. Some metadata is contained in the keys "$schema",
"$id", "title", and "description". All of these are optional in the JSON Schema
specification, but their names are standard, if used. The only key that is strictly
required is "type", which must be one of the four JSON data types. Within an object,
keys may be required or optional; however, JSON Schema has no mechanism to
exclude other keys that are not described. The schema merely states that if a key is
present, it must have values of a certain sort.

Chapter 2

[95]

The keys "name" and "password" are required, and are both strings. The optional
description of "password" indicates a desire for passwords to be “good” in the
sense that many computer systems enforce, but JSON Schema does not itself have
a mechanism to check programmatic rules of that sort. The key "lucky_numbers"
describes quite a bit; not only must it have an array as a value, but that array must
consist of numbers between 1 and 100, and have no more than 6 of them. Let us
look at a document that passes validation:

david = json.loads("""
{
 "name": "David Mertz",
 "password": "badpassword",
 "details": {
 "profession": "Data Scientist",
 "employer": "KDM"
 },
 "lucky_numbers": [12, 42, 55, 87]
}
""")

if msg := not_valid(david, user_schema):
 print(msg)

The top-level key "details" is not mentioned in the schema, and hence may contain
anything whatsoever (anything which is valid JSON, of course). This document
validates successfully, so perhaps we would want to process it downstream. Let
us consider a few documents that fail as users:

barbara_feldon = json.loads("""
{
 "name": 99,
 "password": "1ibydieZ!S@8"
}
""")

if msg := not_valid(barbara_feldon, user_schema):
 print(msg)

99 is not of type 'string'

Failed validating 'type' in schema['properties']['name']:
 {'type': 'string'}

On instance['name']:
 99

Hierarchical Formats

[96]

The diagnosis of the failure will hopefully provide information relevant to
remediation. The JSON below fails in a somewhat different manner, and with a
more verbose description of the problem:

intruder = json.loads("""
{
 "password": "P4cC!^*8chWz8",
 "profession": "Hacker"
}
""")

if msg := not_valid(intruder, user_schema):
 print(msg)

'name' is a required property

Failed validating 'required' in schema:
 {'$id': 'http://kdm.training/user-schema.json',
 '$schema': 'http://json-schema.org/draft-07/schema#',
 'description': 'A User of Our Computer System',
 'properties': {'lucky_numbers': {'description': 'Up to 6 favorite '
 'numbers 1-100',
 'items': {'maximum': 100,
 'minimum': 1,
 'type': 'number'},
 'maxItems': 6,
 'minItems': 0,
 'type': 'array',
 'uniqueItems': True},
 'name': {'type': 'string'},
 'password': {'description': 'Use special characters '
 'and mixed case',
 'type': 'string'}},
 'required': ['name', 'password'],
 'title': 'User',
 'type': 'object'}

On instance:
 {'password': 'P4cC!^*8chWz8', 'profession': 'Hacker'}

Chapter 2

[97]

Let us look through a few more failure messages:

the_count = json.loads("""
{
 "name": "Count von Count",
 "password": "fourbananas",
 "lucky_numbers": ["one", "two", "three"]
}
""")

if msg := not_valid(the_count, user_schema):
 print(msg, "\n--------------------")

'one' is not of type 'number'

Failed validating 'type' in schema['properties']['lucky_numbers']
['items']:
 {'maximum': 100, 'minimum': 1, 'type': 'number'}

On instance['lucky_numbers'][0]:
 'one'

We failed on the data type of the nested array. Its cardinality is checked as well:

george = json.loads("""
{
 "name": "Georg Cantor",
 "password": "omega_aleph",
 "lucky_numbers": [1, 2, 3, 4, 5, 6, 7, 8]
}
""")

if msg := not_valid(george, user_schema):
 print(msg)

[1, 2, 3, 4, 5, 6, 7, 8] is too long

Failed validating 'maxItems' in schema['properties']['lucky_numbers']:
 {'description': 'Up to 6 favorite numbers 1-100',
 'items': {'maximum': 100, 'minimum': 1, 'type': 'number'},
 'maxItems': 6,

Hierarchical Formats

[98]

 'minItems': 0,
 'type': 'array',
 'uniqueItems': True}

On instance['lucky_numbers']:
 [1, 2, 3, 4, 5, 6, 7, 8]

In one final example, we see that uniqueness can be validated in an array. This
provides a way of distinguishing a set from a sequence, even though JSON itself
does not distinguish those data types:

revolution_9 = json.loads("""
{
 "name": "Yoko Ono",
 "password": "grapefruit",
 "lucky_numbers": [9, 9, 9]
}
""")

if msg := not_valid(revolution_9, user_schema):
 print(msg)

[9, 9, 9] has non-unique elements

Failed validating 'uniqueItems' in schema['properties']['lucky_
numbers']:
 {'description': 'Up to 6 favorite numbers 1-100',
 'items': {'maximum': 100, 'minimum': 1, 'type': 'number'},
 'maxItems': 6,
 'minItems': 0,
 'type': 'array',
 'uniqueItems': True}

On instance['lucky_numbers']:
 [9, 9, 9]

It is time to move on to another, much scarier hierarchical topic.

Chapter 2

[99]

XML
XML is like violence—if it doesn’t solve your problems, you are not using enough of
it.
–Anonymous

Concepts:

•	 Defining eXtensible Markup Language
•	 Dialects and schemata
•	 Attributes and elements
•	 Dealing with deep and ragged nesting

The almost mandatory epigraph accompanying this section, and extending Ludwig
von Rochau’s notion of Realpolitik, is, of course, underlyingly deplorable, albeit
presumably meant ironically. I take violence to always be unacceptable, and
XML only mostly so. Both remain far too common in our world. This corrective
paraphrase only partially fixes the concern: “XML is like violence: useful only in
specific situations, and totally unacceptable everywhere else.”

eXtensible Markup Language (XML) is a complex format that might appear simple
on its surface. A large number of books longer than this one have been written to
discuss just one or two tools or technologies associated with XML. In particular,
XML is not really one format so much as it is a meta-format with many dialects.
Syntactically, XML is a relatively simple format that defines elements with angle
bracketed tags (less-than and greater-than signs), allows attributes within tags, and
has a few other syntactic forms for special entities and directives. The user records
that appear shortly below provide a minimal example. As a rough approximation,
XML is a generalization of HTML; or more accurately, HTML is a dialect of XML
(to be pedantic, however, recent versions of HTML are not precisely XML dialects
in some technical details).

An XML dialect is usually defined by a schema that specifies exactly which tags
and attributes are permitted, and the manners in which they may nest inside
one another. A schema may also define the data type interpretation of particular
fields. Hundreds of such dialects are widely used; for example, all modern word
processors and publication systems use an XML dialect to define their documents
(with a compression layer wrapped around the underlying XML). Many other non-
document formats use XML as well, including, for example, scientific data formats.

Hierarchical Formats

[100]

Several different schema languages can be used to define particular XML dialects.
All of them are outside the scope of this book. However, as a general procedure,
validating an XML document prior to further processing it is almost always a good
idea, if a schema is available. This is closely analogous to the discussion in the
previous section about using JSON Schema, but different tools and libraries will
be used. Probably the most commonly used means of defining an XML schema is a
Document Type Definition (DTD). More modern alternatives are XML Schema and
RELAX NG. Notice that while XML Schema and RELAX NG allow the declaration
and validation of data types, I am not aware of any widely used tool or library that
uses those type declarations when converting XML into native data structures.
Validation may assure you that a given data value, for example, “looks like an
integer,” but you will still need to cast it as such within your code when you want to
use it that way.

User Records
As a small example, I will formulate one of the user records discussed in the
JSON section as an XML document. I do not here create or specify a schema, but
in principle it would be possible to have one that defined all the constraints of a
valid document. As in JSON, whitespace is not (usually) significant, but can aid
readability:

<?xml version="1.0" encoding="utf-8" ?>
<users>
 <user>
 <name>David Mertz</name>
 <password>badpassword</password>
 <details>
 <profession employer="KDM" duration="26" units="months">
 Data Scientist</profession>
 <telephone>+1 323 863 5571</telephone>
 </details>
 <lucky-numbers>
 <item>12</item>
 <item>42</item>
 <item>55</item>
 <item>87</item>
 </lucky-numbers>
 </user>
 <user> ... </user>
</users>

Chapter 2

[101]

In XML, we have a somewhat underdetermined decision about whether to put
a given datum within an element body or within an attribute. The example
shows both.

For this section, I will use the Python standard XML library ElementTree. Other APIs
exist, even within the Python standard library, and various other programming
languages have a variety of libraries and APIs available for working with XML.
ElementTree makes a reasonable compromise between feeling like Python and
feeling like XML. However, if you want to work in a more Pythonic style with XML
trees, the lxml library comes with an API called lxml.objectify.

The lxml.objectify API is, in turn, based on much earlier work by my colleague
Uche Ogbuji on Amara Bindery, and by me even earlier on gnosis.xml.objectify.
Neither of those old projects are currently maintained, but xml.objectify is very
similar and intuitive to work with. In general, lxml is a fast and well-tested XML
library, built on libxml2 and libxslt, that provides both the objectify interface and
an enhanced and faster version of ElementTree.

The two styles of data representation within an XML document is something you
need to keep in mind. There is no fundamental difference to us, as data scientists,
whether data lives in an XML attribute or is the body of an element (tag). To clarify,
a tag is the actual word inside angle brackets (e.g. <item>), while an element is
everything occurring between an opening tag and the corresponding closing tag
(e.g. <item>55</item>). Both elements and attributes can equally be useful for us.
However, in most APIs, they are accessed differently. Let us show both in a code
example:

import xml.etree.ElementTree as ET
tree = ET.parse('data/users.xml')

Let us first find the attributes and text of a profession
prof = tree.find('user').find('details').find('profession')
print("Body (title):", prof.text.strip())
print("Attributes: ", prof.attrib)

Body (title): Data Scientist
Attributes: {'employer': 'KDM', 'duration': '26', 'units': 'months'}

Within attributes, we have a perfectly regular native Python dictionary that we can
extract field values from. Notice that all keys and values are simply strings. If we
wished, for example, to treat ‘duration' as an integer, we could cast it within our
code. Additionally, we often wish to loop through elements at the same level of the
document hierarchy to treat them similarly.

Hierarchical Formats

[102]

As we saw with JSON, elements might be ragged and contain different children,
even if they share the same parent tag:

items = tree.find('user').find('lucky-numbers').findall('item')
lucky_numbers = [int(item.text) for item in items]
lucky_numbers

[12, 42, 55, 87]

Nested or recursive traversal, for example by calling .findall() at various levels
of the hierarchy, is a common approach to walking an XML document. XML
documents can be very large, and for those, an incremental approach is available in
ElementTree and other libraries. In the next section, as a slightly more fleshed out
example, we will process the same geographic data as we did in the JSON section.

Keyhole Markup Language
KML is an XML format that is generally functionally equivalent to shapefiles or
GeoJSON. As with those other formats, more specialized GIS tools will do more than
we show in this subsection. We will need to do a little bit of magic to look for tags
within the KML namespace that defines the tags within this document. We can see
that some schema and namespace information is defined at the top of the file before
we get the real “data” of the file (the "Placemark" elements):

<?xml version="1.0" encoding="utf-8" ?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Document>
 <Folder>
 <name>gz_2010_us_050_00_20m</name>
 <Schema name="gz_2010_us_050_00_20m" id="gz_2010_us_050_00_20m">
 <SimpleField name="Name" type="string"></SimpleField>
 <SimpleField name="Description" type="string"></SimpleField>
 <SimpleField name="GEO_ID" type="string"></SimpleField>
 <SimpleField name="STATE" type="string"></SimpleField>
 <SimpleField name="COUNTY" type="string"></SimpleField>
 <SimpleField name="NAME" type="string"></SimpleField>
 <SimpleField name="LSAD" type="string"></SimpleField>
 <SimpleField name="CENSUSAREA" type="float"></SimpleField>
 </Schema>
 <Placemark>
 <name>Autauga</name>
 <Style>
 <LineStyle><color>ff0000ff</color></LineStyle>

Chapter 2

[103]

 <PolyStyle><fill>0</fill></PolyStyle>
 </Style>
 <ExtendedData>
 <SchemaData schemaUrl="#gz_2010_us_050_00_20m">
 <SimpleData name="Name">Autauga</SimpleData>
 <SimpleData name="GEO_ID">0500000US01001</SimpleData>
 <SimpleData name="STATE">01</SimpleData>

... more content, eventual closing tags ...

An XML file can contain many namespaces that different tags live within. So
ElementTree allows us to define a dictionary mapping short names to namespace
URLs to allow more convenient access. We drill down a few levels, where just one
parent node occurs, to find the "Folder" that contains the "Placemark" elements
that we really care about. These were called “features" in GeoJSON:

ns = {'kml': "http://www.opengis.net/kml/2.2"}
document = ET.parse('data/gz_2010_us_050_00_20m.kml')

root = document.getroot()
kml_doc = root.find('kml:Document', ns)
folder = kml_doc.find('kml:Folder', ns)

Make sure we have the same number of counties as with GeoJSON
placemarks = folder.findall('kml:Placemark', ns)
print("Count of placemarks:", len(placemarks))
Show one Placemark element object
placemarks[0]

Count of placemarks: 3221
<Element '{http://www.opengis.net/kml/2.2}Placemark' at 0x7fe220289680>

Pulling out the somewhat obscurely nested data is a bit more work than is ideal. Let
us look at what we want from the first county child node:

The name of the county is comparatively straightforward
print("County name:", placemarks[0].find('kml:name', ns).text)

Other county info is only distinguished by attribute
sdata = (placemarks[0].find('kml:ExtendedData', ns)
 .find('kml:SchemaData', ns)
 .findall('kml:SimpleData', ns))

Hierarchical Formats

[104]

We are going to want GEO_ID, STATE and CENSUSAREA
for record in sdata:
 print(record.attrib, record.text)

County name: Autauga
{'name': 'Name'} Autauga
{'name': 'GEO_ID'} 0500000US01001
{'name': 'STATE'} 01
{'name': 'COUNTY'} 001
{'name': 'LSAD'} County
{'name': 'CENSUSAREA'} 594.436000000000035

The actual name of the county is redundantly encoded in two places. Our below
function, kml_county_summary(), should check for data integrity (that is, consistent
values). Now we need to drill into a slightly different part of the hierarchy to locate
the polygon:

coords = (placemarks[0].find('kml:Polygon', ns)
 .find('kml:outerBoundaryIs', ns)
 .find('kml:LinearRing', ns)
 .find('kml:coordinates', ns))
pprint(coords.text)

('-86.497916734108713,32.346347937379285,123.940341341309249 '
 '-86.719045580223096,32.404719907202413,124.507383406162262 '
 '-86.816062031841554,32.342711234558017,124.433184524998069 '
 '-86.891734835750142,32.50487314981855,125.151479452848434 '
 '-86.918751525796665,32.666059588245083,125.785741473548114 '
 '-86.714541775531544,32.66362459160964,125.451970156282187 '
 '-86.715371359148733,32.707584324141543,125.614226697944105 '
 '-86.414261392701192,32.709278995622782,125.144079957157373 '
 '-86.41231357529395,32.411845326016262,124.046804890967906 '
 '-86.497916734108713,32.346347937379285,123.940341341309249')

If we consult the KML documentation, we can determine that within KML, within
a "LinearRing" element, the coordinates (polygon) take the form of lon,lat[,alt]
structures separated by spaces. For our task of finding the northernmost,
southernmost, easternmost, and westernmost points—as we did in the GeoJSON
case—the altitude will not interest us. However, we do need to parse the
structured raw text to get the actual boundary. We will do that with the function
kml_extremes(). Since most of the actual logic is the same as in the GeoJSON
version in the previous section, kml_extremes() can merely massage the data
format slightly before calling the earlier extremes() function:

Chapter 2

[105]

def kml_extremes(coordinates):
 "Pass in a KML coordinates ElementTree object"
 text_points = coordinates.text.split()
 points = [p.split(',') for p in text_points]
 points = [[float(p[0]), float(p[1])] for p in points]
 # We pass a list-of-list-of-lists here
 return extremes([points])

kml_extremes(coords)

(32.70927899562278, 32.34271123455802, -86.41231357529395,
-86.91875152579667)

Next, we would like a function to produce a DataFrame from the KML data. It will
be similar to that for the GeoJSON, but digging out the data is moderately different
(and generally more cumbersome):

def kml_county_summary(placemarks, ns=ns):
 geo_id = []
 state, county_name, area = [], [], []
 north, south, east, west = [], [], [], []

 for placemark in placemarks:
 # Get county name here and below to assure consistency
 name = placemark.find('kml:name', ns).text

 # Other county info is distinguished by XML attribute
 sdata = (placemark.find('kml:ExtendedData', ns)
 .find('kml:SchemaData', ns)
 .findall('kml:SimpleData', ns))
 # We want Name, GEO_ID, STATE and CENSUSAREA
 for record in sdata:
 rectype = record.attrib['name'] # XML attrib
 if rectype == 'Name': # String 'Name' (county)
 # If name is recorded differently, problem!
 assert record.text == name
 county_name.append(name)
 elif rectype == 'GEO_ID':
 geo_id.append(record.text)
 elif rectype == 'CENSUSAREA':
 # Convert to km^2 from mi^2
 area.append(float(record.text) * 2.59)
 elif rectype == 'STATE':

Hierarchical Formats

[106]

 # District of Columbia is not a US state
 state_name = fips_map.get(int(record.text), None)
 state.append(state_name)

 # We are going to "cheat" here a little bit.
 # Sometimes a placemark has a top level <MultiGeometry>
 # with several Polygons; we will skip that calculation
 try:
 coordinates = (placemark
 .find('kml:Polygon', ns)
 .find('kml:outerBoundaryIs', ns)
 .find('kml:LinearRing', ns)
 .find('kml:coordinates', ns))
 n, s, e, w = kml_extremes(coordinates)
 except AttributeError:
 n, s, e, w = None, None, None, None

 north.append(n); south.append(s);
 east.append(e); west.append(w)

 df = pd.DataFrame({
 'geo_id': geo_id, 'state': state,
 'county': county_name, 'area': area,
 'northmost': north, 'southmost': south,
 'eastmost': east, 'westmost': west
 })
 return df.set_index('geo_id')

We can convert the KML hierarchy into a tidy data frame. Working with XML is
often persnickety; often the main cause of this is not the physical format per se, but
a tendency among creators of XML dialects to nest elements especially deeply and
utilize very complex schemata. That is somewhat the case with this KML example.

Chapter 2

[107]

kml_counties = kml_county_summary(placemarks)
kml_counties

 state county area northmost
geo_id
0500000US01001 Alabama Autauga 1539.58924 32.709279
0500000US01009 Alabama Blount 1669.96984 34.261131
0500000US01017 Alabama Chambers 1545.01529 33.109960
0500000US01021 Alabama Chilton 1794.49186 33.073731
...
0500000US51021 Virginia Bland 926.50775 37.295189
0500000US51027 Virginia Buchanan 1302.15617 37.539502
0500000US51037 Virginia Charlotte 1230.95189 37.250505
0500000US51041 Virginia Chesterfield 1096.33923 37.564372

 southmost eastmost westmost
geo_id
0500000US01001 32.342711 -86.412314 -86.918752
0500000US01009 33.767154 -86.304677 -86.964531
0500000US01017 32.730429 -85.124537 -85.594308
0500000US01021 32.663625 -86.376119 -87.020318

0500000US51021 36.954152 -80.855694 -81.463294
0500000US51027 37.043415 -81.739470 -82.306981
0500000US51037 36.699679 -78.444320 -78.905600
0500000US51041 37.224467 -77.245139 -77.856138

3221 rows × 7 columns

Let us now make a great leap forward to the hundred flowers that make up
configuration formats.

Hierarchical Formats

[108]

Configuration Files
The wonderful thing about standards is that there are so many of them to choose
from.
–Grace Murray Hopperattrib

Concepts:

•	 A surfeit of slightly different formats
•	 Namespaces may simulate hierarchy
•	 INI and TOML
•	 YAML

Small data often lives in configuration files. Probably the most popular of these, at
least for programming projects, is now YAML Ain’t Markup Language; formerly
Yet Another Markup Language (YAML). The informal INI format is also common,
especially in the Windows world (but mostly in older software). Tom’s Obvious,
Minimal Language (TOML) is very similar to INI, but contains a few enhancements
and a stricter definition. Sometimes JSON or XML are also used for the same
purpose, although both are distinctly less human-editable. The greatest difficulty
comes with numerous software projects that have, for various reasons (few of them
good), adopted their own custom configuration format.

These configuration formats typically have a certain degree of hierarchy. Depending
on the format, this hierarchy might be of fixed or unlimited depth. However, most
formats allow unlimited nesting, and hence crawling them is similar to techniques
we saw with JSON and XML.

attrib

The provenance of this quote is uncertain, though widely
attributed to Admiral Hopper. It is sometimes also credited to
Andrew Tanenbaum, Patricia Seybold, or Ken Olsen. The first
of these did, indeed, use it in his Computer Networks (1981), but
perhaps not as an original comment.

Chapter 2

[109]

INI and Flat Custom Formats
The exceptions to unlimited depth seem to be either env (.env) files—which are also
an informal convention rather than a standard—and INI files. Env files are (usually)
not actually hierarchical at all, but are simply assignments of values to names in a
flat fashion. Sometimes this can be identical to defining environment variables in a
shell configuration, but often the need for quoting a value containing whitespace is
omitted and character escaping rules can vary. An INI file is often taken to allow a
single level of hierarchy between the sections marked with square brackets ([and])
and assignments marked with a name and equals sign on a single line. Let us look
at a simple INI example given in the Wikipedia article on INI files:

; last modified 1 April 2001 by John Doe
[owner]
name=John Doe
organization=Acme Widgets Inc.

[database]
; use IP address in case network name resolution is not working
server=192.0.2.62
port=143
file="payroll.dat"

At times, INI files simulate deeper hierarchies by, in concept, namespacing their
section names. So such a file might contain the sections [owner.database.systems]
and [owner.vcs.developers], which could be manually decoded into a hierarchy of
“owners.” The Python standard library comes with a parser for this format called
configparser. This is one of the older modules in the standard library, and its API
is a bit creaky:

import configparser
cfg = configparser.ConfigParser()
cfg.read('data/example.ini')

print("Sections: ", cfg.sections())
print("Owner keys: ", [k for k in cfg['owner']])
print("Owner/name: ", cfg['owner']['name'])
print("Port #: ", cfg['database'].getint('port'))

Sections: ['owner', 'database']
Owner keys: ['name', 'organization']
Owner/name: John Doe
Port #: 143

https://en.wikipedia.org/wiki/INI_file

Hierarchical Formats

[110]

Data typing is limited as well. The special methods .getboolean(), .getint(), and
.getfloat() simply do the equivalent of the obvious type constructors. However,
Booleans, as cast with the methods, are case-insensitive and recognize yes/no, on/
off, true/false, and 1/0.

While this API is not the most natural, at least the module exists. When tools define
their own formats, you may need to drop to the level of manual text processing,
such as is discussed in Chapter 3, Repurposing Data Sources, in the section Custom Text
Formats. For example, on my system, the archaic text-based web browser w3m has a
custom configuration format in $HOME/.w3m/config that contains lines such as these
(and about 150 others):

tabstop 8
display_charset UTF-8
cookie_avoid_wrong_number_of_dots
accept_encoding gzip, compress, bzip, bzip2, deflate
extbrowser7 wget -c
extbrowser8 url=%s && printf %s "$url" | xsel && printf %s "$url" |
xsel -b & ssl_ca_path /etc/ssl/certs

In general, it appears that the key is some alphanumeric characters followed by a
space. But what comes next might be nothing at all; it might be a string or a number,
it might be a comma-separated list with more spaces, or it might even be a shell
command that involves pipes, processes, and so on. If we wanted to analyze a
million users’ config files, we would need to use a number of manual heuristics, or
find explicit documentation of what values each key can take (if such documentation
exists).

TOML
TOML formalizes a number of conventions that have been used by various
tools utilizing their own INI format. Sections are marked in the same fashion,
but may be nested for indefinite hierarchy. A reasonable range of data types are
formally specified by the parser. Not every data structure can be represented
straightforwardly in TOML, but most of the most common ones can be. A great
many programming languages have libraries supporting TOML, albeit as of this
writing, some are only at the v0.5.0 level of support rather than v1.0.0-rc.1 (but the
differences are very small).

Chapter 2

[111]

The following is an example given in the TOML documentation:

This is a TOML document.

title = "TOML Example"

[owner]
name = "Tom Preston-Werner"
dob = 1979-05-27T07:32:00-08:00 # First class dates

[database]
server = "192.168.1.1"
ports = [8001, 8001, 8002]
connection_max = 5000
enabled = true

[servers]

 # Indentation (tabs and/or spaces) is allowed but not required
 [servers.alpha]
 ip = "10.0.0.1"
 dc = "eqdc10"

 [servers.beta]
 ip = "10.0.0.2"
 dc = "eqdc10"

[clients]
data = [["gamma", "delta"], [1, 2]]

Line breaks are OK when inside arrays
hosts = [
 "alpha",
 "omega"
]

Hierarchical Formats

[112]

Having a formal parser available avoids a great deal of the manual logic of custom
formats. Moreover, the API here is quite modern in that it simply converts a
configuration file to a native data structure, with no need for unusual special
methods to get at the underlying data. Having native support for a datetime data
type is a handy convenience (which JSON lacks); strings, numbers (float/int), lists,
and dictionaries are supported. The top level of every TOML document is always
a mapping; however, that might be represented in a particular programming
language. Let us take a look at an example:

import toml
toml.load(open('data/example.toml'))

{'title': 'TOML Example',
 'owner': {'name': 'Tom Preston-Werner',
 'dob': datetime.datetime(1979, 5, 27, 7, 32, tzinfo=<toml.tz.TomlTz
object at 0x7fe20bc4e490>)},
 'database': {'server': '192.168.1.1',
 'ports': [8001, 8001, 8002],
 'connection_max': 5000,
 'enabled': True},
 'servers': {'alpha': {'ip': '10.0.0.1', 'dc': 'eqdc10'},
 'beta': {'ip': '10.0.0.2', 'dc': 'eqdc10'}},
 'clients': {'data': [['gamma', 'delta'], [1, 2]],
 'hosts': ['alpha', 'omega']}}

One big advantage of having a parser available is that typically it will report
(relatively) helpfully on what went wrong. I created a slightly wrong version of the
same TOML file, intended to resemble errors human typists might often make. The
error message itself does not, perhaps, provide complete clarity about what went
wrong; at least it tells us where to look for it though:

with open('data/example-bad.toml') as fh:
 try:
 cfg = toml.load(fh)
 except Exception as err:
 print_err(err)

TomlDecodeError
invalid literal for int() with base 0: '2] []
hosts = ["alpha"' (line 27 column 1 char 433)

Chapter 2

[113]

Let us print part of the TOML file:

!cat -n data/example-bad.toml | tail -8

 26 [clients]
 27 data = [["gamma", "delta"], [1, 2] []
 28
 29 # Line breaks are OK when inside arrays
 30 hosts = [
 31 "alpha",
 32 "omega"
 33]

With human eyes, we can detect the problem easily enough. Line 27 has some
formatting problems, although exactly what was intended is not entirely obvious.
Generally, manual remediation is required to reconstruct the original intention.

Just to demonstrate another programming language, reading TOML into R is very
similar. Specifically, this also gives us a (nested) native data structure with a single
call:

%%R
library(RcppTOML)
parseTOML("data/example.toml")

List of 5
 $ clients :List of 2
 ..$ data :List of 2
 $: chr [1:2] "gamma" "delta"
 $: int [1:2] 1 2
 ..$ hosts: chr [1:2] "alpha" "omega"
 $ database:List of 4
 ..$ connection_max: int 5000
 ..$ enabled : logi TRUE
 ..$ ports : int [1:3] 8001 8001 8002
 ..$ server : chr "192.168.1.1"
 $ owner :List of 2
 ..$ dob : POSIXct[1:1], format: "1979-05-27 15:32:00"
 ..$ name: chr "Tom Preston-Werner"
 $ servers :List of 2
 ..$ alpha:List of 2
 $ dc: chr "eqdc10"
 $ ip: chr "10.0.0.1"
 ..$ beta :List of 2

Hierarchical Formats

[114]

 $ dc: chr "eqdc10"
 $ ip: chr "10.0.0.2"
 $ title : chr "TOML Example"

Yet Another Markup Language
YAML occupies a similar space as JSON and XML, but with a heavy emphasis on
human readability and editability. Both of the latter had an initial impetus, in part,
to be human-readable and editable formats, but neither succeeds well in such a goal;
yes they are textual, but for both it is easy to make subtle syntax or grammatical
mistakes. YAML comes much closer.

In their basic form, YAML documents are quite readable and present an intuitive
view of their structure. Things can get more complicated with tags and directives,
and by the time you get to language-specific schemata, much of the generic
readability is diminished. However, 99% of YAML documents utilize only the
very accessible subset that remains simple, yet powerful. Let us look at an example
adapted from the YAML tutorial:

invoice: 34843
date : 2001-01-23
bill-to: &id001
 given : Chris
 family : Dumars
 address:
 lines: |
 458 Walkman Dr.
 Suite #292
 city : Royal Oak
 state : MI
 postal : 48046
ship-to: *id001
product:
 - sku : BL394D
 quantity : 4
 description : Basketball
 price : 450.00
 - sku : BL4438H
 quantity : 1
 description : Super Hoop
 price : 2392.00
tax : 251.42
total: 4443.52

Chapter 2

[115]

comments:
 Late afternoon is best.
 Backup contact is Nancy
 Billsmer @ 338-4338.

There are a few subtleties in this simple document. A very large variety of data types
are recognized based on syntactic patterns, much as we can spell constants of many
types in programming languages, which a parser distinguishes. Quoting is rarely
needed, but is permitted (for example, if a string happens to contain numeric digits
only, and you do not wish it to be treated as a number).

The overall structure of this document is a mapping from several names to their
values. In some cases, those values are themselves sequences or mappings, in
other cases they are scalars. Strings may be multiline, with a pleasant subtlety that
beginning with a pipe (|) indicates that newlines should be preserved (but other
indentation is ignored). The address lines in the above example show this. In the
case of the key comments, the string occupies multiple lines, but newlines are not
preserved.

A powerful feature is the availability of anchors and references. These are vaguely
inspired by C-family languages that have references and pointers. The idea is that a
fragment of a document may be named (an anchor) and referenced elsewhere. This
avoids repetition but also, more importantly, assures consistency in the contents.
We see this where a person with an address is defined in relation to bill-to but
referenced under the key ship-to.

Let us see what the data looks like when read into native Python data structures:

import yaml
order = yaml.load(open('data/example.yaml'))
order

{'invoice': 34843,
 'date': datetime.date(2001, 1, 23),
 'bill-to': {'given': 'Chris',
 'family': 'Dumars',
 'address': {'lines': '458 Walkman Dr.\nSuite #292\n',
 'city': 'Royal Oak',
 'state': 'MI',
 'postal': 48046}},
 'ship-to': {'given': 'Chris',
 'family': 'Dumars',
 'address': {'lines': '458 Walkman Dr.\nSuite #292\n',
 'city': 'Royal Oak',

Hierarchical Formats

[116]

 'state': 'MI',
 'postal': 48046}},
 'product': [{'sku': 'BL394D',
 'quantity': 4,
 'description': 'Basketball',
 'price': 450.0},
 {'sku': 'BL4438H',
 'quantity': 1,
 'description': 'Super Hoop',
 'price': 2392.0}],
 'tax': 251.42,
 'total': 4443.52,
 'comments': 'Late afternoon is best. Backup contact is Nancy Billsmer
@ 338-4338.'}

As with TOML, dates are handled natively. The anchor and reference are expanded
into references to the same nested dictionary. Some numbers are parsed as floats,
others as ints, using the same spelling rules as most programming languages. Notice
that an initial dash introduces an item of a sequence/list as opposed to a key in a
mapping/dictionary. Look back at the YAML version of the invoice to see this.

We can verify that referenced objects are simply references, not full copies:

Is nested dict same object under different keys?
order['ship-to'] is order['bill-to']

True

Remember that several different enhancements are used to enable JSON streaming,
the most common being JSON Lines. YAML thought of this in its initial design, and
inherently builds in specific elements for multiple documents in the same stream,
while still allowing each component document to use whatever whitespace makes
it the most readable (obviously, subject to the grammar of YAML, but it is flexible).
For example, here is a single file that contains multiple documents; it could equally
be any other Python file-like object with a .read() method though (i.e. including an
infinite stream):

%YAML 1.1

YAML can contain comments like this
name: David

Chapter 2

[117]

age: 55

name: Mei
age: 50 # Including end-of-line

name: Juana
age: 47
...

name: Adebayo
age: 58
...

The version directive at the start is optional, but is good practice. Three dashes
alone on a line indicate the start of a document. Starting a new document suffices to
indicate the last one has ended. However, three dots are also available to explicitly
mark the end of a document. We might loop through these multiple documents,
and process each one in some manner, as in the code below. In a data science
context, we generally expect each document to contain similar structure and
“fields,” but that is not a constraint of the YAML format itself:

with open('data/multidoc.yaml') as stream:
 docs = yaml.load_all(stream)
 print(docs, '\n')
 for doc in docs:
 print(doc)

<generator object load_all at 0x7fe20bc2edd0>

{'name': 'David', 'age': 55}
{'name': 'Mei', 'age': 50}
{'name': 'Juana', 'age': 47}
{'name': 'Adebayo', 'age': 58}

As we discussed with TOML, one of the biggest advantages to working with
a formally specified format with developed tools—even, or especially, if it is a
format often manually edited by humans—is that parsers will hopefully produce
meaningful messages about formatting problems without us needing to catch them
manually:

Hierarchical Formats

[118]

try:
 yaml.load(open('data/example-bad.yaml'))
except Exception as err:
 print_err(err)

ScannerError
mapping values are not allowed here in "data/example-bad.yaml", line
17, column 31

With the error message in hand, we might look at the portion of the document that
indicates a problem. It is not too difficult to identify the problem on line 17. In this
case, the error is intentionally obvious:

%%bash
cat -n data/example-bad.yaml | sed '15,19p;d'

 15 - sku : BL394D
 16 quantity : 4
 17 description : Basketball: ERROR
 18 price : 450.00
 19 - sku : BL4438H

Similarly, if we try to parse a YAML stream, it will succeed up until the point that it
encounters the bad document. This has to be true, since the grammatically incorrect
document in the stream is not even read until the iterator gets to it. We can confirm
this by trying to print out each document as it is read:

try:
 for doc in yaml.load_all(open('data/multidoc-bad.yaml')):
 print(doc)
except Exception as err:
 print_err(err)

{'name': 'David', 'age': 55}
{'name': 'Mei', 'age': 50}
ScannerError
mapping values are not allowed here in "data/multidoc-bad.yaml",
line 10, column 12

We have looked at the most important configuration file formats; let us return to big
data.

Chapter 2

[119]

NoSQL Databases
Das ist nicht nur nicht richtig; es ist nicht einmal falsch!
–Wolfgang Paulinot wrong

Concepts:

•	 Graph databases
•	 Document-oriented databases
•	 Missing fields in ragged documents
•	 Denormalization and data integrity
•	 Key/value stores
•	 Informal hierarchies

A number of database systems avoid the relational model, usually with the goal of
better performance within a particular domain. As well, many RBDMSs now include
JSON and XML data types. In overview, these systems break down into document-
oriented databases, graph databases, and key/value stores. Specific server software
may combine elements of these—or indeed elements of relational databases—and the
specific performance characteristics, design philosophy, and general limitations vary
among each project.

Most “NoSQL” database systems have a prominent attribute suggested by the
moniker; namely, using query languages other than SQL. However, even there,
some of them nonetheless implement at least a subset of SQL as a method of
accessing data. These other query languages are sometimes unique to a particular
database system, but in some cases are somewhat standardized. For example, the
graph query languages Gremlin, SPARQL (SPARQL Protocol and RDF Query
Language), and GQL (Graph Query Language; formerly Cypher) are each supported
by several different database systems. Among open source graph databases, the most
well known are perhaps Neo4j and OrientDB, but numerous others exist, including
many proprietary ones.

not wrong

In English: “That is not only not right; it is not even wrong.” Pauli’s
colorful phrase is usually circulated simply as the description
“not even wrong.” In general understanding, his intent is taken as
meaning “unfalsifiable.”

Hierarchical Formats

[120]

Beyond mentioning here that they exist, I will not discuss in this book anything
specific about data cleanliness issues that are characteristic of graph databases. The
types of data analyses performed on graphs are typically somewhat specialized and
outside the scope of what I can discuss here. But you may encounter data in these
formats. I will discuss in somewhat more detail document-oriented databases and
key/value stores, both of which you are more likely to find yourself working with
(for most readers; individual needs and jobs vary, of course).

In broad concept, graph databases consist of nodes, and edges that connect nodes;
both nodes and edges can usually hold attributes or properties, either freeform per
object or defined by a schema. For example, the node representing me might contain
my name (“David”), my occupation (“Data Scientist”), and my current home state
(“Maine”). In turn, I have a “social graph” that includes my connection/edge labeled
“Friend” (that perhaps contains other properties) to the node “Brad.” I also have a
connection labeled “Publisher” to the node “Packt.” A complete social graph may
consist of millions of nodes and edges, with various attributes attached to each.

A small illustration in the public domain was created by user Ahzf for the
Wikimedia Commons:

Figure 2.2: Example of a social graph. Source: https://commons.wikimedia.org/wiki/
File:GraphDatabase_PropertyGraph.png

Chapter 2

[121]

Document-Oriented Databases
Document-oriented databases typically store and communicate their data using
XML, JSON, or Binary JSON (BSON). In a sense, you can think of these databases
simply as single giant files in one of these formats, which just happen to have
mechanisms to index and optimize queries into them. In actual implementation, this
will not be true, but as a conceptual model it does not go far astray. The key thing
to understand in document-oriented databases is that their data is hierarchically
organized. This can make some access patterns very efficient, but it comes with all
the same pitfalls as other hierarchical formats.

Popular open source document-oriented databases include MongoDB, CouchDB,
CrateDB, Elasticsearch, and Solr. This software space is well occupied, and a large
number of other tools, both open source and proprietary, are not included in my list.
In broad concept, especially in terms of data cleanliness concerns, these different
projects are similar.

The main pitfall in hierarchical data is simply that it is ragged. Particular fields
at particular levels of nesting might be missing. Let us illustrate with an example
inspired by a MongoDB blog post about restaurants with reviews. For these
illustrations we use MongoDB, which is based around JSON. The same concepts
would apply to any document-oriented database. As with other examples in this
book, security configuration and login credentials will be part of normal usage,
but are not addressed here:

Assume that MongoDB is running on local system
from pymongo import MongoClient
client = MongoClient('mongodb://localhost:27017')

We can check what databases exist on this server. Other than "business", the
others are administrative in nature, and simply exist by default on every MongoDB
installation.

What databases exist on the local server?
client.database_names()

['admin', 'business', 'config', 'local']

The "business" database has two branches at its top level: one for reviews, another
for info.

A document-oriented database is typically organized in a hierarchy
of server → database → collection → document. For comparison,
a relational database is organized as server → database → table →
row.

Hierarchical Formats

[122]

Let us look at a few documents from each. General "info" on the first few
restaurants:

db_biz = client.business
print("Restaurants:", db_biz.info.count())
for biz in db_biz.info.find(limit=3):
 pprint(biz)

Restaurants: 50
{'_id': ObjectId('5f30928db504836031a2c2a1'),
 'cuisine': 'Mexican',
 'name': 'Kitchen Tasty Inc.',
 'phone': '+1 524 555 9265'}
{'_id': ObjectId('5f30928db504836031a2c2a2'),
 'cuisine': 'Sandwich',
 'name': 'Sweet Salty Take-Out',
 'phone': '+1 408 555 6924'}
{'_id': ObjectId('5f30928db504836031a2c2a3'),
 'cuisine': 'Vegetarian',
 'name': 'City Kitchen Inc.',
 'phone': '+1 528 555 8923'}

Similarly, here are the first few reviews. Each review pertains to one of the listed
restaurants in the "info" branch:

print("Reviews:", db_biz.reviews.count())
for review in db_biz.reviews.find(limit=3):
 pprint(review)

Reviews: 5000
{'_id': ObjectId('5f30928db504836031a2c2d3'),
 'name': 'Tasty Sweet Inc.',
 'price': 'cheap',
 'rating': 1}
{'_id': ObjectId('5f30928db504836031a2c2d4'),
 'name': 'Big Big Restaurant',
 'price': 'cheap',
 'rating': 6}
{'_id': ObjectId('5f30928db504836031a2c2d5'),
 'name': 'Goat Big Take-Out',
 'price': 'reasonable',
 'rating': 8}

Chapter 2

[123]

We might make a more specific inquiry. For example, perhaps we are interested
in those reviews of "City Kitchen Inc." that consider the price "cheap". We can
see that different diners who evaluated the price the same rated the restaurant
differently. In principle, other data might be attached to each of these documents,
of course. MongoDB’s query language is itself expressed as JSON (or as Python
dictionaries from the Python interface):

query = {'price': 'cheap', 'name': 'City Kitchen Inc.'}
for review in db_biz.reviews.find(query, limit=4):
 pprint(review)

{'_id': ObjectId('5f30928db504836031a2c2ea'),
 'name': 'City Kitchen Inc.',
 'price': 'cheap',
 'rating': 3}
{'_id': ObjectId('5f30928db504836031a2c435'),
 'name': 'City Kitchen Inc.',
 'price': 'cheap',
 'rating': 7}
{'_id': ObjectId('5f30928db504836031a2c553'),
 'name': 'City Kitchen Inc.',
 'price': 'cheap',
 'rating': 3}
{'_id': ObjectId('5f30928db504836031a2c5d6'),
 'name': 'City Kitchen Inc.',
 'price': 'cheap',
 'rating': 1}

Missing Fields
In our general preview of the "business" database, everything was completely
regular. We might jump into writing some code that crawls through records of
a certain sort, perhaps matching a certain filter, with the intention of performing
aggregation or modeling on corresponding data fields. For example, perhaps we
would like to generate a histogram of the ratings given to "City Kitchen Inc.". The
danger here is that some reviews might not have ratings, which we handle below
using a try/except block:

ratings = []
query = {'name': 'City Kitchen Inc.'}
for review in db_biz.reviews.find(query):
 try:

Hierarchical Formats

[124]

 ratings.append(review['rating'])
 except KeyError:
 pass

n = len(ratings)
pd.Series(ratings).plot(kind="hist", title=f"{n} ratings");

Figure 2.3: Histogram of ratings and their frequencies

We can see what is missing if we ask MongoDB for the actual number of rows. Our
loop indeed skipped some data:

db_biz.reviews.find({'name': 'City Kitchen Inc.'}).count()

110

MongoDB—or any other hierarchical database (with perhaps some variation in
API)—will let you match documents based on missing fields. In this small example,
there is not that much other data in each document to consider, but in real-world
cases, there might be many, and diverse, fields in similar documents. Let us list the
reviews that do not have an associated rating:

list(db_biz.reviews.find({'name': 'City Kitchen Inc.', 'rating':
None}))

[{'_id': ObjectId('5f30928db504836031a2c3fa'),
 'name': 'City Kitchen Inc.',
 'price': 'expensive'},

Chapter 2

[125]

 {'_id': ObjectId('5f30928db504836031a2c6b6'),
 'name': 'City Kitchen Inc.',
 'price': 'reasonable'}]

Whether or not you need to worry about these two reviews with missing ratings is
problem- and domain-driven. You might want to ignore them. You might want to
perform techniques such as those discussed in Chapter 5, Data Quality, and Chapter 6,
Value Imputation. In any event, you should be conscious of the fact that your data is
incomplete.

Denormalization and Its Discontents
For performance reasons that are analogous to those in relational databases,
sometimes data is denormalized in document-oriented databases. Querying within
one branch will be faster, and querying just one document will be much faster again.
Hence, administrators of document-oriented databases will commonly duplicate
information into a location “closer” to where it is typically accessed.

In querying a document-oriented database, we might use code similar to this:

def has_best_review(name, db=db_biz):
 "Return phone if restaurant has at least one 10 rating"
 query = {'name': name, 'rating': 10}
 review = None

 # Fast path has phone in local results
 for review in db.reviews.find(query):
 phone = review.get('phone')
 if phone:
 return f"Call {name} at {phone}! (FAST query)"

 # If there were no ratings of 10, we don't like it!
 if not review:
 return f"Do not bother with {name}!"

 # MUCH SLOWER path is second query
 info = db.info.find_one({'name': name})
 return f"Call {name} at {info['phone']}! (SLOW query)"

Perhaps when a review is consulted numerous times (for example, if it had an actual
description field), the database administrator may cache the phone number that is
usually wanted within the actual review document.

Hierarchical Formats

[126]

Let us see how several inquiries behave:

has_best_review('Salty Big Take-Out')

'Call Salty Big Take-Out at +1 354 555 8317! (FAST query)'

has_best_review('City Kitchen Inc.')

'Call City Kitchen Inc. at +1 528 555 8923! (SLOW query)'

has_best_review('Out of Business')

'Do not bother with Out of Business!'

On its face, this all seems like reasonable performance optimization. The problem
is that duplicated information is information that might be inconsistent. Here we will
use the database itself to look for non-absent fields (the example function could be
improved using this query element also):

query = {'name': 'Salty Big Take-Out',
 'rating': 10, 'phone':{"$ne":None}}

db_biz.reviews.find_one(query)

{'_id': ObjectId('5f30928db504836031a2c7c9'),
 'name': 'Salty Big Take-Out',
 'price': 'reasonable',
 'rating': 10,
 'phone': '+1 354 555 8317'}

However, let us take a look at the "info" branch for this restaurant rather than the
"reviews" branch we have focused on so far:

db_biz.info.find_one({'name': 'Salty Big Take-Out'})

{'_id': ObjectId('5f30928db504836031a2c2aa'),
 'name': 'Salty Big Take-Out',
 'cuisine': 'Mexican',
 'phone': '+1 967 555 5487'}

At this point, we are faced with a data integrity problem. Presumably, at some point
the telephone number was copied into the review document. It is plausible that the
phone number was copied from the "info" branch to the "reviews" branch at the
time the review was created (or maybe on the thousandth access to it?); that would
suggest that the "info" branch is more current. However, it is also possible that the
phone number was entered with the review itself as an option.

Chapter 2

[127]

Determining the cause of the data integrity problem, unfortunately, depends on
understanding not only the code that might have run in the past, but also even the
human or automated entry processes that might have occurred.

Key/Value Stores
The simplest possible database system is a key/value store. These systems do
nothing more than map some key (usually a string) to a value (sometimes a string,
sometimes compound types). Often these systems are used as in-memory data stores
to allow the fastest possible access, often as a form of caching. However, most of the
systems that usually operate in-memory—including among distributed servers—also
have some persistence mechanism such as virtual memory or snapshotting. Other
variations of key/value stores are primarily on-disk formats, but they might in turn
reside primarily in cache memory, hence achieving similar speed.

Redis (Remote Dictionary Server) and Memcached are popular in-memory systems
(with persistence mechanisms on the side). Memcached, as its name suggests,
is most commonly used as a cache, and is hence much less commonly a “source
of knowledge.” That is, a cache frequently sits between a client and a server and
simply records the previous result from a client. If an identical request occurs again
(possibly limited to some “staleness” period) then the complex database query,
difficult computation, or access to additional resources external to the server can be
skipped and the cached result is returned instead. Redis is sometimes used this way,
but is also often used as a definitive or sole source of knowledge for some element
of the data needed by a server.

To illustrate this caching in pseudo-code, a server proxy might contain code similar
to this:

request = get_client_request()
key = hash(request) # Collision resistant hash

See if FAST PATH is available
if result := check_for_cache(key):
 send_to_client(result)

SLOW PATH as fallback
else:
 result = expensive_operation(request)
 send_to_client(result)
 store_to_cache(key, result, expiration=duration)

Hierarchical Formats

[128]

Other key/value stores are derived from the early Unix Database Manager (DBM)
system. These include Lightning Memory-Mapped Database (LMDB), GNU dbm
(GDBM), and Berkeley DB. All of these simply map byte strings to other byte
strings, without addressing more complex data structures. In contrast, for example,
Redis allows for values to have a rich collection of data types, including collections
allowing nesting. In practice, however, bytes are sufficient to hold any kind of data;
it is just a matter of those bytes representing some serialization format, such as JSON
text or Python pickles (the Python shelve module, for example, is basically just DBM
coupled with pickles).

Being primarily single files on disk that store key/value pairs, DBM-family libraries
occupy a similar application space with SQLite single-file databases. Both are a way
to encapsulate related data into a format that can be read universally and depends
only on a single file to be shared. Obviously, the manner of use is different between
relational and key/value stores, but the same information can easily be represented
in either, and both provide their own kind of querying and updating interfaces.

In a sense, key/value stores are simple enough that they do not lend themselves
to data integrity problems. Obviously, it is always possible to store values that are
simply wrong no matter what format is used. But there is nothing in the structure of
a mapping itself that adds special concerns. Or so it would seem.

Problems arise in practice because users actually want hierarchy in their data. Most
keys are not useful as completely flat names. Developers commonly invent ad
hoc hierarchies in the keys used within key/value stores; this is not necessarily or
usually a bad habit by developers, it usually reflects a genuine requirement of the
problem space. However, these hierarchies can be especially fragile.

For example, I have created a DBM file that contains similar information to the
restaurant database discussed above in its MongoDB format. The hierarchy of
branches is represented here using namespacing of the keys with delimiters. This
approach is quite commonplace among creators of key/value store systems. Let us
look at a few of the keys in this key/value store. I have used a random seed that
happens to sample some keys of interest:

biz = dbm.open('data/keyval.db')
seed(6)
Keys are bytes; could convert to strings if desired
sample(list(biz.keys()), 10)

[b'Big Sweet Take-Out::info::phone',
 b'Big Sweet Inc.::ratings',
 b'Goat Sweet Inc.::info::phone',
 b'Fish City Restaurant//ratings',
 b'Delight Goat Inc.::ratings',

Chapter 2

[129]

 b'DESCRIPTION',
 b'Salty Delight Take-Out::ratings',
 b'Sweet Tasty Restaurant::info::phone',
 b'Delight Salty Restaurant::info::phone',
 b'Tasty Fish Inc.::info::cuisine']

We can query on various informally hierarchical keys.

name = b"Tasty Fish Inc."
print("Overview:", biz[b"DESCRIPTION"])
print("Cuisine: ", biz[name + b"::info::cuisine"])
print("Ratings: ", biz[name + b"::ratings"][:30], "...")

Overview: b'Restaurant information'
Cuisine: b'Mexican'
Ratings: b'2;1;1;10;5;7;1;4;8;10;7;7;6;8;' ...

As is common, I have created an informal sequence in the "ratings" value by using
delimiters. Consumers of the data will simply have to be aware that a particular
value is formatted that way. We might even use a small amount of code to pull
related keys out from the ad hoc hierarchy:

for key, val in biz.items():
 if key.startswith(b'Tasty Fish Inc.::'):
 print(key.decode(), '\t', val[:30].decode())

Tasty Fish Inc.::ratings 2;1;1;10;5;7;1;4;8;10;7;7;6;8;
Tasty Fish Inc.::info::phone +1 935 555 8029
Tasty Fish Inc.::info::cuisine Mexican

The main problem that arises here is that over the course of using the database, an
inconsistent convention for hierarchical keys was used. This is a general concern,
and occurs frequently in real data; it is probably especially prominent in multi-user,
multi-consumer systems like Redis that are likely to communicate with tools written
by many people, in many languages, over time. Data integrity failures just tend to
seep in. For example:

for key, val in biz.items():
 if key.startswith(b'Fish City Restaurant'):
 print(key, val[:30])

b'Fish City Restaurant::ratings' b'6;10;4;3;10;5;1;4;7;8;5;2;1;5;'
b'Fish City Restaurant//ratings' b'9'
b'Fish City Restaurant::info::phone' b'+1 851 555 1082'
b'Fish City Restaurant::info::cuisine' b'American'

Hierarchical Formats

[130]

Although the intent of the differently delimited hierarchical keys is easy to discern
as human readers, detecting such inconsistencies can be laborious, and you risk
missing information with inadequate remediation. For these types of key/value
stores, if you need to utilize their data source, a good first examination is to analyze
the structure of keys themselves. They will not always utilize an ad hoc hierarchy,
but doing so is frequent. Even if there are millions of keys rather than the hundreds
in my example, that initial approach can at least assure that consistent path
components exist using consistent delimiters (or other formatting of keys).

We have covered a large number of different hierarchical formats, and even so
left out much possible discussion of others. An in-depth look at graph databases
will need to live in a different book. Also, many volumes have been written on the
myriad APIs and dialects of XML that this chapter only gestures at. However, I hope
this has given you a feel for the kinds of concerns that arise with this family of data
sources.

Exercises
The first exercise here deals with refining the processing of the geographic data that
is available in several formats. The second exercise addresses moving between a
key/value and a relational model for data representation.

Exploring Filled Area
Using the United States county data, we created tidy data frames that contained the
extents of counties as simple cardinal direction limits; we also were provided with
the “census area” of each county. Unfortunately, the data available here does not
specifically address water bodies and their sizes, which might be relevant to some
counties.

The census data can be found at:

https://www.gnosis.cx/cleaning/gz_2010_us_050_00_20m.json

https://www.gnosis.cx/cleaning/gz_2010_us_050_00_20m.kml

https://www.gnosis.cx/cleaning/gz_2010_us_050_00_20m.zip

In this exercise, you will create an additional column in the data frame illustrated in
the text to hold the percentage of the “bounding box” of a county that is occupied
by the census area. The trick, of course, is that the surface area enclosed by latitude/
longitude corners is not a simple rectangle, nor even a trapezoid, but rather a portion
of a spherical surface. County shapes themselves are typically not rectangular, and
may include discontiguous regions.

https://www.gnosis.cx/cleaning/gz_2010_us_050_00_20m.json
https://www.gnosis.cx/cleaning/gz_2010_us_050_00_20m.kml
https://www.gnosis.cx/cleaning/gz_2010_us_050_00_20m.zip

Chapter 2

[131]

To complete this exercise, you may either reason mathematically about this area
(the simplifying assumption that the Earth is a sphere is acceptable) or identify
appropriate GIS software to do this calculation for you. The result of your work
will be a data frame like that presented in the chapter, but with a column called
"occupied" that contains 3221 floating-point values between 0 and 1.

For extra credit, you can investigate or improve a few additional data integrity
issues. The shapefile in the ZIP archive is the canonical data provided by the US
Census Bureau. The code we saw in this chapter to process GeoJSON and KML
actually produces slightly different results for latitude/longitude locations, at the
third decimal place. Presumably, the independent developer whom I downloaded
these conversions from allowed some data error to creep in somehow. Diagnose
which version, if either, matches the original .shp file, and try to characterize the
reason for and degree of the discrepancy.

For additional extra credit, fix the kml_county_summary() function presented in
this chapter so that it correctly handles <MultiGeometry> county shapes rather than
skipping over them. How often did this problem occur among the 3221 United
States counties?

Create a Relational Model
The key/value data in the DBM restaurant data is organized in a manner that might
provide very fast access in Redis or similar systems. But there is certainly a mismatch
with the implicit data model. Keys have structure in their hierarchy, but it is a finite
and shallow hierarchy. Values may be of several different implicit data types; in
particular, ratings are stored as strings, but they really represent sequences of small
integer values. Other fields are simple strings (albeit stored as bytes in the DBM).

The dbm module in the shown example uses Python’s fallback “dumb DBM” format,
which does not depend on external drivers like GDBM or LDBM. For the example
with hundreds of records, this is quite fast; if you wished to use millions of records,
other systems would scale well and are preferred. This “dumb” format actually
consists of three separate files, but sharing the keyval.db prefix; the three are
provided as a ZIP archive:

dbm.whichdb('data/keyval.db')

'dbm.dumb'

Hierarchical Formats

[132]

The dbm.dumb format is not necessarily portable to other programming languages. It
is, however, simple enough that you could write an adapter rather easily. To provide
the identical data in a more universal format, a CSV of the identical content is also
available:

https://www.gnosis.cx/cleaning/keyval.zip

https://www.gnosis.cx/cleaning/keyval.csv

For this assignment, you should transform the key/value data in this example into
relational tables, using foreign keys where appropriate and making good decisions
about data types. SQLite is an excellent choice for a database system to target; it is
discussed in Chapter 1, Tabular Formats. Any other RDBMS is also a good choice if
you have administrative access (i.e. table creation rights). Before transforming the
data model, you will need to clean up the inconsistencies in the hierarchical keys
that were discussed in this chapter.

The names of restaurants are promised to be distinct; however, for foreign key
relationships, you may wish to normalize using a short index number standing
for the restaurants uniformly. The separate ratings should definitely be stored as
distinct data items in a relevant table. To get a feel for more fleshed-out data, invent
timestamps for the reviews, such that each is mostly distinct. A real-world dataset
will generally contain review dates; for the example, no specific dates are required,
just the form of them.

Although this data is small enough that performance will not be a concern, think
about what indices are likely to be useful in a hypothetical version of this data that is
thousands or millions of times larger. Imagine you are running a popular restaurant
review service and you want your users to have fast access to their common queries.

Using the relational version of your data model, answer some simple queries, most
likely using SQL:

•	 What restaurant received the most reviews?
•	 What restaurants received reviews of 10 during a given time period (the

relevant range will depend on which dates you chose to populate)?
•	 What style of cuisine received the highest mean review?

For extra credit, you may go back and write code to answer the same questions using
only the key/value data model.

https://www.gnosis.cx/cleaning/keyval.zip
https://www.gnosis.cx/cleaning/keyval.csv

Chapter 2

[133]

Denouement
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
–Tim Peters (The Zen of Python)

Topics covered in this chapter: JSON; JSON Lines; JSON Schema; XML; YAML and
Configuration Files; Document-Oriented Databases; Key/Value Stores.

Hierarchical data often provides a much better representation of entities that
have attributes and relationships to each other than does flat data. In object-
oriented programming, but also simply in ordinary taxonomies and ontologies,
the relationships is-a and has-a are frequently fundamental, and neither of those is
whatsoever tabular. Or at best, even the attributes captured by has-a relationships
are ragged and sparse, and definitely not tidy. Moreover, is-a relationships are
hierarchical at their core.

There is often—even usually—an impedance mismatch between hierarchical data
and data science. Much of these issues comes down to access patterns. For many
software applications, what interests us are particular entities that carry with them
heterogeneous bundles of data, each bundle pertaining to the kind of thing the entity
is an instance of. In utilizing such applications, we only care about one thing (or a
handful of things) at a given time. When that is the case, hierarchical data structures
can often be both more efficient and conceptually closer to the underlying ideas the
data represents.

When we do data science, whether it is general statistics, data visualization, or
machine learning models, we are concerned with collections of records or samples
that are homogeneous in regard to our purpose or goal. Yes, there may be missing
data concerns such as those that will be addressed in Chapter 4, Anomaly Detection,
and Chapter 5, Data Quality, but those do not dominate our analysis. Data science is
about summarization and aggregation. It is almost never about individual entities
in themselves.

Hierarchical Formats

[134]

Therefore, when provided with hierarchical data, as data scientists we need to
articulate what a tree represents that can be expressed in terms of homogeneous
samples. What fields or features abstract from the hierarchical structure and express
something in common among numerous entities? Those entities need not be leaves
of the trees (although that is common); they might also be properties that can be
extracted or extrapolated from different branches, which are useful and meaningful
to summarize, model, and aggregate.

In the next chapter, we look at a number of additional data formats, including web
data, PDFs, images, and custom text and binary formats.

[135]

3
Repurposing Data Sources
All language is but a poor translation.
–Franz Kafka

Sometimes, data lives in formats that take extra work to ingest. For common and
explicitly data-oriented formats, common libraries already have readers built into
them. Data frame libraries, for example, read a huge number of different file types.
At worst, slightly less common formats have their own more specialized libraries
that provide a relatively straightforward path between the original format and the
general purpose data processing library you wish to use.

A greater difficulty often arises because a given format is not per se a data format,
but exists for a different purpose. Nonetheless, often there is data somehow
embedded or encoded in the format that we would like to utilize. For example, web
pages are generally designed for human readers and rendered by web browsers
with “quirks modes” that deal with not-quite-HTML, as is often needed. Portable
Document Format (PDF) documents are similar in having human readers in mind,
and yet also often containing tabular or other data that we would like to process as
data scientists. Of course, in both cases, we would rather have the data itself in some
separate, easily ingestible, format; but reality does not always live up to our hopes.
Image formats likewise are intended for the presentation of pictures to humans, but
we sometimes wish to characterize or analyze collections of images in some data
science or machine learning manner. There is a bit of a difference between Hypertext
Markup Language (HTML) and PDF, on one hand, and images on the other
hand. With the former, we hope to find tables or numeric lists that are incidentally
embedded inside a textual document.

Repurposing Data Sources

[136]

With the images, we are interested in the format itself as data: what is the pattern of
pixel values and what does that tell us about characteristics of the image as such?

Still other formats are indeed intended as data formats, but they are unusual enough
that common readers for the formats will not be available. Generally, custom text
formats are manageable, especially if you have some documentation of what the
rules of the format are. Custom binary formats are usually more work, but possible
to decode if the need is sufficiently pressing and other encodings do not exist.
Mostly, such custom formats are legacy in some way, and a one-time conversion to
more widely used formats is the best process.

Before we get to the sections of this chapter, let us run our standard setup code:

from src.setup import *
%load_ext rpy2.ipython

%%R
library(imager)
library(tidyverse)
library(rvest)

Web Scraping
Important letters which contain no errors will develop errors in the mail.
–Anonymous

Concepts:

•	 HTML tables
•	 Non-tabular data
•	 Command-line scraping

A great deal of interesting data lives on web pages, and often, unfortunately, we do
not have access to the same data in more structured data formats. In the best cases,
the data we are interested in at least lives within HTML tables inside a web page;
however, even where tables are defined, often the content of the cells has more than
just the numeric or categorical values of interest to us. For example, a given cell
might contain commentary on the data point or a footnote providing a source for the
information. At other times, of course, the data we are interested in is not in HTML
tables at all, but structured in some other manner across a web page.

Chapter 3

[137]

In this section, we will first use the R library rvest to extract some tabular data, and
then use BeautifulSoup in Python to work with some non-tabular data. This shifting
tool choice is not because one tool or the other is uniquely capable of doing the task
we use it for, nor even is one necessarily better than the other at it. I simply want to
provide a glimpse into a couple of different tools for performing a similar task.

In the Python world, the framework Scrapy is also widely used—it does both more
and less than BeautifulSoup. Scrapy can actually pull down web pages and navigate
dynamically among them, while BeautifulSoup is only interested in the parsing
aspect, and it assumes you have used some other tool or library (such as Requests) to
actually obtain the HTML resource to be parsed. For what it does, BeautifulSoup is
somewhat friendlier and is remarkably well able to handle malformed HTML. In the
real world, what gets called “HTML” is often only loosely conformant to any actual
format standards, and hence web browsers, for example, are quite sophisticated
(and complicated) in providing reasonable rendering of only vaguely structured tag
soups.

At the time of writing, in 2020, the Covid-19 pandemic is ongoing, and the exact
contours of the disease worldwide are changing on a daily basis. Given this active
change, the current situation is too much of a moving target to make a good example
(and too politically and ethically laden). Let us look at some data from a past disease
though to illustrate web scraping. While there are surely other sources for similar
data we could locate, and some are most likely in immediately readable formats, we
will collect our data from the Wikipedia article on the 2009 flu pandemic.

A crucial fact about web pages is that they can be and often are modified by their
maintainers. There are times when the Wayback Machine can be used to find specific
historical versions. Data that is available at a given point in time may not continue
to be in the future at a given URL. Or even where a web page maintains the same
underlying information, it may change details of its format that would change
the functionality of our scripts for processing the page. On the other hand, many
changes represent exactly the updates in data values that are of interest to us, and
the dynamic nature of a web page is exactly its greatest value. These are trade-offs to
keep in mind when scraping data from the web.

HTML Tables
Wikipedia has a great many virtues, and one of them is its versioning of its pages.
While a default URL for a given topic has a friendly and straightforward spelling
that can often even be guessed from the name of a topic, Wikipedia also provides a
URL parameter in its query strings that identifies an exact version of the web page
that should remain bitwise identical for all time.

https://archive.org/web/

Repurposing Data Sources

[138]

There are a few exceptions to this permanence; for example, if an article is deleted
altogether, it may become inaccessible. Likewise, if a template is part of a renaming,
as unfortunately occurred during the writing of this book, a “permanent” link can
break. Let us examine the Wikipedia page we will attempt to scrape in this section:

Same string composed over two lines for layout
XXXX substituted for actual ID because of discussed breakage
url2009 = ("https://en.wikipedia.org/w/index.php?"
 "title=2009_flu_pandemic&oldid=XXXX")

The particular part of this page that we are interested in is an info box about halfway
down the article. It looks like this in my browser:

Figure 3.1: Wikipedia info box in the article entitled “2009 Flu Pandemic”

Chapter 3

[139]

Constructing a script for web scraping inevitably involves a large amount of trial
and error. In concept, it might be possible to manually read the underlying HTML
before processing it, and correctly identify the positions and types of the element of
interest. In practice, it is always quicker to eyeball the partially filtered or indexed
elements and refine the selection through repetition.

For example, in this first pass below, I determined by trial and error that the “cases
by region” table was number 4 on the web page by enumerating through earlier
numbers and visually ruling them out. As rendered by a web browser, it is not
always apparent what element is a table; it is also not necessarily the case that
an element being rendered visually above another actually occurs earlier in the
underlying HTML.

This first pass also already performs a little bit of cleanup in value names. Through
experimentation, I determined that some region names contain an HTML
,
which is stripped in the following code, leaving no space between words. In order
to address that, I replace the HTML break with a space, and then need to reconstruct
an HTML object from the string and select the table again:

%%R
page <- read_html(url2009)
table <- page %>%
 html_nodes("table") %>%
 .[[4]] %>%
 str_replace_all("
", " ") %>%
 minimal_html() %>%
 html_node("table") %>%
 html_table(fill = TRUE)
head(table, 3)

This code produced the following (before the template change issue):

 2009 flu pandemic data 2009 flu pandemic data 2009 flu pandemic data
1 Area Confirmed deaths <NA>
2 Worldwide (total) 14,286 <NA>
3 European Union and EFTA 2,290 <NA>

Although the first pass still has problems, all the data is basically present, and we can
clean it up without needing to query the source further. Because of the nested tables,
the same header is incorrectly deduced for each column. The more accurate headers
are relegated to the first row.

Repurposing Data Sources

[140]

Moreover, an extraneous column that contains footnotes was created (it has content
in some rows below those shown by head()). Because of the commas in numbers
over a thousand, integers were not inferred. Let us convert the data.frame to a
tibble:

data <- as_tibble(table,
 .name_repair = ~ c("Region", "Deaths", "drop")) %>%
 select(-drop) %>%
 slice(2:12) %>%
 mutate(Deaths = as.integer(gsub(",", "", Deaths)),
 Region = as.factor(Region))
data

And this might give us a helpful table like:

A tibble: 11 x 2
 Region Deaths
 <fct> <int>
 1 Worldwide (total) 14286
 2 European Union and EFTA 2290
 3 Other European countries and Central Asia 457
 4 Mediterranean and Middle East 1450
 5 Africa 116
 6 North America 3642
 7 Central America and Caribbean 237
 8 South America 3190
 9 Northeast Asia and South Asia 2294
10 Southeast Asia 393
11 Australia and Pacific 217

Obviously this is a very small example that could easily be typed in manually.
The general techniques shown might be applied to a much larger table. More
significantly, they might also be used to scrape a table on a web page that is updated
frequently. 2009 is strictly historical, but other data is updated every day, or even
every minute, and a few lines like the ones shown could pull down current data
each time it needs to be processed.

Non-Tabular Data
For our processing of a non-tabular source, we will use Wikipedia as well. Again, a
topic that is of wide interest and not prone to deletion is chosen. Likewise, a specific
historical version is indicated in the URL, just in case the page changes its structure
by the time you read this. In a slightly self-referential way, we will look at the article
that lists HTTP status codes in a term/definition layout.

Chapter 3

[141]

A portion of that page renders in my browser like this:

Figure 3.2: HTTP status codes, Wikipedia definition list

Numerous other codes are listed in the articles that are not in the screenshot.
Moreover, there are section divisions and other descriptive elements or images
throughout the page. Fortunately, Wikipedia tends to be very regular and
predictable in its use of markup. The URL we will examine is:

url_http = ("https://en.wikipedia.org/w/index.php?"
 "title=List_of_HTTP_status_codes&oldid=947767948")

The first thing we need to do is actually retrieve the HTML content. The Python
standard library module urllib is perfectly able to do this task. However, even its
official documentation recommends using the third-party package Requests for most
purposes. There is nothing you cannot do with urllib, but often the API is more
difficult to use, and is unnecessarily complicated for historical/legacy reasons. For
simple things, like what is shown in this book, it makes little difference; for more
complicated tasks, getting in the habit of using Requests is a good idea.

https://docs.python.org/3/library/urllib.request.html#module-urllib.request

Repurposing Data Sources

[142]

Let us open a page and check the status code returned:

import requests
resp = requests.get(url_http)
resp.status_code

200

The raw HTML we retrieved is not especially easy to work with. Even apart from the
fact it is compacted to remove extra whitespace, the general structure is a “tag soup”
with various things nested in various places, and in which basic string methods
or regular expressions do not help us very much in identifying the parts we are
interested in. For example, here is a short segment from somewhere in the middle:

pprint(resp.content[43400:44000], width=55)

(b'ailed</dt>\n<dd>The server cannot meet the requir'
 b'ements of the Expect request-header field.<sup i'
 b'd="cite_ref-53" class="reference"><a href="#cite'
 b'_note-53">[52]</sup></dd>\n<dt><span '
 b'class="anchor" id="418"><a href="/wiki/HT'
 b'TP_418" class="mw-redirect" title="HTTP 418">418'
 b' I\'m a teapot (<a class="external mw-magicli'
 b'nk-rfc" rel="nofollow" href="https://tools.ietf.'
 b'org/html/rfc2324">RFC 2324, <a class="extern'
 b'al mw-magiclink-rfc" rel="nofollow" href="https:'
 b'//tools.ietf.org/html/rfc7168">RFC 7168)</dt'
 b'>\n<dd>This code was defined in 1998 as one of th'
 b'e traditional <a href="/')

What we would like is to make the tag soup beautiful instead. The steps in doing so
are first creating a “soup” object from the raw HTML, then using methods of that
soup to pick out the elements we care about for our dataset. As with the R and rvest
version—as indeed, with any library you decide to use—finding the right data in
the web page will involve trial and error:

from bs4 import BeautifulSoup
soup = BeautifulSoup(resp.content)

As a start, upon our examination, we notice that the status codes themselves are each
contained within an HTML <dt> element. Below we display the first and last few of
the elements identified by this tag. Everything so identified is, in fact, a status code,
but I only know that from manual inspection of all of them (fortunately, eyeballing
fewer than 100 items is not difficult; doing so with a million would be infeasible).

Chapter 3

[143]

However, if we look back at the original web page itself, we will notice that two
AWS custom codes at the end are not captured because the page formatting is
inconsistent for those. In this section, we will ignore those, having determined they
are not general-purpose anyway:

codes = soup.find_all('dt')
for code in codes[:5] + codes[-5:]:
 print(code.text)

100 Continue
101 Switching Protocols
102 Processing (WebDAV; RFC 2518)
103 Early Hints (RFC 8297)
200 OK
524 A Timeout Occurred
525 SSL Handshake Failed
526 Invalid SSL Certificate
527 Railgun Error
530

It would be nice if each <dt> were matched with a corresponding <dd>. If it were,
we could just read all the <dd> definitions and zip them together with the terms.
Real-world HTML is messy. It turns out—and I discovered this while writing, not
by planning the example—that there are sometimes more than one (and potentially
sometimes zero) <dd> elements following each <dt>. Our goal then will be to collect
all of the <dd> elements that follow a <dt> until other tags occur.

In the BeautifulSoup API, the empty space between elements is a node of plain text
that contains exactly the characters (including whitespace) inside that span. It is
tempting to use the API node.find_next_siblings() in this task. We could succeed
doing this, but this method will fetch too much, including all subsequent <dt>
elements after the current one. Instead, we can use the .next_sibling property to
get each one, and stop when needed:

def find_dds_after(node):
 dds = []
 sib = node.next_sibling
 while True: # Loop until a break
 # Last sibling within page section
 if sib is None:
 break
 # Text nodes have no element name
 elif not sib.name:
 sib = sib.next_sibling

Repurposing Data Sources

[144]

 continue
 # A definition node
 if sib.name == 'dd':
 dds.append(sib)
 sib = sib.next_sibling
 # Finished <dd> the definition nodes
 else:
 break
 return dds

The custom function I wrote above is straightforward, but special to this purpose.
Perhaps it is extensible to similar definition lists one finds in other HTML
documents. BeautifulSoup provides numerous useful APIs, but they are building
blocks for constructing custom extractors rather than foreseeing every possible
structure in an HTML document. To understand it, let us look at a couple of the
status codes:

for code in codes[23:26]:
 print(code.text)
 for dd in find_dds_after(code):
 print(" ", dd.text[:40], "...")

400 Bad Request
 The server cannot or will not process th ...
401 Unauthorized (RFC 7235)
 Similar to 403 Forbidden, but specifical ...
 Note: Some sites incorrectly issue HTTP ...
402 Payment Required
 Reserved for future use. The original in ...

The HTTP 401 response contains two separate definition blocks. Let us apply the
function across all the HTTP code numbers. What is returned is a list of definition
blocks; for our purpose, we will join the text of each of these with a newline. In fact,
we construct a data frame with all the information of interest to us in the next cells:

data = []
for code in codes:
 # All codes are 3 character numbers
 number = code.text[:3]
 # Parenthetical is not part of status
 text, note = code.text[4:], ""
 if " (" in text:
 text, note = text.split(" (")

Chapter 3

[145]

 note = note.rstrip(")")
 # Compose description from list of strings
 description = "\n".join(t.text for t in find_dds_after(code))
 data.append([int(number), text, note, description])

From the Python list of lists, we can create a Pandas DataFrame for further work on
the dataset:

(pd.DataFrame(data,
 columns=["Code", "Text", "Note", "Description"])
 .set_index('Code')
 .sort_index()
 .head(8))

Code Text Note Description
——
 100 Continue The server has received the
 request headers an...
 101 Switching Protocols The requester has asked the
 server to switch p...
 102 Processing WebDAV; RFC 2518 A WebDAV request may
 contain many sub-requests
 103 Checkpoint Used in the resumable
 request proposal to res...
 103 Early Hints RFC 8297 Used to return some
 response headers before
 fi...
 200 OK Standard response for
 successful HTTP requests...
 201 Created The request has been
 fulfilled, resulting in
 t...
 202 Accepted The request has been
 accepted for processing,
 ...

Clearly, the two examples this book walked through in some detail are not general
to all the web pages you may wish to scrape data from. Organization into tables and
into definition lists are certainly two common uses of HTML to represent data, but
many other conventions might be used. Particular domain-specific—or likely page-
specific—class and id attributes on elements is also a common way to mark the
structural role of different data elements.

Repurposing Data Sources

[146]

Libraries such as rvest, BeautifulSoup, and scrapy all make identification and
extraction of HTML by element attributes straightforward as well. Simply be
prepared to try many variations on your web scraping code before you get it right.
Generally, your iteration will be a narrowing process; each stage needs to include
the information desired, and it becomes a process of removing the parts you do
not want through refinement.

Command-Line Scraping
Another approach that I have often used for web scraping is to use the command-
line web browsers lynx and links. Install either or both with your system package
manager. These tools can dump HTML contents as text that is, in turn, relatively
easy to parse if the format is simple. There are many times when just looking for
patterns of indentation, vertical space, searching for particular keywords, or similar
text processing will get the data you need more quickly than the trial and error of
parsing libraries like rvest or BeautifulSoup. Of course, there is always a certain
amount of eyeballing and retrying commands. For people who are well versed in
text processing tools, this approach is worth considering.

The two similar text-mode web browsers both share a -dump switch that outputs
non-interactive text to STDOUT. Both of them have a variety of other switches that
can tweak the rendering of the text in a variety of ways. The output from these two
tools is similar, but the rest of your scripting will need to pay attention to the minor
differences. Each of these browsers will do a very good job of dumping 90% of web
pages as text that is easy to process. Of the problem 10% (a hand waving percentage,
not a real measure), often one or the other tool will produce something reasonable
to parse. In certain cases, one of these browsers may produce useful results and the
other will not. Fortunately, it is easy simply to try both for a given task or site.

Let us look at the output from each tool against a portion of the HTTP response code
page. Obviously, I experimented to find the exact line ranges of output that would
correspond. You can see that only incidental formatting differences exist in this
friendly HTML page. First, with lynx:

%%bash
base='https://en.wikipedia.org/w/index.php?title='
url="$base"'List_of_HTTP_status_codes&oldid=947767948'
lynx -dump $url | sed -n '397,406p'

Chapter 3

[147]

 requester put on the request header fields.^[170][44]^[171][45]

 413 Payload Too Large ([172]RFC 7231)
 The request is larger than the server is willing or able to
 process. Previously called "Request Entity Too Large".^[173][46]

 414 URI Too Long ([174]RFC 7231)
 The [175]URI provided was too long for the server to process.
 Often the result of too much data being encoded as a
 query-string of a GET request, in which case it should be

And the same part of the page again, but this time with links:

%%bash
base='https://en.wikipedia.org/w/index.php?title='
url="$base"'List_of_HTTP_status_codes&oldid=947767948'
links -dump $url | sed -n '377,385p'

 requester put on the request header fields.^[44]^[45]

 413 Payload Too Large (RFC 7231)
 The request is larger than the server is willing or able to
 process. Previously called "Request Entity Too Large".^[46]

 414 URI Too Long (RFC 7231)
 The URI provided was too long for the server to process. Often the
 result of too much data being encoded as a query-string of a GET

The only differences here are one space difference in indentation of the definition
element and some difference in the formatting of footnote links in the text. In either
case, it would be easy enough to define some rules for the patterns of terms and
their definitions. Something like this:

•	 Look for a line that starts with 3 spaces followed by a 3-digit number
•	 Accumulate all non-blank lines following that; stop at the blank line
•	 Strip the footnote/link markers from the texts
•	 Split the code number and text in the same manner as in the previous

example

Let us wave goodbye to the Scylla of HTML, as we pass by, and fall into the
Charybdis of PDF.

Repurposing Data Sources

[148]

Portable Document Format
This functionary grasped it in a perfect agony of joy, opened it with a trembling
hand, cast a rapid glance at its contents, and then, scrambling and struggling to the
door, rushed at length unceremoniously from the room and from the house.
–Edgar Allan Poe

Concepts:

•	 Identifying tabular regions
•	 Extracting plain text

There are a great many commercial tools for extracting data that has become hidden
away in PDF files. Unfortunately, many organizations—government, corporate, and
others—issue reports in PDF format but do not provide data formats more easily
accessible to computer analysis and abstraction. This is common enough to have
provided impetus for a cottage industry of tools for semi-automatically extracting
data back out of these reports. This book does not recommend the use of proprietary
tools, about which there is no guarantee of maintenance and improvement over time;
as well, of course, those tools cost money and are an impediment to cooperation
among data scientists who work together on projects without necessarily residing in
the same “licensing zone.”

There are two main elements that are likely to interest us in a PDF file. An obvious
one is tables of data, and those are often embedded in PDFs. Otherwise, a PDF can
often simply be treated as a custom text format, as we discuss in a section below.
Various kinds of lists, bullets, captions, or simply paragraph text might have data of
interest to us.

There are two open source tools I recommend for extraction of data from PDFs. One of
these is the command-line tool pdftotext, which is part of the Xpdf and derived Poppler
software suites. The second is a Java tool called tabula-java. tabula-java is, in turn, the
underlying engine for the GUI tool Tabula, and also has language bindings for Ruby
(tabula-extractor), Python (tabula-py), R (tabulizer), and Node.js (tabula-js). Tabula
creates a small web server that allows interaction within a browser to do operations like
creating lists of PDFs and selecting regions where tables are located. The Python and
R bindings also allow the direct creation of data frames or arrays, with the R binding
incorporating an optional graphical widget for region selection.

For this discussion, we do not use any of the language bindings, nor the GUI tools.
For one-off selection of single-page datasets, the selection tools could be useful, but
for automation of recurring document updates or families of similar documents,
scripting is needed.

Chapter 3

[149]

Moreover, while the various language bindings are perfectly suitable for scripting,
we can be somewhat more language agnostic in this section by limiting ourselves to
the command-line tool of the base library.

As an example for this section, let us use a PDF that was output from the preface of
this book itself. There may have been small wording changes by the time you read
this, and the exact formatting of the printed book or ebook will surely be somewhat
different from this draft version. However, this nicely illustrates tables rendered in
several different styles that we can try to extract as data. There are three tables, in
particular, that we would like to capture:

Figure 3.3: Page 5 of the book’s preface

Repurposing Data Sources

[150]

On page 5 of the draft preface, a table is rendered by both Pandas and tibble, with
corresponding minor presentation differences. On page 7, another table is included
that looks somewhat different again:

Figure 3.4: Page 7 of the book’s preface

Running tabula-java requires a rather long command line, so I have created a small
Bash script to wrap it on my personal system:

#!/bin/bash
script: tabula
Adjust for your personal system path
TPATH='/home/dmertz/git/tabula-java/target'
JAR='tabula-1.0.4-SNAPSHOT-jar-with-dependencies.jar'
java -jar "$TPATH/$JAR" $@

Extraction will sometimes automatically recognize tables per page with the --guess
option, but you can get better control by specifying a portion of a page where tabula-
java should look for a table. We simply output to STDOUT in the following code
cells, but outputting to a file is just another option switch:

%%bash
tabula -g -t -p5 data/Preface-snapshot.pdf

[1]:,,Last_Name,First_Name,Favorite_Color,Age
"",Student_No,,,,
"",1,Johnson,Mia,periwinkle,12.0
"",2,Lopez,Liam,blue-green,13.0
"",3,Lee,Isabella,<missing>,11.0

Chapter 3

[151]

"",4,Fisher,Mason,gray,NaN
"",5,Gupta,Olivia,sepia,NaN
"",6,Robinson,Sophia,blue,12.0

Tabula does a good, but not perfect, job. The Pandas style of setting the name of the
index column below the other headers threw it off slightly. There is also a spurious
first column that is usually empty strings, but has a header as the output cell
number. However, these small defects are very easy to clean up, and we have a very
nice CSV of the actual data in the table.

Remember from just above, however, that page 5 actually had two tables on it.
Tabula-java only captured the first one, which is not unreasonable, but is not all the
data we might want. Slightly more custom instructions (determined by moderate
trial and error to determine the region of interest) can capture the second one:

%%bash
tabula -a'%72,13,90,100' -fTSV -p5 data/Preface-snapshot.pdf

First Last Age
<chr> <chr>
bl>
Mia Johnson 12
Liam Lopez 13
Isabella Lee 11
Mason Fisher NaN
Olivia Gupta NaN
Sophia Robinson 12

To illustrate the output options, we chose tab-delimited rather than comma-
separated for the output. A JSON output is also available. Moreover, by adjusting
the left margin (as percent, but as typographic points is also an option), we can
eliminate the unnecessary row numbers. As before, the ingestion is good but not
perfect. The tibble formatting of data type markers is superfluous for us. Discarding
the two rows with unnecessary data is straightforward.

Finally, for this example, let us capture the table on page 7 that does not have any
of those data frame library extra markers. This one is probably more typical of the
tables you will encounter in real work. For the example, we use points rather than
page percentage to indicate the position of the table:

%%bash
tabula -p7 -a'120,0,220,500' data/Preface-snapshot.pdf

Number,Color,Number,Color
1,beige,6,alabaster

Repurposing Data Sources

[152]

2,eggshell,7,sandcastle
3,seafoam,8,chartreuse
4,mint,9,sepia
5,cream,10,lemon

The extraction here is perfect, although the table itself is less than ideal in that it
repeats the number/color pairs twice. However, that is likewise easy enough to
modify using data frame libraries.

The tabula-java tool, as the name suggests, is only really useful for identifying
tables. In contrast, pdftotext creates a best-effort purely text version of a PDF. Most
of the time this is quite good. From that, standard text processing and extraction
techniques usually work well, including those that parse tables. However, since an
entire document (or a part of it selected by pages) is output, this lets us work with
other elements such as bullet lists, raw prose, or other identifiable data elements of
a document:

%%bash
Start with page 7, tool writes to .txt file
Use layout mode to preserve horizontal position
pdftotext -f 7 -layout data/Preface-snapshot.pdf
Remove 25 spaces from start of lines
Wrap other lines that are too wide
sed -E 's/^ {,25}//' data/Preface-snapshot.txt |
 fmt -s |
 head -20

• Missing data in the Favorite Color field should be substituted with
the string <missing>.
• Student ages should be between 9 and 14, and all other values are
considered missing data.
• Some colors are numerically coded, but should be dealiased. The
mapping is:

 Number Color Number Color
 1 beige 6 alabaster
 2 eggshell 7 sandcastle
 3 seafoam 8 chartreuse
 4 mint 9 sepia
 5 cream 10 lemon

Using the small test data set is a good way to test your code. But try
also manually adding more rows with similar, or different, problems in
them, and see how well your code produces a reasonable result.

Chapter 3

[153]

The tabular part in the middle would be simple to read as a fixed width format.
The bullets at the top or the paragraph at the bottom might be useful for other data
extraction purposes. In any case, it is plain text at this point, which is easy to work
with.

Let us turn now to analyzing images, mostly for their metadata and overall statistical
characteristics.

Image Formats
As the Chinese say, 1001 words is worth more than a picture.
–John McCarthy picture

Concepts:

•	 OCR and image recognition (outside scope)
•	 Color models
•	 Pixel statistics
•	 Channel preprocessing
•	 Image metadata

For certain purposes, raster images are themselves the datasets of interest to us.
“Raster” just means rectangular collections of pixel values. The field of machine
learning around image recognition and image processing is far outside the scope of
this book. The few techniques in this section might be useful to get your data ready
to the point of developing input to those tools, but no further than that.

picture

The quote McCarthy plays off of is not, of course, of ancient
Chinese origin. Like much early 20th century American
sinophilia—inevitably tinged with sinophobia—it originated with
an advertising agency. Henrik Ibsen had said “A thousand words
leave not the same deep impression as does a single deed” prior to
his 1906 death. This was adapted in March 1911 by Arthur Brisbane
speaking to the Syracuse Advertising Men’s Club, as “Use a
picture. It’s worth a thousand words.” Later repetitions added the
alleged source as a “Chinese proverb” or even a false attribution to
Confucius specifically, presumably to lend credence to the slogan.

Repurposing Data Sources

[154]

Also not considered in this book are other kinds of recognition of the content of
images at a high-level. For example, optical character recognition (OCR) tools might
recognize an image as containing various strings and numbers as rendered fonts, and
those values might be the data we care about.

If you have the misfortune of having data that is only available in printed and
scanned form, you most certainly have my deep sympathy. Scanning the images
using OCR is likely to produce noisy results with many misrecognitions. Detecting
those is addressed in Chapter 4, Anomaly Detection; essentially, you will get either
wrong strings or wrong numbers when these errors happen, and ideally the errors
will be identifiable. However, the specifics of those technologies are not within the
current scope.

For this section, we merely want to present tools to read in images as numeric arrays,
and perform a few basic processing steps that might be used in your downstream
data analysis or modeling. Within Python, the library Pillow is the go-to tool
(backward-compatible successor to PIL, which is deprecated). Within R, the imager
library seems to be most widely used for the general-purpose tasks of this section.
As a first task, let us examine and describe the raster images used in the creation of
this book:

from PIL import Image, ImageOps

for fname in glob('img/*'):
 try:
 with Image.open(fname) as im:
 print(fname, im.format, "%dx%d" % im.size, im.mode)
 except IOError:
 pass

img/Flu2009-infobox.png PNG 607x702 RGBA
img/Konfuzius-1770.jpg JPEG 566x800 RGB
img/UMAP.png PNG 2400x2400 RGBA
img/DQM-with-Lenin-Minsk.jpg MPO 3240x4320 RGB
img/HDFCompass.png PNG 958x845 RGBA
img/t-SNE.png PNG 2400x2400 RGBA
img/preface-2.png PNG 945x427 RGBA
img/DQM-with-Lenin-Minsk.jpg_original MPO 3240x4320 RGB
img/PCA.png PNG 2400x2400 RGBA
img/Excel-Pitfalls.png PNG 551x357 RGBA
img/gnosis-traffic.png PNG 1064x1033 RGBA
img/Film_Awards.png PNG 1587x575 RGBA
img/HTTP-status-codes.png PNG 934x686 RGBA
img/preface-1.png PNG 988x798 RGBA

Chapter 3

[155]

We see that mostly PNG images were used, with a smaller number of JPEGs.
Each has certain spatial dimensions, by width then height, and each is either RGB,
or RGBA if it includes an alpha channel. Other images might be HSV format.
Converting between color spaces is easy enough using tools like Pillow and imager,
but it is important to be aware of which model a given image uses. Let us read one
in, this time using R:

%%R
library(imager)
confucius <- load.image("img/Konfuzius-1770.jpg")
print(confucius)
plot(confucius)

Image. Width: 566 pix Height: 800 pix Depth: 1 Colour channels: 3

Figure 3.5: Confucius

Let us analyze the contours of the pixels.

Repurposing Data Sources

[156]

Pixel Statistics
We can work on getting a feel for the data, which at heart is simply an array of
values, with some tools the library provides. In the case of imager, which is built
on CImg, the internal representation is 4-dimensional. Each plane is an X by Y grid
of pixels (left-to-right, top-to-bottom). However, the format can represent a stack
of images—for example, an animation—in the depth dimension. The several color
channels (if the image is not grayscale) are the final dimension of the array. The
Confucius example is a single image, so the third dimension is of length one. Let us
look at some summary data about the image:

%%R
grayscale(confucius) %>%
 hist(main="Luminance values in Confucius drawing")

Figure 3.6: Histogram of luminance values in the Confucius drawing

Perhaps we would like to look at the distribution only of one color channel instead:

%%R
B(confucius) %>%
 hist(main="Blue values in Confucius drawing")

Chapter 3

[157]

Figure 3.7: Histogram of blue values in the Confucius drawing

The preceding histograms simply utilize the standard R histogram function. There is
nothing special about the fact that the data represents an image. We could perform
whatever statistical tests or summarizations we wanted on the data to make sure
it makes sense for our purpose; a histogram is only a simple example to show the
concept. We can also easily transform the data into a tidy data frame. As of this
writing, there is an “impedance error” in converting directly to a tibble, so the cell
below uses an intermediate data.frame format.

Repurposing Data Sources

[158]

Tibbles are often but not always drop-in replacements when functions were written
to work with data.frame objects:

%%R
data <- as.data.frame(confucius) %>%
 as_tibble %>%
 # channels 1, 2, 3 (RGB) as factor
 mutate(cc = as.factor(cc))
data

A tibble: 1,358,400 x 4
 x y cc value
 <int> <int> <fct> <dbl>
 1 1 1 1 0.518
 2 2 1 1 0.529
 3 3 1 1 0.518
 4 4 1 1 0.510
 5 5 1 1 0.533
 6 6 1 1 0.541
 7 7 1 1 0.533
 8 8 1 1 0.533
 9 9 1 1 0.510
10 10 1 1 0.471
... with 1,358,390 more rows

With Python and PIL/Pillow, working with image data is very similar. As in R, the
image is an array of pixel values with some metadata attached to it. Just for fun, we
use a variable name with Chinese characters to illustrate that such is supported in
Python:

Courtesy name: Zhòngní (仲尼)
"Kǒng Fūzǐ" (孔夫子) was coined by 16th century Jesuits
仲尼 = Image.open('img/Konfuzius-1770.jpg')
data = np.array(仲尼)
print("Image shape:", data.shape)
print("Some values\n", data[:2, :, :])

Image shape: (800, 566, 3)
Some values
 [[[132 91 69]
 [135 94 74]
 [132 91 71]
 ...

Chapter 3

[159]

 [148 98 73]
 [142 95 69]
 [135 89 63]]

 [[131 90 68]
 [138 97 75]
 [139 98 78]
 ...
 [147 100 74]
 [144 97 71]
 [138 92 66]]]

In the Pillow format, images are stored as 8-bit unsigned integers rather than as
floating-point numbers in the [0.0, 1.0] range. Converting between these is easy
enough, of course, as is other normalization. For example, for many neural network
tasks, the preferred representation is values centered at zero with a standard
deviation of one. The array used to hold Pillow images is 3-dimensional since it
does not have provision for stacking multiple images in the same object.

Channel Manipulation
It might be useful to perform manipulation of image data before processing. The
following example is contrived, and similar to one used in the library tutorial. The
idea in the next few code lines is that we will mask the image based on the values
in the blue channel, but then use that to selectively zero-out red values. The result
is not visually attractive for a painting, but one can imagine it might be useful for
medical imaging or false-color radio astronomy images, for example (I am also
working around making a transformation that is easily visible in a monochrome
book as well as in full color).

The convention used in the .paste() method below is a bit odd. The rule is: where
the mask is 255, copied as is; where mask is 0, preserve current value (blend if
intermediate). The effect overall in the color version is that in the mostly red-tinged
image, the greens dominate at the edges where the image had been most red. In
grayscale, it mostly just darkens the edges:

split the Confucius image into individual bands
source = 仲尼.split()
R, G, B = 0, 1, 2

select regions where blue is less than 100
mask = source[B].point(lambda i: 255 if i < 100 else 0)
source[R].paste(0, None, mask)

Repurposing Data Sources

[160]

im = Image.merge(仲尼.mode, source)
ImageOps.scale(im, 0.5)

Figure 3.8: Processed Confucius image (left), original image (right)

Another example we mentioned is that transformation of the color space might be
useful. For example, rather than look at the colors red, green, and blue, it might be
that hue, saturation, and lightness are better features for your modeling needs. This
is a deterministic transformation of the data, but emphasizing different aspects. It
is something analogous to decompositions such as principal component analysis,
which is discussed in Chapter 7, Feature Engineering. Here we convert from an RGB to
HSL representation of the image:

%%R
confucius.hsv <- RGBtoHSL(confucius)
data <- as.data.frame(confucius.hsv) %>%
 as_tibble %>%
 # channels 1, 2, 3 (HSV) as factor
 mutate(cc = as.factor(cc))
data

A tibble: 1,358,400 x 4
 x y cc value
 <int> <int> <fct> <dbl>
 1 1 1 1 21.0
 2 2 1 1 19.7

Chapter 3

[161]

 3 3 1 1 19.7
 4 4 1 1 19.7
 5 5 1 1 19.7
 6 6 1 1 19.7
 7 7 1 1 19.7
 8 8 1 1 19.7
 9 9 1 1 19.7
10 10 1 1 20
... with 1,358,390 more rows

Both the individual values and the shape of the space have changed in this
transformation. The transformation is lossless, beyond minor rounding issues. A
summary by channel will illustrate this:

%%R
data %>%
 mutate(cc = recode(
 cc, '1'="Hue", '2'="Saturation", '3'="Value")) %>%
 group_by(cc) %>%
 summarize(Mean = mean(value), SD = sd(value))

'summarise()' ungrouping output (override with '.groups' argument)
A tibble: 3 x 3
 cc Mean SD
 <fct> <dbl> <dbl>
1 Hue 34.5 59.1
2 Saturation 0.448 0.219
3 Value 0.521 0.192

Let us now look at perhaps the most important aspect of images to data scientists.

Metadata
Photographic images may contain metadata embedded inside them. Specifically,
the Exchangeable Image File Format (Exif) specifies how such metadata can be
embedded in JPEG, TIFF, and WAV formats (the last is an audio format). Digital
cameras typically add this information to the images they create, often including
details such as timestamp and latitude/longitude location.

Some of the data fields within an Exif mapping are textual, numeric, or tuples; others
are binary data. Moreover, the keys in the mapping are from ID numbers that are
not meaningful to humans directly; this mapping is a published standard, but some
equipment makers may introduce their own IDs as well.

Repurposing Data Sources

[162]

The binary fields contain a variety of types of data, encoded in various ways. For
example, some cameras may attach small preview images as Exif metadata, but
simpler fields are also encoded.

The function below will utilize Pillow to return two dictionaries, one for the textual
data, the other for the binary data. Tag IDs are expanded to human-readable names,
where available. Pillow uses “camel case” for these names, but other tools have
different variations on capitalization and punctuation within the tag names. The
casing by Pillow is what I like to call Bactrian case—as opposed to Dromedary case—
both of which differ from Python’s usual “snake case” (e.g. BactrianCase versus
dromedaryCase versus snake_case):

from PIL.ExifTags import TAGS

def get_exif(img):
 txtdata, bindata = dict(), dict()
 for tag_id in (exifdata := img.getexif()):
 # Lookup tag name from tag_id if available
 tag = TAGS.get(tag_id, tag_id)
 data = exifdata.get(tag_id)
 if isinstance(data, bytes):
 bindata[tag] = data
 else:
 txtdata[tag] = data
 return txtdata, bindata

Let us check whether the Confucius image has any metadata attached:

get_exif(仲尼) # Zhòngní, i.e. Confucius

({}, {})

We see that this image does not have any such metadata. Let us look instead at a
photograph taken of the author next to a Lenin statue in Minsk:

Could continue using multi-lingual variable names by
choosing 'Ленин', 'Ульянов' or 'Мінск'
dqm = Image.open('img/DQM-with-Lenin-Minsk.jpg')
ImageOps.scale(dqm, 0.1)

Chapter 3

[163]

Figure 3.9: The Author after keynote at PyCon Belarus

This image, taken with a digital camera, indeed has Exif metadata. These generally
concern photographic settings, which are perhaps valuable to analyze in comparing
images. This example also has a timestamp, although not in this case a latitude/
longitude position (the camera used did not have a GPS sensor). Location data,
where available, can obviously be valuable for many purposes:

txtdata, bindata = get_exif(dqm)
txtdata

{'CompressedBitsPerPixel': 4.0,
 'DateTimeOriginal': '2015:02:01 13:01:53',
 'DateTimeDigitized': '2015:02:01 13:01:53',
 'ExposureBiasValue': 0.0,
 'MaxApertureValue': 4.2734375,
 'MeteringMode': 5,
 'LightSource': 0,
 'Flash': 16,
 'FocalLength': 10.0,
 'ColorSpace': 1,
 'ExifImageWidth': 3240,
 'ExifInteroperabilityOffset': 10564,
 'FocalLengthIn35mmFilm': 56,
 'SceneCaptureType': 0,
 'ExifImageHeight': 4320,

Repurposing Data Sources

[164]

 'Contrast': 0,
 'Saturation': 0,
 'Sharpness': 0,
 'Make': 'Panasonic',
 'Model': 'DMC-FH4',
 'Orientation': 1,
 'SensingMethod': 2,
 'YCbCrPositioning': 2,
 'ExposureTime': 0.00625,
 'XResolution': 180.0,
 'YResolution': 180.0,
 'FNumber': 4.4,
 'ExposureProgram': 2,
 'CustomRendered': 0,
 'ISOSpeedRatings': 500,
 'ResolutionUnit': 2,
 'ExposureMode': 0,
 34864: 1,
 'WhiteBalance': 0,
 'Software': 'Ver.1.0 ',
 'DateTime': '2015:02:01 13:01:53',
 'DigitalZoomRatio': 0.0,
 'GainControl': 2,
 'ExifOffset': 634}

One detail we notice in the textual data is that the tag ID 34864 was not unaliased by
Pillow. I can locate external documentation indicating that the ID should indicate
“Exif.Photo.SensitivityType”, but Pillow is apparently unaware of that ID. The bytes
strings may contain data you wish to utilize, but the meaning given to each field
is different and must be compared to reference definitions. For example, the field
ExifVersion is defined as ASCII bytes, but not as UTF-8 encoded bytes like regular
text field values. We can view that using:

bindata['ExifVersion'].decode('ascii')

'0230'

In contrast, the tag named ComponentsConfiguration consists of four bytes, with
each byte representing a color code. The get_exif() function produces separate text
and binary dictionaries (txtdata and bindata). Let us decode bindata with a new
special function:

def components(cc):
 colors = {0: None,

Chapter 3

[165]

 1: 'Y', 2: 'Cb', 3: 'Cr',
 4: 'R', 5: 'G', 6: 'B'}
 return [colors.get(c, 'reserved') for c in cc]
components(bindata['ComponentsConfiguration'])

['Y', 'Cb', 'Cr', None]

Other binary fields are encoded in other ways. The specifications are maintained
by the Japan Electronic Industries Development Association (JEIDA). This section
intends only to give you a feel for working with this kind of metadata, and is by no
means a complete reference.

Let us turn our attention now to the specialized binary data formats we sometimes
need to work with.

Binary Serialized Data Structures
I usually solve problems by letting them devour me.
–Franz Kafka

Concepts:

•	 Prefer existing libraries
•	 Bytes and struct data types
•	 Offset layout of data

There are a great many binary formats that data might live in. Everything very
popular has grown good open source libraries, but you may encounter some legacy
or in-house format for which this is not true. Good general advice is that unless
there is an ongoing and/or performance sensitive need for processing an unusual
format, try to leverage existing parsers. Custom formats can be tricky, and if one is
uncommon, it is as likely as not also to be underdocumented.

If an existing tool is only available in a language you do not wish to use for your
main data science work, nonetheless see if that can be easily leveraged to act only
as a means to export to a more easily accessed format. A fire-and-forget tool might
be all you need, even if it is one that runs recurringly, but asynchronously with the
actual data processing you need to perform.

Repurposing Data Sources

[166]

For this section, let as assume that the optimistic situation is not realized, and we
have nothing beyond some bytes on disk, and some possibly flawed documentation
to work with. Writing the custom code is much more the job of a systems engineer
than a data scientist; but we data scientists need to be polymaths, and we should not
be daunted by writing a little bit of systems code.

For this relatively short section, we look at a simple and straightforward binary
format. Moreover, this is a real-world data format for which we do not actually
need a custom parser. Having an actual well-tested, performant, and bullet-proof
parser to compare our toy code with is a good way to make sure we do the right
thing. Specifically, we will read data stored in the NumPy NPY format, which is
documented as follows (abridged):

•	 The first 6 bytes are a magic string: exactly \x93NUMPY
•	 The next 1 byte is an unsigned byte: the major version number of the file

format, e.g. \x01
•	 The next 1 byte is an unsigned byte: the minor version number of the file

format, e.g. \x00.
•	 The next 2 bytes form a little-endian unsigned short int: the length of the

header data HEADER_LEN
•	 The next HEADER_LEN bytes are an ASCII string that contains a Python

literal expression of a dictionary
•	 Following the header comes the array data

First, we read in some binary data using the standard reader, using Python and
NumPy, to understand what type of object we are trying to reconstruct. It turns
out that the serialization was of a 3-dimensional array of 64-bit floating-point
values. A small size was chosen for this section, but of course, real-world data will
generally be much larger:

arr = np.load(open('data/binary-3d.npy', 'rb'))
print(arr, '\n', arr.shape, arr.dtype)

[[[0. 1. 2.]
 [3. 4. 5.]]

 [[6. 7. 8.]
 [9. 10. 11.]]]
 (2, 2, 3) float64

https://docs.scipy.org/doc/numpy/reference/generated/numpy.lib.format.html#module-numpy.lib.format

Chapter 3

[167]

Visually examining the bytes is a good way to have a better feel for what is going
on with the data. NumPy is, of course, a clearly and correctly documented project,
but for some hypothetical format, this is an opportunity to potentially identify
problems with the documentation not matching the actual bytes. More subtle issues
may arise in the more detailed parsing; for example, the meaning of bytes in a
particular location can be contingent on flags occurring elsewhere. Data science is,
in surprisingly large part, a matter of eyeballing data:

%%bash
hexdump -Cv data/binary-3d.npy

00000000 93 4e 55 4d 50 59 01 00 76 00 7b 27 64 65 73 63 |.NUMPY..v.{'desc|
00000010 72 27 3a 20 27 3c 66 38 27 2c 20 27 66 6f 72 74 |r': '<f8', 'fort|
00000020 72 61 6e 5f 6f 72 64 65 72 27 3a 20 46 61 6c 73 |ran_order': Fals|
00000030 65 2c 20 27 73 68 61 70 65 27 3a 20 28 32 2c 20 |e, 'shape': (2, |
00000040 32 2c 20 33 29 2c 20 7d 20 20 20 20 20 20 20 20 |2, 3), } |
00000050 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | |
00000060 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | |
00000070 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 0a | .|
00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f0 3f |...............?|
00000090 00 00 00 00 00 00 00 40 00 00 00 00 00 00 08 40 |.......@.......@|
000000a0 00 00 00 00 00 00 10 40 00 00 00 00 00 00 14 40 |.......@.......@|
000000b0 00 00 00 00 00 00 18 40 00 00 00 00 00 00 1c 40 |.......@.......@|
000000c0 00 00 00 00 00 00 20 40 00 00 00 00 00 00 22 40 |...... @......"@|
000000d0 00 00 00 00 00 00 24 40 00 00 00 00 00 00 26 40 |......$@......&@|
000000e0

As a first step, let us make sure the file really does match the type we expect
in having the correct “magic string.” Many kinds of files are identified by a
characteristic and distinctive first few bytes. In fact, the common utility on Unix-like
systems, file, uses exactly this knowledge via a database describing many file types.
For a hypothetical rare file type (i.e. not NumPy), this utility may not know about the
format; nonetheless, the file might still have such a header:

%%bash
file data/binary-3d.npy

data/binary-3d.npy: NumPy array, version 1.0, header length 118

With that, let us open a file handle for the file and proceed with trying to parse it
according to its specification. For this, in Python, we will simply open the file in bytes
mode, so as not to convert to text, and read various segments of the file to verify or
process portions.

Repurposing Data Sources

[168]

For this format, we will be able to process it strictly sequentially, but in other cases
it might be necessary to seek to particular byte positions within the file. The Python
struct module will allow us to parse basic numeric types from bytestrings. The ast
module will let us create Python data structures from raw strings without a security
risk that eval() can encounter:

import struct, ast
binfile = open('data/binary-3d.npy', 'rb')

Check that the magic header is correct
if binfile.read(6) == b'\x93NUMPY':
 vermajor = ord(binfile.read(1))
 verminor = ord(binfile.read(1))
 print(f"Data appears to be NPY format, "
 f"version {vermajor}.{verminor}")
else:
 print("Data in unsupported file format")
 print("*** ABORT PROCESSING ***")

Data appears to be NPY format, version 1.0

Next we need to determine how long the header is, and then read it in. The header
is always ASCII in NPY version 1, but may be UTF-8 in version 3. Since ASCII is a
subset of UTF-8, decoding does no harm even if we do not check the version:

Little-endian short int (tuple 0 element)
header_len = struct.unpack('<H', binfile.read(2))[0]
Read specified number of bytes
header = binfile.read(header_len)
Convert header bytes to a dictionary
Use safer ast.literal_eval()
header_dict = ast.literal_eval(header.decode('utf-8'))
print(f"Read {header_len} bytes "
 f"into dictionary: \n{header_dict}")

Read 118 bytes into dictionary:
{'descr': '<f8', 'fortran_order': False, 'shape': (2, 2, 3)}

While this dictionary stored in the header gives a nice description of the dtype, value
order, and the shape, the convention used by NumPy for value types is different
from that used in the struct module. We can define a (partial) mapping to obtain
the correct spelling of the data type for the reader. We only define this mapping for
some data types encoded as little-endian, but the big-endian versions would simply
have a greater-than sign instead.

Chapter 3

[169]

The key for 'fortran_order' indicates whether the fastest or slowest varying
dimension is contiguous in memory. Most systems use “C order” instead.

We are not aiming for high efficiency here, but to minimize code. Therefore, I will
expediently read the actual data into a simple list of values first, and then later
convert that to a NumPy array:

Define spelling of data types and find the struct code
dtype_map = {'<i2': '<i', '<i4': '<l', '<i8': '<q',
 '<f2': '<e', '<f4': '<f', '<f8': '<d'}
dtype = header_dict['descr']
fcode = dtype_map[dtype]
Determine number of bytes from dtype spec
nbytes = int(dtype[2:])

List to hold values
values = []

Python 3.8+ "walrus operator"
while val_bytes := binfile.read(nbytes):
 values.append(struct.unpack(fcode, val_bytes)[0])

print("Values:", values)

Values: [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0]

Let us now convert the raw values into an actual NumPy array of appropriate shape
and dtype. We will also look for whether to use Fortran- or C-order in memory:

shape = header_dict['shape']
order = 'F' if header_dict['fortran_order'] else 'C'
newarr = np.array(values, dtype=dtype, order=order)
newarr = newarr.reshape(shape)
print(newarr, '\n', newarr.shape, newarr.dtype)
print("\nMatched standard parser:", (arr == newarr).all())

[[[0. 1. 2.]
 [3. 4. 5.]]

 [[6. 7. 8.]
 [9. 10. 11.]]]
 (2, 2, 3) float64

Matched standard parser: True

Just as binary data can be oddball, so can text.

Repurposing Data Sources

[170]

Custom Text Formats
Need we emphasize the similarity of these two sequences? Yes, for the resemblance
we have in mind is not a simple collection of traits chosen only in order to delete their
difference. And it would not be enough to retain those common traits at the expense
of the others for the slightest truth to result. It is rather the intersubjectivity in which
the two actions are motivated that we wish to bring into relief, as well as the three
terms through which it structures them.
–Jacques Lacan

Concepts:

•	 Line-oriented and hierarchical structures
•	 Heuristics to identify data of interest
•	 Character encodings and mojibake
•	 Guessing with chardet (character detection)

In life as a data scientist, but especially if you occasionally wear the hat of a systems
administrator or similar role, you will encounter textual data with unusual formats.
Log files are one common source of these kinds of files. Many or most log files do
stick to the record-per-line convention; if so, we are given an easy way to separate
records. From there, a variety of rules or heuristics can be used to determine exactly
what kind of record the line corresponds to.

Not all log files, however, stick to a line convention. Moreover, over time, you will
likewise encounter other types of files produced by tools that store nested data and
chose to create their own format rather than use some widely used standard. For
hierarchical or other non-tabular structures, the motivation for eschewing strict
record-per-line format is often compelling and obvious.

In many cases, the authors of the programs creating one-off formats are entirely free
of blame. Standard formats for representing non-tabular data did not exist a decade
prior to this writing in 2020, or at least were not widely adopted across a range
of programming languages in that not-so-distant past. Depending on your exact
domain, legacy data and formats are likely to dominate your work. For example,
JSON was first standardized in 2013, as ECMA-404. YAML was created in 2001, but
not widely used before approximately 2010. XML dates to 1996, but has remained
unwieldy for human-readable formats since then. Hence many programmers have
gone their own way, and left as traces the files you now need to import, analyze,
and process.

Chapter 3

[171]

A Structured Log
Scanning my own system, I found a good example of a reasonably human-readable
log file that is not parsable in a line-oriented manner. The Perl package management
tool cpan logs the installation actions of each library it manages. The format used for
such logs varies per package (very much in a Perl style). The package Archive::Zip
left the discussed log on my system (for its self-tests). This data file contains sections
that are actual Perl code defining test classes, interspersed with unformatted output
messages. Each of the classes has a variety of attributes, largely overlapping but not
identical. A sensible memory data format for this is a data frame with missing values
marked where a given attribute name does not exist for a class.

Obviously, we could use Perl itself to process those class definitions. However, that
is unlikely to be the programming language we wish to actually use to work with the
data extracted. We will use Python to read the format, and use only heuristics about
what elements we expect. Notably, we cannot statically parse Perl, which task was
shown to be strictly equivalent to solving the halting problem by Jeffrey Kegler in
several 2008 essays for The Perl Review. Nonetheless, the output in our example uses
a friendly, but not formally defined, subset of the Perl language. Here is a bit of the
file being processed:

%%bash
head -25 data/archive-zip.log

zipinfo output:
$ZIP = bless({
 "versionNeededToExtract" => 0,
 "numberOfCentralDirectories" => 1,
 "centralDirectoryOffsetWRTStartingDiskNumber" => 360,
 "fileName" => "",
 "centralDirectorySize" => 76,
 "writeCentralDirectoryOffset" => 0,
 "diskNumber" => 0,
 "eocdOffset" => 0,
 "versionMadeBy" => 0,
 "diskNumberWithStartOfCentralDirectory" => 0,
 "desiredZip64Mode" => 0,
 "zip64" => 0,
 "zipfileComment" => "",
 "members" => [],
 "numberOfCentralDirectoriesOnThisDisk" => 1,
 "writeEOCDOffset" => 0
}, 'Archive::Zip::Archive');

https://en.wikipedia.org/wiki/Halting_problem
http://www.jeffreykegler.com/Home/perl-and-undecidability

Repurposing Data Sources

[172]

Found EOCD at 436 (0x1b4)

Found central directory for member #1 at 360
$CDMEMBER1 = bless({
 "compressedSize" => 300,

Computer science theory to the side, we can notice some patterns in the file that will
suffice for us. Every record that we care about starts a line with a dollar sign, which
is the marker used for variable names in Perl and some other languages. That line
also happens to follow with the class constructor bless(). We find the end of the
record by a line ending with);. On that same last line, we also find the name of the
class being defined, but we do not, in this example, wish to retain the common prefix
Archive::Zip:: that they all use. Also stipulated for this example is that we will not
try to process any additional data that is contained in the output lines.

Clearly it would be possible to create a valid construction of a Perl class that our
heuristic rules will fail to capture accurately. However, our goal here is not to
implement the Perl language, but only to parse the very small subset of it contained
in this particular file (and hopefully cover a family of similar logs that may exist for
other CPAN libraries). A small state machine is constructed to branch within a loop
over lines of the file:

def parse_cpan_log(fh):
 "Take a file-like object, produce a DF of classes generated"
 import pandas as pd
 # Python dictionaries are ordered in 3.6+
 classes = {}
 in_class = False

 for n, line in enumerate(fh):
 # Remove surrounding whitespace
 line = line.strip()
 # Is this a new definition?
 if line.startswith('$'):
 new_rec = {}
 in_class = True # One or more variables contain the "state"

Chapter 3

[173]

 # Is this the end of the definition?
 elif line.endswith(');'):
 # Possibly fragile assumption of parts of line
 _, classname, _ = line.split()
 barename = classname.replace('Archive::Zip::', '')
 # Just removing extra quotes this way
 name = ast.literal_eval(barename)
 # Distinguish entries with same name by line number
 classes[f"{name}_{n}"] = new_rec
 in_class = False

 # We are still finding new key/val pairs
 elif in_class:
 # Split around Perl map operator
 key, val = [s.strip() for s in line.split('=>')]
 # No trailing comma, if it was present
 val = val.rstrip(',')
 # Special null value needs to be translated
 val = "None" if val == "undef" else val
 # Also, just quote variables in vals
 val = f'"{val}"' if val.startswith("$") else val
 # Safe evaluate strings to Python objects
 key = ast.literal_eval(key)
 val = ast.literal_eval(val)
 # Add to record dictionary
 new_rec[key] = val

 return pd.DataFrame(classes).T

The function defined is a bit longer than most examples in this book, but is typical
of a small text processing function. The use of the state variable in_class is common
when various lines may belong to one domain of parsing or another. This pattern of
looking for a start state based on something about a line, accumulating contents, then
looking for a stop state based on a different line property is very common in these
kinds of tasks. Beyond the state maintenance, the rest of the lines are, in the main,
merely some minor string manipulation.

Repurposing Data Sources

[174]

Let us now read and parse the data file:

df = parse_cpan_log(open('data/archive-zip.log'))
df.iloc[:, [4, 11, 26, 35]] # Show only a few columns

 centralDirectorySize zip64 crc32
——
 Archive_18 76 0 NaN
 ZipFileMember_53 NaN 0 2889301810
 ZipFileMember_86 NaN 0 2889301810
 Archive_113 72 1 NaN

ZipFileMember_466 NaN 0 3632233996
 Archive_493 62 1 NaN
ZipFileMember_528 NaN 1 3632233996
ZipFileMember_561 NaN 1 3632233996

 lastModFileDateTime
——
 Archive_18 NaN
 ZipFileMember_53 1345061049
 ZipFileMember_86 1345061049
 Archive_113 NaN

ZipFileMember_466 1325883762
 Archive_493 NaN
ZipFileMember_528 1325883770
ZipFileMember_561 1325883770

18 rows × 4 columns

In this case, the DataFrame might better be utilized as a Series with a hierarchical index:

with show_more_rows(25):
 print(df.unstack())

versionNeededToExtract Archive_18 0
 ZipFileMember_53 20
 ZipFileMember_86 20
 Archive_113 45
 ZipFileMember_148 45
 ZipFileMember_181 20
 Archive_208 45
 ZipFileMember_243 45
 ZipFileMember_276 45

Chapter 3

[175]

 Archive_303 813
 ZipFileMember_338 45
 ZipFileMember_371 45
 ...
fileAttributeFormat Archive_208 NaN
 ZipFileMember_243 3
 ZipFileMember_276 3
 Archive_303 NaN
 ZipFileMember_338 3
 ZipFileMember_371 3
 Archive_398 NaN
 ZipFileMember_433 3
 ZipFileMember_466 3
 Archive_493 NaN
 ZipFileMember_528 3
 ZipFileMember_561 3
Length: 720, dtype: object

Character Encodings
The question of character encodings of text formats is somewhat orthogonal to the
data issues the bulk of this book addresses. However, being able to read the content
of a text file is an essential step in processing the data within it, so we should look
at possible problems. The problems that occur are an issue for “legacy encodings,”
but should be solved as text formats standardized on Unicode. That said, it is not
uncommon that you need to deal with files that are decades old, either preceding
Unicode altogether, or created before organizations and software (such as operating
systems) fully standardized their text formats to Unicode. We will look both at the
problems that arise and heuristic tools to solve them.

The American Standard Code for Information Interchange (ASCII) was created in
the 1960s as a standard for encoding text data. However, at the time, in the United
States, consideration was only made to encode the characters used in English text.
This included upper and lowercase characters, some basic punctuation, numerals,
and a few other special or control characters (such as newline and the terminal bell).
To accommodate this collection of symbols, 128 positions were sufficient, so the
ASCII standard defines only values for 8-bit bytes where the high-order bit is a zero.
Any byte with a high-order bit set to 1 is not an ASCII character.

Extending the ASCII standard in a “compatible” way are the ISO-8859 character
encodings. These were developed to cover the characters in (approximately) phonemic
alphabets, primarily those originating in Europe. Many alphabetic languages are based
on Roman letters, but add a variety of diacritics that are not used in English.

Repurposing Data Sources

[176]

Other alphabets are of moderate size, but unrelated to English in letter forms, such as
Cyrillic, Greek, and Hebrew. All of the encodings that make up the ISO-8859 family
preserve the low-order values of ASCII, but encode additional characters using the
high-order bits of each byte. The problem is that 128 additional values (in a byte
with 256 total values) is not large enough to accommodate all of those different extra
characters, so particular members of the family (e.g. ISO-8859-6 for Arabic) use the
high-order bit values in incompatible ways. This allows English text to be represented
in all encodings in this family, but each sibling is mutually incompatible.

For CJK languages (Chinese-Japanese-Korean), the number of characters needed is
vastly larger than 256, so any single byte encoding is not suitable to represent these
languages. Most encodings that were created for these languages use 2 bytes for
each character, but some are of variable length. However, a great many incompatible
encodings were created, not only for the different languages, but also within a
particular language. For example, EUC-JP, SHIFT_JIS, and ISO-2022-JP are all
encodings used to represent Japanese text, in mutually incompatible ways. Abugida
writing systems, such as Devanagari, Telugu, or Geʽez, represent syllables, and hence
have larger character sets than alphabetic systems; however, most do not utilize
letter case, hence roughly halving the code points needed.

Adding to the historical confusion, not only do other encodings outside of the
ISO-8859 family exist for alphabetic languages (including some also covered by
an ISO-8859 member), but Microsoft, in the 1980s, fervently pursued its “embrace-
extend-extinguish” strategy to try to kill open standards. In particular, the
windows-12NN character encodings are deliberately “almost-but-not-quite” the
same as corresponding ISO-8859 encodings. For example, windows-1252 uses most
of the same code points as ISO-8859-1, but is just different enough as not to be
entirely compatible.

The sometimes amusing, but usually frustrating, result of trying to decode a
byte sequence using the wrong encoding is called mojibake (meaning “character
transformation” in Japanese, or, more holistically, “corrupted text”). Depending
on the pairs of encoding used for writing and reading, the text may superficially
resemble genuine text, or it might have displayed markers for unavailable
characters and/or punctuation symbols that are clearly misplaced.

Chapter 3

[177]

Unicode is a specification of code points for all characters in all human languages.
It may be encoded as bytes in multiple ways. However, if a format other than the
default and prevalent UTF-8 is used, the file will always have a “magic number”
at its start, and the first few bytes will unambiguously encode the byte length and
endianness of the encoding. UTF-8 files are neither required nor encouraged to use
a byte-order mark (BOM), but one exists that is not ambiguous with any code points.
UTF-8 itself is a variable length encoding; all ASCII characters remain encoded as a
single byte, but for other characters, special values that use the high-order bit trigger
an expectation to read additional bytes to decide what Unicode character is encoded.
For the data scientist, it is enough to know that all modern programming languages
and tools handle Unicode files seamlessly.

The next few short texts are snippets of Wikipedia articles on character encoding
written for various languages:

for fname in glob('data/character-encoding-*.txt'):
 bname = os.path.basename(fname)
 try:
 open(fname).read()
 print("Read 'successfully':", bname, "\n")
 except Exception as err:
 print("Error in", bname)
 print(err, "\n")

Error in character-encoding-nb.txt
'utf-8' codec can't decode byte 0xc4 in position 171: invalid
continuation byte

Error in character-encoding-el.txt
'utf-8' codec can't decode byte 0xcc in position 0: invalid
continuation byte

Error in character-encoding-ru.txt
'utf-8' codec can't decode byte 0xbd in position 0: invalid start byte

Error in character-encoding-zh.txt
'utf-8' codec can't decode byte 0xd7 in position 0: invalid
continuation byte

Repurposing Data Sources

[178]

Something goes wrong with trying to read the text in these files. If we are so
fortunate as to know the encoding used, it is easy to remedy the issue. However, the
files themselves do not record their encoding. In addition, depending on what fonts
you are using for display, some characters may show as boxes or question marks on
your screen, which makes identification of the problems harder:

zh_file = 'data/character-encoding-zh.txt'
print(open(zh_file, encoding='GB18030').read())

字符编码（英語：Character encoding）、字集碼是把字符集中的字符编码为指
定集合中某一对象（例如：比特模式、自然数序列、8位元组或者电脉冲），以便文
本在计算机中存储和通过通信网络的传递。常见的例子包括将拉丁字母表编码成摩斯
电码和ASCII。

Even if we take a hint from the filename that the encoding represents Chinese text,
we will either fail or get mojibake as a result if we use the wrong encoding in our
attempt:

try:
 # Wrong Chinese encoding
 open(zh_file, encoding='GB2312').read()
except Exception as err:
 print("Error in", os.path.basename(zh_file))
 print(err)

Error in character-encoding-zh.txt
'gb2312' codec can't decode byte 0xd5 in position 12: illegal multibyte
sequence

Note that we did not see the error immediately. If we had only read 11 bytes, it
would have been “valid” (but the wrong characters). Likewise, the character-
encoding-nb.txt file above would have succeeded for an entire 170 bytes without
encountering an issue. We can see a wrong guess going wrong in these files. For
example:

ru_file = 'data/character-encoding-ru.txt'
print(open(ru_file, encoding='iso-8859-10').read())

―ÐŅÞā áØÜŌÞÛÞŌ (ÐÝÓÛ. character set) - âÐŅÛØæÐ,
ŨÐÔÐîéÐï ÚÞÔØāÞŌÚã ÚÞÝÕįÝÞÓÞ ÜÝÞÖÕáâŌÐ áØÜŌÞÛÞŌ ÐÛäÐŌØâÐ
(ÞŅëįÝÞ íÛÕÜÕÝâÞŌ âÕÚáâÐ: ŅãÚŌ, æØäā, ŨÝÐÚÞŌ ßāÕßØÝÐÝØï).
ÂÐÚÐï âÐŅÛØæÐ áÞßÞáâÐŌÛïÕâ ÚÐÖÔÞÜã áØÜŌÞÛã ßÞáÛÕÔÞŌÐâÕÛėÝÞáâė
ÔÛØÝÞŲ Ō ÞÔØÝ ØÛØ ÝÕáÚÞÛėÚÞ áØÜŌÞÛÞŌ ÔāãÓÞÓÞ ÐÛäÐŌØâÐ
(âÞįÕÚ Ø âØāÕ Ō ÚÞÔÕ MÞāŨÕ, áØÓÝÐÛėÝëå äÛÐÓÞŌ ÝÐ äÛÞâÕ,
ÝãÛÕŲ Ø ÕÔØÝØæ (ŅØâÞŌ) Ō ÚÞÜßėîâÕāÕ).

Chapter 3

[179]

Here we read something, but even without necessarily knowing any of the languages
at issue, it is fairly clearly gibberish. As readers of English, we can at least recognize
the base letters that these mostly diacritic forms derive from. They are jumbled
together in a manner that doesn’t follow any real sensible phonetic rules, such as
vowels and consonants roughly alternating, or a meaningful capitalization pattern.
Included here is the brief English phrase “character set.”

In this particular case, the text genuinely is in the ISO-8859 family, but we chose
the wrong sibling among them. This gives us one type of mojibake. As the filename
hints at, this happens to be in Russian, and uses the Cyrillic member of the ISO-8859
family. Readers may not know the Cyrillic letters, but if you have seen any signage
or text incidentally, this text will not look obviously wrong:

print(open(ru_file, encoding='iso-8859-5').read())

Набор символов (англ. character set) - таблица,
задающая кодировку конечного множества символов алфавита
(обычно элементов текста: букв, цифр, знаков препинания).
Такая таблица сопоставляет каждому символу последовательность
длиной в один или несколько символов другого алфавита
(точек и тире в коде Mорзе, сигнальных флагов на флоте,
нулей и единиц (битов) в компьютере).

Similarly, if you have seen writing in Greek, this version will perhaps not look
obviously wrong:

el_file = 'data/character-encoding-el.txt'
print(open(el_file, encoding='iso-8859-7').read())

Μια κωδικοποίηση χαρακτήρων αποτελείται από έναν κώδικα που
συσχετίζει ένα σύνολο χαρακτήρων όπως πχ οι χαρακτήρες που
χρησιμοποιούμε σε ένα αλφάβητο με ένα διαφορετικό σύνολο
πχ αριθμών, ή ηλεκτρικών σημάτων, προκειμένου να
διευκολυνθεί η αποθήκευση, διαχείριση κειμένου σε
υπολογιστικά συστήματα καθώς και η μεταφορά κειμένου μέσω
τηλεπικοινωνιακών δικτύων.

Merely being not obviously wrong in a language you are not familiar with is a
weak standard to meet. Having native, or at least modestly proficient, readers of the
languages in question will help, if that is possible. If this is not possible—which often
it will not be if you are processing many files with many encodings—automated
tools can make reasonable heuristic guesses. This does not guarantee correctness,
but it is suggestive.

Repurposing Data Sources

[180]

The way the Python chardet module works is similar to the code in all modern
web browsers. HTML pages can declare their encoding in their headers, but this
declaration is often wrong, for various reasons. Browsers do some hand-holding and
try to make better guesses when the data clearly does not match declared encoding.
The general idea in this detection is threefold. A detector will scan through multiple
candidate encodings to reach a best guess:

•	 Under the candidate encoding, are any of the byte values or sequences
simply invalid?

•	 Under the candidate encoding, is the character frequency similar to that
typically encountered in the language(s) often encoded using that encoding?

•	 Under the candidate encoding, are digraph frequencies similar to those
typically encountered?

We do not need to worry about the exact details of the probability ranking, just
the API to use. Implementations of the same algorithm are available in a variety of
programming languages. Let us look at the guesses chardet makes for some of our
text files:

import chardet

for fname in glob('data/character-encoding-*.txt'):
 # Read the file in binary mode
 bname = os.path.basename(fname)
 raw = open(fname, 'rb').read()
 print(f"{bname} (best guess):")
 guess = chardet.detect(raw)
 print(f" encoding: {guess['encoding']}")
 print(f" confidence: {guess['confidence']}")
 print(f" language: {guess['language']}")
 print()

character-encoding-nb.txt (best guess):
 encoding: ISO-8859-9
 confidence: 0.6275904603111617
 language: Turkish

character-encoding-el.txt (best guess):
 encoding: ISO-8859-7
 confidence: 0.9900553828371981
 language: Greek

Chapter 3

[181]

character-encoding-ru.txt (best guess):
 encoding: ISO-8859-5
 confidence: 0.9621526092949461
 language: Russian

character-encoding-zh.txt (best guess):
 encoding: GB2312
 confidence: 0.99
 language: Chinese

These guesses are only partially correct. The language code nb is actually Norwegian
Bokmål, not Turkish. This guess has a notably lower probability than others.
Moreover, it was actually encoded using ISO-8859-10. However, in this particular
text, all characters are identical between ISO-8859-9 and ISO-8859-10, so that aspect
is not really wrong. A larger text would more reliably guess between Bokmål and
Turkish by letter and digram frequency; it does not make much difference if that
is correct for most purposes, since our concern as data scientists is to get the data
correct:

print(open('data/character-encoding-nb.txt',
 encoding='iso-8859-9').read())

Tegnsett eller tegnkoding er det som i datamaskiner
definerer hvilket lesbart symbol som representeres av et gitt
heltall. Foruten Unicode finnes de nordiske bokstavene ÄÅÆÖØ
og äåæöø (i den rekkefølgen) i følgende tegnsett: ISO-8859-1,
ISO-8859-4, ISO-8859-9, ISO-8859-10, ISO-8859-14, ISO-8859-15
og ISO-8859-16.

The guess about the zh text is wrong as well. We have already tried reading that
file as GB2312 and reached an explicit failure in doing so. This is where domain
knowledge becomes relevant. GB18030 is strictly a superset of GB2312. In principle,
the Python chardet module is aware of GB18030, so the problem is not a missing
feature per se. Nonetheless, in this case, unfortunately, chardet guesses an
impossible encoding, in which one or more encoded characters do not exist in the
subset encoding.

The errors in encoding inference are illustrative, even if not too serious in these
particular cases. Adding more text than 2-3 sentences would make guesses more
reliable, and most text documents will be much longer. However, text formats for
non-text data will typically only have short snippets of text, often just single words
in a categorical feature.

Repurposing Data Sources

[182]

The specific strings “blue”, “mavi”, “blå”, “blau”, and “sininen” are all plausible
words in English, Turkish, Norwegian, German, and Finnish. The a-ring character
does not occur in Turkish or English, but other than that, the distinction is strictly in
vocabulary, not letter or digraph plausibility.

For example, a CSV file with personal names will only have clusters of 5-10 letters
for each name, not full paragraphs. The number of letters and digraphs is small,
and even if uncommon ones occur in isolation, that is hardly definitive. If you have
some domain knowledge or guidance on the problem, you could write more custom
code to validate candidate encodings against language-specific wordlists (including
common names); even there, you would have to allow a certain rate of non-matches
for misspellings and rare words.

Exercises
We present here two exercises. One of them deals with a custom binary format, the
other with web scraping. Not every topic of this chapter is addressed in the exercises,
but these two are important domains for practical data science.

Enhancing the NPY Parser
The binary data we read from the NPY was in the simplest format we could choose.
For this exercise you want to process a somewhat more complex binary file using
your own code. Write a custom function that reads a file into a NumPy array, and
test it against several arrays you have serialized using numpy.save() or numpy.
savez().

The test cases for your function are at the URLs:

https://www.gnosis.cx/cleaning/students.npy

https://www.gnosis.cx/cleaning/students.npz

We have not previously looked at the NPZ format, but it is a zip archive of one or
more NPY files, allowing both compression and storage of multiple arrays. Ideally,
your function will handle both formats, and will determine which type of file you
are reading based on the magic string in the first few bytes. As a first pass, only try
to parse the NPY version, then enhance from there.

Using the official readers, we can see that this array adds something the earlier
example had not. Specifically, it stores a recarray that combines several data types
into each value in the array, as shown in the output below. The rules we described
earlier in this chapter will actually still suffice, but you have to think about them
carefully.

https://www.gnosis.cx/cleaning/students.npy
https://www.gnosis.cx/cleaning/students.npz

Chapter 3

[183]

The data we want to match in your reader will be exactly the same as using the
official reader:

students = np.load(open('data/students.npy', 'rb'))
print(students)
print("\nDtype:", students.dtype)

[[('Mia', 12, 1.3) ('Liam', 13, 0.6) ('Isabélla', 11, 2.1)]
 [('Mason', 12, 1.6) ('Olivia', 11, 2.3) ('Sophia', 12, 0.7)]]

Dtype: [('first', '<U8'), ('age', '<i2'), ('distance', '>f4')]

When you move on to processing the NPZ format, you can compare again with the
official reader. As mentioned, this might have several arrays inside it, although only
one is stored in the example:

arrs = np.load(open('data/students.npz', 'rb'))
print(arrs)
arrs.files

<numpy.lib.npyio.NpzFile object at 0x7f5e12d8d070>
['arr_0']

The contents of arr_0 within the NPZ file are identical to the single array in the NPY.
However, after you have successfully parsed this NPZ file, try creating one or more
others that actually do store multiple arrays, and parse those using custom code.
Decide on the best API to use for a function that may need to return either one or
several arrays. For this part of the task, the Python standard library module zipfile
will be very helpful for you.

There is no reason this exercise has to be performed in Python. Other programming
languages are perfectly well able to read binary data, and the general steps involved
will be very similar to those performed in this chapter in the Binary Serialized Data
Structures section. You could, for example, read the data within an NPY file into an R
array instead.

Scraping Web Traffic
The author’s web domain, gnosis.cx, has been operating for more than two decades,
and retains most of the “Web 0.5” technology and visual style it was first authored
with. One thing the web host provides, as do most others, is reports on traffic at the
site (using nearly as ancient styling as that of the domain itself).

Repurposing Data Sources

[184]

You can find the most current reports at:

https://www.gnosis.cx/stats/

A snapshot of the reports current at the time of this writing are also copied to:

https://www.gnosis.cx/cleaning/stats/

An image of the report page at the time of writing follows:

Figure 3.10: Traffic report for gnosis.cx

https://www.gnosis.cx/stats/
https://gnosis.cx/clearning/stats/

Chapter 3

[185]

The weekly table shown is quite long since it goes back to February 2010. The actual
site is a decade older than that, but servers and logging databases were modified,
losing older data. There is also a rather large glitch of almost 5 years in the middle
where traffic shows as zero. The rather dramatic fall in traffic over the 6 weeks up to
the snapshot reflects a change to using a CDN proxy for DNS and SSL (hence hiding
traffic from the actual web host).

Your goal in this exercise is to write a tool to dynamically scrape the data made
available in the various tables listing traffic sliced by different time increments and
recurring periods (which day of the week, which month of the year, and so on). As
part of this exercise, have your scripts generate less terrible graphs than the one
shown in the screen picture (meaningless false perspective in a line graph offends
good sensibility, and the apparent negative spike to negative traffic around the start
of 2013 is merely inexplicable).

It is a common need to scrape a website similar to these reports. The pattern of
having a regular and infrequently changed structure but updated contents on a
daily basis often reflects a data acquisition requirement. A script like the one you
will write in this exercise could run on a cronjob or under a similar mechanism, to
maintain local copies and revisions of such rolling reports.

Denouement
They invaded the hexagons, showed credentials which were not always false, leafed
through a volume with displeasure and condemned whole shelves: their hygienic,
ascetic furor caused the senseless perdition of millions of books.
–Jorge Luis Borges (The Library of Babel)

Topics covered in this chapter: Web Scraping; Portable Document Format; Image
Formats; Binary Formats; Custom Text Formats.

This chapter contemplated data sources that you may not, in your first thought, think
of as data per se. Within web pages and PDF documents, the intention is usually to
present human-readable content that only contains analyzable data as a secondary
concern. In the ideal situation, whoever produced those less structured documents
will also provide structured versions of the same data; however, that ideal situation
is only occasionally realized. A few nicely written Free Software libraries let us do a
reasonable job of extracting meaningful data from these sources, albeit always in a
way that is somewhat specific to the particular document, or at least to the family or
revisions of a particular document.

Repurposing Data Sources

[186]

Images are a very common interest in machine learning. Drawing various
conclusions about, or characterizations of, the content portrayed in images is a
key application of deep neural networks, for example. While those actual machine
learning techniques are outside the scope of this particular book, this chapter
introduced you to the basic APIs for acquiring an array/tensor representation of
images, and performing some basic correction or normalization that will aid in
those later machine learning models.

There are formats as well that, while directly intended as a means of recording and
communicating data as such, are not widely used and tooling to read them directly
may not be available to you. The specific examples we present, for both binary and
textual custom formats, are ones that library support exists for (less so for the text
format this chapter examines), but the general kinds of reasoning and approach to
creating custom ingestion tools presented resemble those you will need to use when
you encounter an antiquated, in-house, or merely idiosyncratic format.

The next chapter begins the next saga of this book. These early chapters paid special
attention to data formats you need to work with. The next two chapters look at
problems characteristic of data elements per se, not only their representation. We
begin by looking for anomalies in data.

PART II

The Vicissitudes
of Error

[189]

4
Anomaly Detection

The map is not the territory and data is not the world observed. Data is messy,
inconsistent, and unreliable. The world is messier, less consistent, and less reliable.
–cf. Alfred Korzybski

When we think about anomaly detection, there are two distinct, and mostly
independent, concepts that go by the name. The topic of this chapter is perhaps the
less exciting of the two. Security and cryptography researchers, importantly, look
for anomalies that can represent fraud, forgery, and system intrusion attempts. By
the intention of perpetrators, these outliers in the normal patterns of data are subtle
and hard to detect, and a conflict exists between those wishing to falsify data and
those wishing to detect that falsification.

The concept of interest to us in this book is more quotidian. We wish to detect
those cases where data goes bad in the ordinary course of its collection, collation,
transmission, and transcription. Perhaps an instrument gives a bad reading some
or all of the time. Perhaps some values are systematically altered in the course of
reencoding to a different data format. Perhaps the wrong units of measure were
used for a subset of the data. And so on. By accident, these broader checks may
occasionally identify changes that reflect actual malice, but more often they will
simply detect errors, and perhaps bias (but less often, since bias still is usually
toward plausible values).

Anomaly detection has an especially close connection to Chapter 5, Data Quality,
and often to the topic of Chapter 6, Value Imputation. The loose contrast between this
chapter and the next one on data quality is that anomalies are individual data values
that can be diagnosed as probably wrong, whereas data quality more broadly looks
at patterns of the dataset as a whole that can present or identify problems.

Anomaly Detection

[190]

When anomalies are detected it sometimes makes sense to impute more likely values
rather than to discard those observations altogether. In terms of the structure of this
book, the lessons of this chapter will allow you to identify and mark anomalies as
“missing” while Chapter 6, Value Imputation, will pick up with filling in those better-
imputed values (imputation is simply replacing mising data points with values that
are likely, or at least plausible).

These connected chapters—4, 5, and 6—form a broader unit, and roughly describe a
pipeline or series of steps. That is, given your inevitably flawed data you might first
look for anomalies and mark them missing. Next you might look for more systematic
attributes of your dataset, and remediate them in various ways. Finally, you might
impute (or drop) data that was either missing to start with or marked so because
of properties this chapter will help you detect. The step past the final step of this
sequence is the actual modeling or analysis you perform, and is the subject of many
excellent books, but not of this one.clean code

Before we get to the sections of this chapter, let us run our standard setup code:

from src.setup import *
%load_ext rpy2.ipython

%%R
library(tidyverse)
require("RPostgreSQL")

clean code

My mention of these steps is a good opportunity to repeat an
admonishment that has occurred elsewhere herein. The steps of
your data processing pipeline should be coded and documented
carefully and reproducibly. It is often easy and tempting to make
changes to datasets in an exploratory way—as this book does—
but in the process lose a good record of exactly what steps were
taken. The exploration is an integral part of data science, but
reproducibility should not be lost in that process. Good practice
is to retain your original dataset—in whatever data format it
originally presents itself—and generate the final version via scripts
(maintained in version control) rather than within notebooks or
interactive shells. Care must always be taken to allow someone else
to repeatably move from the raw original dataset to the version
that is fed into a machine learning model or other analytic tool.
Keeping an audit trail of what tool or function produced what
change is hygienic practice.

Chapter 4

[191]

Missing Data
Gregory: Is there any other point to which you would wish to draw my attention?
Holmes: To the curious incident of the dog in the night-time.
Gregory: The dog did nothing in the night-time.
Holmes: That was the curious incident.
–Arthur Conan Doyle

Concepts:

•	 Sentinels versus explicit absence
•	 Semantics of NULL, NaN, and N/A
•	 Nullable columns in SQL
•	 Absence in hierarchies
•	 Pitfalls of sentinels

Some data formats explicitly support missing data while other formats use a special
value, known as a sentinel value, of one sort or another to indicate missingness.
Non-tabular formats may indicate missing data simply by not including any value in
a position where it might otherwise occur. However, sentinel values are sometimes
ambiguous, unfortunately.

In particular, within many data formats, and within most data frame libraries,
missing numeric values are represented by the special IEEE-754 floating-point value
NaN (Not-a-Number). The problem here is that NaN, by design and intention,
can arise as the result of some attempts at computation that are not obviously
unreasonable. While such an unrepresentable value is indeed unavailable, this is
potentially semantically different from data that was simply never collected in
the first place. As a small digression, let us look at coaxing a NaN to arise in an
“ordinary” computation (albeit a contrived one).

for n in range(7, 10):
 exp1 = 2**n
 a = (22/7) ** exp1
 b = π ** exp1
 # Compute answer in two "equivalent" ways
 res1 = (a * a) / (b * b)
 res2 = (a / b) * (a / b)
 print(f"n={n}:\n "
 f"method1: {res1:.3f}\n "
 f"method2: {res2:.3f}")

Anomaly Detection

[192]

n=7:
 method1: 1.109
 method2: 1.109
n=8:
 method1: 1.229
 method2: 1.229
n=9:
 method1: nan
 method2: 1.510

Parallel to the pitfall of missing floats being represented as NaNs, missing strings
are almost always represented as strings. Generally, one or more reserved values
such as “N/A” or the empty string are used when a string value is missing.
However, those sentinels do not clearly distinguish between “not applicable”
and “not available,” which are subtly different.

As a toy example, we might have collected names of people, including “middle
name.” Having a sentinel value for “middle name” would not distinguish between
survey subjects who have no middle name and those who merely had not provided
it. Reaching just slightly for a data science purpose: perhaps we wish to find the
correlation between certain middle names and demographic characteristics. In
the United States, for example, the middle name “Santiago” would be strongly
associated with Hispanic family origin; a survey subject who provided no middle
name might nonetheless have that middle name. In principle, a string field could
contain different sentinels for, e.g. “No middle name” and “No response,” but
datasets are very rarely careful in those distinctions.

SQL
In SQL databases, an explicit NULL is available for all column types. Whether a
particular column is “nullable” is determined by the database administrator (or
whoever had that functional role, however much or little qualified). This allows a
distinction in principle between an explicit NaN for a numeric field and a NULL
for missing values.

Unfortunately, many or most actual database tables fail to utilize these available
distinctions (i.e. the specific configured and populated tables). In practice, you are
likely to see many combinations of empty strings, NaNs, actual NULLs, or other
sentinels, even within SQL databases. This is not because any widely used RDBMS
fails to support these different values and types; it is rather that in the history of
various clients putting data into them, using various codebases, non-optimal choices
were made.

Chapter 4

[193]

To run the code in the next cells, you need to obtain access to an RDBMS. The
PostgreSQL server running on my local system, in particular, has a database called
dirty, and that in turn contains a table called missing. If you use a different RDBMS,
your driver will have a different name, and your engine will use a different scheme
in its connection URL. The particular user, password, host, and port will also vary.
Database servers also often use authentication methods other than a password to
grant access. However, the Python DB-API (database API) is quite consistent, and you
will work with the connection object and engine in identical ways when you access
other RDBMSs. For illustrative purposes, we show our PostgreSQL configuration
function connect_local(), which is contained in setup.py.

PostgreSQL configuration
def connect_local():
 user = 'cleaning'
 pwd = 'data'
 host = 'localhost'
 port = '5432'
 db = 'dirty'
 con = psycopg2.connect(database=db, host=host, user=user,
password=pwd)
 engine = create_engine(f'postgresql://{user}:{pwd}@{host}:{port}/
{db}')
 return con, engine

With the connection established, we can examine some of our data in Python.

con, engine = connect_local()
cur = con.cursor()
Look at table named "missing"
cur.execute("SELECT * FROM missing")
for n, (a, b) in enumerate(cur):
 print(f"{n+1} | {str(a):>4s} | {b}")

1 | nan | Not number
2 | 1.23 | A number
3 | None | A null
4 | 3.45 | Santiago
5 | 6.78 |
6 | 9.01 | None

Anomaly Detection

[194]

As Python objects, an SQL NULL is represented as the singleton None, which is a
reasonable choice. Let us review this friendly data representation.

•	 Row 1 contains a NaN (not computable) and a string describing the row
•	 Row 2 contains a regular float value and a string describing it
•	 Row 3 contains an SQL NULL (not available) and a string
•	 Row 4 contains a regular float value and a regular string
•	 Row 5 contains a regular float value and an empty string (“not applicable”)
•	 Row 6 contains a regular float value and a NULL (“not available”)

In terms of actually supporting the distinction between a true NULL and a sentinel
value like NaN, libraries are of mixed quality. Pandas has made some strides with
version 1.0 by introducing the special singleton pd.NA to be used as a “missing”
indicator across data types, instead of np.nan, None, and pd.NaT (Not a Time).
However, as of this writing, the singleton is not utilized in any of the standard data
readers, and getting the value into data requires special efforts. I hope this will have
improved by the time you read this.

R’s Tidyverse does better because R itself has an NA special value. Slightly
confusingly, R also contains an even more special pseudo-value NULL, which is used
to indicate that something is undefined (as opposed to simply missing). R’s NULL
can result from some expressions and function calls, but it cannot be an element
in arrays or data frames.

%%R
Notice NULL is simply ignored in the construction
tibble(val = c(NULL, NA, NaN, 0),
 str = c("this", "that", NA))

A tibble: 3 x 2
 val str
 <dbl> <chr>
1 NA this
2 NaN that
3 0 NA

What SQL calls NULL, R calls NA; NaN remains a separate value indicating “not
computable.” NaN This allows R to interface correctly and unambiguously with SQL,
or with the occasional other formats which also explicitly mark “missing” in a non-
sentinel manner.

Chapter 4

[195]

This R code assumes the same PostgreSQL database is available as that used in the
Python example. As with the Python code, a different RDBMS will require a different
driver name, and user, password, host, and port will vary in your configuration:

%%R
drv <- dbDriver("PostgreSQL")
con <- dbConnect(drv, dbname = "dirty",
 host = "localhost", port = 5432,
 user = "cleaning", password = "data")
sql <- "SELECT * FROM missing"
data <- tibble(dbGetQuery(con, sql))
data

A tibble: 6 x 2
 a b
 <dbl> <chr>
1 NaN "Not number"
2 1.23 "A number "
3 NA "A null "
4 3.45 "Santiago "
5 6.78 " "
6 9.01 NA

NaN

The IEEE-754 standard, in fact, reserves a large number of bit
patterns as NaNs: 16 million of them for 32-bit floats, and vastly
more for 64-bit floats. Moreover, these many NaNs are divided
into a generous number each for signaling versus quiet NaNs. In
concept, when the standard was developed, the choice of which
of the millions of NaNs available (the “payload”) could be used to
record information about exactly what kind of operation led to the
NaN occurring. That said, no software used in data science—and
nearly no software used in array and numeric computation—
actually utilizes the distinction among the many NaNs. In practical
terms, NaN is equivalent to a singleton, like R’s NA, Python’s None,
or JavaScript’s null.

Anomaly Detection

[196]

In contrast, Pandas 1.0 produces the less correct data frame. The engine object was
configured and discussed above with the connect_local() function:

pd.read_sql("SELECT * FROM missing", engine)

 A b
0 NaN Not number
1 1.23 A number
2 NaN A null
3 3.45 Santiago
4 6.78
5 9.01 None

Hierarchical Formats
In formats like JSON that nest data flexibly, there is an obvious way of representing
missing data: by not representing it at all. If you perform hierarchical processing,
you will need to check for the presence or absence of a given dictionary key at a
given level. The JSON specification itself does not address NaN values, which means
that some systems producing data may choose to use the JavaScript null value in its
place, producing the ambiguity we have discussed above. However, many specific
libraries extend the definition to recognize NaN (and sometimes inf, which is also a
floating-point number) as a value. To illustrate:

json.loads('[NaN, null, Infinity]') # null becomes Python None

[nan, None, inf]

Let us represent the same data of the SQL table illustrated above in a (relatively)
compact way. Notice, however, that since in the Python json library NaN is a
recognized value, we could explicitly represent all missing keys and match them with
null as needed. Obviously, we data scientists do not usually generate the data we
need to consume; so the format we get is the one we need to process.

We can read this particular data into a Pandas DataFrame easily, subject to the
sentinel limitation. Since a data frame imposes a tabular format, the missing row/
column positions must be filled with some value, in this case with a NaN as sentinel.
Of course, as discussed in Chapter 2, Hierarchical Formats, nested data may simply not
be amenable to being represented in a tabular way.

json_data = '''
{"a": {"1": NaN, "2": 1.23, "4": 3.45, "5": 6.78, "6": 9.01},
 "b": {"1": "Not number", "2": "A number", "3": "A null",
 "4": "Santiago", "5": ""}

Chapter 4

[197]

}'''
pd.read_json(json_data).sort_index()

 A b
1 NaN Not number
2 1.23 A number
3 NaN A null
4 3.45 Santiago
5 6.78
6 9.01 NaN

Let us also process this JSON data in a more hierarchical and procedural way
for illustration, classifying special/missing values as we encounter them. For the
example, we assume that the top level is a dictionary of dictionaries, but obviously
we could walk other structures as well if needed:

data = json.loads(json_data)
rows = {row for dct in data.values()
 for row in dct.keys()}

for row in sorted(rows):
 for col in data.keys():
 val = data[col].get(row)
 if val is None:
 print(f"Row {row}, Col {col}: Missing")
 elif isinstance(val, float) and math.isnan(val):
 print(f"Row {row}, Col {col}: Not a Number")
 elif not val:
 print(f"Row {row}, Col {col}: Empty value {repr(val)}")

Row 1, Col a: Not a Number
Row 3, Col a: Missing
Row 5, Col b: Empty value ''
Row 6, Col b: Missing

Sentinels
In textual data formats, mainly delimited and fixed-width files, missing data
is indicated either by absence or by a sentinel. Both delimited and fixed-width
formats are able to omit a certain field in a row—albeit, in fixed-width, this does not
distinguish among an empty string, a string of spaces, and a missing value. Two
commas next to each other in CSV should be unambiguous for “no value.”

Anomaly Detection

[198]

Ideally, this absence should be used to indicate missingness, and potentially allow
some other sentinel to indicate “Not Applicable,” “Not Calculable,” “No Middle
Name,” or other specific markers for known values that fall outside the domain of
a variable. In practice, however, the “best practice” I recommend here is often not
what is used in the datasets you will actually need to work with.

The use of sentinels is not limited to text formats. Often in SQL, for example, TEXT
or CHAR columns that could, in principle, be made nullable and use NULL to indicate
missing values instead use sentinels (and not always single sentinels; in practice
they often acquire multiple markers over multiple generations of software changes).
Sometimes formats such as JSON that can hold text values likewise use sentinels
rather than omitting keys. Even in formats like HDF5 that enforce data typing,
sometimes sentinel numeric values are used to indicate missing values rather than
relying on NaN as a special marker (which has its own problems, discussed above).

In Pandas, in particular, as of version 1.0, the following sentinel values are
recognized by default as meaning “missing” when reading delimited or fixed-
width files: ' ', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan',
'1.#IND', '1.#QNAN', 'N/A', 'NA', 'NULL', 'NaN', 'n/a', 'nan', and 'null'. Some of
these must arise in domains or from tools I am personally unfamiliar with, but many
I have seen. However, I have also encountered numerous sentinels not in that list.
You will need to consider sentinels for your specific dataset, and such defaults are
only some first guesses the tool provides. Other tools will have different defaults.

Libraries for working with datasets, often as data frames, will have mechanisms to
specify the particular values to treat as sentinels for missing data. Let us look at an
example that is closely based on real-world data obtained from the United States
National Oceanic and Atmospheric Administration (NOAA). This data was, in fact,
provided as CSV files; a more descriptive filename is used here, and many of the
columns are omitted. But only one data value is changed in the example. In other
words, this is a dataset I actually had to work with outside of writing this book, and
the issues discussed were not ones I knew about in advance of doing that.

The dataset we read below concerns weather measurements at a particular
weather station. The station at Sorstokken, Norway, is chosen here more-or-less
at random from thousands available. Other stations employ the same encoding,
which is nowhere obviously documented. Unfortunately, undocumented or
underdocumented field constraints are the rule in published data, not the exception.
The column names are somewhat abbreviated, but not too hard to guess the
meaning of: temperature (℉), maximum wind gust speed (mph), etc:

sorstokken = pd.read_csv('data/sorstokken-no.csv.gz')
sorstokken

Chapter 4

[199]

 STATION DATE TEMP VISIB GUST DEWP
0 1001499999 2019-01-01 39.7 6.2 52.1 30.4
1 1001499999 2019-01-02 36.4 6.2 999.9 29.8
2 1001499999 2019-01-03 36.5 3.3 999.9 35.6
3 1001499999 UNKNOWN 45.6 2.2 22.0 44.8
...
295 1001499999 2019-12-17 40.5 6.2 999.9 39.2
296 1001499999 2019-12-18 38.8 6.2 999.9 38.2
297 1001499999 2019-12-19 45.5 6.1 999.9 42.7
298 1001499999 2019-12-20 51.8 6.2 35.0 41.2
299 rows × 6 columns

We notice a few things in the view of a selection of the table. The DATE value
UNKNOWN is included (by my construction). Also, some GUST values are 999.9 (in
the original data). The use of several 9 digits as a sentinel is a common convention.
The number of 9s used varies, however, as does the position of a decimal point if
any is used. Another common convention is using a -1 as a sentinel for numeric
values that semantically must be positive for legitimate values. For example, the
-1 convention might sensibly be used for wind gust speed, but it could not be
for degrees Fahrenheit or Celsius, which can perfectly well have the value -1 for
ordinary Earth surface temperatures. On the other hand, if we were using the same
units to measure the temperatures inside an iron forge (the melting point of iron is
2,800℉ /1,538℃), -1 would be safely outside the possible operating range.

Looking at the minimum and maximum values of a given variable is often a
clue about the sentinels used. For numbers—and also for dates—a value that is
unreasonably large or unreasonably small is generally used for a sentinel. This can go
wrong where legitimate measurements later exceed their initially anticipated range:

pd.DataFrame([sorstokken.min(), sorstokken.max()])

 STATION DATE TEMP VISIB GUST DEWP
0 1001499999 2019-01-01 27.2 1.2 17.1 16.5
1 1001499999 UNKNOWN 88.1 999.9 999.9 63.5

Here we see that TEMP and DEWP seem always to fall within a “reasonable” range.
DATE alerts us to a problem value this way; it might also do so, but possibly more
subtly, if the sentinel had been for example 1900-01-01, which is an actual date but
one from before NOAA measurements were taken. Likewise, VISIB and GUST
have unreasonably high and special-looking values. For string values, sentinels
are quite likely to occur right in the middle of valid values. “No Middle Name” is
alphabetically between “Naomi” and “Nykko.” Let us look more closely at these
variables with sentinels.

Anomaly Detection

[200]

Outliers and standard deviation (σ) are discussed more in a later section:

print("Normal max:")
for col in ['VISIB', 'GUST']:
 s = sorstokken[col]
 print(col, s[s < 999.9].max(),
 "...standard deviation w/ & w/o sentinel:",
 f"{s.std():.1f} / {s[s < 999.9].std():.1f}")

Normal max:
VISIB 6.8 ...standard deviation w/ & w/o sentinel: 254.4 / 0.7
GUST 62.2 ...standard deviation w/ & w/o sentinel: 452.4 / 8.1

I believe VISIB is measured in miles, and seeing a thousand miles is unreasonable.
GUST wind speed is in mph, and likewise 999.9 is not something that will occur
on Earth. However, one should worry when sentinels are within three orders of
magnitude of actual values, as here. For power law distributed values, even that
rule of thumb about orders of magnitude is of little help.

In Pandas and other tools, we can instruct the tool to look for specific sentinels, and
substitute specific values. Of course, we could do so after data is read into a data
structure using regular data frame filtering and manipulation techniques. If we
can do so at read time, so much the better. Here we look for sentinels on a column-
specific basis:

sorstokken = pd.read_csv('data/sorstokken-no.csv.gz',
 na_values={'DATE': 'UNKNOWN',
 'VISIB': '999.9',
 'GUST': '999.9'},
 parse_dates=['DATE'])
sorstokken.head()

 STATION DATE TEMP VISIB GUST DEWP
0 1001499999 2019-01-01 39.7 6.2 52.1 30.4
1 1001499999 2019-01-02 36.4 6.2 NaN 29.8
2 1001499999 2019-01-03 36.5 3.3 NaN 35.6
3 1001499999 NaT 45.6 2.2 22.0 44.8
4 1001499999 2019-01-06 42.5 1.9 NaN 42.5

Chapter 4

[201]

The topics in this section are largely driven by data formats themselves. Let us turn
to anomalies caused more often by collection processes.

Miscoded Data
“When I use a word,” Humpty Dumpty said, in rather a scornful tone, “it means
just what I choose it to mean—neither more nor less.”
–Lewis Carroll

Concepts:

•	 Categorical and ordinal constraints
•	 Encoded values and metadata definitions
•	 Rare categories

When I discuss miscoded data in this section, I am primarily addressing categorical
data, also called “factors” in R (and sometimes elsewhere). Ordinal data might be
included too inasmuch as it has known bounds. For example, if a ranking scale is
specified as ranging from 1 to 10, any values outside of that numeric range—or if
genuinely ordinal, any values that are not integral—must be miscoded in some
manner.

Quantitative data can obviously be miscoded as well, in some sense. A data entry
intending a value of 55 might be carelessly entered as 555. But equally, a value
intended as 55 might be mis-entered as 54, which is less likely to be caught as
obviously wrong. In any event, the examination of quantitative features for errors
is addressed in the later sections of this chapter. Numbers, especially real numbers
(or complex numbers, integers, fractions, etc.), do not present as immediately wrong,
but only in their distribution or domain constraints.

For an ordinal value, verifying its type and range should assure the validity of the
coding, in most cases (ordinals with non-contiguous integers as valid values do occur
sometimes, but less common). In the Dermatology Data Set available from the UCI
Machine Learning Repository, most fields are coded as 0, 1, 2, or 3. One field is only
0 or 1; the age and target (the skin condition) are continuous and factor variables,
respectively.

https://archive.ics.uci.edu/ml/datasets/Dermatology

Anomaly Detection

[202]

In this example, nothing is miscoded; note that verifying that is not the same as
knowing all values are correct:

from src.dermatology import *
(pd.DataFrame(
 [derm.min(), derm.max(), derm.dtypes])
 .T
 .rename(columns={0:'min', 1:'max', 2:'dtype'})
)

 Min max dtype
erythema 0 3 int64
scaling 0 3 int64
definite borders 0 3 int64
itching 0 3 int64
...
inflammatory 0 3 int64
monoluclear infiltrate
band-like infiltrate 0 3 int64
Age 0 75 float64
TARGET cronic dermatitis seboreic dermatitis object
35 rows × 3 columns

Minimum, maximum, and verifying the use of the integer data type is sufficient to
assure ordinals are not miscoded. Categorical variables are sometimes encoded in
an ordinal fashion, but often consist of words naming their values. For example,
the below dataset is very similar to the one used in an exercise of Chapter 6, Value
Imputation. However, in this version, some errors exist that we will look at in the
next several sections. This data contains the (hypothetical) height, weight, hair
length, and favorite color of 25,000 survey subjects:

humans = pd.read_csv('data/humans-err.csv')
random_state for deterministic sample
humans.sample(5, random_state=1)

 Height Weight Hair_Length Favorite
21492 176.958650 72.604585 14.0 red
9488 169.000221 79.559843 0.0 blue
16933 171.104306 71.125528 5.5 red
12604 174.481084 79.496237 8.1 blue
8222 171.275578 77.094118 14.6 green

Chapter 4

[203]

As one would expect semantically, Favorite is a categorical value, with a small
number of legitimate values. Generally, the way to examine such a feature
for miscoding starts with examining the unique values it takes. Obviously, if
documentation exists as to the expected values that can help us. However, keep in
mind a software developers’ motto that “documentation” is a synonym for “lies.”
It may not accurately reflect the data itself:

humans.Favorite.unique()

array(['red', 'green', 'blue', 'Red', ' red', 'grееn', 'blüe',
 'chartreuse'], dtype=object)

At an initial look at unique values, we already see several likely problems. For
example, ' red' with a space at the beginning is a common kind of data entry error,
and we can most likely assume it was intended simply as 'red'. On the other hand,
'Red' capitalized versus in lowercase is not necessarily self-evident as to which
is correct. The string 'blüe' looks like another misspelling of the English word.
Something strange is happening with 'green' still; we will return to that.

To get a sense of the intention of the data, we can check whether some variations
are rare with others common. This is often a strong hint:

humans.Favorite.value_counts()

red 9576
blue 7961
green 7458
Red 1
chartreuse 1
 red 1
grееn 1
blüe 1
Name: Favorite, dtype: int64

These counts tell us a lot. The color 'chartreuse' is a perfectly good color name,
albeit a less commonly used word. It could be a legitimate value, but most likely its
rarity indicates some sort of improper entry, given that only three colors (modulo
some spelling issues we are working on) seem to be otherwise available. Most likely,
we will want to mark this value as missing for later processing. But only most likely;
there may be domain knowledge that indicates that despite its rarity, it is a value
we wish to consider. If documentation exists describing it, that lends weight to the
option of simply keeping it.

Anomaly Detection

[204]

The rare occurrence of ' red' with a leading space and 'Red' capitalized give us
strong support for the assumption that they are simply miscoded versions of 'red'.
However, if we were roughly evenly split on capitalized and lowercase versions, or
even if neither was rare, the correct action would be less clear. Nonetheless, in many
cases, canonicalization or normalization to one particular case (case folding) would
be good practice, and data frame tools make this easy to vectorize on large datasets.
However, sometimes capitalization represents intended differences, for example
in otherwise identical last names that have distinct capitalization among different
families. Likewise, in many scientific fields, short names or formulae can be case-
sensitive and should not be case-folded. Having a sense of the content domain
remains important.

We are left with the curious case of the two greens. They look identical; likewise,
for example, a trailing space in the above categorical values would not be visible on
screen. Manually looking closer at those values is needed here:

for color in sorted(humans.Favorite.unique()):
 print(f"{color:>10s}", [ord(c) for c in color])

 red [32, 114, 101, 100]
 Red [82, 101, 100]
 blue [98, 108, 117, 101]
 blüe [98, 108, 252, 101]
chartreuse [99, 104, 97, 114, 116, 114, 101, 117, 115, 101]
 green [103, 114, 101, 101, 110]
 grееn [103, 114, 1077, 1077, 110]
 red [114, 101, 100]

What we find here from the Unicode code points is that one of our greens in fact
has two Cyrillic “ye” characters rather than Roman “e” characters. This substitution
of near-identical glyphs is often—as in this instance of a sneaky book author—a
result of malice or deception. However, in the large world of human languages, it
genuinely can occur that a particular string of characters innocently resembles some
other string that it is not. Other than perhaps making it more difficult to type some
strings at the particular keyboard with which you are familiar, this visual similarity
is not per se a data integrity issue. However, here, with the one mixed-language
version also being rare, clearly it is something to correct to the regular English word
in Roman letters.

Once we have made decisions about the remediations desired—in a manner sensitive
to domain knowledge—we can translate troublesome values. For example:

humans.loc[humans.Favorite.isin(['Red', ' red']), 'Favorite'] = 'red'
humans.loc[humans.Favorite == 'chartreuse', 'Favorite'] = None

Chapter 4

[205]

humans.loc[humans.Favorite == 'blüe', 'Favorite'] = 'blue'
humans.loc[humans.Favorite == 'grееn', 'Favorite'] = 'green'
humans.Favorite.value_counts()

red 9578
blue 7962
green 7459
Name: Favorite, dtype: int64

Let us turn to areas where domain knowledge can inform anomaly detection.

Fixed Bounds
“Cricket is an art. Like all arts it has a technical foundation. To enjoy it does not
require technical knowledge, but analysis that is not technically based is mere
impressionism.”
–C.L.R. James, Beyond A Boundary

Concepts:

•	 Domain versus measurement limits
•	 Imputation and clipping
•	 Improbability versus impossibility
•	 Exploring hypotheses for data errors

Based on our domain knowledge of the problem and dataset at hand, we may know
of fixed bounds for particular variables. For example, we might know that the tallest
human who has lived was Robert Pershing Wadlow at 271cm, and that the shortest
adult was Chandra Bahadur Dangi at 55cm. Values outside this range are probably
unreasonable to allow in our dataset. In fact, we may perhaps wish to assume much
stricter bounds; as an example, let us choose between 92cm and 213cm (which will
include the vast majority of all adult humans). Let us check whether our humans
dataset conforms with these bounds:

((humans.Height < 92) | (humans.Height > 213)).any()

False

For height, then, our domain-specific fixed bounds are not exceeded in the dataset.
What about the variable Hair_Length? From the actual physical meaning of the
measurement, hair cannot be negative length.

Anomaly Detection

[206]

However, let us stipulate as well that the measuring tape used for our observations
was 120cm long (i.e. hypothetical domain knowledge), and that, therefore, a length
more than that cannot be completely legitimate (such a length is rare, but not
impossible among humans). First, let us look at the hair lengths that exceed the
measuring instrument:

humans.query('Hair_Length > 120')

 Height Weight Hair_Length Favorite
1984 165.634695 62.979993 127.0 red
8929 175.186061 73.899992 120.6 blue
14673 174.948037 77.644434 130.1 blue
14735 176.385525 68.735397 121.7 green
16672 173.172298 71.814699 121.4 red
17093 169.771111 77.958278 133.2 blue

There are just a few samples with a hair length longer than a possible measurement.
However, all of these numbers are only modestly longer than the measuring
instrument or scale. Without more information on the collection procedure, it is
not possible to be confident of the source of the error. Perhaps some subjects made
their own estimates of their very long hair length rather than using the instrument.
Perhaps one data collection site actually had a longer measuring tape that was not
documented in our metadata or data description. Or perhaps there is a transcription
error, such as adding a decimal point; e.g. maybe the 124.1cm hair was 24.1cm in
reality. Or perhaps the unit was confused, and millimeters were actually measured
rather than centimeters (as is standard in hair clippers and other barbering
equipment).

In any case, this problem affects only 6 of the 25,000 observations. Dropping those
rows would not lose us a large amount of data, so that is a possibility. Imputing
values would perhaps be reasonable (for example, stipulating that these 6 subjects
had average hair length). Value imputation is the subject of Chapter 6, and options
are discussed there in more detail; at this stage, the first pass might be marking those
values as missing.

However, for these out-of-range values that cluster relatively close to legitimate
values, clipping the values to the documented maximum might also be a reasonable
approach. The operation “clip” is also sometimes called “clamp,” “crop,” or “trim”
depending on the library you are working with. The general idea is simply that
a value outside of a certain bound is treated as if it is that bound itself. We can
version our data as we modify it:

Chapter 4

[207]

humans2 = humans.copy() # Retain prior versions of dataset
humans2['Hair_Length'] = humans2.Hair_Length.clip(upper=120)
humans2[humans2.Hair_Length > 119]

 Height Weight Hair_Length Favorite
1984 165.634695 62.979993 120.0 red
4146 173.930107 72.701456 119.6 red
8929 175.186061 73.899992 120.0 blue
9259 179.215974 82.538890 119.4 green
14673 174.948037 77.644434 120.0 blue
14735 176.385525 68.735397 120.0 green
16672 173.172298 71.814699 120.0 red
17093 169.771111 77.958278 120.0 blue

A slightly lower threshold for a filter shows that 119.6 was left unchanged, but the
values over 120.0 were all set to 120 exactly.

The too-big values were not difficult to massage. Let us look at the physical lower
bound of zero next. A value of exactly zero is perfectly reasonable. Many people
shave their heads or are otherwise bald. This is invented data, pulled from a
distribution that feels vaguely reasonable to this author, so do not put too much
weight in the exact distributions of lengths. Just note that zero length is a relatively
common occurrence in actual humans:

humans2[humans2.Hair_Length == 0]

 Height Weight Hair_Length Favorite
6 177.297182 81.153493 0.0 blue
217 171.893967 68.553526 0.0 blue
240 161.862237 76.914599 0.0 blue
354 172.972247 73.175032 0.0 red
...
24834 170.991301 67.652660 0.0 green
24892 177.002643 77.286141 0.0 green
24919 169.012286 74.593809 0.0 blue
24967 169.061308 65.985481 0.0 green
517 rows × 4 columns

However, what about the impossible negative lengths? We can easily create a filter
to look at those also:

neg_hair = humans2[humans2.Hair_Length < 0]
neg_hair

Anomaly Detection

[208]

 Height Weight Hair_Length Favorite
493 167.703398 72.567763 -1.0 blue
528 167.355393 60.276190 -20.7 green
562 172.416114 60.867457 -68.1 green
569 177.644146 74.027147 -5.9 green
...
24055 172.831608 74.096660 -13.3 red
24063 172.687488 69.466838 -14.2 green
24386 176.668430 62.984811 -1.0 green
24944 172.300925 72.067862 -24.4 red
118 rows × 4 columns

There are a moderate number of these obviously miscoded rows. As elsewhere,
simply dropping the problem rows is often a reasonable approach. However, a quick
glance at the tabular data, as well as some slight forensics, suggests that quite likely
a negative sign snuck into many reasonable values. It is at least plausible that these
quantities are right, but simply with an inverted sign. Let us look at some statistics
of the problem values. Just for fun, we will look at very similar summaries using
both R and Pandas:

%%R -i neg_hair
summary(neg_hair$Hair_Length)

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -95.70 -38.08 -20.65 -24.35 -5.60 -0.70

neg_hair.Hair_Length.describe()

count 118.000000
mean -24.348305
std 22.484691
min -95.700000
25% -38.075000
50% -20.650000
75% -5.600000
max -0.700000
Name: Hair_Length, dtype: float64

The general statistics do not contradict this sign-inversion hypothesis. However,
before we draw a conclusion, let us continue to look at these bad values more closely
for this exercise. There might be additional patterns:

plt.hist(neg_hair.Hair_Length, bins=30)
plt.title("Distribution of invalid negative hair length");

Chapter 4

[209]

Figure 4.1: Histogram showing distribution of negative hair length values

This distribution of negative values roughly matches the distribution of positive
ones. There are a larger number of people with short hair of varying short lengths,
and a tail of fewer people at longer lengths. However, at a glance, the region close to
zero seems to be a bit too much of a peak. For the one hundred or so rows of data in
the example, you could eyeball them all manually, but for larger datasets, or larger
bounds-violation sets, honing in on nuances programmatically is more general:

neg_hair.Hair_Length.value_counts()

-1.0 19
-41.6 2
-6.8 2
-30.1 2
 ..
-3.3 1
-51.4 1
-25.1 1
-4.8 1
Name: Hair_Length, Length: 93, dtype: int64

Indeed there is a pattern here. There are 19 values of exactly -1, and only one or two
occurrences of each other invalid negative value. It seems very likely that something
different is happening between the -1 error and the other negative value errors.
Perhaps -1 was used as a sentinel, for example. Of course, it is also possible that -1
could result from the stipulated sign-inversion error; we cannot entirely separate
those two possibilities.

Anomaly Detection

[210]

The working hypothesis I would probably use to handle this problem in the dataset
(if not simply dropping everything questionable outright) would be to mark the -1
values as missing but invert the sign of other negative values:

humans3 = humans2.copy() # Versioned changes to data

The "sentinel" negative value means missing
humans3.loc[humans3.Hair_Length == -1, 'Hair_Length'] = None

All other values simply become non-negative
humans3['Hair_Length'] = humans3.Hair_Length.abs()

plt.hist(humans3.Hair_Length, bins=30)
plt.title("Distribution of corrected hair lengths");

Figure 4.2: Histogram showing corrected hair lengths

We have performed a typical cleaning of bounded values. Let us turn to values
without sharp bounds, but with general distribution statistics.

Outliers
If Congress had meant to so limit the Act, it surely would have used words to that
effect.
–Tennessee Valley Auth. v. Hill, 437 U.S. 153 (1978)

Chapter 4

[211]

Concepts:

•	 Z-score and unexpected values
•	 Interquartile range
•	 Standard deviation and frequency of occurrence

In continuous data, values that fall within normative ranges might still be strongly
uncharacteristic within those bounded expectations. In the simplest case, this occurs
when a value is very different from other values of the same variable. The standard
way to characterize the expectedness of a value is a measure called a z-score. This
value is simply the distance of each point from the mean of the variable, divided by
the standard deviation of the variable.

𝑍𝑍 𝑍 𝑥𝑥 𝑥 𝑥𝑥𝜎𝜎

Where 𝜇𝜇 is the sample mean, and 𝜎𝜎 is the standard deviation.

This measure is most precise for data that follows a normal distribution, but generally
it is useful for any data that is unimodal (having one peak), somewhat symmetric, and
scale-dependent. In more ordinary language, we just want to look for the histogram
of a data variable having one peak, and tapering off at roughly the same rate on both
sides. Completely normal distribution is unusual in real-world data.

A slightly different way of identifying outliers is often used as well. Box and whisker
plots (usually simply called boxplots) will often include outliers as separate visual
elements. While it is possible to use a z-score in such a visualization, more often
these plots utilize interquartile range (IQR) and a fixed multiplier to define outliers.
The different techniques will produce similar, but not identical, answers.

Z-Score
We can see that height and weight in our dataset follow a generally normal-like
distribution by visualizing them. We have seen just above that hair length, after
correction, is strictly single tailed. However, the one-sided drop-off from a mode
at 0 is close enough to one tail of a normal distribution that the z-score is still
reasonable to consider.

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.hist(humans3.Height, bins=50)
ax2.hist(humans3.Weight, bins=50)
ax1.set_title("Distribution of Height")
ax2.set_title("Distribution of Weight");

Anomaly Detection

[212]

Figure 4.3: Histograms showing distributions of height and weight

If we wish to be more precise in quantifying the normality of variables, we can use
statistical tests such and Anderson-Darling, Shapiro-Wilk, or Skewness-Kurtosis
All. Each of these techniques tries to reject the hypothesis that a distribution is
normal. For different p-values (probabilities), different test statistics determine a
threshold for this rejection (although for large samples, even small deviations from
normality will reject the hypothesis, but do not matter from the point of view of
the z-score being useful). In Anderson-Darling, if the test statistic is not much more
than 1.0 the curve is definitely normal enough to measure outliers with a z-score.
The inverse does not hold, however; many non-normal curves are still reasonable to
use the z-score with. Essentially, we just need to avoid this measure for power law
or exponential distributions, and for curves that are strongly multi-modal. Let us
perform Anderson-Darling tests on our height, weight, and hair length variables:

from scipy.stats import anderson

for var in ('Height', 'Weight', 'Hair_Length'):
 data = humans3[var][humans3[var].notnull()]
 stat = anderson(data, 'norm').statistic
 print(f"Anderson-Darling statistic for {var:<12s}: {stat:6.2f}")

Anderson-Darling statistic for Height : 0.24
Anderson-Darling statistic for Weight : 0.54
Anderson-Darling statistic for Hair_Length : 578.19

Having recognized that hair length is not normal, but that it shows a one-sided
decay along a linear scale nonetheless, we can add z-scores for all of our quantitative
variables to the working data frame. As before, as good practice of keeping
versions of our modifications, we copy the data to a new data frame before the next
transformations.

Chapter 4

[213]

We ignore the delta degrees of freedom parameter in our calculation of standard
deviation because it is trivial with 25,000 samples (if we had only 10 or 20 samples,
it could matter). The degrees of freedom concerns the anticipated variance within a
total population based on a sample; but these only vary significantly when samples
are tens of observations, not tens of thousands:

humans4 = humans3.copy()

for var in ('Height', 'Weight', 'Hair_Length'):
 zscore = (humans4[var] - humans4[var].mean()) / humans4[var].std()
 humans4[f"zscore_{var}"] = zscore

humans4.sample(5, random_state=1)

 Height Weight Hair_Length Favorite zscore_Height
21492 176.958650 72.604585 14.0 red 0.880831
9488 169.000221 79.559843 0.0 blue -0.766210
16933 171.104306 71.125528 5.5 red -0.330758
12604 174.481084 79.496237 8.1 blue 0.368085
8222 171.275578 77.094118 14.6 green -0.295312

 zscore_Weight zscore_Hair_Length
21492 -0.042032 -0.568786
9488 0.997585 -1.225152
16933 -0.263109 -0.967294
12604 0.988078 -0.845397
8222 0.629028 -0.540656

The choice of a z-score threshold is very domain- and problem-dependent. A rule of
thumb is often to use a z-score of an absolute value more than 3 as a cut-off to define
outliers. But what is expected very much depends on the size of a dataset.

At any distance from the mean, some observations would be expected if they
are numerous enough, but the number diminishes rapidly with more standard
deviations’ distance.

In statistics, we sometimes recall the 68–95–99.7 rule, which lists
the percentage of observations that fall within one, two, or three
standard deviations in a normal distribution.

Anomaly Detection

[214]

Let us look at that common z-score threshold of 3. Remember that we are working
with 25,000 samples here, so generally we expect to find roughly 75 of them outside
of 3 standard deviations, under the 68–95–99.7 rule discussed above. Let us look at
the table for height, but just check the number of rows outside this bound for the
other variables:

humans4[humans4.zscore_Height.abs() > 3]

 Height Weight Hair_Length Favorite zscore_Height
138 187.708718 86.829633 19.3 green 3.105616
174 187.537446 79.893761 37.5 blue 3.070170
412 157.522316 62.564977 6.8 blue -3.141625
1162 188.592435 86.155948 53.1 red 3.288506
...
22945 157.293031 44.744929 18.4 red -3.189077
23039 187.845548 88.554510 6.9 blue 3.133934
24244 158.153049 59.725932 13.8 green -3.011091
24801 189.310696 85.406727 2.3 green 3.437154

 zscore_Weight zscore_Hair_Length
138 2.084216 -0.320304
174 1.047496 0.532971
412 -1.542673 -0.906345
1162 1.983518 1.264351
...
22945 -4.206272 -0.362499
23039 2.342037 -0.901657
24244 -1.967031 -0.578162
24801 1.871531 -1.117320

51 rows × 7 columns

print("Outlier weight:", (humans4.zscore_Weight.abs() > 3).sum())
print("Outlier hair length:", (humans4.zscore_Hair_Length.abs() >
3).sum())

Outlier weight: 67
Outlier hair length: 285

We have already noted that hair length is single-tailed, so we might expect
approximately twice as many outliers. The actual number is somewhat more than
twice that many, but that is not itself an extreme divergence of values. Height and
weight actually have modestly lower kurtosis than we would expect from the normal
distribution (the tails thin out slightly faster).

Chapter 4

[215]

In any case, a z-score of 3 is probably too small to be useful for our sample size. 4
sigma is probably more relevant for our purpose of distinguishing merely unusual
from probably wrong observations, and maybe 4.5 for the one-tailed hair length.

A table of the frequency of once-a-day observations falling outside of a given
standard deviation (σ) provides a helpful intuition. A shorthand trick to remember
the effect of sigma is the 68–95–99.7 rule mentioned earlier; that is, the percentage of
things falling within one, two, and three standard deviations:

Range Proportion of observations Frequency for daily event
± 1σ 1 in 3 Twice a week
± 2σ 1 in 22 Every three weeks
± 3σ 1 in 370 Yearly
± 4σ 1 in 15,787 Every 43 years (twice in a lifetime)
± 5σ 1 in 1,744,278 Every 5,000 years (once in recorded history)
± 6σ 1 in 506,797,346 Every 1.4 million years (twice in history of

humankind)
± 7σ 1 in 390,682,215,445 Every 1 billion years (four times in history of

Earth)

Let us see the outliers given the broader z-score bounds:

cond = (
 (humans4.zscore_Height.abs() > 4) |
 (humans4.zscore_Weight.abs() > 4) |
 (humans4.zscore_Hair_Length.abs() > 4.5))
humans4[cond]

 Height Weight Hair_Length Favorite zscore_Height
13971 153.107034 63.155154 4.4 green -4.055392
14106 157.244415 45.062151 70.7 red -3.199138
22945 157.293031 44.744929 18.4 red -3.189077

 zscore_Weight zscore_Hair_Length
13971 -1.454458 -1.018865
14106 -4.158856 2.089496
22945 -4.206272 -0.362499

Using modest domain knowledge of human physical characteristics, even though
they are outside the “norm,” persons of 153cm or 45kg are small, but not outside of
bounds we would expect. The small number of 4 sigma outliers are both short and
light according to the data, which we would expect to be correlated to a relatively
high degree, lending plausibility to the measurements.

Anomaly Detection

[216]

Moreover, the height bounds we discussed in the above section on fixed bounds
were considerably wider than this 4 sigma (or even 5 sigma) detects. Therefore,
while we could discard or mark missing values in these outliers rows, the analysis
does not seem to motivate doing so.

Interquartile Range
Using the IQR rather than the z-score makes less of an assumption of normality of a
distribution. However, this technique will also fail to produce meaningful answers
for power law or exponential data distributions. If you can identify a distribution as
one that ranges over many orders of magnitude like those, looking at the quartiles
of either an Nth root or a logarithm of the raw data might still produce reasonable
results. The same transformation, in fact, can be equally relevant if you use z-score
analysis.

The idea of the IQR is simply to look at the quartile cut-offs in a variable and
measure the numeric distance between the first and third quartile, i.e. between the
25% and 75% percentiles. Exactly half the data is in that range, but we often also
expect that most data will be within some distance beyond those cut-offs, defined
as a multiplier of the range between cut-offs. Most commonly, a multiplier of 1.5 is
chosen; this is merely a convention that is often useful but lacks any deeper meaning.

I include in this text a brief function to visualize boxplots that show the IQR defined
outliers. Normally, this functionality is only included in the source code repository
for the book, but here I think it is worthwhile for readers to see the configuration
that goes into these few lines in Matplotlib (other visualization libraries have similar
capabilities; often higher-level abstractions with more visual pizzazz, in fact):

Function defined but not run in this cell
def show_boxplots(df, cols, whis=1.5):
 # Create as many horizontal plots as we have columns
 fig, axes = plt.subplots(len(cols), 1, figsize=(10, 2*len(cols)))
 # For each one, plot the non-null data inside it
 for n, col in enumerate(cols):
 data = df[col][df[col].notnull()]
 axes[n].set_title(f'{col} Distribution')
 # Extend whiskers to specified IQR multiplier
 axes[n].boxplot(data, whis=whis, vert=False, sym='x')
 axes[n].set_yticks([])
 # Fix spacing of subplots at the end
 fig.tight_layout()

Chapter 4

[217]

While the default multiplier (the “whisker” width) is 1.5, we have already seen that
the human data is large enough that values have to be relatively extreme to appear
as genuinely unlikely to be genuine. We choose, therefore, a whisker width of 2.5
instead:

show_boxplots(humans4, ["Height", "Weight", "Hair_Length"], 2.5)

Figure 4.4: Boxplots showing height, weight, and hair length distribution

The central boxes represent the IQR, from 25% to 75% percentile. The whiskers
extend to multiplier times IQR above/below the box. An x marks outliers past the
whiskers.

Only one outlier appears at this threshold for height, at the short end. Likewise, only
two appear for weight, both at the light end. This was the same pattern we found
with the z-score. Rather more “outlier” long hair lengths occur, but we already had
used a larger z-score to filter that more restrictively. We could similarly use a larger
whisker width to filter more hair lengths out, if we wished.

Anomaly Detection

[218]

While the visualization is handy, we want to find the actual data rows that are
marked with x’s in the plots. Let us code that. We find the quartiles, compute the
IQR, then display the inlier ranges:

quartiles = (
 humans4[['Height', 'Weight']]
 .quantile(q=[0.25, 0.50, 0.75, 1.0]))
quartiles

 Height Weight
0.25 169.428884 68.428823
0.50 172.709078 72.930616
0.75 175.953541 77.367039
1.00 190.888112 98.032504

IQR = quartiles.loc[0.75] - quartiles.loc[0.25]
IQR

Height 6.524657
Weight 8.938216
dtype: float64

for col, length in IQR.iteritems():
 high = quartiles.loc[0.75, col] + 2.5*IQR[col]
 low = quartiles.loc[0.25, col] - 2.5*IQR[col]
 print(f"Inliers for {col}: [{low:.3f}, {high:.3f}]")

Inliers for Height: [153.117, 192.265]
Inliers for Weight: [46.083, 99.713]

Actually, filtering using the inlier range in this case gives us the same answer as the
z-score approach. Of necessity, the very shortest person is the shortest regardless
of which outlier detection technique we use. But selecting a domain-motivated
IQR multiplier may identify more or fewer outliers than using a domain-motivated
z-score, depending on actual data distributions:

cond = (
 (humans4.Height > 192.265) |
 (humans4.Height < 153.117) |
 (humans4.Weight > 99.713) |
 (humans4.Weight < 46.083))
humans4[cond]

Chapter 4

[219]

 Height Weight Hair_Length Favorite zscore_Height
13971 153.107034 63.155154 4.4 green -4.055392
14106 157.244415 45.062151 70.7 red -3.199138
22945 157.293031 44.744929 18.4 red -3.189077

 zscore_Weight zscore_Hair_Length
13971 -1.454458 -1.018865
14106 -4.158856 2.089496
22945 -4.206272 -0.362499

Univariate outliers can be important to detect, but sometimes it is a combination of
features that becomes anomalous.

Multivariate Outliers
If you are not part of the solution, you are part of the precipitate.
–Anonymous

Concepts:

•	 Variance in deterministic synthetic features
•	 Expectations of relative rarity

Sometimes univariate features can fall within relatively moderate z-score boundaries,
and yet combinations of those features are unlikely or unreasonable. Perhaps an
actual machine learning model might predict that combinations of features are likely
to be wrong. In this section we only look at simpler combinations of features to
identify problematic samples.

In Chapter 7, Feature Engineering we discuss polynomial features. That technique
multiplies together the values of two or more variables pertaining to the same
observation and treats the result as a new feature. For example, perhaps neither
height nor weight in our working example are outside a reasonable bound, and yet
the multiplicative product of them is. While this is definitely possible, we generally
expect these features to be positively correlated to start with, so multiplication
would probably only produce something new slightly outside the bounds already
detected by univariate outlier detection.

Anomaly Detection

[220]

However, let us consider a derived feature that is well-motivated by the specific
domain. Body Mass Index (BMI) is a measure often used to measure healthy weights
for people, and is defined as: 𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑘𝑘𝑚𝑚2

That is, weight and height are in an inverse relationship in this derived quantity
rather than multiplicatively combined. Perhaps this multivariate derived feature
shows some problem outliers. Let us construct another data frame version that
discards previous calculated columns, but adds BMI and its z-score:

humans5 = humans4[['Height', 'Weight']].copy()
Convert weight from cm to m
humans5['BMI'] = humans5.Weight / (humans5.Height/100)**2
humans5["zscore_BMI"] = (
 (humans5.BMI - humans5.BMI.mean()) /
 humans5.BMI.std()
)
humans5

 Height Weight BMI zscore_BMI
0 167.089607 64.806216 23.212279 -0.620410
1 181.648633 78.281527 23.724388 -0.359761
2 176.272800 87.767722 28.246473 1.941852
3 173.270164 81.635672 27.191452 1.404877
...
24996 163.952580 68.936137 25.645456 0.618008
24997 164.334317 67.830516 25.117048 0.349063
24998 171.524117 75.861686 25.785295 0.689182
24999 174.949129 71.620899 23.400018 -0.524856
25000 rows × 4 columns

Looking for outliers in the derived feature, we see strong signals. As was discussed,
at a z-score of 4 and a dataset of 25,000 records, we expect to see slightly more than
one record appearing as an outlier by natural random distribution. Indeed, the two
z-scores we see below that are only slightly more than 4 in absolute value occurred
in the dataset before it was engineered to highlight the lesson of this section:

Chapter 4

[221]

humans5[humans5.zscore_BMI.abs() > 4]

 Height Weight BMI zscore_BMI
21388 165.912597 90.579409 32.905672 4.313253
23456 187.110000 52.920000 15.115616 -4.741383
23457 158.330000 92.780000 37.010755 6.402625
24610 169.082822 47.250297 16.527439 -4.022805

As well as one example of a moderate outlier for high BMI and one for low BMI,
we also have two more extreme values on each side. In this case, these were
constructed for the section, but similar multivariate outliers will occur in the wild.
The -4.74 z-score is not an extreme we would expect in 25,000 samples, but is
perhaps not completely implausible. However, the +6.4 z-score is astronomically
unlikely to occur without a data error (or a construction by a book author). Since
BMI is a derived feature that combines height and weight—and moreover since
each of those is within reasonable bounds on its own—the correct approach is
almost surely simply to discard these problem rows. Nothing in the data themselves
guides us toward knowing whether weight or height is the problem value, and
no remediation is sensible.

Fortunately for this particular dataset, only 2 (or maybe 4) samples display the
problem under discussion. We have plentiful data here, and no real harm is done
by discarding those rows. Obviously, the particular decisions made about z-score
thresholds and disposition of particular data rows that are illustrated in this section
and the last several are only examples. You will need to decide within your problem
and domain what the most relevant levels and tests are, and what remediations to
perform.

Exercises
The two exercises in this chapter ask you to look for anomalies first in quantitative
data, then in categorical data.

A Famous Experiment
The Michelson–Morley experiment was an attempt in the late 19th century to detect
the existence of the luminiferous aether, a widely assumed medium that would carry
light waves. This was the most famous “failed experiment” in the history of physics
in that it did not detect what it was looking for—something we now know not to
exist at all.

Anomaly Detection

[222]

The general idea was to measure the speed of light under different orientations
of the equipment relative to the direction of movement of the Earth, since relative
movement of the ether medium would add or subtract from the speed of the wave.
Yes, it does not work that way under the theory of relativity, but it was a reasonable
guess 150 years ago.

Apart from the physics questions, the dataset derived by the Michelson–Morley
experiment is widely available, including as a sample built into R. The same data is
available at:

https://www.gnosis.cx/cleaning/morley.dat

Figuring out the format, which is not complex, is a good first step of this exercise
(and typical of real data science work).

The specific numbers in this data are measurements of the speed of light in km/s
with a zero point of 299,000. So, for example, the mean measurement in experiment
1 was 299,909 km/s. Let us look at the data in the R bundle:

%%R -o morley
data(morley)
morley %>%
 group_by('Expt') %>%
 summarize(Mean = mean(Speed), Count = max(Run))

'summarise()' ungrouping output (override with '.groups' argument)
A tibble: 5 x 3
 Expt Mean Count
 <int> <dbl> <int>
1 1 909 20
2 2 856 20
3 3 845 20
4 4 820. 20
5 5 832. 20

In the summary, we just look at the number of runs of each experimental setup, and
the mean across that setup. The raw data has 20 measurements within each setup.

Using whatever programming language and tools you prefer, identify the outliers
first within each setup (defined by an Expt number) and then within the data
collection as a whole. The hope in the original experiment was that each setup
would show a significant difference in central tendency, and indeed their means are
somewhat different.

https://www.gnosis.cx/cleaning/morley.dat

Chapter 4

[223]

This book and chapter does not explore confidence levels and null hypotheses in
any detail, but create a visualization that aids you in gaining visual insight into how
much apparent difference exists between the several setups.

If you discard the outliers within each setup, are the differences between setups
increased or decreased? Answer with either a visualization or by looking at
statistics on the reduced groups.

Misspelled Words
For this exercise we return to the 25,000 human measurements we have used to
illustrate a number of concepts. However, in this variation of the dataset, each row
has a person’s first name (pulled from the US Social Security Agency list of common
first names over the last century; apologies that the names lean Anglocentric because
of the past history of US population and immigration trends).

The dataset for this exercise can be found at:

https://www.gnosis.cx/cleaning/humans-names.csv

Unfortunately, our hypothetical data collectors for this dataset are simply terrible
typists, and they make typos when entering names with alarming frequency.
There are some number of intended names in this dataset, but quite a few simple
miscodings of those names as well. The problem is: how do we tell a real name
from a typo?

There are a number of ways to measure the similarity of strings and that provide
a clue as to likely typos. One general class of approach is in terms of edit distance
between strings. The R package stringdist, for example, provides Damerau–
Levenshtein, Hamming, Levenshtein, and optimal string alignment as measures of
edit distance. Less edit-specific fuzzy matching techniques utilize a “bag of n-grams”
approach, and include q-gram, cosine distance, and Jaccard distance. Some heuristic
metrics like Jaro and Jaro-Winkler are also included in stringdist along with
the other measures mentioned. Soundex, soundex variants, and metaphone look
for similarity of the sounds of words as pronounced, but are therefore specific to
languages and even regional dialects.

In a reversal of the more common pattern of Python versus R libraries, Python is the
one that scatters string similarity measures over numerous libraries, each including
just a few measures. However, python-Levenshtein is a very nice package including
most of these measures. If you want cosine similarity, you may have to use sklearn.
metrics.pairwise or another module. For phonetic comparisons, fonetika and
soundex both support multiple languages (but different languages for each; English
is in common for almost all packages).

https://www.gnosis.cx/cleaning/humans-names.csv

Anomaly Detection

[224]

On my personal system, I have a command-line utility called similarity that I use to
measure how close strings are to each other. This particular few-line script measures
Levenshtein distance, but also normalizes it to the length of the longer string. A
short name will have a small numeric measure of distance, even between dissimilar
strings, while long strings that are close overall can have a larger measure before
normalization (depending on what measure is chosen, but for most of them). A few
examples show this:

String 1 String 2 Levenshtein
distance

Similarity ratio

David Davin 1 0.8

David Maven 3 0.4

the quick brown fox
jumped

thee quikc brown fax
jumbed

5 0.814814814815

For this exercise, your goal is to identify every genuine name and correct all the
misspelled ones to the correct canonical spelling. Keep in mind that sometimes
multiple legitimate names are actually close to each other in terms of similarity
measures. However, it is probably reasonable to assume that rare spellings are typos,
at least if they are also relatively similar to common spellings. You may use whatever
programming language, library, and metric you feel is the most useful for the task.

Reading in the data, we see it is similar to the human measures we have seen before:

names = pd.read_csv('data/humans-names.csv')
names.head()

 Name Height Weight
0 James 167.089607 64.806216
1 David 181.648633 78.281527
2 Barbara 176.272800 87.767722
3 John 173.270164 81.635672
4 Michael 172.181037 82.760794

It is easy to see that some “names” occur very frequently and others only rarely.
Look at the middling values as well when working on this exercise:

names.Name.value_counts()

Elizabeth 1581
Barbara 1568
Jessica 1547
Jennifer 1534
 ...

Chapter 4

[225]

ichael 1
Wlliam 1
Richrad 1
Mray 1
Name: Name, Length: 249, dtype: int64

Denouement
When you have eliminated the impossible, whatever remains, however improbable,
must be the truth.
–Arthur Conan Doyle

Topics covered in this chapter: Missing Data; Sentinels; Miscoded Data; Fixed
Bounds; Outliers.

The anomalies that we have discussed in this chapter fall into a few relatively distinct
categories. For the first kind, there are the special values that explicitly mark missing
data, although those markers are sometimes subject to pitfalls. However, an explicit
indication of missingness is probably the most straightforward kind of anomaly. A
second kind of anomaly is categorical values that are miscoded; some finite number
of values are proper (although not always clearly documented), and anything that
isn’t one of those few values is an anomaly.

The third kind of anomaly is in continuous—or at least ranged—data values that fall
outside of the bounds of our expectations. These are also called outliers, although
exactly how much a value has to lie outside typical values to be a problem is very
domain- and problem-dependent. Expectations may take the form of a priori
assumptions that arise from domain knowledge of the measurement. They may also
arise from the distribution of data within a variable overall, and the deviation of one
particular value from others measured as that variable. At times, our expectations
about bounds can even be multivariate, and some numeric combination of multiple
variables produces a value outside of expectation bounds.

For all of these kinds of anomalies, there are essentially two actions we might take.
We may decide to discard an observation or sample altogether if it has one of these
problems. Or alternately, we may simply more explicitly mark one feature within
an observation as missing based on its value not being reliable. When we modify
values to the “missing” special value, keeping track of our changes and data versions
is extremely important practice. What we choose to do with those values marked as
explicitly missing is a downstream decision that is discussed at more length in later
chapters.

In the next chapter, we move from looking for problems with particular data points
and on to looking for problems with the overall “shape” of a dataset.

[227]

5
Data Quality

All data is dirty, some data is useful.
–cf. George Box

Welcome to the mid-point of the book. In something like the loose way in which
a rock “concept album” tells an overarching story through its individual songs,
this book is meant, to a certain degree, to follow the process a data scientist goes
through from acquiring raw data to feeding suitable data into a machine learning
model or data analysis. Up until this point, we have looked at how one goes about
getting data into a program or analysis system (e.g. a notebook), and we touched
on identifying data that has clearly “gone bad” at the level of individual data
points in Chapter 4, Anomaly Detection. In the chapters after this one, we will look at
remediation of that messy and marked data that earlier chapters delivered in stages.

Now, however, is the time to look for ways in which your data may have problems,
not in its individual details, but in its overall “shape” and character. In some
cases, these problems will pertain to the general collection techniques used, and in
particular to systematic bias that might be introduced during collection. In other
cases, problems are not the fault of data collectors, but simply of units and scales,
and correction can be quite mechanical and routine. At this point, we gradually
ease into active interventions that do not simply detect dirt as we have done
hitherto, but also go about cleaning it. One such cleanup might involve handling the
inherent biases that cyclicities in data often create (often over time periods, but not
exclusively).

Data Quality

[228]

In the last section of this chapter, we look at the idea of performing validation that is
domain-specific and utilizes rules that are practical, beyond being simply numeric.
Of course, every domain might have its own such rules, and an example in this
chapter is meant to inspire thought, not provide a blueprint for your specific tasks.
In fact, it can hardly be said often enough that everything within this book is meant
to provide inspiration for ways of thinking about data science problems, and never
merely recipes to copy directly to the task you have in front of you.

Before we get to the sections of this chapter, let us run our standard setup code.

from src.setup import *
%load_ext rpy2.ipython

%%R
library(gridExtra)
library(tidyverse)

Missing Data
Absence of evidence is not evidence of absence.
–Martin Rees

Concepts:

•	 Aspects of missing data
•	 Distribution of records in parameter space
•	 Bias in missing data

The story of missing data forms a trilogy in this book. The prior chapter, Chapter 4,
Anomaly Detection, led with a section on missing data. In that case, our concern was
to identify “missingness,” which can be marked in various ways by various datasets
in various data formats. The next chapter, Chapter 6, Value Imputation, is primarily
about what we might do to fill missing values with reasonable guesses.

This chapter falls between the previous and the next one. We have already taken
mechanical or statistical tests to identify some data as missing (or as unreliable
enough that it is better to pretend it is missing). But we have not yet decided whether
to keep or drop the observations to which those missing data points belong. For this
section, we need to assess the significance of that missing data to our overall dataset.

Chapter 5

[229]

When we have a record with missing data, we essentially have two choices about
its disposition. On the one hand, we can discard that particular record. On the
other hand, we can impute some value for the missing value, as will be discussed
in Chapter 6. Actually, in some sense there is a third option as well: we may decide
that because of the amount or distribution of missing data in our dataset, the data
is simply not usable for the purpose at hand. While, as data scientists, we never
want to declare a task hopeless, as responsible researchers we need to consider the
possibility that particular data simply cannot support any conclusions. Missing
data is not the only thing that could lead us to this conclusion, but it is certainly
one common fatal deficit.

If we wish to discard records—but also to a large extent if we wish to impute
values—we need to think about whether what remains will be a fair representation
of the parameter space of the data. Sample bias can exist not only in the overall
composition of a dataset, but also more subtly in the distribution of missing values.
Keep in mind that “missing” here might result from the processing in Chapter 4, in
which some values may have been marked missing because we determined they
were unreliable, even if they were not per se absent in the raw data.

For example, I created a hypothetical dataset of persons with names, ages, genders,
and favorite colors and flowers. The ages, genders, and names are modeled on the
actual distribution of popular names over time reported by the United States Social
Security Administration. I assigned favorite colors and flowers to the people for this
illustration.

df = pd.read_parquet('data/usa_names.parq')
df

 Age Gender Name Favorite_Color Favorite_Flower
———
0 48 F Lisa Yellow Daisy
1 62 F Karen Green Rose
2 26 M Michael Purple None
3 73 F Patricia Red Orchid
...
6338 11 M Jacob Red Lily
6339 20 M Jacob Green Rose
6340 72 M Robert Blue Lily
6341 64 F Debra Purple Rose
6342 rows × 5 columns

Data Quality

[230]

In general, this is an ordinary-looking dataset, with a moderately large collection of
records. We can notice in the data frame summary that at least some data is missing.
This is worth investigating more carefully.

with show_more_rows():
 print(df.describe(include='all'))

 Age Gender Name Favorite_Color Favorite_Flower
count 6342.000000 6342 6342 5599 5574
unique NaN 2 69 6 5
top NaN F Michael Yellow Orchid
freq NaN 3190 535 965 1356
mean 42.458846 NaN NaN NaN NaN
std 27.312662 NaN NaN NaN NaN
min 2.000000 NaN NaN NaN NaN
25% 19.000000 NaN NaN NaN NaN
50% 39.000000 NaN NaN NaN NaN
75% 63.000000 NaN NaN NaN NaN
max 101.000000 NaN NaN NaN NaN

Using Pandas’ .describe() method or similar summaries by other tools allows
us to see that Age, Gender, and Name have values for all 6,342 records. However,
Favorite_Color and Favorite_Flower are missing for approximately 750 records
each. In itself, missing data in 10-15% of the rows is quite likely not to be a huge
problem. This statement assumes that missingness is not itself biased. Even if we
need to discard those records altogether, that is a relatively small fraction of a
relatively large dataset. Likewise, imputing values would probably not introduce
too much bias, and other features could be utilized within those records. In the
below section and in Chapter 6, Value Imputation, in relation to undersampling and
oversampling, we discuss the dangers of exclusion resulting in class imbalance.

While uniformly randomly missing data can be worked around relatively easily, data
that is missing in a biased way can present a more significant problem. To figure out
which category we are in with this dataset, let us compare those missing flower
preferences to the ages of the people. Looking at every individual age up to 101
years old is hard to visualize; for this purpose, we will group people into 10-year age
groups. The graph below uses a statistical graphing library called Seaborn, which is
built on top of Matplotlib.

Chapter 5

[231]

df['Age Group'] = df.Age//10 * 10
fig, ax = plt.subplots(figsize=(12, 4.5))
sns.countplot(x="Age Group", hue="Favorite_Flower",
 ax=ax, palette='gray', data=df)
ax.set_title("Distribution of flower preference by age");

Figure 5.1: Distribution of flower preference by age

A few patterns jump out in this visualization. It appears that older people tend to
have a strong preference for orchids, and young people a moderate preference for
roses. This is perhaps a property of the data meriting analysis. More significantly
for this section, there are few data points for favorite flower at all in the 20-30 age
group. One might imagine several explanations, but the true answer would depend
on problem and domain knowledge. For example, perhaps the data corresponding to
these ages was not collected during a certain time period. Or perhaps people in that
age group reported a different favorite flower but its name was lost in some prior
inaccurate data validation/cleaning step.

If we look at the records with missing color preference, we see a similar pattern in
relation to age. The drop in frequency of available values occurs instead in the 30-40
age group though.

fig, ax = plt.subplots(figsize=(12, 4.5))
sns.countplot(x="Age Group", hue="Favorite_Color",
 ax=ax, palette='gray', data=df)
ax.set_title("Distribution of color preference by age");

Data Quality

[232]

Figure 5.2: Distribution of color preference by age

If we were to drop all records with missing data, we would wind up with nearly no
representation of people in the entire 20-40 age range. This biased unavailability of
data would be likely to weaken the analysis generally. The number of records would
remain fairly large, but the parameter space, as mentioned, would have an empty
(or at least much less densely occupied) region. Obviously, these statements depend
both on the purpose of our data analysis and our assumptions about the underlying
domain. If age is not an important aspect of the problem in general, our approach
may not matter much. But if we think age is a significant independent variable,
dropping this data would probably not be a workable approach.

This section, like many others, shows the kinds of exploration one should typically
perform of a dataset. It does not provide one simple answer for the best remediation
of bias in missing data. That decision will be greatly dependent upon the purpose
for which the data is being used and also on background domain knowledge that
may clarify the reasons for the data being missing. Remediation is inevitably a per-
problem decision.

Let us turn to ways that bias might occur in relation to other features rather than
simply globally in a dataset.

Biasing Trends
It is not the slumber of reason that engenders monsters, but vigilant and insomniac
rationality.
–Gilles Deleuze

Chapter 5

[233]

Concepts:

•	 Collection bias versus trends in underlying domain
•	 Perspective as source of bias
•	 Artifact of collection methods
•	 Visualization to identify bias
•	 Variance by group
•	 Externally identifying base rates
•	 Benford’s law

At times, you may be able to detect sample bias within your data, and will need to
make a domain area judgment about the significance of that bias. There are at least
two kinds of sample bias that you should be on the lookout for. On the one hand,
the distribution of observations may not match the distribution in the underlying
domain. Quite likely, you will need to consult other data sources—or simply use
your own domain area knowledge—to detect such a skew in the samples. On the
other hand, the data themselves may reveal a bias by trends that exist between
multiple variables. In this latter case, it is important to think about whether the
detected “trend” could be a phenomenon you have detected in the data, or is a
collection or curation artifact.

Understanding Bias
Bias is an important term in both statistics and human sciences, with a meaning
that is strongly related, but that assumes a different valence across fields. In the
most neutral statistical sense, bias is simply the fact, more commonly true than not,
that a dataset does not accurately represent its underlying population of possible
observations. This bare statement hides more nuance than is evident, even outside
of observations about humans and politically laden matters. More often than not,
neither we data scientists, who analyze data, nor the people or instruments that
collected the raw data in the first place can provide an unambiguous delineation of
exactly what belongs to the underlying population. In fact, the population is often
somewhat circularly defined in terms of data collection techniques.

An old joke observes someone looking for their lost keys at night in the area under
a street light. Asked why they do not also look elsewhere, they answer that it is
because the visibility is better where they are looking. This is a children’s joke, not
told particularly engagingly, but it also lays the pattern for most data collection of
most datasets.

Data Quality

[234]

Observers make observations of what they can see (metaphorically, most are
probably voltages in an instrument, or bits on a wire, rather than actual human
eyes), and not what they cannot. Survivorship bias is a term for the cognitive error of
assuming those observations we have available are representative of the underlying
population.

It is easy not to be conscious of bias that exists in data, and probably that much
easier when it indeed does concern human or social subjects and human observers
bring in psychological and social biases. But it is humans, in the end, even if aided
by instruments we set up, who make observations of everything else too. For
example, the history of ethology (the study of animal behavior) is largely a history
of scientists seeing the behaviors in animals that exist—or that they believe should
exist—in the humans around them, that they impose by metaphor and blindness. If
you make a survey of books in your local library to determine the range of human
literature or music, you will discover the predominance of writers and musicians
who use your local language and play your local musical style. Even in areas that
seem most obviously not about humans, our vantage point may create a perspectival
bias. For example, if we catalog the types of stars that exist in the universe, and the
prevalence of different types, we are always observing those within our cosmological
horizon, which not only expresses an interaction of space and time, but also may
not uniformly describe the entire universe. Cosmologists know this, of course, but
they know it as an inherent bias to their observations.

In most of this section, we will look at a version of the synthetic United States
name/age data to detect both of these patterns. As in the last section, this data
approximately accurately represents the frequency of different names across
different age groups, based on Social Security Administration data. We can see that
within the actual domain, the popularity of various names authentically changed
over time. As in the last section, it is useful to aggregate people into coarser age
groups for visualization.

Throughout this book I have attempted to avoid social bias in the datasets I select
or create as examples. For the imagined people in the rows of the name tables, I
added features like favorite color or flower, rather than more obviously ethnically or
culturally marked features like eye color, favorite food, or musical preference. Even
those invented features I use are not entirely independent of culture though, and
perhaps my position in the social world leads me to choose different factor values
than would someone located elsewhere.

Chapter 5

[235]

Moreover, by choosing the top 5 most popular names in the United States each year, I
impose a kind of majority bias: all are roughly Anglo names, and none, for example,
are characteristically African-American, Latino, Chinese, or Polish, though such are
all common outside of that top-5-by-year collation methodology.

names = pd.read_parquet('data/usa_names_states.parq')
names['Age Group'] = names.Age//10 * 10
names

 Age Birth_Month Name Gender Home Age Group
———
0 17 June Matthew M Hawaii 10
1 5 September Emma F West Virginia 0
2 4 January Liam M Alaska 0
3 96 March William M Arkansas 90
...
6338 29 August Jessica F Massachusetts 20
6339 51 April Michael M Wyoming 50
6340 29 May Christopher M North Carolina 20
6341 62 November James M Texas 60
6342 rows × 6 columns

The fields Birth_Month and Home are added to this dataset, and let us stipulate that we
suspect they may indicate some bias in the observations. Before we look at that, let
us take a look at a more-or-less expected trend. Note that this dataset was artificially
constructed only based on the most popular male and female names for each birth
year. A particular name may not be in this top 5 (per gender) for a particular year, or
even a particular decade, but nonetheless, a certain number of people in the United
States were probably given that name (and would be likely to show up in non-
synthetic data).

fig, ax = plt.subplots(figsize=(12, 4.5))
somenames = ['Michael', 'James', 'Mary', 'Ashley']
popular = names[names.Name.isin(somenames)]
sns.countplot(x="Age Group", hue="Name",
 ax=ax, palette='gray', data=popular)
ax.set_title("Distribution of name frequency by age");

Data Quality

[236]

Figure 5.3: Distribution of name frequency by age

We can see trends in this data. Mary is a popular name among the older people in
the dataset, but no longer shows up in the most popular names for younger people.
Ashley is very popular among 20-40-year-olds, but we do not see it present outside
that age group. James seems to have been used over most age ranges, although it fell
out of the top-5 spot among 10-40-year-olds, resurging among children under 10.
Michael, similarly, seems especially represented from 10-60 years of age.

The top-5 threshold used in the generation of the data has definitely created a
few artifacts in the visualization, but a general pattern of some names becoming
popular and others waning is exactly a phenomenon we would expect with a bare
minimum of domain knowledge. Moreover, if we know only a little bit more about
popular baby names in the United States, the specific distribution of names will
seem plausible; both for the 4 shown and for the remaining 65 names that you can
investigate within the dataset if you download it.

Detecting Bias
Let us apply a similar analysis to birth month as we did to name frequency. A
minimum of domain knowledge will tell you that while there are small annual
cyclicities in birth month, there should not be a general trend over ages. Even if
some world-historical event had dramatically affected births in one particular
month of one particular year, this should create little overall trend when we
aggregate over decades of age.

Chapter 5

[237]

fig, ax = plt.subplots(figsize=(12, 4.5))
months = ['January', 'February', 'March', 'April']
popular = names[names.Birth_Month.isin(months)]
sns.countplot(x="Age Group", hue="Birth_Month",
 ax=ax, palette='gray', data=popular)
ax.set_title("Distribution of birth month frequency by age");

Figure 5.4: Distribution of birth month frequency by age

Contrary to our hope of excluding a biasing trend, we have discovered that—for
unknown reasons—January births are dramatically underrepresented among the
youngest people and dramatically overrepresented among the oldest people. This
is overlain on an age trend of there being more young people, in general, but the
pattern nonetheless appears strong. We have not looked at months beyond April,
but of course we could in a similar fashion.

A certain amount of random fluctuation occurs in the dataset simply because of
sampling issues. The fact that April is a somewhat more common birth month for
50-something people than for 40-something people in the dataset is quite likely
meaningless since there are relatively few data points (on the order of 50) once we
have cross-cut by both age and birth month. Distinguishing genuine data bias from
randomness can require additional analysis (albeit, by construction, the January
pattern jumps out strongly even in this simple visualization).

Data Quality

[238]

There are numerous ways we might analyze it, but looking for notable differences
in the spread of one variable in relation to another can be a good hint. For example,
we think we see an oddness in the pattern of January birth months, but is there a
general irregularity in the distribution per age? We could attempt to analyze this
using exact age, but that probably makes the distinction too fine-grained to have
good subsample sizes. The decade of age is an appropriate resolution for this test.
As always, think about your subject matter in making such judgments.

Since the number of people decreases with age, we need to find statistics that are
not overly influenced by the raw numbers. In particular, we can count the number
of records we have for each age group and birth month and see if those counts are
notably divergent. Variance or standard deviation (of counts) will increase as the
size of the age group increases. However, we can normalize that simply by dividing
by the raw count within the age group of all months.

A little bit of Pandas magic gets us this. We want to group the data by age group,
look at the birth month, and count the number of records that fall within each
Age ⨯ Birth_Month. We wish to look at this in a tabular way rather than with a
hierarchical index. This operation arranges months in order of their occurrence in
the data, but ordering by chronology is more friendly.

by_month = (names
 .groupby('Age Group')
 .Birth_Month
 .value_counts()
 .unstack())

by_month = by_month[month_names]
by_month

Chapter 5

[239]

Birth_Month January February March April May June July August
 Age Group
——
 0 20 67 59 76 66 77 71 65
 10 37 72 71 78 70 73 82 81
 20 52 60 76 72 65 65 71 66
 30 54 56 66 64 73 58 87 82

 70 57 43 39 33 39 36 45 34
 80 57 39 28 21 31 37 23 28
 90 55 17 31 24 21 23 30 29
 100 10 7 4 2 6 2 4 6

Birth_Month September October November December
 Age Group
——
 0 67 67 56 63
 10 83 79 70 79
 20 68 75 76 71
 30 66 65 57 58

 70 38 30 37 37
 80 27 31 34 37
 90 33 25 28 20
 100 5 5 7 7

11 rows × 12 columns

Data Quality

[240]

That data grid remains a bit too much to immediately draw a conclusion about, so
as described, let us look at the normalized variance across age groups.

with show_more_rows():
 print(by_month.var(axis=1) / by_month.sum(axis=1))

Age Group
0 0.289808
10 0.172563
20 0.061524
30 0.138908
40 0.077120
50 0.059772
60 0.169321
70 0.104118
80 0.227215
90 0.284632
100 0.079604
dtype: float64

The over-100-years-old group shows a low normalized variance, but it is a small
subset. Among the other age groups, the middle ages show a notably lower
normalized variance across months than do the older or younger people. This
difference is quite striking for those under 10 and those over 80 years old. We can
reasonably conclude at this point that some kind of sample bias occurred in the
collection of the birth month; specifically, there is a different bias in effect based on
the age group of persons sampled. Whether or not this bias matters for the purpose
at hand, the fact should be documented clearly in any work products of your analyses
or models. In principle, some sampling technique that will be discussed in Chapter 6,
Value Imputation, might be relevant to adjust for this.

Comparison to Baselines
The setup of this synthetic dataset is a giveaway, of course. As well as introducing
birth month, I also added Home in the sense of state or territory of residence and/or
birth. While there is no documented metadata that definitively clarifies the meaning
of the column, let us take it as the state of current residence. If we had chosen to
interpret it as birthplace, we might need to find historical data on populations at
the times people of various ages were born; clearly that is possible, but the current
assumption simplifies our task.

Chapter 5

[241]

Let us take a look at the current population of the various US states. This will
provide an external baseline relative to which we can look for sample bias in the
dataset under consideration.

states = pd.read_fwf('data/state-population.fwf')
states

 State Population_2019 Population_2010 House_Seats
———
 0 California 39512223 37254523 53.0
 1 Texas 28995881 25145561 36.0
 2 Florida 21477737 18801310 27.0
 3 New York 19453561 19378102 27.0
...
 52 Guam 165718 159358 0.5
 53 U.S. Virgin Isl 104914 106405 0.5
 54 American Samoa 55641 55519 0.5
 55 N. Mariana Isl 55194 53883 0.5
 56 rows × 4 columns

As most readers will know, the range of population sizes across different US states
and territories is quite large. In this particular dataset, representation of states in the
House of Representatives is given as a whole number, but in order to indicate the
special status of some entities that have non-voting representation, the special value
of 0.5 is used (this is not germane to this section, just as a note).

Let us take a look at the distribution of home states of persons in the dataset. The
step of sorting the index is used to assure that states are listed in alphabetical order,
rather than by count or something else.

(names
 .Home
 .value_counts()
 .sort_index()
 .plot(kind='bar', figsize=(12, 3),
 title="Distribution of sample by home state")
);

Data Quality

[242]

Figure 5.5: Distribution of sample by home state

There is clearly variation in the number of samples drawn from residents of each
state. However, the largest state represented, California, has only about 3x the
number of samples as the smallest. In comparison, a similar view of the underlying
populations emphasizes the different distribution.

(states
 .sort_values('State')
 [['State', 'Population_2019']]
 .set_index('State')
 .plot(kind='bar', figsize=(12, 3),
 title="2019 Population of U.S. states and territories")
);

Chapter 5

[243]

Figure 5.6: 2019 population of United States states and territories

While California provides the most samples for this dataset, Californians are
simultaneously the most underrepresented relative to the baseline population of the
states. As a general pattern, smaller states tend to be overrepresented generally.
We can, and probably should, think of this as selection bias based on the size of the
various states. As before, unless we have accurate documentation or metadata that
describes the collection and curation procedures, we cannot be sure of the cause of
the imbalance. But a strong trend exists in this inverse relationship of population to
relative sample frequency.

A note here is that sometimes sampling approaches deliberately introduce similar
imbalances. If the actual samples were precisely balanced, with some fixed N
collected per state, this would fairly clearly point to such a deliberate categorical
sampling as opposed to a sampling based on an underlying rate. The pattern
we actually have is less obvious than that. We might form a hypothesis that the
sampling rate is based on some other underlying feature not directly present in
this data.

Data Quality

[244]

For example, perhaps a fixed number of observations were made in each county
of each state, and larger states tend to have more counties (this is not the actual
underlying derivation, but thinking in this manner should be in your mind).
Understanding data integrity issues resembles either a scientific process of
experimentation and hypothesis, or perhaps even more so a murder mystery.
Developing a reasonable theory of why the data is dirty is always a good first
step in remediating it (or even in ignoring the issue as not pertinent to the actual
problem at hand).

Benford’s Law
There is a curious fact about the distribution of digits in many observed numbers
called Benford’s Law. For a large range of real-world datasets, we see leading 1
digits far more often than leading 2s, which in turn occur far more commonly than
leading 3s, and so on. If you see this pattern, it probably does not reflect harmful
bias; in fact, for many kinds of observations, if you fail to see it, that might itself
reflect bias (or even fraud).

If a distribution precisely follows Benford’s law, it will specifically have digits
distributed as: 𝑃𝑃(𝑑𝑑) = log10 (1 + 1𝑑𝑑)

However, this distribution is often only approximate for real-world data.

When data is distributed according to a power law or a scaling factor, it becomes
relatively intuitive to understand what leading digits will be distributed in a
“biased” way. However, much observational data that is not obviously scaling in
nature still follows Benford’s law (at least approximately). Let us pick an example
to check; I scraped and cleaned up formatting for the populations and areas of the
most populous US cities.

cities = pd.read_fwf('data/us-cities.fwf')
cities

 NAME POP2019 AREA_KM2
0 New York City 8336817 780.9
1 Los Angeles 3979576 1213.9
2 Chicago 2693976 588.7
3 Houston 2320268 1651.1
...
313 Vacaville 100670 75.1
314 Clinton 100471 72.8

Chapter 5

[245]

315 Bend 100421 85.7
316 Woodbridge 100145 60.3
317 rows × 3 columns

Let us first count the leading digits of populations.

pop_digits = cities.POP2019.astype(str).str[0].value_counts()
with show_more_rows():
 print(pop_digits)

1 206
2 53
3 20
4 10
6 9
5 8
8 5
7 3
9 3
Name: POP2019, dtype: int64

Now we ask the same question of area in square kilometers.

area_digits = cities.AREA_KM2.astype(str).str[0].value_counts()
with show_more_rows():
 print(area_digits)

1 118
2 47
3 31
4 23
9 21
8 21
7 20
6 20
5 16
Name: AREA_KM2, dtype: int64

Neither collection of data exactly matches the Benford’s law ideal distribution, but
both show the general pattern of favoring leading digits in roughly ascending order.

Let us turn to evaluating the importance of the uneven distribution of categorical
variables.

Data Quality

[246]

Class Imbalance
It seems to be correct to begin with the real and the concrete, with the real
precondition, thus to begin [...] with the population. However, on closer examination
this proves false. The population is an abstraction if I leave out, for example, the
classes of which it is composed.
–Karl Marx

Concepts:

•	 Predicting rare events
•	 Imbalance in features versus in targets
•	 Domain versus data integrity imbalance
•	 Forensic analysis of sources of imbalance
•	 Stipulating the direction of causality

The data you receive will have imbalanced classes, if it has categorical data at all. The
several distinct values that a categorical variable may have are also sometimes called
factor levels (“factor” is synonymous with “feature” or “variable,” as discussed in the
Preface and Glossary). Moreover, as will be discussed in Chapter 6, Value Imputation
in the section on Sampling, dividing a continuous variable into increments can often
usefully form synthetic categories also. In principle, any variable might have a
categorical aspect, depending on the purpose at hand. When these factor levels occur
with notably different frequency, it may show selection bias or some other kind of
bias; however, it very often simply represents the inherent nature of the data, and is
an essential part of the observation.

A problem arises because many types of machine learning models have difficulty
predicting rare events. Discussion of concretely rebalancing classes is deferred
until the Chapter 6 discussion of undersampling and oversampling, but here we at
least want to reflect on identifying class imbalance. Moreover, while many machine
learning techniques are highly sensitive to class imbalance, others are more or less
indifferent to it. Documentation of the characteristics of particular models, and their
contrast with others, is outside the scope of this particular book.

In particular, though, the main difference between when class imbalance poses a
difficulty versus when it is central to the predictive value of the data is precisely the
difference between a target and the features. Or equivalently, the difference between
a dependent variable and independent variables. When we think of a rare event that
might cause difficulty for a model, we usually mean a rare target value, and only
occasionally are we concerned about a rare feature. When we wish to use sampling
to rebalance classes, it is almost always in relation to target class values.

Chapter 5

[247]

We will work with a simple example. Two weeks of Apache server logs from my
web server are provided as sample data. Such a log file has a number of features
encoded in it, but one particular value in each request is the HTTP status code
returned. If we imagine trying to model the behavior of my web server, quite likely
we would wish to treat this status code as a target that might be predicted by the
other (independent) variables. Of course, the log file itself does not impose any such
purpose; it simply contains data on numerous features of each request (including
response).

The status codes returned from the actual requests to my web server are extremely
unbalanced, which is generally a good thing. I want most requests to result in 200
OK responses (or at least some 2xx code). When they do not, there is either a problem
with the URLs that users have utilized or there is a problem with the web server
itself. Perhaps the URLs were published in incorrect form, such as in links from other
web pages; or perhaps deliberately wrong requests were used in attempts to hack
my server. I never really want a status code outside of 2xx, but inevitably some arise.
Let us look at their distribution:

%%bash
zcat data/gnosis/*.log.gz |
 cut -d' ' -f9 |
 sort |
 uniq -c

 10280 200
 2 206
 398 301
 1680 304
 181 403
 901 404
 9 500

The 200 status dominates here. The next highest occurrence is 304 Not Modified,
which is actually fine as well. It simply indicates that a cached copy on a client
remains current. Those 4xx and 5xx (and perhaps 301) status codes are generally
undesirable events, and I may want to model the patterns that cause them. Let us
remind ourselves what is inside an Apache access.log file (the name varies by
installation, as can the exact fields).

%%bash
zcat data/gnosis/20200330.log.gz | head -1 | fmt -w50

162.158.238.207 - - [30/Mar/2020:00:00:00 -0400]
"GET /TPiP/024.code HTTP/1.1" 200 75

Data Quality

[248]

There is a variety of data in this line, but notably it is easy to think of pretty much all
of it as categorical. The IP address is a dotted quad, and the first (and often second)
quad tends to be correlated with the organization or region where the address
originates. Allocation of IPv4 addresses is more complex than we can detail here,
but it may be that requests originating from a particular /8 or /16 origin tend to get
non-200 responses. Likewise, the date—while unfortunately not encoded in ISO 8601
format—can be thought of as categorical fields for month, hour, minute, and so on.

Let us show a bit of Pandas code to read and massage these records into a data
frame. The particular manipulations done are not the main purpose of this section,
but gaining familiarity with some of these methods is worthwhile.

One thing to notice, however, is that I have decided that I am not really concerned
with the pattern where, for example, my web server became erratic for a day. That
has not occurred in this particular data, but if it had I would assume that was a
one-off occurrence not subject to analysis. The separate cyclical elements of hour
and minute might detect recurrent issues (which are discussed more in later sections
of this chapter). Perhaps, for example, my web server gives many 404 responses
around 3 a.m., and that would be a pattern/problem worth identifying.

def apache_log_to_df(fname):
 # Read one log file. Treat is as a space separated file
 # There is no explicit header, so we assign columns
 cols = ['ip_address', 'ident', 'userid', 'timestamp',
 'tz', 'request', 'status', 'size']
 df = pd.read_csv(fname, sep=' ', header=None, names=cols)

 # The first pass gets something workable, but refine it
 # Datetime has superfluous '[', but fmt matches that
 fmt = "[%d/%b/%Y:%H:%M:%S"
 df['timestamp'] = pd.to_datetime(df.timestamp, format=fmt)

 # Convert timezone to an integer
 # Not general, I know these logs use integral timezone
 # E.g. India Standard Time (GMT+5:30) would break this
 df['tz'] = df.tz.str[:3].astype(int)

Chapter 5

[249]

 # Break up the quoted request into sub-components
 df[['method', 'resource', 'protocol']] = (
 df.request.str.split(' ', expand=True))

 # Break the IP address into each quad
 df[['quad1', 'quad2', 'quad3', 'quad4']] = (
 df.ip_address.str.split('.', expand=True))

 # Pandas lets us pull components from datetime
 df['hour'] = df.timestamp.dt.hour
 df['minute'] = df.timestamp.dt.minute

 # Split resource into the path/directory vs. actual page
 df[['path', 'page']] = (
 df.resource.str.rsplit('/', n=1, expand=True))
 # Only care about some fields for current purposes
 cols = ['hour', 'minute',
 'quad1', 'quad2', 'quad3', 'quad4',
 'method', 'path', 'page', 'status']
 return df[cols]

This function allows us to read all of the daily log files into a single Pandas
DataFrame simply by mapping over the collection of file names and concatenating
data frames. Everything except perhaps page in the resulting data frame is reasonable
to think of as a categorical variable.

reqs = pd.concat(map(apache_log_to_df,
 glob('data/gnosis/*.log.gz')))
Each file has index from 0, so dups occur in raw version
reqs = reqs.reset_index().drop('index', axis=1)
The /16 subnetwork is too random for this purpose
reqs.drop(['quad3', 'quad4'], axis=1, inplace=True)
reqs

Data Quality

[250]

 hour minute quad1 quad2 method path
 0 0 0 162 158 GET /download/pywikipedia/cache
 1 0 3 172 68 GET /TPiP
 2 0 7 162 158 GET download/pywikipedia/archive
 3 0 7 162 158 GET /juvenilia

13447 23 52 162 158 GET /download/gnosis/util
13448 23 52 172 69 GET
13449 23 52 162 158 GET /publish/resumes
13450 23 56 162 158 GET /download/pywikipedia/cache

 page status
 0 DuMont%20Television%20Network 200
 1 053.code 200
 2 ?C=N;O=A 200
 3 History%20of%20Mathematics.pdf 200

13447 hashcash.py 200
13448 favicon.ico 304
13449 200
13450 Joan%20of%20Lancaster 200

13451 rows × 8 columns

Within my web server, I have relatively few directories where content lives, but
relatively many different concrete pages within many of those directories. In fact, the
path /download/pywikipedia/cache is actually a robot that performs some formatting
cleanup of Wikipedia pages that I had forgotten that I left running 15+ years ago.
Given that it may be pointed to any Wikipedia page, there is effectively an infinite
space of possible pages my server will reply to. There are also a small number of
long path components because URL parameters are sometimes passed in to a few
resources. Let us visualize the distribution of the other features in this dataset, with
an eye to the places where class imbalance occurs.

fig, axes = plt.subplots(3, 2, figsize=(12, 9))

Which factors should we analyze for class balance?
factors = ['hour', 'minute', 'quad1', 'quad2', 'method', 'status']

Loop through the axis subplots and the factors
for col, ax in zip(factors, axes.flatten()):
 # Minute is categorical but too many so quantize

Chapter 5

[251]

 if col == 'minute':
 data = (reqs[col] // 5 * 5).value_counts()
 else:
 data = reqs[col].value_counts()
 data.plot(kind='bar', ax=ax)
 ax.set_title(f"{col} distibution")

Matplotlib trick to improve spacing of subplots
fig.tight_layout()

Figure 5.7: Distributions of different features

In these plots, we see some highly imbalanced classes and some mostly balanced
ones. The hours show a minor imbalance, but with a fairly strong pattern of more
requests around 21:00–24:00 in Atlantic Daylight Time. Why my hosted server is in
that timezone is unclear to me, but this is around 6 p.m. US Pacific Time, so perhaps
users in California and British Columbia tend to read my pages after work. The
distribution of 5-minute increments within an hour is generally uniform, although the
slight elevation of a few increments could possibly be more than random fluctuation.

Data Quality

[252]

The imbalance in the initial quads of IP address seems striking, and might initially
suggest an important bias or error. However, after probing only slightly deeper,
we can determine using online “whois” databases that (at the time of writing) both
162.158.0.0/16 and 172.69.0.0/16 are assigned to the CDN (content delivery network)
that I use to proxy traffic. So the imbalance in these features has simply provided a clue
that almost all requests are proxied through a known entity. In particular, it means that
we are unlikely to be able to use these features usefully in any kind of predictive model.
At most, we might perform feature engineering—as will be discussed in Chapter 7,
Feature Engineering—to create a derived feature such as is_proxied.

The class imbalances that remain are in the HTTP method and in the status code
returned. In neither case is it at all surprising that GET and 200 dominate the
respective features. This is what I expect, and even hope for, in the behavior of my
web server and website. So nothing there suggests bias in the data collection; since
all requests were logged, this is not a sample but rather a complete domain.

As data scientists, we are not necessarily constrained by temporal causality. For
example, it is clear that in a literal and sequential way, the requesting IP address,
possibly the userid, maybe the time of the request, and definitely the URL of the
request, both method and path, will cause a certain status code and number of bytes
to be returned. In many cases (probably all of them on my simple, static website),
the size is simply that of the underlying HTML page. But in concept, a server might
do something different depending on the date and time, or the requester’s address.
In any case, certain facts about the request exist a few milliseconds before the server
decides on the appropriate status code and response size and logs all of that.

However, for an analysis, we might want to make predictions that exactly reverse
causality. Perhaps we would like to treat the size of the response as an independent
variable in our effort to predict the time of day. For example, it could be that large files
are always requested around 7 p.m. rather than at other times. Our model might try
to predict a cause from its effect—and that is perfectly legitimate in data science, as
long as we are aware of it. In fact, we may only look for correlations, entirely ignoring
for a particular task the potential hidden cause of multiple features. Data science is
something different from other sciences; the endeavors are, hopefully, complementary.

As a side note, the population is specifically delineated, and cannot
necessarily be used to describe anything beyond those lines. These
are all requests made to port 80 or port 443 for the web domain
gnosis.cx between March 29, 2020, and April 11, 2020; we can
draw no conclusions about other web domains or other dates
without further analysis or reasoning about how typical this data is
of the web as a whole.

Chapter 5

[253]

In this section, we focused merely on recognizing, and to a limited extent analyzing,
class imbalance. What it means for the actual task to which we wish to put this
data is another matter. A significant distinction to keep in mind is that between
independent and dependent variables. Generally, imbalance in a dependent
variable will skew classification models in a more important way than imbalance
in an independent variable. So, for example, if we wish to predict the likely status
code that will be produced by a request based on other features of the request, we
would be likely to use sampling techniques that will be discussed in Chapter 6, Value
Imputation, to balance the dataset synthetically.

On the other hand, class imbalance is not completely irrelevant in independent
variables, at least not for all kinds of models. This very much depends on the kind
of model. If we use something in the family of decision trees, for example, it makes
little difference that HEAD requests are rare if we wish to detect the (hypothetical)
fact that HEAD is strongly associated with 500 status codes. However, if we use a
K-nearest neighbors family of algorithm, the actual distance in parameter space can
be important. Neural networks fall somewhere in the middle in terms of sensitivity
to class imbalance in independent variables. If we encode the HTTP method either as
an ordinal value or using one-hot encoding, we may naïvely underweight that strong
but rare feature. One-hot encoding is discussed in Chapter 7, Feature Engineering. For
an independent variable, we would not generally wish to oversample a rare factor
level; but we might wish to artificially overweight it.

We also should think about the numeric ranges of data, which might reflect very
different underlying units.

Normalization and Scaling
Measure with a micrometer. Mark with chalk. Cut with an axe.
–Rule for precision

Concepts:

•	 The effect of numeric ranges in variables
•	 Univariate and multivariate effects
•	 Numeric forms of various scalers
•	 Factor and sample weighting

Data Quality

[254]

The idea behind normalization of data is simply bringing all the features being
utilized in a dataset into a comparable numeric range. When starkly different units
are used for different features—that is, for dimensions of a parameter space—some
machine learning models will disproportionately utilize those features which simply
have a larger numeric range. Special cases of differently scaled numeric ranges occur
when one feature has outliers that have not been removed, or when one feature is
normally distributed but another feature is exponentially distributed.

This book generally steers away from showing machine learning examples or
code. There are many wonderful libraries that address that 20% of your work, as a
data scientist, that you will do after you have done the 80% that this book teaches
you. However, to emphasize the motivation for normalization, we will create a
very simple machine learning model on some overly neat data that illustrates
an overwhelming benefit of scaling. For this example, a small amount of code in
scikit-learn is used. Notably, however, the scaler classes in scikit-learn are extremely
useful even if you do not wish to use that library for modeling. It is certainly
reasonable—and perhaps even best practice within Python—to use scikit-learn even
if you only ever perform normalization with it.

The synthetic dataset here has two features and one target; all are continuous
variables.

unscaled = make_unscaled_features()
unscaled

 Feature_1 Feature_2 Target
——
 0 0.112999 19247.756104 11.407035
 1 0.204178 23432.270613 20.000000
 2 0.173678 19179.445753 17.336683
 3 0.161411 17579.625264 16.633166
...
196 0.137692 20934.654450 13.316583
197 0.184393 18855.241195 18.241206
198 0.177846 19760.314890 17.839196
199 0.145229 20497.722353 14.371859
200 rows × 3 columns

Chapter 5

[255]

At a glance, we can see that the Target values are on the order of 15, while Feature_1
is on the order of 0.1 and Feature_2 is on the order of 20,000. The invented example
does not assign any specific units for these measures, but there are many quantities
you might measure whose units produce numeric values in those ranges. As
an initial question, we might ask whether any of the features have a univariate
correlation with the target. A machine learning model will find more than just this,
but it is a useful first question.

unscaled.corr()

 Feature_1 Feature_2 Target
———
Feature_1 1.000000 -0.272963 0.992514
Feature_2 -0.272963 1.000000 -0.269406
 Target 0.992514 -0.269406 1.000000

We see that Feature_1 has a very strong positive correlation with the Target, and
Feature_2 has a moderate negative correlation. So on the face of it, a model should
have plenty to work with. Indeed, we can tell from the correlation matrix that linear
models would do extremely well, with or without normalization; but that is the topic
of a different book. This point can be made visually by plotting Target against each
feature.

plot_univariate_trends(unscaled)

Figure 5.8: Feature_1 and Feature_2 as functions of Target

Feature_1 has a visually obvious correlation; Feature_2 reveals at most a very weak
one to a human eye.

Data Quality

[256]

Applying a Machine Learning Model
As promised, let us apply a machine learning model against this data, trying to
predict the target based on the features. In ML, we conventionally use the names X
and y for features and target, respectively. This follows the common pattern, from
high school algebra, of naming an independent variable x and a dependent variable
y. Since we generally have multiple features, a capital X is used. While we cannot
discuss the motivation in any depth, good practice in machine learning is to always
reserve a portion of your training data for testing, so that you do not overfit your
model. That is done with the function train_test_split().

from sklearn.model_selection import train_test_split

X = unscaled.drop('Target', axis=1)
y = unscaled['Target']

X_train, X_test, y_train, y_test = (
 train_test_split(X, y, random_state=1))

For this example, we use a K-neighbors regressor to try to model our data. For
many kinds of problems, this is a very effective algorithm, but it is also one that
looks directly at distances in parameter space, and is hence very sensitive to scaling.
If we naïvely apply this model to our raw data, the R-squared score is very low
(other metrics would be similarly bad).

from sklearn.neighbors import KNeighborsRegressor

knn = KNeighborsRegressor()
knn.fit(X_train, y_train).score(X_test, y_test)

0.027756186064182953

A “perfect” R-squared score is 1.0. A very bad score is 0.0 (negative scores are also
sometimes possible, and even worse in a sense). But for anything below 0.25 or so,
we essentially reject the model.

By using, in this case, a min-max scaler, we achieve a far better metric score. The
scaler we use here simply takes the minimum value of the raw feature, and shifts
all values by that amount toward zero by subtraction, then divides all values by the
shifted maximum value. The effect is to produce a range that is always [0, 1], for
every feature. This synthetic feature does not have any physical meaning per se, as
the original measure presumably did.

Chapter 5

[257]

But by applying this scaler, all features are guaranteed to occupy the same numeric
range (with the specific values distributed differently within their ranges). Let us
apply this min-max scaling to our features before fitting the model again.

from sklearn.preprocessing import MinMaxScaler
X_new = MinMaxScaler().fit_transform(X)

X_train, X_test, y_train, y_test = (
 train_test_split(X_new, y, random_state=1))

knn2 = KNeighborsRegressor()
knn2.fit(X_train, y_train).score(X_test, y_test)

0.9743878175626131

Notice that I did not bother to scale the target in the above code. There would be no
harm in doing so for the model, but there is no benefit either since the target is not
part of the parameter space of the features. Moreover, if we scaled the target, we
would have to remember to unscale it correspondingly to get a meaningful number
in the desired units.

Scaling Techniques
The scaling technique we used above utilized scikit-learn’s MinMaxScaler. All of the
scalers in scikit-learn use the same API, and are implemented in an efficient and
correct manner. There is certainly a good argument for using those within Python,
even if scikit-learn is not otherwise part of your overall modeling pipeline. However,
it is not difficult to do the same scaling “by hand” using lower-level vectorized
operations. For example, this would be simple in NumPy; here we show an example
in R, and focus only on the algorithm. One nice detail of the scikit-learn API is that it
knows to normalize column-by-column. In the comparison, we only do one column.

%%R -i X,X_new
Import the data frame/array from Python
py_raw_data <- X$Feature_1 # only feature 1
py_scaled <- X_new[,1] # scaled column 1

Utility function to scale as [0, 1]
normalize <- function(x) {
 floor <- min(x) # Only find min once
 return ((x - floor) / (max(x) - floor))
}

Scale the raw data

Data Quality

[258]

r_scaled <- normalize(py_raw_data)

Near equality of elements from normalize() and MinMaxScaler
all.equal(py_scaled, r_scaled)

[1] TRUE

Notice that even for a straightforward operation like this, the different
implementations, across libraries and languages, do not perform identical operations
in an identical order. This allows some floating-point rounding differences to creep
in. Comparing for strict equality of floating-point values is almost always the wrong
thing to do; measurements have finite precision and operations introduce 1-ULP
(unit in the last place) errors frequently. On the other hand, these slight numeric
differences make no practical difference for actual models, only for equality checks.

%%R
print("A few 'equalities':")
print(py_scaled[1:5])
print(r_scaled[1:5])

print("Exactly equal?")
print((py_scaled == r_scaled)[1:10])

print("Mean absolute difference:")
print(mean(abs(py_scaled - r_scaled)))

[1] "A few 'equalities':"
[1] 0.1776148 1.0000000 0.7249096 0.6142706 0.8920478
[1] 0.1776148 1.0000000 0.7249096 0.6142706 0.8920478
[1] "Exactly equal?"
[1] TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE
[1] "Mean absolute difference:"
[1] 6.130513e-17

Another very common scaling technique is called StandardScaler in scikit-learn.
It sets the mean of a feature to 0 and the standard deviation to 1. This scaling is
particularly relevant when a variable is (very roughly) normally distributed. The
name hints that this approach is usually the default scaler to choose (although
probably it was derived from “standard deviation” when the name was chosen). Let
us implement it to illustrate the simple transformation. Here we display the values
from Feature_2, which are around 20,000 in the raw data.

from sklearn.preprocessing import StandardScaler
X_new2 = StandardScaler().fit_transform(X)

Chapter 5

[259]

Second column for example (both were scaled)
plt.hist(X_new2[:, 1], bins=30)
plt.title("Value distribution after StandardScaler");

Figure 5.9: Feature_2 value distribution after the StandardScaler transformation

StandardScaler uses more numeric operations than MinMaxScaler, since it involves
standard deviation, and that gives the calculation more opportunity for introducing
numeric errors. The code in scikit-learn performs tricks to minimize this error
better than the simple version we present, although again the magnitude is unlikely
to be genuinely important. Let us manually reproduce the basic operation of
StandardScaler.

%%R -i X,X_new2
Import the data frame/array from Python
py_raw_data <- X$Feature_2 # Only feature 2
py_scaled <- X_new2[, 2] # scaled column 2

r_scaled = (py_raw_data - mean(py_raw_data)) /
 sd(py_raw_data)

all.equal(py_scaled, r_scaled)

[1] "Mean relative difference: 0.002503133"

In this calculation, we do not pass the all.equal() test. R characterizes the failure
beyond only a boolean FALSE. We can make the comparison with a bit more laxness
by setting the tolerance parameter. Let us also verify the characteristics of the
scaled data.

Data Quality

[260]

%%R
print("Mean from R scaling:")
print(mean(r_scaled))

print("Standard deviation:")
print(sd(r_scaled))

print("Almost equal with tolerance 0.005")
all.equal(py_scaled, r_scaled, tolerance = 0.005)

[1] "Mean from R scaling:"
[1] 6.591949e-17
[1] "Standard deviation:"
[1] 1
[1] "Almost equal with tolerance 0.005"
[1] TRUE

A number of variations are available for scaling through basic multiplication and
subtraction operations. For example, rather than normalize on standard deviation,
we could normalize using inter-quartile range (IQR). The scikit-learn class
RobustScaler does this, for example. To some degree, IQR—or generally quantile-
based approaches—are more robust against outliers. However, the degree to which
IQR range scaling normalizes is limited, and a stricter quantile approach can be
more aggressive.

Let us replicate Feature_1 in the sample dataset we are presenting, but make just
one value (out of 200) an extreme outlier. Recall that Feature_1 has values on the
order of 0.1. We will introduce a single value of 100 into the variable. Arguably, this
is an extreme-enough outlier that we should have removed it already, using the
techniques discussed in Chapter 4, Anomaly Detection, but for whatever reason we
did not.

X['Feature_3'] = X.Feature_1
X.loc[0, 'Feature_3'] = 100

When we attempt to utilize RobustScaler, the transformed data still has one data
point at an extreme value. In fact, that extreme is worse than the out-of-bounds
value, 100, that we selected; moreover, the outlier is even farther out than under
a StandardScaler transformation. RobustScaler is really only productive under a
collection including a moderate number of moderate outliers (of the sort that might
have escaped anomaly detection).

Chapter 5

[261]

from sklearn.preprocessing import RobustScaler
X_new3 = RobustScaler().fit_transform(X)

Third column for example (all were scaled)
plt.hist(X_new3[:, 2], bins=30)
plt.title("Value distribution after RobustScaler");

Figure 5.10: Feature_1 value distribution after RobustScaler

A stronger approach we can use is to rigorously scale values so that they fall
exclusively within quantiles. In essence, this scales the data within each quantile
range separately, and hence imposes both a reasonable distribution overall and
strict bounds on values.

from sklearn.preprocessing import QuantileTransformer
Ten quantiles is also called "decile"
deciles = QuantileTransformer(n_quantiles=10)
X_new4 = deciles.fit_transform(X)

Third column for example (all were scaled)
plt.hist(X_new4[:, 2], bins=30)
plt.title("Value distribution after QuantileTransformer");

Data Quality

[262]

Figure 5.11: Feature_1 value distribution after QuantileTransformer

Obviously, this transformed data is not completely uniform—it would have little
value if there was not some variability beyond ordinal order—but it is bounded and
reasonably evenly distributed across the range [0, 1]. The single outlier point remains
as a minor outlier from the main distribution, but is numerically not very distant.

In principle, even though the specific transformers in scikit-learn operate in a
column-wise fashion, we might wish to apply a different scaling technique to each
column or feature. As long as the particular transformation generates numeric ranges
among the transformed values on roughly the same scale (i.e. usually of about
distance one or two between maximum and minimum value, at least for the majority
of data), all machine learning techniques that utilize distance in parameter space as
part of their algorithm will be satisfied. Examples of such algorithms include linear
models, support vector machines, and K-nearest neighbors. As was mentioned,
algorithms in the family of decision trees simply do not care about specific distance
in a dimension, and neural networks can perform a kind of scaling by allowing what
we can informally call a “scaling layer” that at least might act as a multiplier of each
input feature (exactly what a trained network “decides” to use neurons and layers
for is always somewhat opaque to our intentions or understanding).

Factor and Sample Weighting
There are times when you will wish to give a particular feature more significance
than fair scaling across features allows. This is a slightly different issue than the one
that is addressed by sampling in Chapter 6, Value Imputation. In that later chapter,
I discuss either undersampling or oversampling to produce more witnesses of
minority target classes. That is certainly a possible approach to balancing classes
within a feature rather than a target, but is not usually the best approach.

Chapter 5

[263]

If nothing else, oversampling across two distinct unbalanced classes has the potential
to explode the number of synthetic samples.

In the case of unbalanced feature classes, another approach is available. We can simply
overweight minority classes rather than oversample them. Many machine learning
models contain an explicit hyperparameter called something like sample_weight
(the scikit-learn spelling). Separately from the sample weights, however, these same
model classes will also sometimes have something like class_weight as a separate
hyperparameter. The distinction here is exactly the one we have been making: sample
weight allows you to overweight (or underweight) specific rows of input data, while
class weight allows you to over/underweight specific target class values.

To add more nuance to this matter, we are not restricted to over/underweighting only
to address class imbalance. We can, in fact, apply it for any reason we like. For example,
we may know that certain measurements in our dataset are more reliable than others,
and wish to overweight those. Or we may know that getting predictions right for
samples with a certain characteristic is more important for task-specific reasons, even
while not wishing entirely to discard those samples lacking that characteristic.

Let us return to the Apache log file example to illustrate all of these concerns. Recall
that the processed data looks something like this:

reqs.sample(8, random_state=72).drop('page', axis=1)

 hour minute quad1 quad2 method
——
 3347 0 4 172 69 GET
 2729 9 43 172 69 GET
 8102 4 16 172 69 GET
 9347 0 48 162 158 GET
 6323 21 30 162 158 GET
 2352 0 35 162 158 GET
12728 9 0 162 158 GET
12235 19 3 172 69 GET

 path status
——
 3347 /publish/programming 200
 2729 /TPiP 200
 8102 /member/images 404
 9347 /publish/images 304
 6323 /download/pywikipedia/cache 200
 2352 /download/gnosis/xml/pickle/test 200
12728 /download/relax 200
12235 /dede2 404

Data Quality

[264]

We noted that both method and status are highly imbalanced in pretty much the way
we expect them to be in a working web server. The method data specifically has this
imbalance that we saw plotted above, in Figure 5.7. The hypothetical task we have
in mind is to predict status codes based on the other features of the dataset (without
actually issuing an HTTP request, which might change based on the current time,
for example).

reqs.method.value_counts()

GET 13294
HEAD 109
POST 48
Name: method, dtype: int64

In other words, GET requests are 122 times more common than HEAD requests, and 277
times more common than POST requests. We may be concerned that this limits our
ability to make predictions on the rare class values for the method. Often our models
will simply figure this out for us, but sometimes they will not. Moreover, although
it is a frequently occurring path, we have decided that we need our model to be
more sensitive to paths of /TPiP and so will artificially overweight that by 5x as well.
Notice that in this stipulation, the overweighting has nothing whatsoever to do with
the underlying distribution of the feature, but rather is a domain requirement of the
underlying purpose of our modeling.

Likewise, we are especially concerned about predicting 404 status codes (i.e. enhance
the recall of this label), but are not necessarily interested in the overall balance of
the target. Instead, we will weight all other outcomes as 1, but weight 404s as 10,
for task purposes we have determined before performing modeling. Let us do all of
that in code, in this case using a random forest model from scikit-learn. Should some
row match both the overweighted path and an underrepresented method, the larger
multiplier for the method will take precedence.

The row index positions for rows to overweight
tpip_rows = reqs[reqs.path == '/TPiP'].index
head_rows = reqs[reqs.method == 'HEAD'].index
post_rows = reqs[reqs.method == 'POST'].index

Configure the weights in a copy of data frame
reqs_weighted = reqs.copy()
reqs_weighted['weight'] = 1 # Default weight of one

Chapter 5

[265]

reqs_weighted.loc[tpip_rows, 'weight'] = 5
reqs_weighted.loc[head_rows, 'weight'] = 122
reqs_weighted.loc[post_rows, 'weight'] = 277

Do not use column page in the model
reqs_weighted.drop('page', axis=1, inplace=True)

View the configured weights
reqs_weighted.sample(4, random_state=72)

 hour minute quad1 quad2 method path status
———
3347 0 4 172 69 GET /publish/programming 200
2729 9 43 172 69 GET /TPiP 200
8102 4 16 172 69 GET /member/images 404
9347 0 48 162 158 GET /publish/images 304

 weight
—————————————
3347 1
2729 5
8102 1
9347 1

These sample weights are stored on a per-row basis; in other words, we have 13,451
of them. For this example, most are simply weight 1, but they could all be distinct
numbers, in concept. Configuring the weights we wish to use with the target is
different. We could leverage the sample weight itself to choose rows with a certain
target label; however, that approach is unnecessarily clunky and is not usually our
preferred approach. Instead, we simply wish to create a small mapping from label
to weight.

target_weight = {code:1 for code in reqs.status.unique()}
target_weight[404] = 10
target_weight

{200: 1, 304: 1, 403: 1, 404: 10, 301: 1, 500: 1, 206: 1}

Data Quality

[266]

Here we will create, fit, train, and score a scikit-learn model. The API will vary if you
use some other library, but the concepts will remain the same. It only takes a line
to perform a train/test split, as is good practice in real code. As a minor API detail,
we need to encode our string categorical values for this model type, so we will use
OrdinalEncoder.

from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import OrdinalEncoder

Create the model object with target weights
rfc = RandomForestClassifier(class_weight=target_weight,
 random_state=0)

Select and encode the features and target
X = reqs_weighted[['hour', 'minute',
 'quad1', 'quad2',
 'method', 'path']]

Encode strings as ordinal integers
X = OrdinalEncoder().fit_transform(X)
y = reqs_weighted['status']
weight = reqs_weighted.weight

Perform the train/test split, including weights
X_train, X_test, y_train, y_test, weights_train, _ = (
 train_test_split(X, y, weight, random_state=1))

Fit the model on the training data and score it
rfc.fit(X_train, y_train, sample_weight=weights_train)
rfc.score(X_test, y_test)

0.8183169788878977

As with R-squared used in the regression example, 1.0 represents perfect accuracy.
Accuracy cannot be less than 0.0 though.

Without more context and analysis, I cannot say whether this model does well or
poorly for the intended purpose. Quite possibly some other model class and/or
some better-tuned weights would serve the hypothetical purpose better. The steps
in trying those are straightforward, and mostly the same as the code shown.

We turn now to a difficult but important concept. Many times we wish to remove
expected trends from data to reveal the exceptions to those trends.

Chapter 5

[267]

Cyclicity and Autocorrelation
Do I contradict myself?
Very well then I contradict myself,
(I am large, I contain multitudes.)
–Walt Whitman

Concepts:

•	 Detrending sequential data
•	 Detected cycles versus a priori domain knowledge
•	 Expected versus distinctive variability
•	 Multiple cyclicities
•	 Autocorrelation

There are times when you expect your data to have periodic behavior within it. In
such cases—especially when multiple overlapping cyclicities exist within sequential
data—the deviations from the cyclical patterns can be more informative than the raw
values. Most frequently we see this in association with time series data, of course. To
some degree, this concern falls under the purview of Chapter 7, Feature Engineering,
and indeed we return there to some of the same concerns, and even to the same
dataset we discuss here.

As a first step, we would like to be able to recognize and analyze periodicities or
cyclicities in our data. Some of these are intuitively obvious once we have some
domain knowledge, but others lurk in the data themselves and not necessarily in
our initial intuitions. For this section, I will utilize a dataset collected many years
ago by my friend, and occasional co-author, Brad Huntting. For a period in the past,
Brad collected temperatures in and outside his house in Colorado (USA), generally
every 3 minutes. The data presented here covers a few days less than a year.

Rooms inside the house were regulated by thermostats; the outdoors naturally
shows seasonal variation. Moreover, the data itself is imperfect. When we return to
this data in Chapter 7, Feature Engineering, we will look at gaps, recording errors, and
other problems in the data collection. For the purpose of this section, a minor degree
of data cleanup and value imputation was performed in the code that loads the
dataset. See also Chapter 6, Value Imputation, for additional discussion of imputation
generally, with different examples.

Data Quality

[268]

First, let us read in the data using a Python function that loads a Pandas DataFrame.
However, beyond the loading step, we will perform the analysis and visualization in
R and its Tidyverse. Very similar capabilities exist in other libraries and languages,
including Pandas. The underlying concepts are important here, not the specific
APIs and languages used. Brad uses a web domain name of “glarp” so we use that
same invented word for some variable names referring to this data about his house
temperatures.

thermo = read_glarp()
start, end = thermo.timestamp.min(), thermo.timestamp.max()
print("Start:", start)
print(" End:", end)
Fencepost counting includes ends
print(" Days:", 1 + (end.date() - start.date()).days)

Start: 2003-07-25 16:04:00
 End: 2004-07-16 15:28:00
 Days: 358

Let us look at a few rows of the dataset to have a feeling for its nature. We can see
that one row exists every 3 minutes during the interval of recording. For this section,
the interval is completely regular at 3 minutes, and no missing values are present.
Moreover, a few obvious recording errors in the raw data are cleaned up here with
imputed values.

%%R -i thermo
glarp <- as.tibble(thermo)
glarp

A tibble: 171,349 x 5
 timestamp basement lab livingroom outside
 <dttm> <dbl> <dbl> <dbl> <dbl>
 1 2003-07-25 16:04:00 24 25.2 29.8 27.5
 2 2003-07-25 16:07:00 24 25.2 29.8 27.3
 3 2003-07-25 16:10:00 24 25.2 29.8 27.3
 4 2003-07-25 16:13:00 24.1 25.2 29.8 27.4
 5 2003-07-25 16:16:00 24.1 25.2 29.8 27.8
 6 2003-07-25 16:19:00 24.1 25.2 29.8 27.5
 7 2003-07-25 16:22:00 24.1 25.2 29.8 27.6
 8 2003-07-25 16:25:00 24.1 25.2 29.8 27.6
 9 2003-07-25 16:28:00 24.1 25.2 29.8 27.7
10 2003-07-25 16:31:00 24.1 25.2 29.8 27.6
... with 171,339 more rows

Chapter 5

[269]

We can visualize this data as a first step to removing cyclicities with the goal of
focusing on the ways in which individual measurements vary from expectations.
These operations are also called “detrending” the data. Let us look first at outside
temperatures, plotting their pattern using ggplot2.

%%R
ggplot(glarp, aes(x=timestamp, y=outside)) +
 geom_line() + clean_theme +
 ggtitle("Outside temperature over recording interval")

Figure 5.12: Outside temperature over the recording interval

Data Quality

[270]

As is easy to guess, there is a general pattern of northern hemisphere temperatures
being warmer in July than in January, with a great deal of jitter within the global
trend. Even though only 1 year of data is available, we know from very basic
domain knowledge to expect similar annual cycles for other years. In contrast, as we
can also anticipate, indoor temperatures both fall within a narrower range and show
less of a clear pattern.

%%R
ggplot(glarp, aes(x=timestamp, y=basement)) +
 geom_line() + clean_theme +
 ggtitle("Basement temperature over recording interval")

Figure 5.13: Basement temperature over the recording interval

Chapter 5

[271]

Overall, indoor temperatures in the basement are relatively narrowly bound between
about 14°C and 23°C. Some points fall outside of this range, both some high summer
temperatures indicating that the house had a heating system but no air conditioner,
and some low winter temperatures in sharp spikes, perhaps reflecting periods when
windows were opened. However, the outside lows reached about -20°C while these
indoor lows are generally above 10°C. Something somewhat odd seems to have
happened around September and October of 2003 as well; perhaps this reflects
some change in the heating system during that period.

Domain Knowledge Trends
As a first task, let us think about outdoor temperatures that are presumably little
affected by the house heating system. We would like to identify unexpectedly
warm or unexpectedly cold measurements as inputs to our downstream model.
For example, a temperature of 10°C might either be a surprisingly cold summer
temperature or a surprisingly warm winter temperature, but in itself it is merely
globally typical and does not carry very much information about the observation
without additional context.

Given that yearly temperatures will continue to repeat from year to year, it might
make sense to model this yearly pattern as a portion of a sine wave. However,
in shape, it certainly resembles a parabola for this period from roughly the
warmest day of 2003 until roughly the warmest day of 2004. Since we are merely
detrending a year-scale pattern, not modeling the behavior, let us fit a second-order
polynomial to the data, which will account for most of the variation that exists in
the measurements.

%%R
Model the data as a second order polynomial
year.model <- lm(outside ~ poly(timestamp, 2), data = glarp)

Display the regression and the data
ggplot(glarp, aes(x=timestamp)) + clean_theme +
 geom_line(aes(y = outside), color = "gray") +
 geom_line(aes(y = predict(year.model)),
 color = "darkred", size = 2) +
 ggtitle("Outside temperature versus polynomial fit")

Data Quality

[272]

Figure 5.14: Fitting a polynomial curve to the outside temperature data

Chapter 5

[273]

We can see in the plot that our annual detrending accounts for most of the data
variation, so we can simply subtract the trend from the underlying points to get, as
a first pass, the degree to which a measurement is unexpected. A new tibble named
outside will hold the data for this narrower focus.

%%R
outside <- glarp[, c("timestamp", "outside")] %>%
 add_column(no_seasonal = glarp$outside - predict(year.model))
outside

A tibble: 171,349 x 3
 timestamp outside no_seasonal
 <dttm> <dbl> <dbl>
 1 2003-07-25 16:04:00 27.5 1.99
 2 2003-07-25 16:07:00 27.3 1.79
 3 2003-07-25 16:10:00 27.3 1.79
 4 2003-07-25 16:13:00 27.4 1.89
 5 2003-07-25 16:16:00 27.8 2.29
 6 2003-07-25 16:19:00 27.5 1.99
 7 2003-07-25 16:22:00 27.6 2.10
 8 2003-07-25 16:25:00 27.6 2.10
 9 2003-07-25 16:28:00 27.7 2.20
10 2003-07-25 16:31:00 27.6 2.07
... with 171,339 more rows

Visualizing the seasonally detrended temperatures, we see a remaining range
from around -20°C to +20°C. This is somewhat less than the range of the raw
temperatures, but only somewhat. Variability has decreased, but only modestly.

Data Quality

[274]

However, there is no obvious overall annual trend once we have performed this
removal, and the synthetic value is centered at 0.

%%R
ggplot(outside, aes(x=timestamp)) +
 geom_line(aes(y = no_seasonal)) + clean_theme +
 ggtitle("Outside temperature with removed seasonal expectation")

Figure 5.15: Outside temperature with seasonal expectation subtracted

Chapter 5

[275]

The second obvious insight we might have into outdoor temperature cycles is that
it is warmer during the day than at night. Given that there are 358 days of data, a
polynomial will clearly not fit, but a trigonometric model is likely to fit to a better
degree. We do not calculate a Fourier analysis here, but rather simply look for an
expected daily cyclicity. Since we have observations every 3 minutes during each
day, we wish to convert these 3,360 intervals into 2π radians for the regression to
model. The model will simply consist of fitted sine and cosine terms, which can
additively construct any sine-like curve on the specified periodicity.

%%R
Make one day add up to 2*pi radians
x <- 1:nrow(outside) * 2*pi / (24*60/3)

Model the data as a first order trigonometric regression
day_model <- lm(no_seasonal ~ sin(x) + cos(x),
 data = outside)
print(day_model)

Create a new tibble the holds the regression
and its removal from the annually detrended data
outside2 <- add_column(outside,
 day_model = predict(day_model),
 no_daily = outside$no_seasonal - day_model)
outside2

Call:
lm(formula = no_seasonal ~ sin(x) + cos(x), data = outside)

Coefficients:
(Intercept) sin(x) cos(x)
 0.0002343 -0.5914551 3.6214463

A tibble: 171,349 x 5
 timestamp outside no_seasonal day_model no_daily
 <dttm> <dbl> <dbl> <dbl> <dbl>
 1 2003-07-25 16:04:00 27.5 1.99 3.61 -1.62
 2 2003-07-25 16:07:00 27.3 1.79 3.60 -1.81
 3 2003-07-25 16:10:00 27.3 1.79 3.60 -1.80
 4 2003-07-25 16:13:00 27.4 1.89 3.59 -1.69
 5 2003-07-25 16:16:00 27.8 2.29 3.58 -1.28
 6 2003-07-25 16:19:00 27.5 1.99 3.56 -1.57
 7 2003-07-25 16:22:00 27.6 2.10 3.55 -1.46
 8 2003-07-25 16:25:00 27.6 2.10 3.54 -1.44
 9 2003-07-25 16:28:00 27.7 2.20 3.53 -1.33
10 2003-07-25 16:31:00 27.6 2.07 3.51 -1.44
... with 171,339 more rows

Data Quality

[276]

It is difficult to tell from just the first few rows of the data frame, but the daily
detrending is typically closer to zero than the seasonal detrending alone. The
regression consists mostly of a cosine factor, but is shifted a bit by a smaller negative
sine factor. The intercept is very close to zero, as we would expect from the seasonal
detrending. If we visualize the three lines, we can get some sense; in order to show
it better, only one week in early August of 2003 is shown. Other time periods have a
similar pattern; all will be centered at zero because of the detrending.

%%R
week <- outside2[5000:8360,]
p1 <- ggplot(week, aes(x = timestamp)) +
 no_xlabel + ylim(-8, +8) +
 geom_line(aes(y = no_seasonal))
p2 <- ggplot(week, aes(x = timestamp)) +
 no_xlabel + ylim(-8, +8) +
 geom_line(aes(y = day_model), color = "lightblue", size = 3)
p3 <- ggplot(week, aes(x = timestamp)) +
 clean_theme + ylim(-8, +8) +
 geom_line(aes(y = no_daily), color = "darkred")
grid.arrange(p1, p2, p3,
 top = "Annual de-trended; daily regression; daily de-
trended")

Chapter 5

[277]

Figure 5.16: Annual detrended data; daily regression; daily detrended

Data Quality

[278]

The thicker, smooth line is the daily model of temperature. In electronic versions
of this book, it will appear as light blue. At the top is the more widely varying
seasonally detrended data. At the bottom, the daily detrended data has mostly
lower magnitudes (in red if your reading format allows it). The third subplot is
simply the subtraction of the middle subplot from the top one.

Around August 7 are some oddly low values. These look sharp enough to suggest
data problems, but perhaps a thunderstorm brought August temperatures that
much lower during one afternoon. One thing we can note in the date range plotted
is that even the daily detrended data shows a weak daily cycle, albeit with much
more noise. This would indicate that other weeks of the year have less temperature
fluctuation than this one; in fact, some weeks will show an anti-cyclic pattern with
the detrended data being an approximate inverse of the regression line. Notably,
even on this plot, it looks like August 8 was anti-cyclic, while August 5 and 6 have
a remaining signal matching the sign of the regression, and the other days have a
less clear correspondence. By anti-cyclic, we do not mean that, for example, a night
was warmer than the days around it, but rather that there was less than the expected
fluctuation, and hence detrending produces an inverted pattern.

That said, while we have not removed every possible element of more complex
cyclic trends, the range of most values in the doubly detrended data is approximately
8°C, whereas it was approximately 50°C for the raw data. Our goal is not to remove
the underlying variability altogether but rather to emphasize the more extreme
magnitude measurements, which this has done.

Discovered Cycles
We have good a priori beliefs about what outdoor temperatures are likely to do.
Summers are warmer than winters, and nights are colder than days. However, no
similarly obvious assumption presents itself for indoor temperatures. We saw earlier
a plot for temperatures in Brad’s basement. The data is interestingly noisy, but in
particular we noticed that for about two summer months, the basement temperatures
were pinned above about 21°C throughout the day and night. From this, we inferred
that Brad’s house had a heating system but no cooling system, and therefore the
indoor temperature approximately followed the higher outdoor ones. We wish here
to analyze only the heating system and its artificially maintained temperature, rather
than the seasonal trend. Let us limit the data to non-summer days (here named
according to the pattern in the data rather than the official season dates).

Chapter 5

[279]

%%R
not_summer <- filter(glarp,
 timestamp >= as.Date("2003-08-15"),
 timestamp <= as.Date("2004-06-15"))

Plot only the non-summer days
ggplot(not_summer, aes(x=timestamp, y=basement)) +

 geom_line() + clean_theme +
 ggtitle("Basement temperature over non-summer days")

Figure 5.17: Basement temperature over non-summer days

Within the somewhat narrowed period, nearly every day of measurements has
temperatures both above and below around 18-20°C, so most likely the heating
system was operating for a portion of each day in almost all of these non-summer
days. The question we would like to analyze—and perhaps to detrend—is whether
cyclic patterns exist in indoor temperature data, among the considerable noisiness
that is clearly present in the raw data.

Data Quality

[280]

A technique called autocorrelation lends itself well to this analysis. Autocorrelation
is a mathematical technique that identifies repeating patterns, such as the presence
of a periodic signal mixed with noise or non-periodic variation. In Pandas, the Series
method .autocorr() looks for this. In R, the relevant function is called acf(). Other
libraries or programming languages have similar capabilities. Let us take a look at
what we discover. Note that we do not wish blindly to look for autocorrelations if
our domain knowledge tells us that only certain periodicities “make sense” within
the subject matter.

Although our data frame contains a timeseries column already, it is easier here
simply to create one out of the basement column we will work with. The actual dates
corresponding to data points are irrelevant for the operation; only their spacing in
time is of interest. In particular, we can impose a frequency matching the number
of observations in a day to get a plot labeled intuitively by the number of days. The
acf() function generates a plot automatically, and returns an object with a number of
values attached that you can utilize numerically. For the purpose of this section, the
graph is sufficient.

%%R
per_day <- 24*60/3
basement.temps <- ts(not_summer$basement, frequency = per_day)
auto <- acf(basement.temps, lag.max = 10*per_day)

Figure 5.18: Density distribution of similarities at different increments

Chapter 5

[281]

As the autocorrelation name suggests, this shows the correlation of the single
data series with itself at each possible offset. Trivially, the zero increment is 100%
correlated with itself. Everything other than that tells us something specific about
the cyclicities within this particular data. There are strong spikes at each integral
number of days. We limited the analysis to 10 days forward here. These spikes let us
see that the thermostat in the basement had a setting to regulate the temperature to
different levels at different times of each day, but in a way that was largely the same
between one day and each of the next ten after it.

The spikes in this data are sloped rather than sharp (they are, at least, continuous
rather than stepped). Any given 3-minute interval tends to have a similar
temperature to those nearby it, diminishing fairly quickly, but not instantaneously,
as measurements occur farther away. This is what we would expect in a house with
a thermostat-controlled heating system, of course. Other systems might be different;
for example, if a light was on a timer to come on for exactly 3 minutes then go out,
on some schedule, the measurement of light levels would be suddenly, rather than
gradually, different between adjacent measurements.

The pattern in the autocorrelation provides more information than only the daily
cycle, however. We see also a lower correlation at approximately half-day intervals.
This is also easily understood by thinking about the domain and the technology
that produced it. To save energy, Brad set his thermostat timer to come on in the
mornings when he’d wake up, then go to a lower level while he was at the office,
then again to go up in the early evening when he returned home. I happen to know
this was an automated setting, but the same effect might, for example, have occurred
if it was simply a human pattern of manually adjusting the thermostat up and down
at those times (the signal would probably be less strong than with a mechanical
timer, but likely present).

Rising above the daily cyclicity, there is also a somewhat higher spike in the
autocorrelation at 7 days. This indicates that days of the week are correlated with
the temperature setting of the thermostat. Most likely, either because of a timer
setting or human habit and comfort, a different temperature was set on weekdays
versus weekends, for example. This secondary pattern is less strong than the general
24-hour cyclicity, but about as strong as the half-day cyclicity; examining the
autocorrelation spikes more carefully could reveal exactly what duration Brad was at
his office versus coming home, typically. The offset of the secondary spikes from the
24-hour spikes is probably not at exactly 12 hours, but is at some increment less than
the full 24 hours.

Data Quality

[282]

We will not do these operations in this section, but think about using the
autocorrelation as a detrending regression, much as we did with the trigonometric
regression. This would effectively have separate periodicities of 12 and 24 hours,
and at 7 days. Clearly, the raw data shown has a lot of additional noise, but it
would presumably be reduced by subtracting out these known patterns. Some very
atypical values would stand out even more strongly among this detrended data,
and potentially thereby have even stronger analytic significance.

Sometimes the data validation that we need to perform is simply highly specific to
the domain in question. For that, we tend to need more custom approaches and code.

Bespoke Validation
Explanations exist; they have existed for all time; there is always a well-known
solution to every human problem—neat, plausible, and wrong.
–H. L. Mencken

Concepts:

•	 Leveraging domain knowledge beyond anomaly detection
•	 Example: evaluating duplicated data
•	 Validation as sanity check to further investigation

There are many times when domain knowledge informs the shape of data that is
likely to be genuine versus data that is more likely to reflect some kind of recording
or collation error. Even though general statistics on the data do not show anomalies,
bias, imbalance, or other generic problems, we know something more about the
domain or the specific problem that informs our expectations about “clean” data.

To illustrate, we might have an expectation that certain kinds of observations should
occur with roughly a particular frequency compared to other observations; perhaps
this would be specified further by the class values of a third categorical variable.
For example, as background domain knowledge, we know that in the United States,
family size is slightly less than 2 children, on average. If we had data that was meant
to contain information about all the individual people in sampled households, we
could use this as a guideline for the shape of the data. In fact, if we had auxiliary
data on children per household by state, we might refine this reference expectation
more when validating our data.

Chapter 5

[283]

Obviously, we do not expect every household to have exactly 1.9 children in it. Given
that humans come in integral units, we in fact could never have such a fractional
number in any specific household at all. However, if we found that in our sampled
households we averaged 0.5 children per household, or 4 children per household-
with-children, we would have a strong indication that some kind of sample bias was
occurring. Perhaps children are under- or overreported in the household data for
individual households. Perhaps the selection of which households to sample biases
the data toward those with children, or toward those without them. This scenario
is largely similar to the issue addressed earlier in this chapter of comparisons to
baselines. It adds only a minor wrinkle to the earlier examples in that we only
identify households where we wish to validate our expectation of the number of
children (i.e. under 18 years old) based on a shared address feature across several
observations (that is, a household).

Collation Validation
Let us look at a completely different example that really cannot be formulated
in terms of baseline expectations. In this section, we consider genomic data on
ribosomal RNA (rRNA) that was downloaded from DNA Data Bank of Japan
(DDBJ), specifically the 16S rRNA (Prokaryotes) in FASTA format dataset. You do
not need to know anything about genomics or cellular biology for this example; we
focus simply on the data formats used and an aggregation of records in this format.

Each sequence in this dataset contains a description of the organism in question and
the nature of the sequence recorded. The FASTA format is widely used in genomics
and is a simple textual format. Multiple entries in the line-oriented format can simply
be concatenated in the same file or text. For example, a sequence entry might look
like this:

FASTA
>AB000001_1|Sphingomonas sp.|16S ribosomal RNA
agctgctaatattagagccctatatatagagggggccctatactagagatatatctatca
gctaatattagagccctatatatagagggggccctatactagagatatatctatcaggct
attagagccctatatatagagggggccctatactagagatataagtcgacgatattagca
agccctatatatagagggggccctatactagagatatatctatcaggtgcacgatcgatc
cagctagctagc

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/16S/

Data Quality

[284]

The description published with this dataset indicates that each sequence contained
is at least 300 base pairs, and the average length is 1,104 base pairs. There are 998,911
sequences contained as of this writing. Note that in DNA or RNA, every nucleobase
uniquely determines which other base is paired in a double helix, so the format
does not need to notate both. A variety of high-quality tools exist for working with
genomic data; details of those are outside the scope of this book. However, as an
example, let us use SeqKit to identify duplicated sequences. In this dataset, there are
no pairs of sequences with the same name or ID, but quite a few contain the same
base pairs. This is not an error, per se, since it reflects different observations. It may,
however, be redundant data that is not useful for our analysis.

%%bash
cd data/prokaryotes
zcat 16S.fasta.gz |
 seqkit rmdup --by-seq --ignore-case \
 -o clean.fasta.gz \
 -d duplicated.fasta.gz \
 -D duplicated.detail.txt

[INFO] 159688 duplicated records removed

Around 15% of all the sequences are duplicates. In general, these are multiple IDs
that pertain to the same organism. We can see such in a quick examination of the
duplication report produced by seqkit. As an exercise, you might think about
how you would write a similar duplicate detection function in a general-purpose
programming language; it is not particularly difficult, but SeqKit is certainly more
optimized and better tested than would be a quick implementation you might
produce yourself.

%%bash
cut -c-60 data/prokaryotes/duplicated.detail.txt | head

1384 JN175331_1|Lactobacillus, MN464257_1|Lactobacillus, MN4
1383 MN438326_1|Lactobacillus, MN438327_1|Lactobacillus, MN4
1330 AB100791_1|Lactococcus, AB100792_1|Lactococcus, AB10079
1004 CP014153_1|Bordetella, CP014153_2|Bordetella, CP014153_
934 MN439952_1|Lactobacillus, MN439953_1|Lactobacillus, MN43
912 CP003166_2|Staphylococcus, CP003166_3|Staphylococcus, CP
908 CP010838_1|Bordetella, CP010838_2|Bordetella, CP010838_3
793 MN434189_1|Enterococcus, MN434190_1|Enterococcus, MN4341
683 CP007266_3|Salmonella, CP007266_5|Salmonella, CP007266_6
609 MN440886_1|Leuconostoc, MN440887_1|Leuconostoc, MN440888

Chapter 5

[285]

Horizontal transfer of rRNA between organisms is possible, but such an occurrence
in the data might also represent a misclassification of an organism under
examination. We can write some code to determine if such an event of multiple
IDs for the same sequence are sometimes tagged as different bacteria (or perhaps
archaea).

def matched_rna(dupfile):
 """Count of distinct organisms per sequence match

 Return a mapping from line number in the duplicates
 to Counters of occurrences of species names
 """
 counts = dict()
 for line in open(dupfile):
 line = line.rstrip()
 _, match_line = line.split('\t')
 matches = match_line.split(', ')
 first_id = matches[0].split('|')[0]
 names = [match.split('|')[1] for match in matches]
 count = Counter(names)
 counts[first_id] = count
 return counts

It turns out that cataloging multiple organisms with apparently identical rRNA
sequences is quite a common occurrence. But our analysis/validation may shed
light on what is likely occurring with these duplicate records. Many lines in the
duplication report show just one species with many observations. A significant
minority show something else. Let us look at several examples.

dupfile = 'data/prokaryotes/duplicated.detail.txt'
counts = matched_rna(dupfile)

In some examples, different observations have differing levels of specificity, but are
not per se different organisms.

print(counts['CP004752_1'])
print(counts['AB729796_1'])

Counter({'Mannheimia': 246, 'Pasteurellaceae': 1})
Counter({'Microbacterium': 62, 'Microbacteriaceae': 17})

Data Quality

[286]

Mannheimia is a genus of the family Pasteurellaceae, and Microbacterium is a
genus of the family Microbacteriaceae. Whether these “discrepancies” need to be
remediated in cleanup is very problem-specific, however. For example, we may wish
to use the more general families in order to group matching sequences together.
On the other hand, the problem may demand as much specificity in identifying
organisms as is available. You have to decide how to process or handle different
levels of specificity in your domain ontology.

A similar issue occurs in another record, but with what appears to be an additional,
straightforward data error.

counts['AB851397_1']

Counter({'Proteobacteria': 1, 'proteobacterium': 2,
'Phyllobacteriaceae': 8})

Phyllobacteriaceae is a family in the broad phylum Proteobacteria, so either way we
are dealing with rather non-specific classification. But “proteobacterium” appears to
be a non-standard way of spelling the Linnaean family, both in being singular and in
lacking of capitalization of the name.

Looking at another record, we might judge the classification as an observational
error, but it is obviously difficult to be certain without deeper domain knowledge.

counts['CP020753_6']

Counter({'Shigella': 11, 'Escherichia': 153})

Both Shigella and Escherichia belong to the family Enterobacteriaceae. The identical
sequence is characterized as belonging to different genera here. Whether this
indicates a misidentification of the underlying organism or a horizontal transfer of
rRNA between these organisms is not clear from this data alone. However, in your
data science tasks, this is the sort of decision you are required to make, probably in
consultation with domain experts.

One more record we can look at is very strange relative to this dataset. It shows
many duplicates, but that is not really the surprising aspect.

counts['FJ537133_1']

Counter({'Aster': 1,
 "'Elaeis": 1,
 "'Tilia": 1,
 "'Prunus": 2,
 "'Brassica": 3,
 'Papaya': 1,

Chapter 5

[287]

 "'Phalaris": 1,
 "'Eucalyptus": 1,
 "'Melochia": 1,
 'Chinaberry': 1,
 "'Catharanthus": 4,
 "'Sonchus": 1,
 "'Sesamum": 1,
 'Periwinkle': 1,
 'Candidatus': 1})

In this case, we have a number of genera of flowering plants—that is, eukaryotes—
mixed with a dataset that is documented to catalog rRNA in prokaryotes. There is
also a spelling inconsistency in that many of the genera listed have a spurious single-
quote character at the beginning of their name. Whether or not it is plausible for
these different plants, mostly trees, to share rRNA is a domain knowledge question,
but it seems likely that these data do not belong within our hypothetical analysis of
prokaryotic rRNA at all.

The examination of duplicated sequences in this dataset of rRNA sequences points
to a number of likely problems in the collection. It also hints at problems that may
lurk elsewhere within the collection. For example, even where identical sequences
are not named by different levels of cladistic phylogeny, these differing levels may
conflate the classification of other sequences. Perhaps, for example, this calls out
for normalization of the data to a common phyletic level (which is a significantly
large project, but it might be required for a task). Either way, this cursory validation
suggests a need to filter the dataset to address only a well-defined collection of
genera or families of organisms.

Transcription Validation
We discussed above, in this section, the possibility that the collection of records (i.e.
sequences) may have problems in their annotation or aggregation. Perhaps records
are inconsistent with each other or in some way present conflicting information. The
examples we identified point to possible avenues for removal or remediation. In
this second part of the section, we want to look at possible identifiable errors in the
individual records.

This hypothetical is presented simply as a data example, not per se motivated by
deep knowledge of RNA sequencing techniques. This is commonly the perspective
of data scientists who work with domain experts. For example, I do not know
how many of the measurements in the dataset utilized RNA-Seq versus older
hybridization-based microarrays.

Data Quality

[288]

But for this purpose, let us suppose that a relatively common error in the sequencing
technique causes inaccurate repetitions of short fragments of RNA base pairs that are
not present in the actual measured rRNA. On the other hand, we also do know that
microsatellites and minisatellites do occur in rRNA as well (although telomeres do
not), so the mere presence of repeated sequences does not prove that a data collection
error occurred; it is merely suggestive.

The purpose of this example is simply to present the idea that something as custom
as what we do below may be relevant to your data validation for your specific
domain. What we will look for is all the places where relatively long subsequences
are repeated within a particular sequence. Whether this is an error or an interesting
phenomenon is a matter for domain expertise. By default in the code below we look
for repeated subsequences of 45 base pairs, but provide a configuration option to
change that length. If each nucleotide were simply randomly chosen, each particular
pattern of length 45 would occur with probability of about 10–27, and repetitions—
even with “birthday paradox” considerations—would essentially never occur. But
genetic processes are not so random as that.

As a first step, let us create a short function that iterates over a FASTA file, producing
a more descriptive namedtuple for each sequence contained along with its metadata.
Many libraries will do something similar, perhaps faster and more robustly than the
code shown does, but the FASTA format is simple enough that such a function is
simple to write.

Sequence = namedtuple("FASTA", "recno ID name locus bp")

def get_sequence(fname):
 fasta = gzip.open(fname)
 pat = re.compile(r'n+') # One or more 'n's
 sequence = []
 recno = 0
 for line in fasta:
 line = line.decode('ASCII').strip()
 if line.startswith('>'):
 # Modify base pairs to contain single '-'
 # rather than strings of 'n's
 bp = "".join(sequence)
 bp = re.sub(pat, '-', bp) # Replace pat with a dash
 if recno > 0:
 yield Sequence(recno, ID, name, locus, bp)
 ID, name, locus = line[1:].split('|')
 sequence = []
 recno += 1
 else:
 sequence.append(line)

https://en.wikipedia.org/wiki/Birthday_problem

Chapter 5

[289]

The get_sequence() function allows us to iterate lazily over all the sequences
contained in a single gzipped file. Given that the total data is 1.1 GiB, not reading it
all at once is an advantage. Beyond assuming such files are gzipped, it also makes
an assumption that headers are formatted in the manner of the DDBJ rather than
according to a different convention or lacking headers. As I say, other tools are more
robust. Let us try reading just one record to see how the function works:

fname = 'data/prokaryotes/16S.fasta.gz'
prokaryotes = get_sequence(fname)
rec = next(prokaryotes)

print(rec.recno, rec.ID, rec.name, rec.locus)
print(fill(rec.bp, width=60))

1 AB000106_1 Sphingomonas sp. 16S ribosomal RNA
ggaatctgcccttgggttcggaataacgtctggaaacggacgctaataccggatgatgac
gtaagtccaaagatttatcgcccagggatgagcccgcgtaggattagctagttggtgagg
taaaggctcaccaaggcgacgatccttagctggtctgagaggatgatcagccacactggg
actgagacacggcccagactcctacgggaggcagcagtagggaatattggacaatgggcg
aaagcctgatccagcaatgccgcgtgagtgatgaaggccttagggttgtaaagctctttt
acccgggatgataatgacagtaccgggagaataagccccggctaactccgtgccagcagc
cgcggtaatacggagggggctagcgttgttcggaattactgggcgtaaagcgcacgtagg
cggcgatttaagtcagaggtgaaagcccggggctcaaccccggaatagcctttgagactg
gattgcttgaatccgggagaggtgagtggaattccgagtgtagaggtgaaattcgtagat
attcggaagaacaccagtggcgaaggcggatcactggaccggcattgacgctgaggtgcg
aaagcgtggggagcaaacaggattagataccctggtagtccacgccgtaaacgatgataa
ctagctgctggggctcatggagtttcagtggcgcagctaacgcattaagttatccgcctg
gggagtacggtcgcaagattaaaactcaaaggaattgacgggggcctgcacaagcggtgg
agcatgtggtttaattcgaagcaacgcgcagaaccttaccaacgtttgacatccctagta
tggttaccagagatggtttccttcagttcggctggctaggtgacaggtgctgcatggctg
tcgtcagctcgtgtcgtgagatgttgggttaagtcccgcaacgagcgcaaccctcgcctt
tagttgccatcattcagttgggtactctaaaggaaccgccggtgataagccggaggaagg
tggggatgacgtcaagtcctcatggcccttacgcgttgggctacacacgtgctacaatgg
cgactacagtgggcagctatctcgcgagagtgcgctaatctccaaaagtcgtctcagttc
ggatcgttctctgcaactcgagagcgtgaaggcggaatcgctagtaatcgcggatcagca
tgccgcggtgaatacgtccccaggtcttgtacacaccgcccgtcacaccatgggagttgg
tttcacccgaaggcgctgcgctaactcgcaagagaggcaggcgaccacggtgggatcagc
gactgggtgagtcgtacaggtgc

Data Quality

[290]

In order to check each sequence/record for the subsequence duplication we are
concerned about, another short function can help us. This Python code uses a
Counter again, as did the matched_rna() function earlier. It simply looks at every
subsequence of a given length, many thereby overlapping, and returns only those
counts that are greater than 1.

def find_dup_subseq(bp, minlen=45):
 count = Counter()
 for i in range(len(bp)-minlen):
 count[bp[i:i+minlen]] += 1
 return {seq: n for seq, n in count.items() if n > 1}

Putting it together, let us look at only the first 2,800 records to see if any have the
potential problem we are addressing. Given that the full dataset contains close to
1 million sequences, many more such duplicates occur. An initial range was only
chosen by trial and error to find exactly two examples. Duplicate subsequences are
comparatively infrequent, but not so rare as not to occur numerous times among a
million sequences.

for seq in islice(get_sequence(fname), 2800):
 dup = find_dup_subseq(seq.bp)
 if dup:
 print(seq.recno, seq.ID, seq.name)
 pprint(dup)

2180 AB051695_1 Pseudomonas sp. LAB-16
{'gtcgagctagagtatggtagagggtggtggaatttcctgtgtagc': 2,
 'tcgagctagagtatggtagagggtggtggaatttcctgtgtagcg': 2}
2534 AB062283_1 Acinetobacter sp. ST-550
{'aaaggcctaccaaggcgacgatctgtagcgggtctgagaggatga': 2,
 'aaggcctaccaaggcgacgatctgtagcgggtctgagaggatgat': 2,
 'accaaggcgacgatctgtagcgggtctgagaggatgatccgccac': 2,
 'aggcctaccaaggcgacgatctgtagcgggtctgagaggatgatc': 2,
 'ccaaggcgacgatctgtagcgggtctgagaggatgatccgccaca': 2,
 'cctaccaaggcgacgatctgtagcgggtctgagaggatgatccgc': 2,
 'ctaccaaggcgacgatctgtagcgggtctgagaggatgatccgcc': 2,
 'gcctaccaaggcgacgatctgtagcgggtctgagaggatgatccg': 2,
 'ggcctaccaaggcgacgatctgtagcgggtctgagaggatgatcc': 2,
 'ggggtaaaggcctaccaaggcgacgatctgtagcgggtctgagag': 2,
 'gggtaaaggcctaccaaggcgacgatctgtagcgggtctgagagg': 2,

Chapter 5

[291]

 'ggtaaaggcctaccaaggcgacgatctgtagcgggtctgagagga': 2,
 'ggtggggtaaaggcctaccaaggcgacgatctgtagcgggtctga': 2,
 'gtaaaggcctaccaaggcgacgatctgtagcgggtctgagaggat': 2,
 'gtggggtaaaggcctaccaaggcgacgatctgtagcgggtctgag': 2,
 'taaaggcctaccaaggcgacgatctgtagcgggtctgagaggatg': 2,
 'taccaaggcgacgatctgtagcgggtctgagaggatgatccgcca': 2,
 'tggggtaaaggcctaccaaggcgacgatctgtagcgggtctgaga': 2,
 'tggtggggtaaaggcctaccaaggcgacgatctgtagcgggtctg': 2,
 'ttggtggggtaaaggcctaccaaggcgacgatctgtagcgggtct': 2}

As before, this validation only points in the direction of asking domain- and
problem-specific questions, and does not determine the correct action. Subsequence
duplications may indicate errors in the sequencing process, but they might also
reveal something relevant about the underlying domain, and genomic mechanisms.
Collisions are far too unlikely to occur by mere chance, however.

Exercises
For the exercises of this chapter, we first ask you to perform a typical multi-step
data cleanup using techniques you have learned. For the second exercise, you try to
characterize sample bias in the provided dataset using analytic tools this book has
addressed (or others of your choosing).

Data Characterization
For this exercise, you will need to perform a fairly complete set of data cleaning
steps. The focus is on techniques discussed in this chapter, but concepts discussed
in other chapters will be needed as well. Some of these tasks will require skills
discussed in later chapters, so skip ahead briefly, as needed, to complete the tasks.

Here we return to the “Brad’s House” temperature data, but in its raw form. The
raw data consists of four files, corresponding to the four thermometers that were
present. These files may be found at:

https://www.gnosis.cx/cleaning/outside.gz

https://www.gnosis.cx/cleaning/basement.gz

https://www.gnosis.cx/cleaning/livingroom.gz

https://www.gnosis.cx/cleaning/lab.gz

https://www.gnosis.cx/cleaning/outside.gz
https://www.gnosis.cx/cleaning/basement.gz
https://www.gnosis.cx/cleaning/livingroom.gz
https://www.gnosis.cx/cleaning/lab.gz

Data Quality

[292]

The format of these data files is a simple but custom textual format. You may want to
refer back to Chapter 1, Tabular Formats, and to Chapter 3, Repurposing Data Sources, for
inspiration on parsing the format. Let us look at a few rows:

%%bash
zcat data/glarp/lab.gz | head -5

2003 07 26 19 28 25.200000
2003 07 26 19 31 25.200000
2003 07 26 19 34 25.300000
2003 07 26 19 37 25.300000
2003 07 26 19 40 25.400000

As you can see, the space-separated fields represent the components of a datetime,
followed by a temperature reading. The format itself is consistent for all the
files. However, the specific timestamps recorded in each file are not consistent.
All four data files end on 2004-07-16T15:28:00, and three of them begin on
2003-07-25T16:04:00. Various and different timestamps are missing in each file. For
comparison, we can recall that the full data frame we read with a utility function
that performs some cleanup has 171,346 rows. In contrast, the line counts of the
several data files are:

%%bash
for f in data/glarp/*.gz; do
 echo -n "$f: "
 zcat $f | wc -l
done

data/glarp/basement.gz: 169516
data/glarp/lab.gz: 168965
data/glarp/livingroom.gz: 169516
data/glarp/outside.gz: 169513

All of the tasks in this exercise are agnostic to the particular programming languages
and libraries you decide to use. The overall goal will be to characterize each of the
685k data points as one of several conceptual categories that we present below.

Task 1: Read all four data files into a common data frame. Moreover, we would like
each record to be identified by a proper native timestamp rather than by separated
components. You may wish to refer forward to Chapter 7, Feature Engineering, which
discusses date/time fields.

Chapter 5

[293]

Task 2: Fill in all missing data points with markers indicating they are explicitly
missing. This will have two slightly different aspects. There are some implied
timestamps that do not exist in any of the data files. Our goal is to have 3-minute
increments over the entire duration of the data. In the second aspect, some
timestamps are represented in some data files but not in others. You may wish to
refer to the Missing Data section of this chapter and the same-named one in Chapter
4, Anomaly Detection; as well, the discussion of date/time fields in Chapter 7 is likely
relevant.

Task 3: Remove all regular trends and cycles from the data. The relevant techniques
may vary between the different instruments. As we noted in the discussion in this
chapter, three measurement series are of indoor temperatures regulated, at least in
part, by a thermostat, and one is of outdoor temperatures. Whether or not the house
in question had differences in thermostats or heating systems between rooms is
left for readers to try to determine based on the data (at the very least though, heat
circulation in any house is always imperfect and not uniform).

Task 4: Characterize every data point (timestamp and location) according to these
categories:

•	 A “regular” data point that falls within generally expected bounds.
•	 An “interesting” data point that is likely to indicate relevant deviation from

trends.
•	 A “data error” that reflects an improbable value relative to expectations, and

is more likely to be a recording or transcription error. Consider that a given
value may be improbable based on its delta from nearby values and not
exclusively because of absolute magnitude. Chapter 4 is likely to be relevant
here.

•	 A missing data point.

Task 5: Describe any patterns you find in the distribution of characterized
data points. Are there temporal trends or intervals that show most or all data
characterized in a certain way? Does this vary by which of four instruments we
look at?

Note: As a step in performing detrending, it may be useful to
temporarily impute missing data, as is discussed in Chapter 6, Value
Imputation.

Data Quality

[294]

Oversampled Polls
Polling companies often deliberately utilize oversampling (overselection) in their
data collection. This is a somewhat different issue than the overweighting discussed
in a topic of this chapter, or than the mechanical oversampling that will be addressed
in Chapter 6, Value Imputation. Rather, the idea here is that a particular class, or a
value range, is known to be uncommon in the underlying population, and hence
the overall parameter space is likely to be sparsely filled for that segment of the
population. Alternately, the oversampled class may be common in the population
but also represents a subpopulation about which the analytic purpose needs
particularly high discernment.

The use of oversampling in data collection itself is not limited to human subjects
surveyed by polling companies. There are times when it similarly makes sense for
entirely unrelated subject domains, for example, the uncommon particles produced
in cyclotrons or the uncommon plants in a studied forest. Responsible data collectors,
such as the Pew Research Center that collected the data used in this exercise, will
always explicitly document their oversampling methodology and expectations
about the distribution of the underlying population. You can, in fact, read all of
these details about the 2010 opinion survey we utilize at:

https://www.pewsocialtrends.org/2010/02/24/millennials-confident-
connected-open-to-change/

However, to complete this exercise, we prefer you skip initially consulting that
documentation. For the work here, pretend that you received this data without
adequate accompanying documentation and metadata (just to be clear: Pew is
meticulous here). Such is all too often the case in the real world of messy data.
The raw data, with no systematic alteration to introduce bias or oversampling, is
available by itself at:

https://www.gnosis.cx/cleaning/pew-survey.csv

Task 1: Read in the data, and make a judgment about what ages were deliberately
over- or undersampled, and to what degree. We may utilize this weighting in later
synthetic sampling or weighting, but for now, simply add a new column called
sampling_multiplier to each observation of the dataset matching your belief.

For this purpose, treat 1x as the “neutral” term. So, for example, if you
believe 40-year-old subjects were overselected by 5x, assign the multiplier 5.0.
Symmetrically, if you believe 50-year-olds were systematically underselected by
2x, assign the multiplier 0.5. Keep in mind that humans in the United States in 2010
were not uniformly distributed by age.

https://www.pewsocialtrends.org/2010/02/24/millennials-confident-connected-open-to-change/
https://www.pewsocialtrends.org/2010/02/24/millennials-confident-connected-open-to-change/
https://www.gnosis.cx/cleaning/pew-survey.csv

Chapter 5

[295]

Moreover, with a sample size of about 2,000 and 75 different possible ages, we expect
some non-uniformity of subgroup sizes simply from randomness. Merely random
variation from the neutral selection rate should still be coded as 1.0.

Task 2: Some of the categorical fields seem to encode related but distinct binary
values. For example, this question about technology is probably not ideally coded
for data science goals:

pew = pd.read_csv('data/pew-survey.csv')
list(pew.q23a.unique())

['New technology makes people closer to their friends and family',
 'New technology makes people more isolated',
 '(VOL) Both equally',
 "(VOL) Don't know/Refused",
 '(VOL) Neither equally']

Since the first two descriptions may either be mutually believed or neither believed
by a given surveyed person, encoding each as a separate boolean value makes
sense. How to handle a refusal to answer is an additional decision for you to make
in this re-encoding. Determine which categorical values should better be encoded
as multiple booleans, and modify the dataset accordingly. Explain and justify your
decisions about each field.

Task 3: Determine whether any other demographic fields than age were
oversampled. While the names of the columns are largely cryptic, you can probably
safely assume that a field with qualitative answers indicating degree of an opinion
are dependent variables surveyed rather than demographic independent variables.
For example:

list(pew.q1.unique())

['Very happy', 'Pretty happy', 'Not too happy', "(VOL) Don't know/
Refused"]

You may need to consult outside data sources to make judgments for this task.
For example, you should be able to find the rough population distribution of US
timezones (in 2010) to compare to the dataset distribution.

list(pew.timezone.unique())

['Eastern', 'Central', 'Mountain', 'Pacific']

Data Quality

[296]

Task 4: Some fields, such as q1 presented in Task 3, are clearly ordinally encoded.
While it is not directly possible to assign relative ratios for (Very happy:Pretty
happy) versus (Pretty happy:Not too happy), the ranking of those three values is
evident, and calling them ordinal 1, 2, and 3 is reasonable and helpful. You will,
of course, also have to encode refusal to answer in some fashion. Re-encode all
relevant fields to take advantage of this intuitive domain knowledge you have.

Denouement
Quality is never an accident. It is always the result of intelligent effort.
–John Ruskin

Topics covered in this chapter: Missing Data (revisited); Bias; Class Imbalance;
Normalization; Scaling; Overweighting; Cyclicity; Bespoke Validation.

In this chapter, we focused on the problem of bias in data. Datasets rarely, if ever,
completely represent a population; rather they skew and select from that population
to form a certain kind of picture. Sometimes this bias is intentional and well-founded
as a way of filling parameter spaces. Other times it simply reflects the distribution
of quantities or classes in the underlying reality. In this case, it is both the inherent
virtue of our data and a pitfall in our analysis. But at other times still, elements of the
data collection, collation, transcription, or aggregation can introduce biases that are
more subtle and may need to be remediated in some manner for our analyses and
modeling of the data. Detecting bias is the first step toward addressing it.

Related to bias, but somewhat parallel as a concern, are cyclicities in data. Very often
a particular series of data—when the data is ordered in some manner, often as a time
series—has components of “signal” and “variation” that can be usefully separated. A
signal is, in some sense, a kind of bias, in that it provides an expectation that at time
T there is a higher probability the measurement will be close to M. Identifying the
signals is often an important aspect of data analysis—they are often not a priori—but
identifying the deviations from the signal also provides an additional channel of
interesting information.

The prior chapter on anomaly detection provided hints about identifying data
that is generically statistically unlikely within a collection of values. But very often
we want to look at problems that are more domain-specific. We are often able to
take advantage of expectations we have about patterns in clean data that might be
violated by the data we actually have. These patterns might only be represented by
custom code that algorithmically expresses these expectations but that cannot be
formulated in terms of generic statistical tests.

In the next chapter, we turn to the important and subtle question of imputing data.

PART III

Rectification and
Creation

[299]

6
Value Imputation

I’m a substitute for another guy
I look pretty tall but my heels are high
The simple things you see are all complicated
I look pretty young, but I’m just back-dated, yeah
–Pete Townsend

Data can be missing or untrusted in a variety of ways, and for a variety of reasons.
These ways are discussed especially in Chapter 4, Anomaly Detection, and Chapter
5, Data Quality. Sometimes your best option for dealing with bad data is simply to
discard it. However, many times it is more useful to impute values in some manner,
in order to retain the rest of the features within an observation. From the perspective
of this chapter, let us assume that all data values identified as untrusted—even if
initially present with bad values—have already been explicitly marked as missing.

When imputing data, it is important to keep a good record of the difference between
values you have invented (imputed) and those that arrived with the original
dataset. This record might take the form of an explicit annotation to each data
item, depending on what your data formats enable. The most usual way to keep
records is by maintaining versions of your data as you clean them in various ways,
and maintaining (and versioning) explicit scripts that perform the modifications
repeatably.

Value Imputation

[300]

Generally, data comes grouped as many records or observations. The tabular form
that we ultimately require for machine learning and many statistical purposes is clear
this way. One row is an “observation,” at least loosely, and each column represents
a feature we wish, ideally, to have for every observation. Even data that is initially
stored in a hierarchical or otherwise non-tabular structure needs to be translated to a
record-oriented representation before we do most analyses on it. The initial form will
still be partitioned in some record-like manner: maybe separate files, or separate top-
level keys for nested data, or separate partitions based on some task-specific purpose.

The decision to impute values versus discard records need not be all or nothing. It
might be the case that we have decided that some records are possible or desirable
to save and others are not. Several considerations are generally present in our
decision, whether done by record or for the problem generally. The predominant
emphasis in these considerations assumes a machine learning use of a dataset;
visualizations or analytics that are not “machine learning” per se worry about
imputation much less often, but definitely sometimes. Some issues to consider
include:

•	 Do you have a lot of data? If your data is limited, conserving every record
possible can be especially important. Machine learning models, mutatis
mutandis, are that much happier the more data they have to work with. If
you have millions—or even tens of thousands—of records left after you
discard those with missing data, you may be able to worry less about
imputation.effectiveness If you only have hundreds of records, every one feels
precious; of course, with fewer records, flawed imputation can also have a
disproportionate effect.

•	 Do you have knowledge or suspicion that missing data occurs in a biased
way? If the missing records are likely to concern observations that have a
different characteristic or pattern than the overall dataset, it can be especially
important to salvage them. Perhaps one sensor location or one time frame
is closely associated with missing data. That location or time is likely to be
needed to well capture some aspect of the domain modeled.

•	 Following on the bias issue, you may decide that it is OK to discard those
records with missing data that belong to the “random flaw” subset, but that
those records with systematic missing data are crucial since they address a
different region of the parameter space of the problem.

•	 Do your records have many or few features? A record with five features
and two of them missing is unlikely to retain much useful weight for good
models. A record with one feature missing out of fifty or a thousand is
much more likely to be worth remediating.

Chapter 6

[301]

•	 What is the role of the missing value? If the target feature is missing from
a supervised learning training set—i.e. for a classification or regression
problem—imputation is very unlikely to do you much good. It is much
more likely to be useful to impute an input feature. However, even there,
the role of that input feature in the problem or domain can vary; a particular
feature can be pivotal from a “business purpose” perspective, whether or not
it is actually the most predictive feature. Imputing a feature of central task
importance is generally unwise.

The first two sections of this chapter look at single-value imputation. This fits
straightforwardly with what we always think of as imputation. The last section looks
at oversampling and undersampling, which are whole-dataset modifications. Both
organizationally and conceptually, it is worth addressing those under the topic of
imputation. The goal with sampling is to produce a dataset that we believe better
resembles the reality we are trying to model—exactly what imputation is about.

Typical-Value Imputation
And there’s another marketing ploy
Typical girl gets the typical boy
–Ari Up, Paloma McLardy, Tessa Pollitt, and Viv Albertine

Concepts:

•	 Identifying values to impute
•	 Central tendency within a dataset
•	 Mean, median, geometric mean, and multi-modal data
•	 Population-based central tendency
•	 Neighboring data expressing a tendency

effectiveness

A well-known and compelling essay about how very large datasets
turn out to solve many of our problems for us is The Unreasonable
Effectiveness of Data, by Alon Halevy, Peter Norvig, and Fernando
Periera.

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/35179.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/35179.pdf

Value Imputation

[302]

Pretty much the simplest thing we can do is assume a missing value is similar to the
general trend for that same feature. In some cases, domain knowledge may inform
us as to what a reasonable default is, in the absence of specific information about a
particular record. Absent that background, however, the data that exists can provide
guidance for imputation.

Typical Tabular Data
Let us look at the Dermatology Data Set available from the UCI Machine Learning
Repository. This data contains 34 measurements of 366 patients, with each one
diagnosed as having one of six skin conditions. Most of the features are ordinal
coded measures of the severity of one feature observed.

We get this data in somewhat raw form. The dermatology.data file is a CSV with no
headers. The dermatology.names file contains a bit more than its name might suggest.
Beyond providing the feature names, it gives an additional exposition of the dataset,
such as value coding, where unknown values occur, and a few other things, in prose.
The dermatology.py file in this book’s repository contains some moderate massaging
of the data into a data frame.

from src.setup import *
from src.dermatology import *
df.iloc[:, [0, 1, 2, 3, -2, -1]].sample(6)

 erythema scaling definite borders itching Age
———
247 2 2 2 0 62
127 2 2 2 2 44
230 3 2 0 1 30
162 3 2 2 2 22
159 3 2 2 1 47
296 2 1 1 3 19

https://archive.ics.uci.edu/ml/datasets/Dermatology

Chapter 6

[303]

 TARGET
———————————————————————————
247 psoriasis
127 lichen planus
230 seboreic dermatitis
162 lichen planus
159 seboreic dermatitis
296 cronic dermatitis

A quick view of the sample rows does not reveal obviously missing data. We can
investigate further to identify likely missing data. From the description provided, we
know that observed severities are intended to be encoded as 0, 1, 2, or 3 (the feature
“family history” as 0 or 1). Is anything outside this coding?

clean, suspicious = [], {}
for col in df.columns:
 values = df[col].unique()
 if set(values) <= {0, 1, 2, 3}:
 clean.append(col)
 else:
 suspicious[col] = values

Most fields are limited to the expected coding values.

print("No problem detected:")
pprint(clean[:8])
print(f"... {len(clean)-8} other fields")

No problem detected:
['erythema',
 'scaling',
 'definite borders',
 'itching',
 'koebner phenomenon',
 'polygonal papules',
 'follicular papules',
 'oral mucosal involvement']
... 25 other fields

Value Imputation

[304]

A few other fields fall outside the coding set. However, one of them is TARGET, which
contains only reasonable names and spellings of the several conditions diagnosed.
Age, for the most part, also contains reasonable human ages, except one value of
'?' is also present there. This is the manner in which this dataset encodes missing
data.missing

Notice age has some expected ages and also a '?'
print("Suspicious:")
pprint(suspicious)

Suspicious:
{'Age': array(['55', '8', '26', '40', '45', '41', '18', '57', '22', '30', '20',
 '21', '10', '65', '38', '23', '17', '51', '42', '44', '33', '43',
 '50', '34', '?', '15', '46', '62', '35', '48', '12', '52', '60',
 '32', '19', '29', '25', '36', '13', '27', '31', '28', '64', '39',
 '47', '16', '0', '7', '70', '37', '61', '67', '56', '53', '24',
 '58', '49', '63', '68', '9', '75'], dtype=object),
 'TARGET': array(['seboreic dermatitis', 'psoriasis', 'lichen planus',
 'cronic dermatitis', 'pityriasis rosea',
 'pityriasis rubra pilaris'], dtype=object)}

missing

The Pandas library, in particular, by default recognizes a variety of
string values as meaning “missing.” You can manually configure,
per column, what values count as missing within pandas.read_
csv() and other functions that infer data types. As of this writing,
and Pandas 1.0, these defaults are exactly these strings: '', '#N/A',
'#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan',
'1.#IND', '1.#QNAN', '<NA>', 'N/A', 'NA', 'NULL', 'NaN',
'n/a', 'nan', and 'null'.

Other libraries may or may not perform similar inference/
guessing, and those that do will probably use a different collection
of default strings. For data formats that directly encode floating-
point values, often a NaN (“not a number”) value, which is part
of the IEEE-754 specification for floating-point numbers, is used
to identify missing data. Philosophical attitudes vary about the
correctness of this encoding, but you will definitely see it often.
At other times, “special” values occur, such as -1 (hopefully for a
measure that must be positive) or 99999 (hopefully for a measure
expected to be orders of magnitude lower).

Chapter 6

[305]

Having identified the somewhat unusual value used by this dataset for missing
data, we should often re-encode it using a more standard approach. In particular,
converting the string value ages to floating-point numbers with NaN used for the
missing data is a very common style, and one that Pandas treats in some convenient
and useful ways. To accomplish this in Pandas, we first substitute a known
“missing” value for the '?', then cast the column to floating-point. We can see that
several rows have adjusted values.

Assign missing ages marked with '?' as None
df.loc[df.Age == '?', 'Age'] = None # or NaN
Convert string/None ages to floating-point
df['Age'] = df.Age.astype(float)
Display those rows with missing ages
df.loc[df.Age.isnull()].iloc[:, -4:]

 inflammatory band-like Age TARGET
 monoluclear inflitrate infiltrate
———
33 0 0 NaN psoriasis
34 0 0 NaN pityriasis rosea
35 0 0 NaN seboreic dermatitis
36 0 3 NaN lichen planus
262 3 0 NaN cronic dermatitis
263 2 0 NaN cronic dermatitis
264 3 0 NaN cronic dermatitis
265 3 0 NaN cronic dermatitis

The question arises as to what value we might impute as “typical” for this dataset.
358 rows have specific ages, all in the reasonable range of human lifespans. Eight
rows have missing values. There are a number of familiar ways of identifying the
“central tendency” of a data collection. Ones that stand out are mode, median, mean,
geometric mean, and less often, harmonic mean. In Pandas specifically, only the
first three of these are built-in methods. For geometric mean or harmonic mean you
will generally use scipy.stats.gmean or scipy.stats.hmean (neither is difficult to
construct as a custom function). In a different programming language or tool, these
details will vary, but the concept will be the same.

Geometric mean is useful when data covers several orders of magnitude. Often these
are the same kinds of data you would plot using a log scale axis. Measurements
concerning exponential growth are often appropriately “averaged” with geometric
mean. Harmonic mean is useful when you are comparing rates of action. For
example, if you have a feature that measures the velocity of some objects, the typical
value is best measured as harmonic mean.

Value Imputation

[306]

Keep in mind that these several averages are often numerically close to each other,
and since an imputation is a guess to begin with, the choice among them may be
striving for a false precision.precision

For data collections that have a more or less linear distribution, including a normal
distribution, one of the more commonplace averages is probably appropriate. We
might try the modal age of the patients as a good representation. We encounter in
this dataset a multi-modal distribution, which is common in small data. Moreover,
with ages between 0 and 80 years, and only 358 data points, the data is generally
“lumpy.” Mode is probably not a good approach (but could be if one value clearly
predominated).

df.Age.mode()

0 40.0
1 50.0
dtype: float64

We can use a quick plot to get a better sense of the distribution of ages, and perhaps
an idea about what value might be typical. Axis labels and ticks are omitted because
we want only an overall sense of the distribution in our exploration.

(df.Age
 .value_counts()
 .sort_index()
 .plot(kind="bar", yticks=[], xticks=[],
 title="Age distribution of patients "
 f"({df.Age.min():.0f} to {df.Age.max():.0f})")
);

precision

False precision (also called overprecision, fake precision, misplaced
precision, and spurious precision) occurs when numerical data
are presented in a manner that implies better precision than is
justified; since precision is a limit to accuracy, this often leads to
overconfidence in the accuracy, named precision bias.

Chapter 6

[307]

Figure 6.1: Age distribution of patients (0 to 75)

In this case, nothing particularly jumps out as a likely candidate. There are a few
peaks only slightly less than the two modes, and no prevalent pattern to the noisy
data.

Most likely mean or median are more representative. These values come out as
reasonably close to each other here, although both are notably different from both
modes.

df.Age.mean(), df.Age.median()

(36.29608938547486, 35.0)

However, we might also attempt to use domain knowledge to make more informed
choices about a value to impute. For example, the metadata describing this dataset
indicates that it was developed by several Turkish researchers and published in 1998.
Patient confidentiality prohibits disclosure of more precise details, but we might
consult historical demographic data, such as this table obtained from Statista, based
on World Trade Organization datasets.

https://www.statista.com/

Value Imputation

[308]

The median age in Turkey in 1998 appears to have been approximately 24 years old.

Year Median Age Year Median Age
1950 19.7 1990 21.7
1955 19.4 1995 23.0
1960 19.6 2000 24.5
1965 18.4 2005 26.4
1970 18.5 2010 28.2
1975 19.1 2015 29.8
1980 19.5 2020 31.6
1985 20.5

(Source: WTO, 2018; 2020 projected)

Of course, if our domain knowledge ran deeper than this population information,
we might also have knowledge about general age correlations with skin conditions.
As a non-expert, I tend to assume that such conditions generally increase with
age, but good imputation should have a basis beyond only a vague hunch. For the
purpose of this book, let us impute unknown values as the median age within the
data itself.

df.loc[df.Age.isnull(), 'Age'] = df.Age.median()
df.Age.value_counts().head()

35.0 22
50.0 17
40.0 17
36.0 16
27.0 16
Name: Age, dtype: int64

Imputed 35-year-olds become a bit over-represented, but not dramatically so. And
age-related tendencies should be middling for these imputed observations.

Chapter 6

[309]

Locality Imputation
Trends and locality are clearly related, in some sense. For example, in a time series,
the measurement taken at one particular minute is “local” to the measurement taken
at the next minute by the same instrument. That is, assuming a roughly minute-
scale measurement frequency; in a domain I worked in for a number of years—
molecular dynamics—time steps are roughly femtoseconds (10-15), and a minute is
vastly outside the range of any achievable simulation. Conversely, in geology or
cosmology, minutes are immeasurably small when sequencing epochs. In any case,
linear or sequential locality is addressed in the next section on trend imputation.

Locality in general, however, is not specifically about sequence. For example, in a
dimensional space—whether directly representing a physical space, or concerning
a parameter or phase space—locality might simply be “closeness” in the space.
Imputing values based on the other values that are nearby is often a reasonable way
of filling in data we do not actually have. In some cases, locality-based imputation is
more likely to represent the underlying data than is assuming a global default value.

For example, another dataset available from the UCI Machine Learning Repository
is a collection of handwritten digits that might be recognized by an optical character
recognition application. These particular scanned images include anti-aliasing,
so that the actual strokes in black ink are typically surrounded by gray pixels of
varying darkness. While adjacent boundaries between dark and light do occur, often
intermediate grays exist between black and white pixels. In photographic images,
intermediate colors between regions of an image are even more common.

I have modified a subset of the UCI digit images by randomly dropping out some
pixels. In this representation, a missing grayscale value is represented by -1. The
actual scanned pixel values are between 0 (white) and 16 (black). Let us take a look
at the dataset briefly. We can see that it is 50 samples of 8 × 8 images. Each of the
positions in the 8 × 8 array is a small integer.

print("Array shape:", digits.shape)

Array shape: (50, 8, 8)

https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

Value Imputation

[310]

Each digit array has a few -1 values in it. We can get a sense of the missing data by
visualizing the pixels with shades along with values. Several samples are shown,
with each missing pixel containing an ‘x’ inside it.

show_digits(digits)

Figure 6.2: Visualizing some digits

Chapter 6

[311]

If we wished to, we could apply sophisticated techniques for edge detection,
convolutional filters, or the like, which might find better-imputed pixels. However,
for this demonstration, we will simply assume each missing pixel is the mean value
of its neighbors. Of course, whether to weight diagonals the same as horizontal and
vertical neighbors is an additional decision. So is, potentially, a different weight for
horizontal versus vertical, or up versus down, and so on.

Coded for clarity, not for best vectorized speed
Function definition only; used in later cell
def fill_missing(digit):
 digit = digit.copy()
 missing = np.where(digit == -1)
 for y, x in zip(*missing): # Pull off x/y position of pixel
 # Do not want negative indices in slice
 x_start = max(0, x-1)
 y_start = max(0, y-1)
 # No harm in index larger than size
 x_end = x+2
 y_end = y+2
 # What if another -1 is in region? Remove all the -1s
 region = digit[y_start:y_end, x_start:x_end].flatten()
 region = region[region >=0]
 total = np.sum(region)
 avg = total // region.size
 digit[y, x] = avg
 return digit

The function fill_missing() simply creates a single new digit based on adjacent
digits. We can easily construct a new dataset by looping through the samples in the
original one.

new = np.empty_like(digits)
for n in range(new.shape[0]):
 new[n] = fill_missing(digits[n])

show_digits(new)

Value Imputation

[312]

Figure 6.3: Digits with missing values imputed

As everywhere in this book, my intention is to promote thought about the best way
to improve data quality, with the flawed resources available in actual data. The
specific adjacency averaging that I perform in the sample code is often a reasonable
approach—and apparently performs very well in the example—but you must always
formulate a clear intention about what goal you have with your imputation; as well,
think about how your particular approach might affect the modeling or analysis you
perform later. Perhaps a different approach to imputation would work better with
your selection of model.

Chapter 6

[313]

Let us turn to trends in data, both time series and other kinds of linear trends.

Trend Imputation
The longer you stand in line, the greater the likelihood that you are standing in the
wrong line.
–Anonymous

Concepts:

•	 Types of trends (regressions)
•	 Fill
•	 Linear
•	 Time-sensitive
•	 Non-local
•	 Correlated with another variable
•	 Working through a larger example: aggregation of timestamps by class
•	 Judging whether context is sufficient for imputation
•	 Static trend equivalent to central value imputation
•	 Trends other than time series
•	 Polynomial-fit trends imputation

The most obvious, and probably the most widely addressed, trend that data
scientists use for imputation is time series data. If we make observations on a
relatively regular schedule—every femtosecond, every second, every minute, every
year, every century, or whatever—it is reasonable, to a first approximation, to guess
that a missing observation is similar to the timestamped observations nearby to
it. One very common use of trend imputation is in financial models; for example,
market trades of securities may have irregular spacing of events (either missing data,
or trades being less common than the tick frequency). However, the same concerns
arise with many other domains as well.

There are several general approaches to trend imputation available. These include
forward-fill, backward-fill, local regression, time-sensitive regression, non-local
regression, and correlational imputation. One caveat in all the imputations I discuss
in this section is that they cannot deal with high-frequency signals that have a shorter
periodicity than the gaps in the missing data.

Value Imputation

[314]

For example, if something can fluctuate on a stochastic 10-hertz frequency, one-
second-spaced observations are going to be of little value for imputation. Obviously,
to some degree it depends on the strength of overlapping signals, but this is a
concern to keep in mind.

Types of Trends
Forward-/backward-fill: Assume that a missing value is the same as the value
before/after it in the sequence. The Pandas Series.fillna() method can perform
this imputation, as can the tidyr package’s fill() function in the R tidyverse.

Local regression: Assume there is a continuous function connecting the observations
adjacent to the missing one. Most of the time we simply assume a linear function; for
example, we take the mean of those adjacent observations to fill the missing value. In
concept, we can impute a value based on adjacent points being samples for a non-
linear function, however.

Time-sensitive regression: Even if we look only at values adjacent to missing ones,
if those adjacent values represent datetimes, we might take advantage of the actual
chronological spacing of observations. If all observations are evenly spaced in time,
this is moot. The general intuition here is that values are likely to change more in a
longer time period than in a shorter one.

Non-local regression: Within a series, a regression can be global or windowed over a
wider range than adjacent elements. Again, a linear regression is common, and is the
simplest approach, but other functional forms for regression are possible as well. A
global or windowed regression may be less sensitive to random local fluctuations in
underlying trends. Of course, the missing datum might have been such a fluctuation
itself, so this approach—and most others for trend imputation—amounts to a minor
degree of smoothing of variability.

Correlation imputation: It may be that the data in one column (feature) with missing
values is significantly correlated with the data in one or more other columns. If this is
the case, it may be that models downstream should recognize the cross-correlation,
for example by decomposition and dimensionality reduction. But as an initial
imputation step, assuming values based on correlations is often useful.

In somewhat technical terms, we can note that imputation usually reduces
heteroscedasticity since almost every kind of imputation follows a trend, not
variability from that trend. For almost all data science purposes, that is desirable,
or at least acceptable, but we should avoid stating many kinds of statistical
generalizations on imputed data (usually using the raw data for those purposes
instead).

Chapter 6

[315]

Let us look at a very simple time series example first, to illustrate several of these
approaches. We simply construct a small Pandas Series with date-level resolution,
but uneven spacing of observation dates. The first observation has a dramatically
different value than later ones, mostly to emphasize that the implied global slope is
different from the local differential between elements.

date_series

2001-01-01 -10.0
2001-01-05 1.0
2001-01-10 2.0
2001-02-01 NaN
2001-02-05 4.0
dtype: float64

Forward- or backward-fill are straightforward.

date_series.ffill() # or .bfill()

2001-01-01 -10.0
2001-01-05 1.0
2001-01-10 2.0
2001-02-01 2.0
2001-02-05 4.0
dtype: float64

Local regression, or called plainly “averaging,” is also easy.

date_series.interpolate('linear')

2001-01-01 -10.0
2001-01-05 1.0
2001-01-10 2.0
2001-02-01 3.0
2001-02-05 4.0
dtype: float64

In Pandas (and in other tools), we can weight a trend based on time increments. This
is still a local operation (in the sense of adjacent values), but it is a weighted average
based on the greater nearness of 2001-02-01 to 2001-02-05 than to 2001-01-10. That
is, the extreme value of -10 that is non-adjacent is not utilized.

date_series.interpolate('time')

Value Imputation

[316]

2001-01-01 -10.000000
2001-01-05 1.000000
2001-01-10 2.000000
2001-02-01 3.692308
2001-02-05 4.000000
dtype: float64

Given that this series is monotonically ascending, we can perform a simplified
regression merely by drawing a line from the initial point to the final point. This is
not a least-squares linear regression, but it emphasizes the gap between uniform
and time-based interpolation. The imputed value of 0.5 for February 1 might seem
out of place, but if we visualize the global trend, it makes sense. The OLS (ordinary
least-squares) value would also fall significantly below the time interpolated value,
because one initial value is much lower than others later in the series.

plot_filled_trend(date_series)

Figure 6.4: Global imputation from linear trend

We can also look for correlations among features to impute missing values. For
example, in the dermatology data used earlier in this chapter, some observed
features are clearly correlated with the Age feature that is occasionally missing. In
this case, all of the medical observations are ordinal, but analogous approaches
would apply to continuous features. In particular, the feature follicular horn plug
is strongly (and monotonically) negatively correlated with patient age. We might
simply assign each missing age based on the ordinal value of that other feature. Let
us calculate the mean ages for each of the follicular horn plug degrees.

Chapter 6

[317]

from src.dermatology import derm
feat = 'follicular horn plug'
age_groups = derm.groupby(feat).Age.mean()
age_groups

follicular horn plug
0 37.696429
1 20.400000
2 10.625000
3 9.750000
Name: Age, dtype: float64

A few lines of moderately dense Pandas code can assign to each missing Age based
on the mean age of their grouping by the ordinal feature. It happens that in this
particular dataset, all the missing ages are among patients with zero degree of
“follicular horn plug,” but other data would likely be different (or perhaps there is
something in the collection or collation methodology that caused this correlation).

The row labels for rows with missing Age
missing = derm.loc[derm.Age.isnull()].index

Assign Age based on mapping the feature
derm.loc[missing, 'Age'] = derm[feat].map(age_groups)

Look at filled data for a few features
derm.loc[missing, [feat, 'scaling', 'itching', 'Age']].head(3)

 follicular horn plug scaling itching Age
——
33 0 2 0 37.696429
34 0 1 0 37.696429
35 0 2 2 37.696429

The precision at which Pandas calculated the mean age is not meaningful, but there
is also no special benefit in explicitly reducing it.

A Larger Coarse Time Series
The City of Philadelphia, in the U.S. state of Pennsylvania, provides a wonderful
resource called OpenDataPhilly, which is “a catalog of open data in the Philadelphia
region. In addition to being the official open data repository for the City, it includes
datasets from many organizations in the region.” The dataset we work with in this
section is valuable and of good quality, but it also contains enough nuance that a
number of cleanup steps will be required to shape it for our purpose.

https://www.opendataphilly.org/

Value Imputation

[318]

The particular real-world dataset we will discuss in this section concerns the tax-
assessed market value of each property. I obtained this data by passing an SQL
query over an HTTPS interface and getting back a JSON result. The particular
query was:

SELECT parcel_number, year, market_value FROM assessments

A “parcel” is simply a tax/regulatory word for property under a common deed. I
should be clear to note that OpenDataPhilly actually has complete information in
this returned result (at the time of this writing), but I have artificially engineered a
version with randomly missing values. The full data is in the file philly_house.json
and the version with missing values is philly_missing.json, both in the repository
for this book. Approximately 5% of the market values have been replaced with NaN
for the missing data.

Understanding the Data
I believe the service limited results to fewer than the complete dataset; there are
relatively few parcels included compared to the Philadelphia population. That
question is not important for this section, but would likely be relevant to examine
if we had other purposes in mind. Let us look at the dataset and do some basic
forensics before imputation. It will take a number of steps to get “clean data” even
when it was provided in rather good initial form.

parcl = pd.read_json('data/philly_missing.json')
parcl.sample(7, random_state=4) # Random state highlights details

 parcel_number year market_value
———
 1862 123018500.0 2014 96100.0
 3921 888301242.0 2015 15000.0
 617 NaN 2018 0.0
 1068 311033500.0 2018 16500.0
11505 888301508.0 2015 15000.0
 3843 252327300.0 2014 NaN
10717 314204200.0 2016 41800.0

The general idea of the dataset is that each parcel has a market value in each of
several years. We can see in the sample shown that some parcel_number values are
missing and some market_value values are missing. The latter was in the data as I
got it; each of those rows has some year, but a zero for market value. The missing
market values were constructed by me artificially.

Chapter 6

[319]

Let us get a sense of the distribution of these things.

nparcel = len(parcl[parcl.parcel_number.isnull()])
nmarket = len(parcl[parcl.market_value.isnull()])

print(f"All rows: {len(parcl):>8,}")
print(f"No parcel: {nparcel:>8,}")
print(f"No market: {nmarket:>8,}")

All rows: 18,290
No parcel: 1,140
No market: 965

In the example, I have no idea why some results are returned with no parcel number,
but under a stipulated goal of analyzing price trends over time, we cannot make any
use of those. The missing parcel numbers are a characteristic of the data as I obtained
it, not of my modifications. Let us discard them as unhelpful to our analysis. We also
wonder, after this exclusion, what the typical price variation is for one property over
the five years included. Perhaps we would like to know the standard deviation in
terms of thousand-dollar groups. We calculate this in the next cell.

Notice that there are usually (but not always) five different years associated with each
parcel. So the sum of the value counts shown partially below adds up to a little bit
more than one-fifth of the total number of filtered rows.

parcl = parcl[parcl.parcel_number.notnull()]

print(f"Remaining rows: {len(parcl):,}")

stds = parcl.groupby('parcel_number')['market_value'].std()
(stds // 1000 * 1000).value_counts().head()

Remaining rows: 17,150
0.0 2360
7000.0 114
6000.0 109
2000.0 103
3000.0 83
Name: market_value, dtype: int64

Value Imputation

[320]

It jumps out that the most common standard deviation, by far, seems to be the zero
dollar range. Since we are rounding, that might be an actual zero, or it might simply
be an amount less than 1,000 dollars. We should look more closely.

stds[stds == 0].count()

2309

The bulk of those parcels whose market value changed by a small amount in fact
changed by exactly zero over the five years (at least as assessed). Moreover, the
zero-change situation is around two-thirds of all the data. Of course, some of those
zero-change parcels might have no change partially because they have missing data.
Pandas usually ignores missing data for aggregations. It is not clear what the best
remediation is for parcels that have, for example, four identical market values and
one missing market value. Looking at a few of them can inform our intuition.

First, let us clean our data frame a bit more. Now that all the NaN values have been
removed, we hope that all the parcel numbers are integers. We could also benefit
from the years being actual years rather than merely integers.

parcl['parcel_number'] = parcl.parcel_number.astype(np.uint32)
parcl['year'] = pd.to_datetime(parcl.year, format="%Y")
parcl.head()

 parcel_number year market_value
——
0 213302600 2016-01-01 196800.0
1 213302600 2015-01-01 196800.0
2 213302600 2014-01-01 196800.0
3 213308200 2018-01-01 198000.0
4 213308200 2017-01-01 198000.0

Some slightly tangled Pandas code can tell us how often the zero-change parcels
have missing data, and how much missing data parcels have. There are certainly
other ways than the particular fluent code below to arrive at this answer, but
the style is typical of data frame operations in many libraries, so it is worth
understanding.

(parcl
 # Look at those parcels with zero STD among years
 # We calculated those standard deviations as 'stds'
 # The '.index' for non-deviation to find parcels
 .loc[parcl.parcel_number.isin(stds[stds == 0].index)]
 # Group by which parcel we are looking at
 .groupby('parcel_number')

Chapter 6

[321]

 # We care about market values for parcel
 .market_value
 # Aggregation is count of different market values
 .agg('count')
 # Summarize rather than show individual parcels
 .value_counts()
)

5 1767
4 473
3 66
2 3
Name: market_value, dtype: int64

Removing Unusable Data
If fewer than four observations (years) exist, the parcel is not usable for the
downstream analysis. This is a domain-specific judgment for this problem.
Obviously, this is not any universal rule, but simply task-driven. We can remove
those problem parcels with some more Pandas code. The following code is largely
similar to the last example, but it uses descriptive temporary names rather than a
fluent style. Neither style is per se better, but you will certainly encounter both in
other data scientists’ or developers’ code.

One subtlety to notice in this code is that the Pandas .groupby() operation ignores
missing data for aggregations, even just for counting. So if a group has three numeric
values and two NaNs (that is, five rows matching the category generically), not only
will .mean() give the average of the three non-missing values, but .count() will give
the answer 3, not 5. The method .size() will include NaNs.

Parcels that have no change between years (bool array)?
nochange = parcl.parcel_number.isin(stds[stds == 0].index)

Parcel data grouped by parcel
by_parcel = parcl[nochange].groupby('parcel_number')

Aggregate on number of market values and compare with 4
few_vals = by_parcel.market_value.count() < 4

The parcel numbers that have fewer than 4 market values
few_index = few_vals[few_vals == True].index

What are the actual row numbers we wish to drop?

Value Imputation

[322]

drop_rows = parcl[parcl.parcel_number.isin(few_index)].index

New name and DataFrame holds the non-dropped rows
parcl2 = parcl.drop(drop_rows)

We trim from 17,150 rows to 16,817
parcl2

 parcel_number year market_value
——
 0 213302600 2016-01-01 196800.0
 1 213302600 2015-01-01 196800.0
 2 213302600 2014-01-01 196800.0
 3 213308200 2018-01-01 198000.0

18286 661010710 2016-01-01 215000.0
18287 661010710 2015-01-01 215000.0
18288 661010710 2014-01-01 215000.0
18289 661010720 2018-01-01 215000.0
16817 rows × 3 columns

Let us turn to actual trend imputation. By stipulation, when all but one year shows
one common market value, the remaining year (with a missing value) should be
imputed as the same value. In some sense this is the “null trend,” but it is also the
same action as the correlation imputation above. Treating the parcel number as a
categorical variable (which it is “ontologically,” albeit with many classes), what
we impute is a typical value that is also exactly the mean, median, min, max, and
mode for the class.

Imputing Consistency
The approach here is not the only possible one. For example, if we decided that
housing values generally increased between 2014 and 2018 in Philadelphia, then
even absent knowledge of a particular year for a particular parcel, we might impute
that trend. However, this alternate approach is only easy to make sense of if the
missing year is either the first or last one. If all of the 2014, 2015, 2017, and 2018
values are the same for a parcel, a linear global trend really will not inform us
about that parcel in 2016.

Aggregate group to find parcels w/ exactly four years
The 'by_parcel' group already assumes no change
four_vals = by_parcel.market_value.count() == 4

Chapter 6

[323]

The parcel numbers that have 4 market values
four_index = four_vals[four_vals == True].index

Row numbers of parcels to impute on
impute_rows = parcl2[parcl2.parcel_number.isin(four_index)].index

Group parcels only for parcels with 4 market values
by_four = parcl2.loc[impute_rows].groupby('parcel_number')

Impute the mean (or identically median, etc) to rows
new_vals = by_four.market_value.mean()

A mapping of SOME parcel numbers to value
new_vals

parcel_number
42204300 30800.0
42205300 33900.0
42206800 30800.0
42207200 30800.0
 ...
888301511 15000.0
888301512 15000.0
888301814 15000.0
888301815 15000.0
Name: market_value, Length: 473, dtype: float64

There is a detail that the above code elided. We looked for places where one parcel
has four non-missing values under the assumption that that probably means there
is one NaN for some market value matching that parcel. However, technically that
is not necessarily true. If a parcel has only four rows in total, that indicates an entire
row is missing, not only the market value associated with that row. The next block
of code fills in these common group values, but we add a couple of lines to show
where it is simply reassigning the same value to the four existing rows.

In order to allow detection and display of the unusual condition we wish to note,
the next code is an explicit loop. It is generally more idiomatic Pandas practice—
or data frames generally—to vectorize the operation for speed. We could do
that in Pandas using another .groupby() accompanied by a slightly magical
.transform(lambda x: x.fillna(x.mean())).

Value Imputation

[324]

For fewer than 20,000 rows of data, the speed difference is not important, but for
millions of rows it would be.

We keep a history of changes in different DFs
parcl3 = parcl2.copy()

Loop through the new filled values by parcel
for n, (index, val) in enumerate(new_vals.items()):
 # Assignment will fill multiple rows, most redundantly
 parcl3.loc[parcl3.parcel_number == index, 'market_value'] = val
 # Did we start with only four rows in total?
 if len(parcl3.loc[parcl3.parcel_number == index]) == 4:
 print(f"Parcel #{index} has only 4 rows total (all
${val:,.0f})")

Parcel #352055600 has only 4 rows total (all $85,100)
Parcel #541286700 has only 4 rows total (all $116,600)
Parcel #621431100 has only 4 rows total (all $93,800)

The cleaning we have done in this section has been relatively detailed. We should
check our work. We would like parcl3 to contain the same number of rows as parcl2
since the missing value imputation should not change that. We also know that there
are 473 parcels that are acted on by the last bit of code. However, three of those
were places where only four rows existed to start with. So if things went right, there
should be 470 rows modified between the versions, in all cases substituting a value
for a NaN.

assert len(parcl2) == len(parcl3) == 16_817

(parcl3[parcl3.market_value.notnull() &
 (parcl2.market_value != parcl3.market_value)]
 .sort_values('parcel_number'))

 parcel_number year market_value
——
1733 42204300 2018-01-01 30800.0
3718 42205300 2017-01-01 33900.0
1306 42206800 2014-01-01 30800.0
1346 42207200 2014-01-01 30800.0
...
11517 888301511 2018-01-01 15000.0
11525 888301512 2015-01-01 15000.0
 7802 888301814 2016-01-01 15000.0
14156 888301815 2015-01-01 15000.0
470 rows × 3 columns

Chapter 6

[325]

Interpolation
The section has gone quite a long way before actually arriving at trend imputation.
However, understanding datasets initially is always requisite, and other cleaning
is very often required before we can perform trend imputation itself. Imputation
requires a moderate degree of cleanliness before it becomes possible. Fortunately,
the actual trend imputation is extremely compact in Pandas and other similar data
frame tools.

Filling in values will require two steps in the approach we choose here. Linear (local)
interpolation feels reasonable as an approach here. With only five timesteps, and
most market values not actually changing at all in the dataset, any kind of global
regression is not supportable for the example.

The default Pandas .interpolate() gives us almost what we want; however, it
will not address a missing first element. Since it operates in a forward fashion,
the method defaults to forward-fill for trailing elements. In order to ensure a first
element is imputed as well, we need to follow up with a backward-fill.

There is a trick here to watch out for. If we simply interpolated on the entire data
frame, that would likely fill in some values based on the prior parcel. Specifically,
if the first year associated with a parcel is NaN, we would get a meaningless trend
between the last value of the prior parcel and the first value of the next parcel.
Hence we need to operate in a group-based way.

A simple preview of what we will do can be seen in a small Series, first with only
interpolation, then adding back-fill.

s = pd.Series([None, 1, 2, None, 3, 4, None])
s.interpolate()

0 NaN
1 1.0
2 2.0
3 2.5
4 3.0
5 4.0
6 4.0
dtype: float64

s.interpolate().bfill()

0 1.0
1 1.0
2 2.0

Value Imputation

[326]

3 2.5
4 3.0
5 4.0
6 4.0
dtype: float64

Let us put the pieces together. We first make sure we order correctly by parcel
number and year, then interpolate, then back-fill.

Sort data to keep parcels together & years in order
parcl4 = parcl3.sort_values(['parcel_number', 'year'])

Interpolate per group
parcl4['market_value'] = (
 parcl4
 .groupby('parcel_number')
 .market_value
 .transform(pd.DataFrame.interpolate))

Back fill per group
parcl4['market_value'] = (
 parcl4
 .groupby('parcel_number')
 .market_value
 .transform(pd.DataFrame.bfill))

Now that we have (probably) completed our cleanup and trend imputation, we
should do a sanity check on our data frame.

print(f"Total rows after operations: {len(parcl4):,}")

Overlooked missing data
parcl4.loc[parcl4.market_value.isnull()]

Total rows after operations: 16,817
 parcel_number year market_value
——
16461 571291500 2018-01-01 NaN

Chapter 6

[327]

This final check reveals that there is one parcel for which only one year of data exists,
and that hence has no trend to interpolate. Most likely we want to discard this row
from our analysis as well. Before we leave this section, we can assure ourselves that
this unusual row is not an artifact of our filtering and imputing, but is rather present
in the original data itself.

As read from disk (other than missing parcels)
parcl.loc[parcl.parcel_number == 571291500]

 parcel_number year market_value
——
16461 571291500 2018-01-01 NaN

Non-Temporal Trends
This book tries to use real-world data as much as possible. The odd accidents,
patterns, and weird corners of real datasets are worth getting a feel for. Synthetic
data—beyond the very short examples used to illustrate an API narrowly—risks
missing some of the messiness. For this section, nonetheless, I invent a whimsical
and fictional dataset that I believe has an interesting structure. Apologies go out in
advance to the solid-state physicists or quantum chemists among my readers who
might note that even a comic book metal cannot behave in the manner I purport.

Lex Luthor Laboratories has done a number of experiments that involve shining
lasers at various forms of kryptonite, in their ever-nefarious efforts to defeat
Superman and rule the world. In particular, they notice that many types of
kryptonite gain a broad visual band of luminance when exposed to lasers of various
wavelengths. Kryptonite being in scarce supply, they have not managed to test the
behavior of all the element’s types at all laser wavelengths. Moreover, the kilowatt
lasers they used are each in some specific frequency, but they may hypothetically
wish to develop weapons using different kinds of lasers than those used in the tests.

A data frame contains observations made by the lab. The units are measured in
directional candela rather than overall lumens because lasers are focused in a single
direction.

krypt = pd.read_fwf('data/excited-kryptonite.fwf')
krypt

Value Imputation

[328]

 Laser_type_kw Subtype Wavelength_nm Kryptonite_type
——
 0 Helium–neon NaN 632.8 Green
 1 Helium–neon NaN 543.5 Green
 2 Helium–neon NaN 593.9 Green
 3 Helium–neon NaN 611.8 Green
...
 95 Excimer ArF 193.0 Gold
 96 Excimer KrF 248.0 Gold
 97 Excimer XeCL 308.0 Gold
 98 Excimer XeF 353.0 Gold

 candela_per_m2
——————————————————————
 0 415.837
 1 NaN
 2 407.308
 3 401.305
... ...
 95 611.611
 96 NaN
 97 608.125
 98 NaN

99 rows × 5 columns

A visualization will make it evident that, at least within the range of laser
wavelengths tested, each type of kryptonite tested—green, red, and gold—seems
to have a different, more or less log-linear response curve. It remains possible that
xenologenetic metals, being what they are, will have surprising characteristics under
untested wavelengths. At a first pass, though, we basically have a regression problem.

plot_kryptonite()

Figure 6.5: Luminance response of kryptonite types by wavelength

Chapter 6

[329]

For this section, we are not necessarily interested in the full regression, but simply in
imputing the missing observations. In the table and the plot, you can see that some
lasers in the test suite do not have available data against some types of kryptonite.
For example, the helium-neon laser at 1520 nm was only tested against gold and red
kryptonite, and the CO2 laser at 9400 nm was only tested against the green and red
kryptonite.

(krypt[
 (krypt.Wavelength_nm > 1500) &
 (krypt.Wavelength_nm < 10000)]
.sort_values('Wavelength_nm'))

 Laser_type_kw Subtype Wavelength_nm Kryptonite_type
———
 5 Helium–neon NaN 1520.0 Green
 38 Helium–neon NaN 1520.0 Red
 71 Helium–neon NaN 1520.0 Gold
 6 Helium–neon NaN 3391.3 Green
...
 72 Helium–neon NaN 3391.3 Gold
 28 CO2 NaN 9400.0 Green
 61 CO2 NaN 9400.0 Red
 94 CO2 NaN 9400.0 Gold

 candela_per_m2
——————————————————————
 5 NaN
 38 497.592
 71 616.262
 6 444.054
... ...
 72 624.755
 28 514.181
 61 334.444
 94 NaN

9 rows × 5 columns

While the two measures are directly computable from each other, electromagnetic
frequencies in the visible range occupy a more linear numeric range, whereas
wavelengths span several orders of magnitude. For our purposes, it might be
friendlier to work with laser frequencies.

λ = krypt.Wavelength_nm / 10**9 # Wavelength in meters
c = 299_792_458 # Speed of light in m/s

Value Imputation

[330]

krypt['Frequency_hz'] = c/λ

Plot frequency vs luminance
plot_kryptonite(df=krypt, logx=False,
 independent='Frequency_hz')

Figure 6.6: Luminance response of kryptonite types by frequency

Visually, on a linear-linear plot using frequency, there clearly seems to be bend in
the response curve for red kryptonite, and perhaps for the green as well. Clearly the
data is noisy, and does not closely match any smooth curve; whether this is because
of the physical properties of the element or limitations in the experimental setup we
do not know currently. With this motivation, we might perform a polynomial fit of
order higher than one.

Only perform the polyfit on the non-missing data
kr_vals = (krypt[krypt.candela_per_m2.notnull()]
 .sort_values('Frequency_hz'))

Do a fit for each kryptonite color
for color in ('Red', 'Green', 'Gold'):
 # Limit to the color being fit
 kcolor = kr_vals.loc[kr_vals.Kryptonite_type == color]
 x = kcolor["Frequency_hz"]
 y = kcolor["candela_per_m2"]
 coef2, coef1, offset = np.polyfit(x, y, deg=2)

Chapter 6

[331]

 # Print out the discovered coefficients
 print(f"{color:>5s} (hz → nit): "
 f"{coef2:.1e}*x^2 + {coef1:.1e}*x + {offset:.1e}")

 # Use coefficients to fill missing values
 kmissing = krypt.loc[krypt.candela_per_m2.isnull() &
 (krypt.Kryptonite_type == color)]
 x = kmissing.Frequency_hz
 krypt.loc[x.index, 'candela_per_m2'] = (
 coef2*x**2 + coef1*x + offset)

 Red (hz → nit): -2.6e-28*x^2 + 5.5e-13*x + 3.5e+02
Green (hz → nit): 1.4e-28*x^2 + -2.7e-13*x + 5.0e+02
 Gold (hz → nit): -4.1e-30*x^2 + 2.8e-15*x + 6.2e+02

Plotting again with the missing data imputed based on the polynomial fit, none of
the new points appear obviously out of place. Whether they are correct is, of course,
something that requires much more domain knowledge. At least our regression
behaves as we expected it to.

plot_kryptonite(df=krypt, logx=False,
 independent='Frequency_hz')

Figure 6.7: Luminance response with missing data imputed

By imputation, we have “filled in” all explicitly missing values, which makes many
statistical tests and machine learning algorithms possible that are not without doing
this. Let us turn now to a more global issue of sampling.

Value Imputation

[332]

Sampling
Concepts:

•	 Categorical variables and discretized continuous variables
•	 Balancing target class values
•	 Sampling without replacement
•	 Sampling with replacement
•	 Oversampling by duplication
•	 Fuzzy statistical oversampling

Sampling is modification of a dataset in order to rebalance it in some manner. An
imbalance can reflect either the data collection techniques used or the underlying
pattern of the phenomenon you are measuring. This imbalance can be particularly
clear when a variable is categorical and there is an obvious explicit count of the
class distribution. A special kind of sampling is time series resampling, which is
discussed in Chapter 7, Feature Engineering.

An imbalance can also be relevant where the distribution of a continuous variable
is merely uneven. This is very common, since many quantities—in some sense,
probably most quantities one can measure—are distributed unevenly, such as in
a normal distribution or beta distribution. For this purpose, we exclude extremely
“long-tailed” distributions such as power law distributions or exponential
distributions. That is, a continuous value that simply has peaks within a
comparatively narrow range presents a different issue than a value that spans many
orders of magnitude. Often it is useful to transform a long-tailed distribution into a
more linear one, for example by taking the log of the original values or discretizing
the values into quantiles.

A simple example of a roughly normal distribution is human heights. Drilling into
the details, the actual data is probably somewhat bimodal based on sex, and may
have additional second-order patterns by nationality, age, and so on. For this simple
illustration, the imbalance itself is sufficient for illustration. Obviously, humans vary
in height, but even between the shortest newborn and the tallest adult, it is less than
a 5x difference. Among adults only (excluding some very rare, very short people), it
is almost always within 1.5x. In other words, height is essentially a linear quantity;
but it is not one that is uniformly distributed.

Chapter 6

[333]

The examples in this section will shift to using the R Tidyverse rather than Python.
Python data frame libraries—both Pandas and others—make everything shown
equally easy; the switch is made under the assumption that more readers are more
familiar with Python, as an effort to encourage readers to think about the concepts
rather than the libraries narrowly.

%load_ext rpy2.ipython

We can read in a dataset containing physical measurements of 25,000 (simulated)
humans. For our purposes here, we just want to look at how height is distributed.

%%R -o humans
library('tidyverse')
humans <- read_csv('data/height-weight.csv')
humans

── Column specification ───
cols(
 Height = col_double(),
 Weight = col_double()
)

A tibble: 25,000 x 2
 Height Weight
 <dbl> <dbl>
 1 167. 51.3
 2 182. 61.9
 3 176. 69.4
 4 173. 64.6
 5 172. 65.5
 6 174. 55.9
 7 177. 64.2
 8 178. 61.9
 9 172. 51.0
10 170. 54.7
... with 24,990 more rows

Dividing the heights into regular numeric increments, we definitely see a vaguely
Gaussian distribution, at least inasmuch as middling heights occur much more often
than the shorter or taller ranges.

http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_020108_HeightsWeights#References
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_020108_HeightsWeights#References

Value Imputation

[334]

Even so, all humans in this sample—and almost all adults generally—are in the
narrow range from 153 cm to 191 cm.

humans.hist(figsize=(10,3), bins=12);

Figure 6.8: Histograms showing the distribution of height and weight

%%R
table(cut(humans$Height, breaks = 5))

(153,161] (161,168] (168,176] (176,183] (183,191]
 145 4251 14050 6229 325

If height were the target we were trying to predict from other features (for example,
nutrition, nationality, gender, age, income, and so on), for many kinds of machine
learning models, the rare classes (“very short”, “very tall”) would nearly or
absolutely never be predicted from other features. There are simply too many people
who are similar in those other measures to the small number of very short people
(about 0.5% in the sample) that the default prediction would simply be “somewhat
short” if not even just “average.”

Note, however, that a similar problem exists if regions of the parameter space
of the independent variables are imbalanced. For example, if Indonesia or the
Netherlands each had only a few samples in the hypothetical training set (but
other nations many), we would be able to make little use of the fact that residents
of those countries (as of this writing) had the shortest and tallest average heights,
respectively. Moreover, if the small number of samples included especially short
Dutch people or especially tall Indonesian people, the presence of the class value
might bias the prediction in exactly the opposite direction from what we would like.

Chapter 6

[335]

Undersampling
The devil is in the details.
–Einstürzende Neubauten

Let us look at a dataset that uses actual categorical values rather than artificially
discretized ranges. The UCI Machine Learning 1997 Car Evaluation Data Set is useful
here. The original dataset uses a variety of categorical words for ordinal values, such
as the trunk being “small”, “med”, or “big”, or the price of maintenance being “low”,
“med”, “high”, or “vhigh”. These are converted to sequential integers for this book.
However, the overall rating that we will focus on is left as descriptive words, even
though it is also in an obvious implicit order.

%%R
cars <- read_csv('data/cars.csv',
 col_types = cols("i", "i", "i", "i", "i", "i", "f"))
cars

A tibble: 1,728 x 7
 price_buy price_maintain doors passengers trunk safety rating
 <int> <int> <int> <int> <int> <int> <fct>
 1 1 0 3 6 0 0 Unacceptable
 2 2 2 3 6 2 1 Acceptable
 3 2 2 5 2 1 1 Unacceptable
 4 0 1 3 2 2 1 Unacceptable
 5 2 1 5 2 0 1 Unacceptable
 6 3 1 2 6 2 1 Acceptable
 7 0 2 4 4 0 0 Unacceptable
 8 1 2 2 4 2 0 Unacceptable
 9 1 0 4 4 0 1 Acceptable
10 1 3 3 2 0 0 Unacceptable
... with 1,718 more rows

Imagine that we were trying to predict the “acceptability” of a car based on other
recorded characteristics it has. It stands out that in the first ten rows, a large number
are unacceptable. Let us look at the overall class distribution of the rating.

%%R
table(cars$rating)

Unacceptable Acceptable Very Good Good
 1210 384 65 69

https://archive.ics.uci.edu/ml/datasets/Car+Evaluation

Value Imputation

[336]

The evaluators of these cars are perhaps rather fussy in finding so very few of them
good or very good. In any case, this shows a strong imbalance in the rating feature,
which we will perhaps use as the target in our classification model. We would like
to clean our training data in a manner likely to produce higher-quality models.
Keep in mind that different specific modeling techniques are more, or less, likely
to be improved by sampling techniques than others. For example, linear models
are largely insensitive to class imbalance, while K-nearest neighbor models tend
to be highly sensitive to these issues. But even within a generalization of that sort,
different sampling, of different datasets and domains, will be effective to varying
degrees. The choice of downstream model matters a lot.

If three things hold, undersampling is unproblematic:

•	 We have a great many rows in the dataset;
•	 Even the uncommon classes have a reasonable number of samples;
•	 The parameter space is well covered by the samples.

If we are lucky enough to have all these conditions hold, simply selecting a sample
size of the smallest class is adequate. However, if we cannot reach these conditions—
in particular, if the smallest classes are a bit too small—permitting a degree of
imbalance is generally not terrible. 50:1 imbalance is likely to be a problem; 2:1 is
likely to be unimportant. For our car evaluation, let us attempt to find 100 samples
from each class, but settle for as many as we have. Having fewer than 100 samples
of the uncommon classes in this dataset does not give us very much leeway.

%%R
unacc <- sample(which(cars$rating == "Unacceptable"), 100)
acc <- sample(which(cars$rating == "Acceptable"), 100)
good <- sample(which(cars$rating == "Good"), 69)
vgood <- sample(which(cars$rating == "Very Good"), 65)
samples <- slice(cars, c(vgood, good, acc, unacc))
samples

A tibble: 334 x 7
 price_buy price_maintain doors passengers trunk safety rating
 <int> <int> <int> <int> <int> <int> <fct>
 1 0 1 2 6 2 2 Very Good
 2 0 0 4 4 2 2 Very Good
 3 1 0 3 6 1 2 Very Good

Chapter 6

[337]

 4 0 0 5 6 1 2 Very Good
 5 1 0 3 4 2 2 Very Good
 6 1 1 3 6 1 2 Very Good
 7 1 0 5 4 1 2 Very Good
 8 1 0 4 4 1 2 Very Good
 9 0 0 3 6 2 2 Very Good
10 1 1 4 6 2 2 Very Good
... with 324 more rows

Here we manually selected the number of rows available per class, and did not use
higher-level libraries like DMwR (Data Mining with R), caret (Classification And
REgression Training), or ROSE (Random Over-Sampling Examples), which would
make the sampling somewhat more concise. These packages each include a variety
of more sophisticated sampling techniques, some of which we will use shortly. In the
Python world, the package imbalanced-learn is the go-to choice, and includes most
of the techniques in the mentioned R packages.packages

packages

While there is much overlap between the tools available in R and
Python, there are some differences in culture and focus between
the languages and communities. On the one hand, R is most
certainly more focused on statistics, and the breadth of libraries
available in that area run deeper; the libraries for other areas are
shallower in R, correspondingly.

Beyond the technical focus though, there is a notable philosophical
difference in the programming language communities. Python
tends to coalesce around common libraries with many contributors,
or at least common APIs between libraries covering similar areas.
R tends to grow many packages, each with relatively fewer
contributors, with only partial overlap in functionality and less
insistence on shared APIs among packages. NumPy, Pandas, scikit-
learn, and much more narrowly imbalanced-learn, are “standard”
APIs. In contrast, in R, data.table, data.frame, and tibble compete
with varying APIs and advantages; more narrowly, DMwR, caret,
and ROSE likewise compete.

Value Imputation

[338]

Let us take a look at the distribution we obtained to make sure we did the intended
thing.

%%R
samples %>%
 group_by(rating) %>%
 count()

A tibble: 4 x 2
Groups: rating [4]
 rating n
 <fct> <int>
1 Unacceptable 100
2 Acceptable 100
3 Very Good 65
4 Good 69

Having only 60-some samples available at all from the uncommon classes is
probably too sparse. To a large extent, a class having few samples simply cannot
cover the parameter space of the features, no matter what technique we use. The 100
samples we have selected from the larger classes is not very much larger, but we
can reasonably hope that since the underlying populations are much larger, and our
sampling is unbiased, these samples are less likely to wholly miss parameter regions.

While sampling is imperfect, we can at least avoid a target imbalance that is likely
to bias our model by combining undersampling with oversampling. Let us take 150
samples from each class by allowing replacement (and hence duplication from low-
count classes).

%%R
Find indices for each class (dups OK)
indices <- unlist(
 lapply(
 # For each level of the rating factor,
 levels(cars$rating),
 # sample with replacement 150 indices
 function(rating) {
 pred <- which(cars$rating == rating)

Chapter 6

[339]

 sample(pred, 150, replace = TRUE) }))

Check that we have drawn evenly
slice(cars, indices) %>%
 group_by(rating) %>%
 count()

A tibble: 4 x 2
Groups: rating [4]
 rating n
 <fct> <int>
1 Unacceptable 150
2 Acceptable 150
3 Very Good 150
4 Good 150

Oversampling
God dwells in the details.
–Ludwig Mies van der Rohe (cf. Gustave Flaubert)

When data is plentiful, undersampling is a quick way of producing more balanced
training data for machine learning models. Most often, datasets do not cover your
parameter space so well that you can simply throw away training data with pure
undersampling. Even if you have quite a few observations, even the common classes
will cluster around a prototypic region of the high-dimensional space. If you need
to evaluate the parameter space as sensitively as possible, discarding data is risky.
Of course, it can also merely be the case that with the type of model and amount of
computational resources you have, you simply cannot train a model on a full dataset;
if so, undersampling has an independent appeal, and class sensitivity in doing it is
entirely a good thing.

Value Imputation

[340]

We have already seen how to perform the simplest kind of oversampling. In the
car evaluation dataset, for example, we could simply sample with replacement up
to the count of the most common class. Exactly that technique would create some
noise in that most common class since some samples would be repeated and others
omitted.sampling

Another approach is simply duplicating uncommon classes as many times as are
needed to make them reach approximate parity with the more common ones. For
example:

Read the raw data and count most common rating
cars = pd.read_csv('data/cars.csv')
cars2 = cars.copy() # Modify a copy of DataFrame
most_common = max(cars2.rating.value_counts())

for rating in cars2.rating.unique():
 # A DataFrame of only one rating class
 rating_class = cars2[cars2.rating == rating]
 # Duplicate one less than overshooting most_common
 num_dups = (most_common // len(rating_class)) - 1
 for _ in range(num_dups):
 cars2 = pd.concat([cars2, rating_class])

cars2.rating.value_counts()

sampling

The most straightforward approach to resampling per class does
not differentiate the most common class from other classes. This
means that if the most common class has 100 items, resampling
with replacement will omit approximately 36 of them in the
resampled version, and duplicate other items. In contrast,
resampling to 100 items from a class that has only 10 initial items
will with near certainty represent each item at least once.

In concept, we could use extra code to do something somewhat
more “fair.” We would create a copy of the original data. Then we
would sample only max_class_size-current_class_size items
from each other class. Then we would combine the untouched
original with the new samples. This at least would make sure that
every original appears at least once in the resulting data. While this
approach might be an improvement, it remains less nuanced than
approaches like SMOTE, discussed below.

Chapter 6

[341]

Unacceptable 1210
Good 1173
Very Good 1170
Acceptable 1152
Name: rating, dtype: int64

This approach brings each uncommon class as close to the frequency of the plurality
class as is possible without being non-uniform in the duplication. That is, if we
wanted exactly 1,210 Acceptable samples, we would duplicate some samples one
more time than we had other samples. Allowing a very slight imbalance is a better
approach.

More interesting than naive oversampling is a technique called Synthetic Minority
Over-sampling TEchnique (SMOTE), and a closely related one called Adaptive
Synthetic Sampling Method for Imbalanced Data (ADASYN). In R there are a
number of choices for performing the SMOTE and similar techniques. Libraries
include smotefamily, DMwR, and ROSE for a related but slightly different
technique. For the next few code examples, however, we will use Python’s
imbalanced-learn instead, if only because there are fewer choices among the libraries
needed.

While there are some technical differences among several techniques in the SMOTE
family, they all are generally similar. What they do is generate new data points using
K-nearest neighbor techniques. Among the minority samples, they look at the
several nearest neighbors in the parameter space of features, and then create a new
synthetic sample within that region of the parameter space that is not identical to any
existing observation. In an informal sense, we might call this “fuzzy” oversampling.
Of course, the class or target assigned to this synthetic point is the same as that of
the cluster of minority class observations already existing. The bottom line is that
this kind of oversampling with fuzziness in feature values usually creates much
more useful synthetic samples than does a crude oversampling.

As discussed above, the cars rating classes are starkly imbalanced.

cars.rating.value_counts()

Unacceptable 1210
Acceptable 384
Good 69
Very Good 65
Name: rating, dtype: int64

Value Imputation

[342]

Several similar oversampling techniques are available in imbalanced-learn. Read
the documentation of the library for evolving details. All of them are built on top
of the same scikit-learn API, and they may be included within scikit-learn pipelines
and otherwise interoperate with that library. You do not need to use scikit-learn to
use imbalanced-learn, except in the behind-the-scenes way that it utilizes K-nearest
neighbors from that library.

Similar to the package name scikit-learn being imported under the module name
sklearn, the installation package we use is named imbalanced-learn, but it is
imported as imblearn.

Only define the feature and target matrices, use in next cell
from imblearn.over_sampling import SMOTE

Divide data frame into X features and y target
X = cars.drop('rating', axis=1)
y = cars['rating']

Create the resampled features/target
X_res, y_res = SMOTE(k_neighbors=4).fit_resample(X, y)

Let us combine the features and target back into a DataFrame similar to the original.

synth_cars = X_res.copy()
synth_cars['rating'] = y_res
synth_cars.sample(8, random_state=2)

Chapter 6

[343]

 price_buy price_maintain doors passengers trunk safety
——
 748 2 2 5 6 0 0
 72 0 3 2 6 0 1
2213 3 0 2 4 0 2
1686 2 3 5 2 0 0
3578 0 0 4 6 1 1
3097 0 0 2 4 0 2
4818 0 1 4 4 1 2
 434 2 3 5 6 2 0

 rating
————————————————————
 748 Unacceptable
 72 Unacceptable
2213 Acceptable
1686 Unacceptable
3578 Good
3097 Good
4818 Very Good
 434 Unacceptable

As we wish, the classes of the target are exactly balanced. We could alter the
sampling strategy not to require an exact balance, but in this case exactness is
reasonable.

synth_cars.rating.value_counts()

Good 1210
Very Good 1210
Unacceptable 1210
Acceptable 1210
Name: rating, dtype: int64

Value Imputation

[344]

A small point is worth noticing here. Unlike the several R libraries that perform
SMOTE, imbalanced-learn retains the data type of the features. In particular, the
ordinal integers of the features are kept as integers. This may or may not be what
you want. Semantically, an evaluation of price_buy from “low” to “very high” could
sensibly be encoded as a continuous value in the 0-3 range. However, the number of
doors is semantically an integer. Still, if “more doors is better” for you as a consumer,
there is likely no harm in a synthetic row with slightly nonsensible literal meaning.

More important than the direct interpretation of a given feature value is how useful
the value is to your model. For many kinds of models, continuous variables provide
more useful clustering, and most likely you will prefer to train on floating-point
inputs. Let us cast our data types to floats and perform the resampling again, taking
note of some of the new non-integral feature values.

cars.iloc[:, :6] = cars.iloc[:, :6].astype(float)
cars.head()

 price_buy price_maintain doors passengers trunk safety
———
0 1.0 0.0 3.0 6.0 0.0 0.0
1 2.0 2.0 3.0 6.0 2.0 1.0
2 2.0 2.0 5.0 2.0 1.0 1.0
3 0.0 1.0 3.0 2.0 2.0 1.0
4 2.0 1.0 5.0 2.0 0.0 1.0

 rating
—————————————————
0 Unacceptable
1 Acceptable
2 Unacceptable
3 Unacceptable
4 Unacceptable

Divide data frame into X features and y target
X = cars.drop('rating', axis=1)
y = cars['rating']

Create the resampled features/target
X_, y_ = SMOTE().fit_resample(X, y)
pd.concat([X_, y_], axis=1).sample(6, random_state=4)

Chapter 6

[345]

 price_buy price_maintain doors passengers trunk safety
———
4304 1.0 0.158397 2.158397 6.0 2.0000 2.0
 337 3.0 0.000000 3.000000 4.0 0.0000 1.0
2360 2.0 2.000000 3.247795 4.0 2.0000 2.0
3352 0.0 1.000000 2.123895 4.0 2.0000 1.0
2064 0.0 3.000000 4.000000 6.0 1.8577 2.0
4058 1.0 0.000000 3.075283 6.0 2.0000 2.0

 rating
————————————————————
4304 Very Good
 337 Unacceptable
2360 Acceptable
3352 Good
2064 Acceptable
4058 Very Good

Exercises
For the exercises in this chapter, you will look first at evaluating the quality of
imputed trends. In the second exercise, you will need to think about working with
data that might be imbalanced in multiple features, not only in a single one.

Alternate Trend Imputation
In the kryptonite example in this chapter, we used a second-order polynomial fit
on the input laser frequency to impute the missing values for candela per square
meter. In some sense, it would definitely be simpler merely to use local interpolation,
or even forward-fill or backward-fill. Most data frame libraries give us those local
imputations “out of the box.”

The dataset is available at:

https://www.gnosis.cx/cleaning/excited-kryptonite.fwf

You should quantify the differences between different imputation approaches.
A good way to express the difference between samples is with root-mean-square
deviation (RMSD), and for this exercise use that measure. Obviously, we do not
know what the correct answer is for missing values, so we are only trying to evaluate
how much different various approaches are from each other.

https://www.gnosis.cx/cleaning/excited-kryptonite.fwf

Value Imputation

[346]

There are a number of differences you should measure and compare, for each color/
type of kryptonite and for the aggregate of all colors:

•	 The RMSD between all points (original and imputed) and the second-order
polynomial fit function itself.

•	 The RMSD between the original points and:
•	 A linear regression on them;
•	 A second-order polynomial fit;
•	 A third-order polynomial fit.
•	 Some other regression that you find relevant (perhaps from a

machine learning library).

•	 The RMSD for only imputed points between polynomial fits of degrees 1, 2,
and 3, and a local interpolation based on neighbors only.

•	 The RMSD for imputed points only between polynomial fits of varying
degrees and a simple forward-fill.

Describe what you feel is the best strategy to defeat that pesky Superman.

Balancing Multiple Features
The human height/weight data showed an imbalance in the numeric quantity
Height. Weight shows a similar distribution. A version of this dataset with a fanciful
target attached is available at:

https://www.gnosis.cx/cleaning/height-weight-color.csv

This data adds a column called Favorite that is roughly equally balanced, and
merely generated at random from the collection {red, green, blue}.

humcol = pd.read_csv('data/height-weight-color.csv')
humcol.sample(6, random_state=1)

 Height Weight Favorite
——
21492 176.958650 72.604585 red
 9488 169.000221 79.559843 blue
16933 171.104306 71.125528 red
12604 174.481084 79.496237 blue
 8222 171.275578 77.094118 green
 9110 164.631065 70.557834 green

https://www.gnosis.cx/cleaning/height-weight-color.csv

Chapter 6

[347]

For this exercise, you wish to explore models to predict favorite color from height
and weight. We saw earlier in this chapter the distribution of heights. Weight has a
similar degree of imbalance between numeric ranges.

pd.cut(humcol.Weight, 5).value_counts().sort_index()

(44.692, 55.402] 125
(55.402, 66.06] 3708
(66.06, 76.717] 14074
(76.717, 87.375] 6700
(87.375, 98.033] 393
Name: Weight, dtype: int64

According to our stipulated hypothesis, height and weight might be predictive of
favorite color. However, we also hypothesize that body mass index (BMI) might
be predictive. This is deterministically derived from height and weight, but not
according to the polynomial features derivation discussed in Chapter 7, Feature
Engineering. Specifically, the BMI formula is:𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑘𝑘𝑚𝑚2

Your task is to create a new dataset with synthetic samples, in which height alone,
weight alone, and BMI are each represented by a relatively equal number of
observations. For this purpose, assume that height, weight, and BMI each divide
into five classes that you might informally call, for example, “very short”, “short”,
“average”, “tall”, “very tall”, or similar names for the other features.

A simple way to approach this problem is simply to duplicate existing rows in a
manner to increase the representation of their quantized classes. You might try that
approach first. However, you should also try to use a technique such as SMOTE,
ADASYN, or ROSE that generates novel synthetic samples that are representative of
their height, weight, or BMI classes. As you generate these synthetic samples, you
will need to assign an appropriate favorite color (this is straightforward when you
merely duplicate rows; however, it will be more subtle as you create novel synthetic
rows according to several different balancing requirements).

Given that the class imbalance is on the order of 100:1, but only among five classes
per feature being balanced, each balancing operation, per feature, will increase the
dataset size by approximately 4x. Think about whether those multiplications need to
be chained, to produce a dataset approximately 4×4×4, or 64, times the original size.
You should be able to arrive at a way of balancing independently by feature, thereby
limiting the expansion to approximately 4+4+4, or 12, times the original size.

Value Imputation

[348]

Oversampling up to, say, 300,000 rows is not unduly unwieldy. However, if you
had started with more than 25,000 observations, the multiplication might be so.
Assuming your initial oversampling indeed produces something on the order of
300,000 rows of data, undersample those 300k mostly synthetic samples down to
only 100,000 in a manner that maintains rough class balance (precise balance is not
required here; aim for less than 25% difference in row count per class).

As a final element of this exercise, if you are able to get to it, try to create an actual
model of the relationship between height, weight, BMI, and the target favorite color.
Specific modeling or machine learning techniques are outside the scope of this book,
but they often are the purpose for which this book hopes to be helpful.

•	 How good of a prediction does your model make?
•	 What prediction does your model make? Which people prefer which color,

and how strongly?
•	 Which feature is most strongly predictive?

As a hint, I will indicate that a relatively strong pattern is embedded in the favorite
color assignment. There is a lot of noise and randomness in there as well, as you
would expect if we had actual survey data about favorite color. But there are also
patterns that most likely do not actually exist between physical measurements and
this preference.

Denouement
Never answer the question that is asked of you. Answer the question that you wish
had been asked of you.
–Robert McNamara

Topics covered in this chapter: Central Tendency; Correlated Tendencies; Trend
Imputation; Locality; Undersampling; Oversampling.

In this chapter we looked at two related, but slightly different, main concepts. On
the one hand, it is often useful to impute individual values where data is missing.
When we do this, we can use a variety of patterns in the data and/or facts we
know about the underlying domain that the data is drawn from. Sometimes we
impute values based on what is typical for a given variable, sometimes conditioning
typicality on a particular region of parameter space. Other times we find trends in
data that can be sequenced in some manner, and impute based on those trends.

Chapter 6

[349]

Under the second aspect, a kind of imputation occurs with sampling as well. In
the case of oversampling, we straightforwardly impute entirely new synthetic
samples, either simply by repeating existing ones or using aggregation techniques
to extrapolate what is typical of an uncommon class. However, even in the case of
undersampling, there is a kind of imputation going on. Undersampling a dataset
does not change any individual values, but it absolutely changes the distribution
of the remaining data. That is, after all, the whole point: we wish to create relative
balance within a categorical or range variable that the original dataset does not
follow.

For data science and data analysis, your burden is always to take the crude material
that is presented to you in raw form, and give it a form suitable for modeling and
analytic purposes.

In the next chapter, we move on to looking at feature engineering and creation of novel
synthetic features.

[351]

7
Feature Engineering

People come to me as a data scientist with their data. Then my job becomes part data-
hazmat officer, part grief counselor.
–Anonymous

Chapter 6, Value Imputation looked at filling in missing values. In Chapter 5, Data
Quality, we touched on normalization and scaling, which adjust values to artificially
fit certain numeric or categorical patterns. Both of those earlier topics come close
to the subject of this chapter, but here we focus more directly on the creation of
synthetic features based on raw datasets. Whereas imputation is a matter of making
reasonable guesses about what missing values might be, feature engineering is about
changing the representational form of data, but in ways that are deterministic and often
information-preserving (e.g. reversible). A simple example of a synthetic feature is
the construction of BMI (body mass index) in the prior chapter.

There are many ways we might transform data. In a simple case, we might transform
a numeric or string representation of a datetime into a native representation
that makes many operations easier. For strings, we might produce canonical
representations and/or treat them as categories (also called factors). Moreover,
a single string can often contain several meaningful but independent pieces of
information that are more usefully treated as separate variables. For numeric
values, at times transforming them into distinct ranges, and hence into ordinal
values, can sometimes help reveal a pattern that is muddied by too much precision.
Of course, quantization is not among the reversible transformations; but good
practice continues to recommend versioning data and scripting transformations
for repeatability.

Feature Engineering

[352]

While data type changes in the representation of individual features are important,
we also sometimes wish to perform something more systematic with the
parameter space and dimensionality of our dataset. One-hot encoding is a simple
transformation that turns a single categorical feature into multiple numeric fields;
this is often needed for specific statistical or modeling techniques. Polynomial
features are synthetic features which combine multiple raw features in a manner that
can often reveal meaningful interactions that cannot be seen in univariate features.

A completely systematic transformation is performed in a decomposition. Principal
component analysis (PCA) and other techniques transform the entire parameter
space in an information-preserving way. In itself, such a transformation does not
gain or lose any information, but this is often coupled with dimensionality reduction
where the bulk of the information can be gleaned from only a subset of these
transformed dimensions. Depending on your purpose, such a transformation may
make models more tractable and/or of better quality.

Before we get to the sections of this chapter, let us run our standard setup code.

from src.setup import *
%load_ext rpy2.ipython

%%R
library(tidyverse)

This chapter uses capabilities within scikit-learn more extensively than do other
chapters. Everything that I demonstrate here using scikit-learn can certainly be
accomplished in other ways as well. It just happens that scikit-learn builds in a great
many of the tools one wants for feature engineering, in preparing data for a machine
learning model. The APIs provided by scikit-learn are consistent and well-designed,
so it certainly merits praise, in general, but the goal of this chapter is to explain
underlying concepts.

Date/Time Fields
Time is a game played beautifully by children.
–Heraclitus

Concepts:

•	 Combining timestamp components
•	 Date/time operations in data frames

Chapter 7

[353]

•	 Time deltas
•	 Duplicated timestamps (selection versus averaging)
•	 Resampling and grouping
•	 Interpolation at missing timestamps

As an example of date encoding that is not as immediately useful as we would like,
let us return to the temperature readings that have been used elsewhere in the book.
For the different purpose elsewhere, we simply provided a read_glarp() function
that performed a minor amount of data cleanup within the function. For this section,
we will do some similar operations from the raw data.

The temperature data consists of several files, each containing measurements for a
different automated thermometer that (usually) takes a reading every three minutes.
Looking at one of those, we see the contents are arranged like this:

%%bash
zcat data/glarp/outside.gz | head -5

2003 07 25 16 04 27.500000
2003 07 25 16 07 27.300000
2003 07 25 16 10 27.300000
2003 07 25 16 13 27.400000
2003 07 25 16 16 27.800000

These files have no headers, but the several columns correspond to what you would
intuitively parse as dates in 2003 and 2004. We can read in the file as either space-
delimited or as fixed-width, equivalently, for this particular format. Here we read it
with Pandas as a space-delimited file.

temps = pd.read_csv('data/glarp/outside.gz',
 sep=' ', header=None,
 names=['year', 'month', 'day',
 'hour', 'minute', 'degrees'])
temps.head(5)

 Year month day hour minute degrees
0 2003 7 25 16 4 27.5
1 2003 7 25 16 7 27.3
2 2003 7 25 16 10 27.3
3 2003 7 25 16 13 27.4
4 2003 7 25 16 16 27.8

Feature Engineering

[354]

The particular problems or issues in this outside temperatures dataset are minor.
However, there remain enough of them that it will allow us to use many of the most
common techniques that you will need in working with time series data in general.
The examples in this section all utilize Pandas, but other data frame libraries, in
whatever language, will typically have similar capabilities.

Creating Datetimes
All the information we want is available in the data frame, but let us make it more
useful. Many Pandas operations are especially convenient with DateTime indices,
so we make that the index.

ts_fields = ['year', 'month', 'day', 'hour', 'minute']
temps.index = pd.to_datetime(temps[ts_fields])
temps.drop(columns=ts_fields, inplace=True)
temps

 degrees
2003-07-25 16:04:00 27.5
2003-07-25 16:07:00 27.3
2003-07-25 16:10:00 27.3
2003-07-25 16:13:00 27.4

2004-07-16 15:19:00 16.9
2004-07-16 15:22:00 16.8
2004-07-16 15:25:00 16.8
2004-07-16 15:28:00 16.4
169513 rows × 1 columns

Even though this data seems to be in time series order from a superficial look,
there are many rows and it may not always be. Generally we would like to keep
chronological data in order for many kinds of operations, including for producing
graphs that might represent it. We could simply order the time series (the index in
this case) as an idempotent operation, but before we do that, let us check whether
that goal is already met.

temps.index.is_monotonic_increasing

False

We can probe into this by looking at the step differences—expressed in Pandas as a
Timedelta—between successive rows.

Chapter 7

[355]

increments = temps.index.to_series().diff()
increments[increments < pd.Timedelta(minutes=0)]

2003-10-26 01:01:00 -1 days +23:03:00
dtype: timedelta64[ns]

The index is not monotonic, and there is one backward jump (it occurs one
hour earlier than the actual Daylight Savings Time adjustment that year, but is
presumably still related). We should reflect on the fact that data that are ordered by
some field values are not necessarily represented that way in their actual on-disk
format. Many formats, such as SQL databases, perform all sorts of optimizations
that can ignore ordering assumptions unless imposed. Before we look further, let
us explicitly order the data by its DateTimeIndex.

temps.sort_index(inplace=True)
temps.index.is_monotonic_increasing

True

Imposing Regularity
As you may have determined in an exercise in Chapter 5, Data Quality, there are
missing timestamps where we would expect in the general “every three minutes”
pattern. Let us first verify that such gaps actually exist, then remediate them to
produce a more regular time series. What we do here is clearly related to value
imputation; it differs in “inventing” entire rows rather than only individual data
points. Recall that three-minute increments over slightly less than a year adds up
to about 170,000 expected observations.

increments = temps.index.to_series().diff()
gaps = increments[increments > pd.Timedelta(minutes=3)]
gaps

2003-07-26 19:28:00 0 days 00:06:00
2003-07-27 09:10:00 0 days 00:06:00
2003-07-29 08:28:00 0 days 00:06:00
2003-07-29 11:43:00 0 days 00:06:00
 ...
2004-07-05 19:55:00 0 days 07:36:00
2004-07-06 09:28:00 0 days 00:06:00
2004-07-06 16:28:00 0 days 00:06:00
2004-07-14 04:04:00 0 days 00:06:00
Length: 160, dtype: timedelta64[ns]

Feature Engineering

[356]

So indeed we have some gaps in our measurements. They are not all that numerous;
only about one in a thousand measurements are adjacent to time increments more
than three minutes apart. We do, however, see that while most gaps are the loss of a
single measurement—i.e. six minutes rather than the expected three—at some places
larger gaps exist. A few large gaps exist; the longest one is over a day. Others are
measured in hours or minutes.

with show_more_rows():
 print(gaps.sort_values(ascending=False).head(15))

2003-12-11 03:04:00 1 days 13:48:00
2004-04-28 00:31:00 0 days 13:06:00
2004-07-05 19:55:00 0 days 07:36:00
2003-12-18 09:25:00 0 days 06:33:00
2003-12-06 09:25:00 0 days 06:24:00
2003-12-29 08:46:00 0 days 06:03:00
2003-12-11 14:19:00 0 days 04:42:00
2004-04-04 03:01:00 0 days 01:03:00
2004-06-30 18:13:00 0 days 00:33:00
2003-11-24 08:04:00 0 days 00:30:00
2003-10-11 17:13:00 0 days 00:27:00
2003-12-13 17:10:00 0 days 00:15:00
2004-06-30 03:07:00 0 days 00:12:00
2004-06-22 10:16:00 0 days 00:12:00
2004-07-02 09:22:00 0 days 00:12:00
dtype: timedelta64[ns]

A typical small gap looks something like the example below. An observation was
missed at 2003-07-26 19:25:00 that we would generally expect to be present. This
is missing data, but by its implied absence relative to a predictable sequence rather
than being explicitly marked with some sentinel.

temps.loc['2003-07-26 19:22:00':'2003-07-26 19:28:00']

 degrees
—————————————————————————————————
2003-07-26 19:22:00 27.5
2003-07-26 19:28:00 27.1

We can also look for cases where the gap between measurements is too short. There
are few of them, but seeing those few will point to another problem.

small_steps = increments[increments < pd.Timedelta(minutes=3)]
small_steps.sort_values(ascending=False)

Chapter 7

[357]

2003-10-03 12:04:00 0 days 00:02:00
2003-12-24 15:10:00 0 days 00:00:00
2003-10-26 01:01:00 0 days 00:00:00
2003-10-26 01:07:00 0 days 00:00:00
 ...
2003-10-26 01:52:00 0 days 00:00:00
2003-10-26 01:55:00 0 days 00:00:00
2003-10-26 01:58:00 0 days 00:00:00
2003-10-26 01:31:00 0 days 00:00:00
Length: 22, dtype: timedelta64[ns]

The number of small gaps in the timestamps is only 22, but even more specifically,
all of them except one are an actual zero time delta, which is to say duplicated
datetime values. The one gap that is two minutes rather than the expected three will
make the spacing of observations slightly irregular since later points will be at a one-
minute offset from the expected position.

As a domain judgment, we will decide that a one-minute difference is not significant
to any analysis or modeling we do on the data. However, this is a judgment that
we need to make, and will not be universal to every dataset. In particular, when we
regularize relative to missing observations below, we will also shift the imputed
times of measurement for many observations. For events tied to specific times rather
than patterns of change in the data, this shift would probably be unacceptable.

The next cell is also an opportunity to illustrate a nice feature of the Pandas API. We
will look at a slice of data surrounding the two-minute gap, but the ends of the slice
are times that do not actually occur in the data themselves. Pandas is clever enough
to know about chronological order, and choose all index values that are between
particular datetimes, even if the ends are not themselves present. We are also able
to write datetimes as either actual datetime objects or as strings (in any of several
guessed string formats; using ISO-8601 is always the best choice, where possible).

temps.loc['2003-10-03 11:57':'2003-10-03 12:08']

 degrees
——————————————————————————————————
2003-10-03 11:58:00 13.0
2003-10-03 12:02:00 12.8
2003-10-03 12:04:00 12.8
2003-10-03 12:07:00 12.8

Feature Engineering

[358]

Duplicated Timestamps
Here we encounter another problem that is not uncommon with time series data.
A small minority of rows in our data are indexed by identical timestamps. We
are fortunate in this dataset that there are only 41 problem rows out of 170,000,
so almost any approach here is probably fine. Note that in many cases, additional
columns may be part of the explicit or implicit key. For example, if the other location
temperatures were aggregated with the outside temperatures, a tidy data frame
could include the location as a categorical column; in that case, we would typically
expect many duplicate timestamps, but only one per category/location.

Show all rows that are part of duplicate set
Other 'keep' options will drop some or all duplicates
temps[temps.index.duplicated(keep=False)]

 degrees
——————————————————————————————————
2003-10-26 01:01:00 1.9
2003-10-26 01:01:00 0.9
2003-10-26 01:07:00 1.9
2003-10-26 01:07:00 1.1

2003-10-26 01:58:00 0.1
2003-12-24 15:10:00 6.4
2003-12-24 15:10:00 20.9
2003-12-24 15:10:00 6.4
41 rows × 1 columns

Most duplicates have a small value difference, one degree Celsius or less. However,
something peculiar happens at 2003-12-24 15:10:00. There are three different values
recorded at that same moment, two of them 6.4°C, but the remaining one is 20.9°C.
Both our domain knowledge of outdoor temperatures in Colorado in December and
the pattern of the data itself would probably lead us to discard this clear outlier.
Quite likely, since several instruments were recording, most of them inside a
heated house, this 20.9 reading is a transposition with a measurement of a different
thermometer.

One option for us is to use Pandas’ method .drop_duplicates(). It gives us
the option to keep the first row, keep the last row, or drop all rows with such
ambiguity. We do not have a clear basis to decide among those options, but
none would be harmful in this case, given the comparative infrequency of the
duplicates. For example:

Chapter 7

[359]

no_dups = (temps
 .reset_index() # De-dup on named column
 .drop_duplicates(keep='first', subset='index')
 .set_index('index'))

print(f"Length of original DataFrame: {len(temps):,}")
print(f"Length of de-duped DataFrame: {len(no_dups):,}")

Check if datetime index is now unique
no_dups.index.is_unique

Length of original DataFrame: 169,513
Length of de-duped DataFrame: 169,492
True

Another approach to de-duplication of duplicated timestamps is to group aggregate
common values. For example, if we are not sure which measurement is to be
preferred, we could take the mean of the several values. This is probably irrelevant
for this specific data, and probably wrong for the case we noted with an obvious
outlier among the duplicates. But let us look at the API anyway:

mean_dups = temps.groupby(temps.index).mean()

print(f"Length of mean-by-duplicate: {len(mean_dups):,}")
mean_dups.index.is_unique

Length of mean-by-duplicate: 169,492
True

Adding Timestamps
As we have noted, there are gaps in the time series data. Most are single missing
measurements on the expected three-minute schedule, but one is over a day, and
several are numerous hours. We also have the issue noted where one gap is two
minutes long rather than three minutes, which we are aware of but will not treat as
critical for the current dataset.

Feature Engineering

[360]

The typical way of adding more datetime rows is to resample the data to a desired
frequency. For example, if we only wanted the temperature by month, but as a mean,
we could do an operation like:

See Pandas docs, it is easy to confuse M=month with m=minute
no_dups.resample('1M').mean()

 index degrees
————————————————————————
2003-07-31 21.508462
2003-08-31 20.945075
2003-09-30 14.179293
2003-10-31 12.544181

2004-04-30 7.708277
2004-05-31 14.357831
2004-06-30 15.420425
2004-07-31 20.527493
13 rows × 1 columns

Intuitively, such a lower frequency resampling is very similar to grouping. We can
get the same effect using .groupby(). Here we use slightly tricky code in that we
want the months in chronological order rather than alphabetical; one way to get
that is to include the number in the grouping, but then drop it.

Groupby both month number and name
by_month = no_dups.groupby(
 [no_dups.index.month, no_dups.index.month_name()])
The mean temperature over the month
by_month = by_month.mean()
Discard the month number now that result is sorted
by_month = by_month.droplevel(0)
Name the index
by_month.index.name = 'month_name'
by_month

month_name degrees
———————————————————————
 January 0.433968
 February -0.209109
 March 7.848025
 April 7.708277

Chapter 7

[361]

 September 14.179293
 October 12.544181
 November 2.332037
 December 0.667080
12 rows × 1 columns

We have done something a bit different here in that the average is over a named
month rather than an actual chronological month. It makes little difference in this
example since our data ranges over almost exactly a year. However, even here, we
have averaged some numbers from July 2003 with some others from July 2004. If
that matters, we could include the year in the grouping as well to avoid that. Of
course, if we are looking for typical temperatures for a time of year, this may in
fact be closer to our goal for multi-year data.

Although the starting point is different, September and October show identical
means between the techniques (only July will be a little different). However,
downsampling to monthly data is really not our declared task. Rather we wish to
upsample slightly to fill in the missing three-minute increments. This is just as easy.
Recall that we have started out with 169,513 observations before this conversion to
a uniform three-minute frequency.

filled_temps = no_dups.asfreq('3T')
filled_temps

Index degrees
—————————————————————————————————
2003-07-25 16:04:00 27.5
2003-07-25 16:07:00 27.3
2003-07-25 16:10:00 27.3
2003-07-25 16:13:00 27.4
... ...
2004-07-16 15:19:00 16.9
2004-07-16 15:22:00 16.8
2004-07-16 15:25:00 16.8
2004-07-16 15:28:00 16.4
171349 rows × 1 columns

The method .asfreq() has an optional argument to back-fill or forward-fill. We
have not used this, and therefore our data now contains a certain number of missing
values (marked as NaN). Chapter 6, Value Imputation discusses strategies for filling
and interpolation that we might use to guess values for the missing data.

Feature Engineering

[362]

We can see how many missing values there are:

sum(filled_temps.degrees.isnull())

1858

For the places where we added a single missing timestamp, any kind of filling or
interpolation is probably sufficient. However, for the small number of larger gaps of
multiple hours or even over a day, a linear interpolation almost surely does a poor
job for the missing interval.

Remember the somewhat odd change in timestamp offset, where a single two-
minute increment occurred? One or more of the other gaps righted the minutes-after-
hour by the end of the time series, but some of the middle resampled measurements
are shifted from their strict measurement time. One option here would be to
upsample quite a bit to a one-minute frequency, and also combine that with a more
sophisticated interpolation technique. Pandas provides—mostly by way of SciPy,
if it is installed—a rich collection of interpolations: nearest, zero, slinear, quadratic,
cubic, spline, barycentric, polynomial, krogh, piecewise_polynomial, pchip, akima,
and from_derivatives.

One of these higher-order interpolations is likely to perform quite accurately on the
few hour gaps, but obviously less well on the day-length gap. Let us upsample to
one-minute frequency and then fill missing timestamps using spline interpolation.

one_minute_temps = no_dups.asfreq('1T')
one_minute_temps.index.name = 'Timestamp'
one_minute_temps

 Timestamp degrees
———————————————————————————————
2003-07-25 16:04:00 27.5
2003-07-25 16:05:00 NaN
2003-07-25 16:06:00 NaN
2003-07-25 16:07:00 27.3

2004-07-16 15:25:00 16.8
2004-07-16 15:26:00 NaN
2004-07-16 15:27:00 NaN
2004-07-16 15:28:00 16.4
514045 rows × 1 columns

Chapter 7

[363]

This high sampling frequency produces many rows and also many NaNs on the first
pass.

one_minute_temps.interpolate(method='spline', order=3,
 inplace=True)
one_minute_temps.head()

 Timestamp degrees
——————————————————————————————————
2003-07-25 16:04:00 27.500000
2003-07-25 16:05:00 27.082346
2003-07-25 16:06:00 27.079049
2003-07-25 16:07:00 27.300000
2003-07-25 16:08:00 27.072395

All values are filled with some imputed value here, but it is particularly interesting
to look at the region around the missing day and a half at 2003-12-11.

(one_minute_temps
 .loc['2003-12-07':'2003-12-12', 'degrees']
 .plot(title="Spline interpolation of missing temps",
 figsize=(12,3)));

Figure 7.1: Spline interpolation of missing temps

It is easy to see where the smooth trend was interpolated/imputed versus the much
messier raw data (even though two-thirds of the “raw” data is actually imputed, but
very locally). While the long gap around 2003-12-11 may not be accurate, it is not
implausible and should not unduly affect models of the whole dataset. There is even
a smaller few-hour gap a few hours after the long gap that is clearly relatively close
to what the missing data would have been.

Feature Engineering

[364]

Choosing the best interpolation technique is an art. A great deal depends on what
cyclicities we expect in the time series data, if any. Indeed, it depends as well on
whether the order of the data is a time series at all, or if it is some other type of
sequence. The discussion in Chapter 5, Data Quality of detrending data is relevant. In
the absence of domain knowledge that leads to an expectation of specific behavior,
a simple linear interpolation of missing points limits the potential harm while not
necessarily reaping much benefit. Where the data is time series data, using time-
sensitive regression makes sense; see Chapter 6, Value Imputation. However, where
you have an expectation of a more complex, but regular, pattern in the gaps, using
an interpolation technique such as spline, polynomial, or piecewise polynomial is
likely to provide better value imputation.

Let us turn to data that is encoded inside strings, even where numeric or datetimes
hope to emerge.

String Fields
Language is conceived in sin and science is its redemption.
–Willard Van Orman Quine

Concepts:

•	 Numeric abstraction of text
•	 Identification of embedded numbers
•	 String distance measures
•	 Phonetic canonicalization
•	 Categorical versus small distinct value count
•	 Uncommon values and factor levels
•	 Parsing non-atomic fields into varying data types

Data contained in string fields can have numerous meanings. In the worst of cases,
for us, words can express complex, nuanced, logically connected meanings. But data
science has no interest in books, articles, nor even in short free-form annotations. We
only like categorical, numeric, ordinal, and date/time data. De minimis non curat lex.

Of course natural language processing (NLP) is a genuine and important area of data
science, data analysis, and machine learning. That cannot be an extensive topic of
this particular book, but a general point can be. To become data, a prose text must be
transformed.

Chapter 7

[365]

Word counts are numbers. N-gram frequency—word or letter sequences considered
as a unit—can be dimensions of a parameter space. Transformation probabilities
of state transitions in a Hidden Markov Model of a text are simply vectors. Large
vocabularies can be embedded in smaller vector spaces as synthetic dimensions.
Perhaps existing sentiment analysis models can be used to generate numeric
characterizations of sentences or other segments of prose text.

Before we get to a brief digression on just a few of the encodings we might use for
NLP, let us look at simpler uses for text. A great many string fields are very close
to being data. For example, integers or floating-point numbers might happen to be
represented as strings. It is very common, for example, to come across string data
that is clearly intended to represent numbers but merely has cosmetic issues.

Let us read in a very small tabular dataset similar to one shown in Chapter 1, Tabular
Formats.

df = pd.read_fwf('data/parts2.fwf')
df

 Part_No Description Maker Price
———
0 12345 Wankle rotary engine Acme Corporation $ 555.55
1 No.678 Sousaphone Marching Inc. $ 333.33
2 2468 Feather Duster Sweeps Bros $ 22.22
3 #9922 Area 51 metal fragment No Such Agency $9999.99

Underneath the features Part_No and Price we can clearly see the intention to
represent an integer and a floating-point number, respectively. We simply have a
bit of extra text in the strings of both columns that defeated automatic recognition
of these types by the Pandas library. We can clean up the individual columns, then
try again to convert to their desired types. While we are cleaning up, we might
impose a slightly narrower restriction than Pandas (or other libraries) would infer
by default. For our purpose, we assume that part numbers are always positive and
no higher than 216, which is to say unsigned 16-bit integers.

Regular expression to strip all non-digits
df['Part_No'] = (df.Part_No
 .str.replace(r'[^0-9]', '')
 .astype(np.uint16))

Remove spaces or $ from start of strings
df['Price'] = (df.Price
 .str.lstrip("$ ")
 .astype(float))

Feature Engineering

[366]

df.dtypes

Part_No uint16
Description object
Maker object
Price float64
dtype: object

df

 Part_No Description Maker Price
———
0 12345 Wankle rotary engine Acme Corporation 555.55
1 678 Sousaphone Marching Inc. 333.33
2 2468 Feather Duster Sweeps Bros 22.22
3 9922 Area 51 metal fragment No Such Agency 9999.99

Cleaning strings to allow them to convert to numbers can be fussy in its details, but
in concept it does not amount to more than a little bit of eyeballing, and some trial
and error, assuming each feature consists entirely of numbers “trying to get out.”
In the subsections below, we will look at ways to do more than this by imposing
equivalences of strings, treating strings as categorical, and dividing string fields into
implicit subfields (each perhaps of their own type).

If you do determine that conversion to numbers is appropriate, it is worth keeping
in mind what kinds of numbers they are. The Glossary entry for NOIR provides
discussion of nominal, ordinal, interval, and ratio variables. This consideration is,
of course, worthwhile even when the native data format is already numeric. In the
example above, (by stipulation) we might know that Part_No:100 was added to the
catalog earlier than was Part_No:200, but not what time duration separates them.
Part_No:99 might have been added at more of a (negative) gap from Part_No:100
than Part_No:100 is from Part_No:200. In this scenario, the variable is ordinal. In
particular, we have no expectation that Part_No:100 + Part_No:200 has any specific
relationship to Part_No:300 (nor any meaning at all). Of course, the numbers might
also simply be random in relationship to catalog entry, and might best be left as
strings.

In contrast to Part_No, we presume that Price entries will have ratio relationships
among them. An item with Price:250 costs half as much as one with Price:500. If a
buyer orders one Price:250 and one Price:500, they will generally be charged $750.
Of course, that does not go so far as to indicate direct substitutability with the item
that has Price:750, which the buyer does not want.

Chapter 7

[367]

Fuzzy Matching
Sometimes we have a short string field that is meant to represent a nominal/
categorical value. However, with the vagaries of data acquisition, different strings
might be entered for observations meant to contain the same nominal value. There
are numerous ways that the characters of the string might go wrong. Extremely
common problems are non-canonical capitalization and spurious spacing. For
features that are intended to be nominal, simply lower- or upper-casing the raw
strings, and removing all spaces (either from the padding or also interior, depending
on the particular expected values), is often a good policy.

While simple canonicalization of spaces and case will reveal many intended
equivalences, we might also look at the edit distance between possibly similar
strings. An exercise in Chapter 4, Anomaly Detection had you play with this possibility.
Simple typos and misspellings are often captured by a short Levenshtein distance
between pairs of strings. There are two problems with this kind of comparison;
the same issues apply to Damerau-Levenshtein, Hamming, Jaro-Winkler, or other
edit distance measures as with Levenshtein. One problem is that distances are not
transitive. If the edit distance between A and B is 5, and the edit distance between
B and C is 5, then the distance between A and C can be anywhere from 0 to 10. If
6 is the threshold for “close enough equivalence,” it may not be clear whether to
consider B as “A-like” or “C-like,” or both, or neither.

The greater problem with using edit distance is that it has quadratic complexity.
That is—as the non-transitivity implies—the only way to find all similarities is to
compare all the pairs of values to their respective pair edit distance. There may be
a few shortcuts possible, for example if we identify collections of common prefixes,
but generally we are required to accept this complexity. For the small example
below, this would not be prohibitive, but for large datasets it would be.

Another approach that can often be useful is phonetic canonicalization. Often
this approach is useful for names that may be transliterated in various ways,
although the increasing prevalence of voice recognition systems with high fallibility
probably presents additional opportunities. Most likely, voice recognition software
will misidentify a word as something that sounds somewhat similar. While this
approach may catch a class of typos as well, it is less consistent for that. The strings
“GNU”and “GUN” are only one transposition apart, but their pronunciation is
significantly different, for example.

A somewhat older (1918) phonetic canonicalization approach is called Soundex,
and it works by substituting a common symbol for collections of similar sounds. For
example, “b”, “f”, “p”, and “v” are all encoded in the same way. Building on that
system is the 1990 Metaphone.

Feature Engineering

[368]

Metaphone allows for more complex rules, such as looking at letter clusters that
typically have a certain sound that is not simply the addition of the individual letter
sounds, or dropping certain letters in the context of other adjacent ones. These
techniques primarily rely on consonant sounds, and vowels are often dropped from
the encodings.

Double Metaphone goes further than Metaphone, and tries to account for more
irregularities in English where words are borrowed from Slavic, Germanic, Celtic,
Greek, French, Italian, Spanish, Chinese, and other origins. This gives a relatively
complex ruleset; for example, it tests for approximately 100 different contexts for the
use of the letter C. However, the algorithm remains linear over any dataset size, and
is generally sequential in coding individual words. The “double” in the name of this
technique comes from the fact that it produces both a primary canonicalization and
many times also a secondary one using alternate rules. This allows for a more flexible
equivalence comparison. For example, the secondary encoding of A may match the
primary encoding of B, which is at least a hint about similarity.

Let us illustrate with a specific example. We have a dataset that has a number of
similar family names that come from various languages but may represent the same
person, or the same family, modulo transcription differences. In this example, the
names are labeled by “similarity group” for presentation purposes, but in real data
you are unlikely to have anything analogous to this. Just to make it look a bit more
like a typical dataset, an extra column with numbers is also included. Whether or
not we manage to unify these different spellings of what might be the same names,
names form nominal variables since there are finitely many.

names = pd.read_csv('data/names.csv', index_col='Group')
names.head(8)

Group Last_Name Other_Data
——————————————————————————————————
1 Levenshtein 103
1 Levenschtein 158
1 Levenstein 110
2 Hagelin 136
2 Haslam 105
2 Haugland 190
2 Heislen 181
2 Heslin 106

If we use the Python Metaphone package, we can use the function
doublemetaphone(), which produces a pair of primary/secondary encodings for
every input string (the secondary may be blank).

Chapter 7

[369]

The metaphone() function in the same package, or most other canonicalization
libraries, will produce a single string to represent an input string. The library Fuzzy
is a faster implementation, but seems to be limited to ASCII inputs, which will
not work with the accented characters in some of our test names. We add these
canonicalizations to the data frame.

from metaphone import doublemetaphone

metas = zip(*names.Last_Name.map(doublemetaphone))
names['meta1'], names['meta2'] = metas

Let us look at the similarity group 6 here, which contains a number of spelling
variations on the same name.

with show_more_rows():
 print(names.loc[6])

Group Last_Name Other_Data meta1 meta2

6 Jeong 191 JNK ANK
6 Jong 157 JNK ANK
6 Chŏng 100 XNK
6 Chung 123 XNK
6 Jung 118 JNK ANK
6 Joung 168 JNK ANK
6 Chong 101 XNK
6 Cheong 133 XNK
6 Choung 104 XNK

This very common Korean family name—in Hangul "정" , IPA (international
phonetic alphabet) "/dʒʌŋ/" —is transliterated to English in numerous different
ways, according to different style guides, and during different times historically. You
may encounter any of those listed, but they all refer to the same underlying name; or
they do if they refer to Korean names. It gets complicated. In South Korea, “Jeong” is
currently canonical; in North Korea, “Jong”, is the current official transliteration.

As an example of the complication, the American feminist novelist Erica Jong is
of Russian/Polish-Jewish ancestry, so you might expect her family name to have
Yiddish origin. It turns out that it is actually that of her second husband, a Chinese-
American psychiatrist. The Chinese name is distantly related to the Korean one, but
certainly not a mere different transcription. Similarly, the German name of Swiss
psychoanalyst Carl Gustav Jung is not related to the Korean one.

Feature Engineering

[370]

We see the canonicalization “ANK” for several of these, including the German name
pronounced as "/jʊŋ/" (i.e. the “J” is pronounced similarly to an English “Y” in
German, Yiddish, Swedish, Norwegian, Dutch, etc.).

There remain some name spellings where this technique does not unify them, even
looking at secondary encodings. The initial “J” and the initial “Ch” are simply
given a different representation. However, we have reduced many of the alternate
spellings to a canonical representation. Let us look at another example. The former
Libyan leader, (Muammar) Gaddafi, had a name that was transcribed in so many
different ways by the English language press that the spelling variations became
something of a humorous note. In Arabic it was " in IPA it was "/ɡəˈdɑfi/" or "/ɡəˈdæfi/" . Our double metaphone technique does quite well here, identifying , "قَذَّافيِّ
nearly all variations as either the primary or secondary canonicalization. It may well
be reasonable to your purpose to treat this as a common nominal value (the few
encoded as “KTTF” will not be unified this way, nor will “KSF”/”KTSF”, but all
others can be). This is perhaps a better example than the many different individual
people named “Jeong” (or some variant spelling) since almost any English news
article, which is perhaps our hypothetical document corpus, that used any of these
spellings referred to the same human person.

with show_more_rows():
 print(names.loc[5])

 Last_Name Other_Data meta1 meta2
Group
5 Gadaffi 197 KTF
5 Gadafi 189 KTF
5 Gadafy 181 KTF
5 Gaddafi 163 KTF
5 Gaddafy 179 KTF
5 Gadhafi 112 KTF
5 Gathafi 187 K0F KTF
5 Ghadaffi 141 KTF
5 Ghadafi 152 KTF
5 Ghaddafi 192 KTF
5 Ghaddafy 122 KTF
5 Gheddafi 142 KTF
5 Kadaffi 139 KTF
5 Kadafi 188 KTF
5 Kaddafi 192 KTF
5 Kadhafi 121 KTF
5 Kazzafi 193 KSF KTSF
5 Khadaffy 148 KTF

Chapter 7

[371]

5 Khadafy 157 KTF
5 Khaddafi 134 KTF
5 Qadafi 136 KTF
5 Qaddafi 173 KTF
5 Qadhafi 124 KTF
5 Qadhdhafi 114 KTTF
5 Qadhdhāfī 106 KTTF
5 Qadthafi 186 KTF
5 Qathafi 130 K0F KTF
5 Quathafi 145 K0F KTF
5 Qudhafi 158 KTF

To round out our encoding, let us look at the few other names that have similar
sounds, in several groups. Feel free to skim the next example; confessedly it enables
jokes about Levenshtein distance and the author’s last name.

with show_more_rows():
 print(names.loc[names.index < 5])

 Last_Name Other_Data meta1 meta2
Group
1 Levenshtein 103 LFNXTN
1 Levenschtein 158 LFNXTN
1 Levenstein 110 LFNSTN
2 Hagelin 136 HJLN HKLN
2 Haslam 105 HSLM
2 Haugland 190 HKLNT
2 Heislen 181 HLN
2 Heslin 106 HSLN
2 Hicklin 151 HKLN
2 Highland 172 HHLNT
2 Hoagland 174 HKLNT
3 Schmidt 107 XMT SMT
3 Shmit 167 XMT
3 Smith 160 SM0 XMT
3 Smitt 181 SMT XMT
3 Smit 192 SMT XMT
4 Mertz 173 MRTS
4 Merz 116 MRS
4 Mertes 178 MRTS
4 Hertz 188 HRTS

Feature Engineering

[372]

All of the Smith-like names can be unified as “XMT”, although we have to look
at both the primary and secondary encodings to do so. The H-initial names do
not strike us as necessarily all the same to start with, but we see some overlaps.
Disappointingly, “Mertz” and “Merz” are not unified this way, notwithstanding that
in German or Yiddish this author’s last name was probably a historical misspelling
of ‘‘Mertz”.

The above examples of unifying nominal values focused on person names—family
names in particular—but the technique is general to other cases where phonetic
confusion or substitution might have occurred in the representation of categorical
values.

Explicit Categories
Conceptually, there is a difference between a variable that merely has a small
number of measured values and one that is actually categorical. Factor (categorical)
variables allow us to express an intention about their use more accurately, but also
enable a few additional APIs and performance optimizations. Most frequently,
factors are associated with data stored as strings, but that need not be the case; the
data type alone does not determine the matter. For example, we might have data
on the houses in a housing development that looks like this:

Lot # Address Acres House Style
32849 111 Middle Rd 2 37
34210 23 High St 1 21
39712 550 Lowe Ave 3 22
40015 230 Cross St 1 21
32100 112 Middle Rd 1 14
30441 114 Middle Rd 2 22

We can use a small amount of domain knowledge to make a judgment on the
nature of each feature. In particular, we can probably assume that Lot # is meant
uniquely to describe a property. The Address is presumably similar. The fact that
one field is an integer and the other a string is not as important as is the intent
that the value represents something distinctive about each record. Even if one lot
might occasionally be subdivided into multiple addresses, and other lots might be
undeveloped with no address, generally we expect approximate distinctness of the
values. The values may not be entirely unique across records, but they tend in that
direction. These are not good candidates for factors.

Chapter 7

[373]

Let us think about house style and lot size (in acres) next. The house style is
presumably selected from among a relatively small number of stock floor plans the
developer has available. It is encoded as an integer, but it might well have been a
short name used for the same intent (e.g. “Tudor Revival 4 BR”). We may need to
account for future data in which houses were built on custom plans—or in any case,
plans not from the developer’s portfolio—but that could be encoded with a name
like “CUSTOM” or a sentinel number like -1. Most likely, the house style is best
described as a categorical variable.

The variable Acres could mislead us if we only look at the data currently present.
It is an integer with even fewer different values than House Style has. As domain
knowledge, we know that new developments commonly are divided into fixed plot
sizes (1-3 acres is unusually large for residential houses, but not absurd). However,
over time, lots may become subdivided or aggregated in units that do not match
the original allocations. The owners of 114 Middle Rd might sell 0.35 acres of their
land to the adjacent owners of 112 Middle Rd, leaving both with non-integer and
uncommon lot sizes. Most likely, we do not, in fact, wish to encode this variable as
categorical, even though its initial values might suggest such. Probably floating-point
numbers are most appropriate despite the variable holding only integers currently.

In an exercise in Chapter 4, Anomaly Detection, you were shown a dataset with a
number of human names, many of which are probably misspellings of more common
intended names. Using Pandas first, let us read in the data, then discard rows with
uncommon names, then convert the string column Name to a categorical variable.

humans = pd.read_csv('data/humans-names.csv')
humans

 Name Height Weight
———
 0 James 167.089607 64.806216
 1 David 181.648633 78.281527
 2 Barbara 176.272800 87.767722
 3 John 173.270164 81.635672

24996 Michael 163.952580 68.936137
24997 Marie 164.334317 67.830516
24998 Robert 171.524117 75.861686
24999 James 174.949129 71.620899
25000 rows × 3 columns

Feature Engineering

[374]

For this purpose, we simply do not wish to look at rows with names occurring fewer
than 10 times. We can see that this keeps the large majority of rows, but 417 are
removed from the 25,000.

name_counts = humans.Name.value_counts()
uncommon = name_counts[name_counts < 10]
humans = (humans
 .set_index('Name')
 .drop(uncommon.index)
 .reset_index())
humans

 Name Height Weight
———
 0 James 167.089607 64.806216
 1 David 181.648633 78.281527
 2 Barbara 176.272800 87.767722
 3 John 173.270164 81.635672

24579 Michael 163.952580 68.936137
24580 Marie 164.334317 67.830516
24581 Robert 171.524117 75.861686
24582 James 174.949129 71.620899
24583 rows × 3 columns

At this point, there are 18 unique names remaining, as seen below. They are stored
slightly inefficiently as separate strings for each one, but in general all Pandas
operations will behave perfectly fine. We might, for example, group by name to do
some other operation. Moreover, libraries like scikit-learn will generally be happy to
treat a collection of distinct strings as categorical (for many models; others will need
a numeric encoding). Converting to factors in Pandas does little more than optimize
storage size and make some selection operations faster. These are worthwhile goals,
but have little effect on the available APIs. We will see below that R’s Tidyverse is
somewhat more customized to factors.

humans['Name'] = humans.Name.astype('category')
humans.Name.dtype

CategoricalDtype(categories=['Barbara', 'David', 'Elizabeth', 'James',
 'Jennifer', 'Jessica', 'John', 'Jon',
 'Joseph', 'Linda', 'Marie', 'Mary',
 'Michael', 'Patricia', 'Richard', 'Robert',
 'Susan', 'William'],
 ordered=False)

Chapter 7

[375]

Nothing about using this DataFrame really changes. In particular, you can pretend
that Name remains a string field, but filters will run faster. As we see above, the dtype
now exposes the category values as well, but the same information is generally
available with Series.unique() even for string columns (albeit needing a linear scan
of the entire column for strings, but looking up a single existing data structure for
categorical columns).

humans[humans.Name == 'Mary']

 Name Height Weight
——————————————————————————————————————
 19 Mary 170.513197 71.145258
 35 Mary 175.783570 73.843096
 54 Mary 166.074242 70.826540
 61 Mary 175.258933 78.888337

24532 Mary 172.602398 72.602118
24536 Mary 172.159574 70.383305
24547 Mary 173.902497 71.545191
24549 Mary 169.510964 71.460077
1515 rows × 3 columns

Let us look at the same dataset using R, which treats what it calls “factors” as more
special. Albeit, in R as well, it is easy to convert back and forth between factor
variables and their underlying data type (often underlying strings, but we treat
integers, or even floats, as factors at times).

%%R
humans <- read_csv('data/humans-names.csv')
humans

── Column specification ──
cols(
 Name = col_character(),
 Height = col_double(),
 Weight = col_double()
)

A tibble: 25,000 x 3
 Name Height Weight
 <chr> <dbl> <dbl>
 1 James 167. 64.8
 2 David 182. 78.3

Feature Engineering

[376]

 3 Barbara 176. 87.8
 4 John 173. 81.6
 5 Michael 172. 82.8
 6 William 174. 70.7
 7 Elizabeth 177. 81.2
 8 Joseph 178. 78.3
 9 Jessica 172. 64.5
10 William 170. 69.2
... with 24,990 more rows

In this Tidyverse version of our dataset, we will do something modestly different
than we did with Pandas. First we will use mutate_at() in very much the same way
as we did with .astype() in Pandas. Next we use a custom facility of factor variables.
Here, all uncommon names are not discarded but are lumped together as a common
value "UNCOMMON". This allows us to retain the other associated data columns (which
obviously would have been possible in Pandas, but slightly less concise).

%%R
Make the column Name into a factor variable
humans <- mutate_at(humans, vars(Name), factor)

Any values occurring fewer than 100 times will be
aggregated under the factor level "UNCOMMON"
humans['Name'] <- fct_lump_min(humans$Name, min = 100,
 other_level = "UNCOMMON")
humans

A tibble: 25,000 x 3
 Name Height Weight
 <fct> <dbl> <dbl>
 1 James 167. 64.8
 2 David 182. 78.3
 3 Barbara 176. 87.8
 4 John 173. 81.6
 5 Michael 172. 82.8
 6 William 174. 70.7
 7 Elizabeth 177. 81.2
 8 Joseph 178. 78.3
 9 Jessica 172. 64.5
10 William 170. 69.2
... with 24,990 more rows

Chapter 7

[377]

The only visible change is that the column type has changed, but this lets us ask
about the levels of the factor variable, whereas the same call produces NULL for
character columns.

%%R
levels(humans$Name)

 [1] "Barbara" "David" "Elizabeth" "James" "Jennifer" "Jessica"
 [7] "John" "Jon" "Joseph" "Linda" "Marie" "Mary"
[13] "Michael" "Patricia" "Richard" "Robert" "Susan" "William"
[19] "UNCOMMON"

Here again, not all that much has changed in the tibble API. The ability to use
fct_lump_min() and similar functions is specific to factor columns, but accessing
them remains the same as before (just faster).

%%R
humans %>% filter(Name == "UNCOMMON")

A tibble: 417 x 3
 Name Height Weight
 <fct> <dbl> <dbl>
 1 UNCOMMON 172. 76.5
 2 UNCOMMON 167. 60.3
 3 UNCOMMON 182. 85.2
 4 UNCOMMON 176. 72.3
 5 UNCOMMON 174. 82.1
 6 UNCOMMON 170. 66.8
 7 UNCOMMON 171. 60.0
 8 UNCOMMON 171. 73.9
 9 UNCOMMON 171. 80.4
10 UNCOMMON 177. 73.3
... with 407 more rows

Feature Engineering

[378]

Let us take a look at the distribution of observations now that uncommon names
have been included in the catch-all “UNCOMMON” factor level.

%%R
ggplot(humans, aes(y = Name)) + geom_bar(stat = "count")

Figure 7.2: Distribution of name counts

Chapter 7

[379]

In the next section, strings are considered again, but in the sense they are used in
natural language processing, as texts of human languages which we might transform
into numeric representations.

String Vectors
Get rid of meaning.
–Kathy Acker

Concepts:

•	 Bag-of-words
•	 Word2Vec
•	 Cosine similarity
•	 Stop words, tokenization, lemmatization

Natural Language Processing (NLP) is a large subfield of data science. The topic is
deserving of numerous good books of its own, and fortunately many indeed exist.
For this book, we want to look only at one niche area; how can you encode strings
of natural language into numeric features that machine learning models can accept
as inputs and that statistical techniques can operate on?

Ordered historically, and in sophistication, there are two main methods of
transforming a natural language text into a vector. In the simplest case, we can use a
technique called “bag-of-words.” This is simple enough as a technique that we can
easily create this representation ourselves with a few lines of code. The idea is first
to construct a vocabulary for the entire corpus; that is, simply a collection of all the
words it contains. Then we can represent each text within it by a vector of the length
of the vocabulary, with each component dimension indicating the count of that
word. It should be obvious that this can produce large vector sizes as corpora, and
hence vocabularies, grow in size. Even though it loses order of words, this encoding
can be quite effective in producing useful vectors capturing semantic distinctions.

For a highly simplified example, suppose you have several pet stores in your town.
Each publishes a catalog, with varying numbers of mentions of the two words
“dog” and “cat.” Having a particular kind of pet (among these) yourself, you wish
to determine which is likely to be more relevant for your pet care needs. The vectors
we generally use in NLP are likely to have hundreds or thousands of dimensions
rather than two.

Feature Engineering

[380]

Figure 7.3: Pet store vector space

In order to keep vocabularies at least relatively manageable, we can reduce words
to simpler form. We can discard punctuation and canonicalize case to arrive at fewer
words. Moreover, using the NLTK (Natural Language Toolkit) package, we can
remove “stop words”—those usually small connecting words, pronouns, and a
few others, that add little to the general semantics of a sentence. Clearly, these are
often necessary for clarity of human communication, but a vector representation of
meaning usually does better without them. For a simple example, let us choose a
famous and powerful poem by an unfortunately politically authoritarian poet.

William Butler Yeats
second_coming = """
Turning and turning in the widening gyre
The falcon cannot hear the falconer;
Things fall apart; the centre cannot hold;

Chapter 7

[381]

Mere anarchy is loosed upon the world,
The blood-dimmed tide is loosed, and everywhere
The ceremony of innocence is drowned;
The best lack all conviction, while the worst
Are full of passionate intensity.

Surely some revelation is at hand;
Surely the Second Coming is at hand.
The Second Coming! Hardly are those words out
When a vast image out of Spiritus Mundi
Troubles my sight: somewhere in sands of the desert
A shape with lion body and the head of a man,
A gaze blank and pitiless as the sun,
Is moving its slow thighs, while all about it
Reel shadows of the indignant desert birds.
The darkness drops again; but now I know
That twenty centuries of stony sleep
Were vexed to nightmare by a rocking cradle,
And what rough beast, its hour come round at last,
Slouches towards Bethlehem to be born?
"""

The first step is to determine the simplified words, and thereby the vocabulary, for
our vector encoding. First the poem itself is reduced to a sequence of more canonical
words. This is a form of tokenization, but a very simplified form.

def simplify_text(text):
 stops = nltk.corpus.stopwords.words('english')
 words = re.findall(r'[a-z]+', text.lower())
 return [w for w in words if w not in stops]

poem = simplify_text(second_coming)
poem[:6]

['turning', 'turning', 'widening', 'gyre', 'falcon', 'cannot']

From here we would like a mapping from the vocabulary to index positions within
the vector. The position of any particular word representation in the vector is
irrelevant for this purpose, since each makes up an orthogonal axis of the vector.
For example, it doesn’t matter if “gyre” was chosen to be the second or sixth or
twentieth element of the vector.

Feature Engineering

[382]

Our goal will be to encode each fragment using such a vector. Trivially, a fragment
might be a single word, but it might be a line, a paragraph, a stanza, or whatever
other division we like. The below code first creates a mapping of words to index
positions, then generates the bag-of-words vectors.

word2ndx = {w:n for (n, w) in enumerate(set(poem))}
print(f"Vector dimensions={len(word2ndx)}")

def make_vector(words, word2ndx=word2ndx):
 # Generate the vector of zero count per dimension
 vec = np.zeros(len(word2ndx), dtype=np.uint16)
 for word in words:
 # we might ignore unknown word or attempt
 # to canonicalize it, here we raise exception
 assert word in word2ndx
 n = word2ndx[word]
 vec[n] += 1
 return vec

list(word2ndx.items())[:5]

Vector dimensions=84
[('centre', 0), ('loosed', 1), ('blank', 2), ('falconer', 3),
('moving', 4)]

To illustrate this bag-of-words vectorization technique, we can encode each stanza
as a vector.

for i, stanza in enumerate(second_coming.split('\n\n')):
 print(f"Stanza {i+1}:")
 print(make_vector(simplify_text(stanza)))

Stanza 1:
[1 2 0 1 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0
 1 1 0 1 1 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 0 0 0 1
 0 0 0 0 0 1 0 1 0 1]
Stanza 2:
[0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 2 0 1 1 1 1 1 0 1 0 0 0 0 2 0 1 1 0 1
 0 0 1 0 0 1 0 1 1 1 1 2 1 1 1 1 0 1 2 1 0 0 0 0 1 0 1 1 0 0 1 0 1 1 2 1 0
 1 1 1 1 1 0 1 0 1 0]

Chapter 7

[383]

These vectors represent a distinction between the “meaning” of the two stanzas.
Surprisingly to me—I did not realize until writing this paragraph—there are no
word repetitions other than the stop words. Within each stanza, various words are
repeated, albeit only ever twice, not more than that. As human readers, we certainly
get a different “feel” from each stanza and would characterize its overall meaning
differently.

Generally a more powerful vectorization technique than bag-of-words is Word2Vec.
This model allows you to create vectors of arbitrary dimensionality; but more
importantly than that alone, Word2Vec uses a two-layer neural network that actually
looks at the context of each word as defined by the words surrounding it. This winds
up producing vectors that are curiously meaningful. Some commonly cited examples
are the subtraction and addition of vectors with different components of their
meaning. For example, trained on a large, typical English-language corpus, we will
likely see: (𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑑𝑑𝑑𝑑𝑑𝑑) ≈ (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)
Or: (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ≈ (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
Depending on the corpus used in training, the second might be thrown off by
the additional meaning of “turkey” as a flightless bird eaten especially in North
America. But then, “china” is also a word for porcelain dishes, which could have
a similar homonym effect.

Building on Word2vec is an improved version, called a “paragraph vector” by its
original inventors, Quoc Le and Tomas Mikolov, but called Doc2Vec in the gensim
package we utilize here. Gensim is a very useful NLP package for Python that
contains a number of useful NLP modeling tools; it is well-optimized for speed in its
underlying libraries. Also worth investigating is spaCy, which has a similar purpose,
but with more pre-built models. For many purposes, either vectorization is mostly
similar; Doc2Vec primarily adds the ability to tag each document (e.g. a sentence, or
a paragraph, or a stanza, or an entire book) by some attribute such as its author. This
tagging allows additional methods that characterize a tag (i.e. author) overall and
compare it to other tags or novel texts.

For this discussion, we will look at a collection of 14,485 tweets about airlines. A
corpus larger than the single poem we used above is useful, but there is no reason
we could not use that in a similar way. This dataset has a number of things in
addition to the tweets themselves.

Feature Engineering

[384]

Two such fields are name (of the account) and airline. The latter is somewhat
redundant since it is determined based on the Twitter @ tag that the user themselves
attached. Let us look at a few to get a sense.

db = sqlite3.connect('data/Airline-Tweets.sqlite')
cur = db.cursor()

sql = """
SELECT name, airline, text
FROM Tweets
"""
cur.execute(sql)
tweets = cur.fetchall()
pprint(tweets[5000:5003], width=60)

[('Paul_Faust',
 'United',
 '@united Love to report how horrible this flight is to '
 "your team. Let's make it worse...as they get to my "
 'seat...out of all snacks'),
 ('Jennsaint8',
 'Southwest',
 '@SouthwestAir any chance they will change this to '
 'include Northeast airports? JetBlue has.'),
 ('_stephanieejayy',
 'Delta',
 '@JetBlue do you have any afternoon flights going from '
 'BQN to JFK? I only seem to find early morning flights.')]

It would definitely make sense to tag this corpus using the author; however, since
each author will have written relatively few tweets, the more frequently occurring
airline names are perhaps more interesting to use. This choice is not too important
for this book, but just something to illustrate. We will use both tags to show the API.

from gensim.models.doc2vec import Doc2Vec, TaggedDocument

docs = []
for (author, airline, msg) in tweets:
 td = TaggedDocument(simplify_text(msg), [author, airline])
 docs.append(td)

Require words occur at least 4x, look 2 words to each side
The produced vector is 10 dimensional
model = Doc2Vec(docs, vector_size=10, window=2, min_count=4)

Chapter 7

[385]

Let us see how large our vocabulary is under the minimum count requirement
and also look at a few of the example words.stems The ordering of words in the
vocabulary is again of no significance, as it was not with bag-of-words. There are
several thousands of words in the vocabulary, but we reduce the representation
to an arbitrary dimensionality. Here we choose 10 dimensions, which is probably
sufficient for these fairly stereotyped messages. A wider corpus with more semantic
variation would probably benefit from higher dimensionality (the default if not
specified is 100).

print("Number of words:", len(model.wv.vocab))
list(model.wv.vocab)[:7]

Number of words: 3359
['jetblue', 'new', 'ceo', 'seeks', 'right', 'balance', 'please']

The purpose of this code we have run is to now be able to represent any string we
might create as 10 numeric features. Novel strings may only utilize terms in our
vocabulary, but Gensim provides a mechanism to construct a larger vocabulary
along with the model, including words that do not occur in the initial training set.
Let us first look at the vector for an existing tweet, then for a novel message.

msg = tweets[11_001][2]
print(msg)
model.infer_vector(simplify_text(msg))

@AmericanAir thank you for responding rather quickly btw
array([0.01165844, 0.00964975, -0.08577796, -0.03201848, 0.00883767,
 0.13692749, 0.06367198, 0.02911634, -0.00109272, -0.16733222],
 dtype=float32)

stems

Identification of words is itself an important area of NLP.
Inflectional forms of the “same” word are often best treated
as the same base form. This is done either by stemming or by
lemmatization. Stemming tries to identify a few letters making
up a morphological root of a word by removing common affixes.
Lemmatization goes further by using both grammatical context
and phonemic relations. For example, a lemmatizer might
canonicalize “dove” as a verb as “dive” (i.e. jump) but “dove” as a
noun as “dove” (i.e. a bird). Either technique would tread the word
“seek” in the example as being identical to “seeks”, “seeking”, et
cetera.

Feature Engineering

[386]

Below we create a short novel message and obtain its vector. These dimensions have
no particular meaning, but we are able to measure the relationships between them.
We can also store this synthetic data in intermediate datasets that might be used
for downstream modeling techniques; this latter is the most common use for this
transformation.

badservice = model.infer_vector(['bad', 'service'])
badservice

array([-0.03352741, 0.0146618 , -0.03105226, 0.036326 , 0.05287395,
 0.05780041, -0.05203189, 0.07293667, -0.01861257, -0.13574287],
 dtype=float32)

The Gensim library provides a rich set of functions to compare these representations,
using cosine similarity (the cosine of the angle between two vectors) and other
techniques. Just as one example, let us see which single words are closest to my short
message, “bad service”. A small note is that I have frozen this next output; the neural
network underlying Doc2Vec has state randomization, so each time it is trained,
different vectors, and different connection weights in the underlying neural network,
are produced. Here I display the result from one particular run, but other runs will
vary in details.

model.wv.most_similar(['bad', 'service'])

[('terrible', 0.9658449292182922),
 ('clients', 0.9587224125862122),
 ('management', 0.9491853713989258),
 ('greeting', 0.9436992406845093),
 ('msy', 0.9382249116897583),
 ('pathetic', 0.9378621578216553),
 ('dropped', 0.9307988286018372),
 ('keeping', 0.9277007579803467),
 ('lack', 0.924517035484314),
 ('telling', 0.9227219223976135)]

Most of those words are directly negative; the ones that seem neutral or positive
probably occur mostly in contexts that negate their ordinary meanings in some sense.
For example, perhaps “management” is usually surrounded by negative adjectives
in the tweets. We can also utilize the tags to get vectors that simply represent the
collection of texts associated with the tag, as we do in the next cell.

Chapter 7

[387]

We could make measurements from these vectors in the parameter space to those
for additional airlines, or to particular texts expressing a sentiment, and this would
illustrate the similarity of those various vectors.

airlines = ('Delta', 'United', 'JetBlue')
delta, united, jetblue = (model.docvecs[x] for x in airlines)
print(f"Delta:\n{delta}\n")
print(f"United:\n{united}\n")
print(f"JetBlue:\n{jetblue}\n")

Delta:
[5.578579 2.0885715 -5.8722963 -5.2461944 4.862418 6.6500683
 3.054988 2.5725224 3.1206055 -9.660177]

United:
[0.62689006 2.9862213 -10.10382 -7.578535 -0.44318137
 3.9621575 2.9998243 -0.11659689 -2.9283297 -7.8558965]

JetBlue:
[0.04514389 0.03341183 -0.02691341 0.01708637 0.02028313 -0.03833938
 -0.0415993 -0.04835104 -0.05358113 -0.03369116]

How similar are what people tweet about these airlines, as a per-airline comparison?

from scipy.spatial.distance import cosine
print(f"Delta | United | {cosine(delta, united):.3f}")
print(f"Delta | JetBlue | {cosine(delta, jetblue):.3f}")
print(f"United | JetBlue | {cosine(united, jetblue):.3f}")

Delta | United | 0.239
Delta | JetBlue | 0.930
United | JetBlue | 0.787

We can see that Delta and United are quite similar in this analysis, but Delta and
JetBlue are nearly as distant in vector space as is possible. That is, a value of zero
would mean identical “sentiment” vectors, while a value of one would be maximally
different. This is a good time to continue thinking about vector spaces in an
abstract sense.

Feature Engineering

[388]

Decompositions
After the entropy is accounted for, all that is left is noise.
–David Mertz

Concepts:

•	 Principal Component Analysis and other decompositions
•	 Whitening
•	 Dimensionality reduction
•	 Visualization with t-SNE and UMAP

A highly dimensional dataset—whether of high dimension because of the initial
data collection or because of creation of extra synthetic features—may lend itself
less well to modeling techniques. In these cases, it can be more computationally
tractable, as well as more predictive, to work with fewer features. Feature selection
is mostly outside the scope of this book, but is discussed briefly in the below section
on Polynomial Features, which is the technique that increases the number of synthetic
features most dramatically.

However, one special kind of “feature selection” is a decomposition of the parameter
space of a feature set. These techniques presuppose that all features have been
numerically encoded in some manner, perhaps via the technique discussed below
in the One-Hot Encoding section. A decomposition creates synthetic features in a
sense, but what it really does is create a new orthonormal basis (new axes) of the
parameter space. The transformation in a decomposition is information-preserving
and reversible if you keep the same number of dimensions as in the prior dataset.
However, the purpose of a decomposition is most often to perform dimensionality
reduction. When a decomposition is performed on multi-dimensional data, it
concentrates the entropy of the data into the initial dimensions, leaving much less
information content in the remaining dimensions; often, discarding the higher-
numbered dimensions does little harm to modeling metrics, or indeed improves
them.

Chapter 7

[389]

The most common, and oldest, decomposition technique is principal component
analysis (PCA), which was first developed by Karl Pearson in 1901. We will
primarily focus on PCA in this section, but just keep in mind that other techniques
might prove more powerful for specific datasets and domain characteristic
distributions of values. Some of these other techniques include non-negative matrix
factorization (NMF), latent Dirichlet allocation (LDA), independent component
analysis (ICA), and t-distributed stochastic neighbor embedding (t-SNE). The
last listed technique, t-SNE, is not reversible, however, so is not quite accurately
characterized as a decomposition, but it is a dimensionality reduction that is very
often useful for visualization, and we will look at an example of that. Conveniently,
all of these decompositions (as well as others) are provided by scikit-learn; each is
certainly available in other libraries as well, of course.

Rotation and Whitening
As an initial example, let us look at a dataset with just two features, and perform a
decomposition on it. When we perform a decomposition we emphasize the “most
important synthetic axes.” The result of this for PCA specifically is that, by definition,
the variance decreases with each successive PCA feature. Whitening and sphering
are synonyms meaning re-scaling these synthetic features.

With a decomposition, there can be a secondary de-emphasis of some features
that is too strong. It depends on the specific kind of model used, but for many
models a numeric feature ranging from 0 to 100 will simply have more effect than
a feature varying from 0 to 1 just because it contributes bigger numbers to the
calculation. Usually it is better to let a model select the importances of features than
to judge them in advance with feature engineering. That is, a decomposition—or
other feature engineering technique—might give a synthetic feature a numeric
scale greater or less than some other feature, and hence a corresponding default
weighting. It is best to avoid that, as we do below.

from src.whiten import data, show

Only two initial features for illustration,
but in general we would have a high dimensionality
show(data, "Parameter space for two features",
 "Raw Feature 1", "Raw Feature 2")

Feature Engineering

[390]

Figure 7.4: Parameter space for two features

Here we have two features that are obviously pretty strongly correlated. In particular
though, we notice that the variance is greater along a diagonal of roughly 45° than
along the observed axes. PCA will reorient the data to make this axis of variance (i.e.
the most entropy) the primary component.

from sklearn.decomposition import PCA
show(PCA().fit_transform(data),
 "PCA Components", "Synthetic Axis 1", "Synthetic Axis 2")

Figure 7.5: PCA components

Chapter 7

[391]

We looked at scaling in more detail in Chapter 5, Data Quality. We could use those
standard techniques to scale this “flattened” data, but this concern is common
enough in PCA transforms that scikit-learn builds in an argument to do it
automatically. This often saves us the need to rescale data a second time after the
transform, and is generally a cleaner approach.

show(PCA(whiten=True).fit_transform(data),
 "Whitened Components", "Synthetic Axis 1", "Synthetic Axis 2")

Figure 7.6: Whitened components

The use of “whitening” is closely analogous to the distinction between “white noise”
and “pink noise” in acoustics and spectral analysis. Both kinds of noise represent a
wide range of frequency values, but “pink” overemphasizes the red end of the visual
spectrum. Similarly, a non-whitened PCA would overemphasize one particular axis.

Dimensionality Reduction
While a change to the orthonormal basis might in itself aid machine learning models,
the more common use of decomposition is to reduce the number of dimensions
while still retaining most of the information. As an example, let us use the widely
available Wisconsin Breast Cancer dataset. This can be obtained from the UCI
Machine Learning Repository, from Kaggle, or included with scikit-learn and other
data science libraries. In summary, this dataset contains 30 numeric measurements
of tumors, with a target characterization as benign or malignant.

Feature Engineering

[392]

It has 569 observations that are relatively well balanced between the target classes
(212 malignant, 357 benign).

cancer = load_breast_cancer()
X_raw = StandardScaler().fit_transform(cancer.data)
y = cancer.target

If we try to make a prediction using a typical machine learning model, we can do
pretty well with a naïve approach. In order to illustrate this, we perform a train/test
split to avoid overfitting the specific data used to train the model. This is outside
the direct scope of this discussion, but a line of code below performs that. We can
also reduce the dimensionality using PCA, and the effect on the model quality is
interesting. For this discussion, we will try selecting just one principal component,
only two components, and four components, derived from the original 30 features.
We whiten in each case to preserve scales of dimensions (this is generally moot for
the PCA1 case).

X_pca1 = PCA(n_components=1, whiten=True).fit_transform(X_raw)
X_pca2 = PCA(n_components=2, whiten=True).fit_transform(X_raw)
X_pca4 = PCA(n_components=4, whiten=True).fit_transform(X_raw)

Using our three candidate feature matrices, let us see how well the corresponding
K-neighbors models perform.

for X in (X_raw, X_pca1, X_pca2, X_pca4):
 X_train, X_test, y_train, y_test = (
 train_test_split(X, y, random_state=1))
 model = KNeighborsClassifier().fit(X_train, y_train)
 accuracy = model.score(X_test, y_test)
 error_rate = 100*(1-accuracy)
 print(f"Features | {X.shape=}\t| {error_rate=:.2f}%")

Features | X.shape=(569, 30) | error_rate=4.90%
Features | X.shape=(569, 1) | error_rate=9.79%
Features | X.shape=(569, 2) | error_rate=6.99%
Features | X.shape=(569, 4) | error_rate=4.20%

An error rate of 4.90% on the raw data is not too unreasonable. In any case, let us
consider that a baseline. With only one principal component, the error rate jumps
to 9.79%; this is surprisingly good given how much information we discarded, and
is better than we could have done utilizing any single raw feature. If we keep two
principal components, the error rate falls to 6.99%, which is a sensible intermediate
value.

Chapter 7

[393]

However, what is intriguing is that with four principal components, we actually get
a slightly better error rate, of 4.20%, than we achieved with the complete raw data.
In essence, after the bulk of the entropy in the data is accounted for, all that is left is
random noise.

This contrast between “entropy” and “noise,” while accurate, is also meant as a
playful phrasing. Entropy and noise are treated as synonyms in many contexts,
although “information content” is actually closer to the meaning of entropy. But
the underlying point is that some of the variability in observations is due to the
underlying natural (or artificial) phenomenon, and some of it is due exclusively to
the random variation of sampling a finite population. Dimensionality reduction via
decomposition has a tendency to pick out the signal from the noise. I will note that
there remains trial and error here; for example, choosing five or six components rather
than four becomes worse than the raw data again (on this exact model algorithm,
with this exact train/test split, with these exact hyperparameters, et cetera).

Let us return to exactly what PCA does as a transformation. It simply determines
multipliers for each of the raw dimensions to linearly derive the principal
components. For example, in the breast cancer dataset, each observation is a
vector of 30 numbers. Each of those numbers is multiplied by some constant,
and those 30 products are added together to make up component 1. Likewise for
component 2, with different multipliers. Let us create a table of these multipliers
for n_components=3 to illustrate.

pca3 = PCA(n_components=3).fit(X_raw)
pd.DataFrame(pca3.components_.T,
 index=cancer.feature_names,
 columns=['pca_1', 'pca_2', 'pca_3'])

 pca_1 pca_2 pca_3
———
 mean radius 0.218902 -0.233857 -0.008531
 mean texture 0.103725 -0.059706 0.064550
 mean perimeter 0.227537 -0.215181 -0.009314
 mean area 0.220995 -0.231077 0.028700

 worst concavity 0.228768 0.097964 -0.173057
 worst concave points 0.250886 -0.008257 -0.170344
 worst symmetry 0.122905 0.141883 -0.271313
worst fractal dimension 0.131784 0.275339 -0.232791
30 rows × 3 columns

Feature Engineering

[394]

In other words, we can use the .transform() method of the fitted PCA object, but we
can equivalently just perform the same calculation in plain NumPy.

row0_sk = pca3.transform(X_raw)[0]
row0_np = (pca3.components_ * X_raw[0]).sum(axis=1)
print(f"Row 0 as transform: {row0_sk}")
print(f"Row 0 as mul/sum: {row0_np}")

Row 0 as transform: [9.19283683 1.94858307 -1.12316599]
Row 0 as mul/sum: [9.19283683 1.94858307 -1.12316599]

Visualization
For different purposes, utilizing a different decomposition can be useful. Principal
component analysis, however, remains the first technique you should try in most
cases. One special use is when we want to generate useful visualizations of high-
dimensional parameter spaces into the two or three dimensions we can actually
represent spatially. T-distributed Stochastic Neighbor Embedding (t-SNE) is a
nonlinear dimensionality reduction technique for projecting high-dimensional data
into two or three dimensions. Similar objects are modeled by nearby points and
dissimilar objects are modeled by distant points, with high probability.

As an example of this visualization technique, let us look at a collection of 1,797
handwritten digits scanned as 8×8 grayscale pixels. This collection is one of those
published in the UCI Machine Learning Repository and distributed with scikit-
learn. What this amounts to is a 64-dimensional parameter space for the various
pixel values. Relatively simple models like logistic regression can get good results in
predictive accuracy on this dataset; convolutional neural networks do even better.
Let us look at a few sample scans and import the underlying data.

digits = get_digits()

Figure 7.7: Sample digits

Chapter 7

[395]

We might try to simplify this 64-dimensional parameter space using PCA. That will
indeed get us a two-dimensional visualization that shows reasonable differentiation
of digits in this projected parameter space. There is certainly, for example, a region
toward the top center of the plot below that is dominated by the digit 0. At the same
time, there is strong overlap between the regions where digits occur, and somewhat
loose differentiation.

pca_digits = PCA(n_components=2).fit_transform(digits.data)
plot_digits(pca_digits, digits, "PCA")

Figure 7.8: PCA decomposition of digit space

The scale units of the PCA dimensionality reduction, and those below of other
techniques, have no specific numeric meaning. They are simply artifacts of the
algorithms, but produce differentiated numbers that can be plotted, or used in
statistics or modeling.

Feature Engineering

[396]

In contrast, using t-SNE we achieve a much stronger result for this visualization.
Correspondingly, modeling based on this projection will provide much more to
work with. In this example, t-SNE plus logistic regression does not perform better
than the logistic regression on the full feature space, but it is not that much worse
with far less underlying data used to represent each observation. The cluster of 0
digits at the center left, for example, is extremely strong, with a large gap between
those and any other digits. A few others are less well separated, but in the ways we
would tend to expect; a 9 drawn a certain way strongly resembles a 3, for example.

tsne_digits = TSNE(random_state=1).fit_transform(digits.data)
plot_digits(tsne_digits, digits, "t-SNE")

Figure 7.9: t-SNE decomposition

Uniform Manifold Approximation and Projection for Dimension Reduction
(UMAP) is another technique with a similar motivation (but very different math)
as t-SNE. UMAP often has additional advantages. Specifically, the distance between
clusters—not only the closeness of observations within a cluster—is roughly
preserved by UMAP, whereas t-SNE simply does not attempt to do that. In this
particular scanned digits example, UMAP produces even tighter clusters than does
t-SNE as well.

Chapter 7

[397]

In fact, the clusters are tight enough that it is difficult or impossible to distinguish the
many overlain digits within each cluster.

from umap import UMAP
umap_digits = UMAP(random_state=1).fit_transform(digits.data)
plot_digits(umap_digits, digits, "UMAP")

Figure 7.10: UMAP decomposition

In using a decomposition technique to generate synthetic features, you are not, of
course, limited to using only those features. Depending on your specific needs, it can
make sense to utilize a top few decomposed dimensions, but also add those into the
same intermediate dataset with some original raw features, with one-hot-encoded
features, with polynomial features, or with other types of synthetic data. This task-
specific construction of a dataset is likely to be most effective for the particular
purpose you have in front of you. Obviously, a lot of gut feeling, some reasoning,
and a lot of trial and error are needed to arrive at the best data to work with.

Let us look at turning continuous measurements into ordinal data, which can often
increase the power of models.

Feature Engineering

[398]

Quantization and Binarization
I only like two kinds of men, domestic and imported.
–Mae West

Concepts:

•	 Decreasing granularity
•	 Balancing bin size
•	 Setting thresholds

There are times when continuous—or even simply ordinal—data is more usefully
represented by a small number of levels. At the limit of that, we may reduce a
numeric range to just two values: True/False or 1/0 generally, but other values
can work. At this limit, quantization is known as binarization. Using a quantization
transformation is often useful when data as represented has more precision
than is genuinely meaningful—either from the perspective of the accuracy of
measurements, or from the perspective of utility to our data science task.

As a simple example for this section and the next one, I will use the results of a
survey I conducted on students in a half-day tutorial on scikit-learn I gave at a
conference. I sometimes use this same data in other training as a quick dataset for
performing machine learning. What is presented here removes some of the features,
but retains those useful for these sections. Like all data, this dataset is messy; some
cleanup was done, but a few elements were deliberately eschewed to provide you
a real-world mess (but not too dirty to be useful).

survey = pd.read_csv('data/ML-survey.csv')
survey.sample(6, random_state=1)

 Language Experience Age Post_Secondary Success
——
 95 C++ 1.0 57 12 7
 44 Python 7.0 24 11 5
 56 R 2.0 46 9 10
 97 Python 2.0 23 3 5
 69 Python 5.0 53 4 8
114 Python 25.0 76 23 1

Chapter 7

[399]

This data is simple enough. Some biographic data was collected about tutorial
attendees, and they were asked to evaluate how successful the tutorial was on a
1-10 scale. A tiny bit of domain knowledge will tell you that on ratings like this the
distribution of responses is highly skewed. In essence, a 9 or 10 is a strong positive,
and anything 7 or less is negative. A response of 8 is moderately positive. Perhaps
one might hope for more uniformity across the range, but human psychology and a
history of social pressures around how to respond to such evaluations make this so.
These data follow this familiar pattern.

(survey
 .Success
 .value_counts()
 .sort_index()
 .plot(kind='bar', title="Distribution of Ratings"));

Figure 7.11: Distribution of ratings

Given the distribution of data, the known psychology of ratings, and a stipulated
analytic purpose, we wish to treat the rated success simply as a binary value. This
can be done very easily in Pandas—or almost identically in every other data frame
library—by a simple comparison that creates a Boolean array.

Feature Engineering

[400]

These Boolean arrays are often used as filters or masks, but they can equally provide
perfectly good values directly.

survey.Success >= 8

0 True
1 True
2 True
3 False
 ...
112 False
113 True
114 False
115 True
Name: Success, Length: 116, dtype: bool

If you are working with raw arrays, in NumPy or other libraries, you may wish to
use the scikit-learn class Binarizer. This utility always expects a two-dimensional
matrix as input, but a matrix with a single column is perfectly acceptable.

from sklearn.preprocessing import Binarizer

Set threshold anywhere *between* 7 and 8
binary_rating = Binarizer(threshold=7.5)

Pass 2-D DataFrame, not Series
success = binary_rating.fit_transform(survey[['Success']])

Maintaining versions is good practice
survey2 = survey.copy()
survey2['Success'] = success
survey2

 Language Experience Age Post_Secondary Success
——
 0 Python 20.0 53 13 1
 1 Python 4.0 33 7 1
 2 Python 1.0 31 10 1
 3 Python 12.0 60 12 0
...
112 Python 4.0 35 4 0
113 Python 3.0 44 6 1
114 Python 25.0 76 23 0
115 Python 25.0 75 12 1
116 rows × 5 columns

Chapter 7

[401]

Binary values are well-suited for the Success measure. For other columns, we
would like to treat them somewhat differently. Let us look at how the amount of
post-secondary education of attendees was distributed; we will treat it somewhat
differently.

(survey2
 .Post_Secondary
 .plot(kind="hist", bins=20,
 title="Distribution of Education"));

Figure 7.12: Distribution of education

There are two apparent outliers in the data. One respondent claimed 23 years of
post-secondary education. That same respondent happens to be visible above as row
114, and the respondent reported being 76 years old. Given that the survey intention
and description were along the lines of noting a doctorate or equivalent profession
degree as 10 years, the 23 is somewhat suspicious; possibly this same person has a
Ph.D., M.D., and J.D. to add to that number, but more likely there was some failure
in communicating the intention, or an entry error. Nonetheless, for our binning, we
will just stipulate that that person will go in the most-education category.

Feature Engineering

[402]

The second outlier is -12, which is simply a nonsensical value. The intention, in any
case, was that no college education would be noted as zero, not by some subtraction
for years-until-college. Perhaps a third-grader attended and felt that was the best
description. Or again, more likely there was a data entry error. We will simply code
this as the least-education category, in this case. For another purpose, you might
reflect on techniques discussed in Chapter 6, Value Imputation to treat the illegal
value. Rather than preserve the exact years of education, we will only store values
corresponding to “least-education”, “mid-education”, and “most-education”—
numerically coded just as 0, 1, and 2. Our project documentation should describe
this mapping.

To divide the data into roughly equally sized bins based on the amount of education,
we can use the scikit-learn class KBinsDiscretizer. As elsewhere in the scikit-
learn API, we first create a parameterized instance of the class, then perform a
.fit_transform() to transform the data.

from sklearn.preprocessing import KBinsDiscretizer

Create a binner with 3 balanced bins
edu_bin = KBinsDiscretizer(n_bins=3,
 encode='ordinal',
 strategy='quantile')

Bin the Post_Secondary column
level = edu_bin.fit_transform(survey2[['Post_Secondary']])

In this version, rename the binned field "Education"
survey3 = survey2.copy()
survey3['Education'] = level.astype(np.uint8)
survey3.drop('Post_Secondary', axis=1, inplace=True)
survey3.sample(8, random_state=2)

 Language Experience Age Success Education
———
24 Python 3.0 28 1 0
89 Python 12.0 46 0 2
28 Python 3.0 31 1 1
56 R 2.0 46 1 2
 2 Python 1.0 31 1 2
53 Python 10.0 3 1 2
45 Python 1.0 31 0 2
79 JavaScript 1.0 32 1 1

Chapter 7

[403]

We can see generally that Education values are 0, 1, or 2 as anticipated. We can look
in more detail to see what cut-offs were selected and how many respondents fall into
each category.

Note that although I am describing these as categories (and expect a mapping
documenting the keys), these are clearly ordinally arranged, not categorical.

print("Education cut-offs:")
print(edu_bin.bin_edges_[0], '\n')
print("Count per bin:")
print(survey3.Education.value_counts())

Education cut-offs:
[-12. 4.33333333 7. 23.]

Count per bin:
2 44
0 39
1 33
Name: Education, dtype: int64

For education, we allowed the utility to decide the cut-points for balanced bins.
However, perhaps we would rather divide into fixed numeric ranges for a particular
feature. Let us try that approach for the Experience value (intended to reflect years
of programming experience). KBinsDiscretizer can simply be instantiated with
different parameters to achieve this. Again we need to document that numbers 0,
1, 2, 3, and 4 are used to denote experience ranges rather than raw years; however,
here we retain the same column name in the new dataset version.

Create a binner with 5 bins of same numeric range
exp = KBinsDiscretizer(n_bins=5,
 encode='ordinal',
 strategy='uniform')

Bin the Experience column
exp_level = exp.fit_transform(survey3[['Experience']])

Retain the Experience name, but new meaning
survey4 = survey3.copy()
survey4['Experience'] = exp_level.astype(np.uint8)
survey4.sample(8, random_state=3)

Feature Engineering

[404]

 Language Experience Age Success Education
———
 83 MATLAB 1 37 0 2
 5 Python 0 32 1 0
 6 Python 0 34 0 2
 42 MATLAB 0 31 0 2
100 Python 0 47 0 2
 97 Python 0 23 0 0
 40 Python 1 33 1 2
 25 R 0 36 1 0

The result of using the “uniform” strategy for binning produces strongly imbalanced
bins. However, that is perfectly reasonable in many cases, including most likely this
one. In our broader purpose, rounding the amount of experience to rough multiples
of 5 years might be a good simplification. If we varied this technique modestly, we
could make those cuts at exactly 5 years, but approximately that range was obtained
by regularly cutting the data itself.

print("Experience cut-offs:")
print(exp.bin_edges_[0], '\n')
print("Count per bin:")
print(survey4
 .Experience.value_counts()
 .sort_index())

Experience cut-offs:
[0. 5.4 10.8 16.2 21.6 27.]

Count per bin:
0 93
1 14
2 4
3 1
4 4
Name: Experience, dtype: int64

In each of the prior quantizations, we encoded values as ordinals. However, another
approach is sometimes better. We might consider the different numeric ranges of a
value as genuinely categorically different, rather than as ordinals or even as purely
quantitative. Education was treated in an ordinal way, since the increments were
uneven. But experience is simply continuous but quantized. To an approximation,
recovering the original measurement is simply multiplying each value by 5.4, in
that case.

Chapter 7

[405]

For certain measurements, different values may reflect different domains or regimes.
For those, we can use one-hot encoding, which is discussed in the next section but is
available as a parameter of KBinsDiscretizer as well.

Although I believe it is fanciful for this example, let us stipulate that “Young”,
“Mid_Age”, and “Old” tutorial attendees are wholly different kinds that we wish
to distinguish (your author will be lumped into the last of those domains). Before
we do that, however, we have to handle a data quality issue. Some age values look
suspicious.

survey4.Age.describe()[['mean', 'min', 'max']]

mean 36.965517
min 3.000000
max 99.000000
Name: Age, dtype: float64

survey[survey.Age < 10]

 Language Experience Age Post_Secondary Success
——
53 Python 10.0 3 9 9
85 Python 3.0 3 10 6

There was conceivably a 99-year-old in the tutorial, but there were certainly no
3-year-old attendees. Although the 99-year-old was probably an inaccurate entry,
the 3-year-olds are provably wrong from the data itself, since their programming
experience and post-secondary education each exceed their age. I will assume that
these are 30-something attendees who made data entry errors, and impute an age
of 35 to both of them (not far from the median or mean age of all attendees, which I
might also reasonably use).

Create next version and impute for bad data
survey5 = survey4.copy()
survey5.loc[survey5.Age == 3, 'Age'] = 35

Create a binner with 3 bins to 3 columns
Note: a sparse array with "onehot"
age_bin = KBinsDiscretizer(n_bins=3,
 encode='onehot-dense',
 strategy='quantile')

Bin and split the Age column
age = age_bin.fit_transform(survey5[['Age']])

Feature Engineering

[406]

age = age.astype(np.uint8).T
survey5 = survey5.assign(Young=age[0],
 Mid_Age=age[1],
 Old=age[2])
survey5.drop('Age', axis=1, inplace=True)
survey5.sample(8, random_state=4)

 Language Experience Success Education Young Mid_Age Old
——
13 Python 0 0 2 0 1 0
 2 Python 0 1 2 0 1 0
25 R 0 1 0 0 1 0
16 Python 0 1 0 0 0 1
19 Python 0 0 1 0 0 1
79 JavaScript 0 1 1 0 1 0
 5 Python 0 1 0 0 1 0
24 Python 0 1 0 1 0 0

Having created synthetic columns for age ranges using one-hot encoding, this is a
good point to turn to the next section that discusses one-hot encoding in general.
We will continue to work with this survey dataset that we have massaged and
transformed in stages.

One-Hot Encoding
If once a man indulges himself in murder, very soon he comes to think little of
robbing; and from robbing he next comes to drinking and Sabbath-breaking, and
from that to incivility and procrastination. Once [begun] upon this downward path,
you never know where you are to stop. Many a man has dated his ruin from some
murder or other that perhaps he thought little of at the time.
–Thomas de Quincey

Concepts:

•	 Avoiding artificial ordering
•	 Synthetic boolean features

Chapter 7

[407]

Very commonly, we work with features that have a number of class values encoded
in them. For many models or other statistical techniques, we require features to
be encoded as numbers. An easy way to do that is by encoding values as numeric
ordinals. For example, in the survey data, we could encode the language feature by
mapping Python=1, R=2, JavaScript=3, and so on. While those values are numeric,
we often get better quality if we do not impose an artificial ordering to the categories.
Different programming languages have no inherent or obvious ordering among
them.

The encoding of class values may not be as meaningful strings, but may already
use a range of small integers. This can falsely suggest ordinality to a variable. We
should consult documentation and domain knowledge to determine if that is a
reasonable interpretation for a particular feature. Symmetrically, of course, strings
sometimes actually do encode clearly ordinal values; e.g. “Poor”, “Good”, “Best”
in an evaluation of something (the meaningful order is unlikely to be the “natural”
order of those strings, such as alphabetical).

To encode one feature with multiple values, we can transform it into multiple
features, one for each class value. The “one-hot” in the name of this encoding
indicates that exactly one of these new features will have a one, and the others will
be zeros (or alternately True/False, depending on your programming language and
library). The favorite programming language column of the survey dataset is a good
candidate for one-hot encoding.

In Pandas, the get_dummies() function transforms a data frame into one-hot
encoding. In scikit-learn, the class OneHotEncoder performs the same task, but is
not limited to working with Pandas (anything matrix-like works). In both APIs,
you have a variety of options to provide the naming of the new features, whether
to use dense or sparse arrays for storage, whether to omit one category (to reduce
multicollinearity), and in Pandas which columns to encode. By default, Pandas will
look for all string or categorical columns, but you can tweak that; for example, you
may want to force one-hot encoding of an integer column.

For presentation, we display a transposed data frame with a sample of a few rows
and the encoded language features as rows. We can see that most samples (here
shown as columns) have a 1 in the Lang_Python feature, and 0 for other features.

Feature Engineering

[408]

A few of the samples have their “one-hot” in a different feature.

survey6 = pd.get_dummies(survey5, prefix="Lang")
survey6.sample(10, random_state=3).T.tail(8)

 83 5 6 42 100 97 40 25 115 103
——
 Lang_C++ 0 0 0 0 0 0 0 0 0 0
Lang_JavaScript 0 0 0 0 0 0 0 0 0 0
 Lang_MATLAB 1 0 0 1 0 0 0 0 0 0
 Lang_Python 0 1 1 0 1 1 1 0 1 0
 Lang_R 0 0 0 0 0 0 0 1 0 1
 Lang_Scala 0 0 0 0 0 0 0 0 0 0
 Lang_VB 0 0 0 0 0 0 0 0 0 0
Lang_Whitespace 0 0 0 0 0 0 0 0 0 0

The scikit-learn API is similar to other transformers we have looked at. We simply
create a parameterized instance, then fit and/or transform data using it. Under this
API, the metadata such as suggested feature names lives in the encoded object and
the raw encoded data is a plain NumPy array.

from sklearn.preprocessing import OneHotEncoder
lang = survey5[['Language']]
enc = OneHotEncoder(sparse=False).fit(lang)
one_hot = enc.transform(lang)
print(enc.get_feature_names())
print("\nA few encoded rows:")
print(one_hot[80:90])

['x0_C++' 'x0_JavaScript' 'x0_MATLAB' 'x0_Python' 'x0_R' 'x0_Scala'
 'x0_VB' 'x0_Whitespace']

A few encoded rows:
[[0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 1.]
 [0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0.]]

Chapter 7

[409]

With our transformation, we have arrived at a dataset with more features, but
ones better suited to our downstream purposes. Let us look at just one row since
the DataFrame has become too wide to display easily in this space. The particular
encodings we have performed all give us small, non-negative integers, in this
example, but this could easily be combined with other continuous numeric variables,
perhaps with those scaled to a similar numeric range as these small numbers.

with show_more_rows():
 print(survey6.loc[0])

Experience 3
Success 1
Education 2
Young 0
Mid_Age 0
Old 1
Lang_C++ 0
Lang_JavaScript 0
Lang_MATLAB 0
Lang_Python 1
Lang_R 0
Lang_Scala 0
Lang_VB 0
Lang_Whitespace 0
Name: 0, dtype: int64

One-hot encoding is one small step toward increasing dimensionality with synthetic
features. Next we turn to a truly giant leap with polynomial features.

Polynomial Features
In the final analysis, a drawing simply is no longer a drawing, no matter how
self-sufficient its execution may be. It is a symbol, and the more profoundly the
imaginary lines of projection meet higher dimensions, the better.
–Paul Klee

Concepts:

•	 Generating synthetic features
•	 The curse of dimensionality
•	 Feature selection

Feature Engineering

[410]

Generating polynomial features can create a large number of new synthetic features.
The basic idea behind this transformation is simple: we add new features that are
the multiplicative product of up to N of the existing features. In the scikit-learn
version we will use in this section, PolynomialFeatures does a multiplication
of all combinations of parameters (up to specified degree). It is, of course, easy
enough to create multiplicative, or other, combinations of features manually. The
PolynomialFeatures wraps up identifying all combinations and providing a general
transformer object with useful metadata, in one API that is familiar to users of other
scikit-learn classes.

Constructing polynomial features is often the main reason we need subsequently
to winnow features using feature selection. Reducing 30 raw features to 15, for
example, is unlikely to be hugely important to most models. But reducing the 496
synthetic features in the below example becomes important to both the power of
a model and computational resources used. If we construct a much larger number
of synthetic polynomial features, the imperative for feature selection becomes that
much stronger. It is quite common that a combination of polynomial expansion
combined with feature selection produces greatly stronger models than raw features
can.

Scikit-learn provides a detail about whether to create the squares (or cubes, etc.) of
single features, which is not terribly important in an overall data pipeline most of
the time. I generally feel there is no harm in including those terms, and occasionally
there is benefit. If the interactions_only option is not used, the number of produced
features is:

#𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑁𝑁 𝑁 (𝑁𝑁 𝑁 𝑁)2 +1

For example, for 30 raw dimensions, we obtain 496 polynomial features, at degree 2;
for 100 raw features, we get 5,151. In this section, we return to the Wisconsin Breast
Cancer dataset also used earlier in this chapter. Recall that it has 30 numeric features
(and one binary target).

cancer = load_breast_cancer()
X_raw = MinMaxScaler().fit_transform(cancer.data)
y = cancer.target

Chapter 7

[411]

Generating Synthetic Features
Creating the polynomial features is simply another transform, much like all the
other transformers in scikit-learn that we have looked at in this book. We only pay
much attention in this section to the degree 2 polynomial, but for an illustration of
the growth of synthetic features, several degrees are created in the loop below. We
create both a dictionary of transformers and another of the resulting X arrays. While
generating them, let us display how highly dimensional these synthetic features are.

poly = dict()
X_poly = dict()

print(f"Raw data set shape: {cancer.data.shape}")

for n in [2, 3, 4, 5]:
 poly[n] = PolynomialFeatures(n)
 X_poly[n] = poly[n].fit_transform(X_raw)
 print(f"Degree {n} polynomial: {X_poly[n].shape}")

Raw data set shape: (569, 30)
Degree 2 polynomial: (569, 496)
Degree 3 polynomial: (569, 5456)
Degree 4 polynomial: (569, 46376)
Degree 5 polynomial: (569, 324632)

Tens or hundreds of thousands of features are simply too much to be amenable to
good modeling or analysis. Even the 496 features in the second-order polynomial are
a bit shaky in practical terms. The degree 2 may not overwhelm memory (obviously
it depends on the number of rows; this example is small), but it almost certainly will
lead to the curse of dimensionality and models will be ineffective.

Let us take a look at what these synthetic features contain and how they are named.
Since we have already scaled the original features into the interval [0, 1], the
multiplicative combinations will remain in that range. We could scale the polynomial
data again to re-normalize, but it will not be crucial in this case.

Feature Engineering

[412]

We can name these synthetic features however we like, of course; but
PolynomialFeatures provides a convenient set of suggestions based on the raw
feature names.

names = poly[2].get_feature_names(cancer.feature_names)

row0 = pd.Series(X_poly[2][0], index=names)
row0.sample(8, random_state=6)

mean compactness^2 0.627323
radius error worst perimeter 0.238017
smoothness error worst concavity 0.090577
mean compactness worst concavity 0.450361
perimeter error 0.369034
area error fractal dimension error 0.050119
radius error concavity error 0.048323
mean fractal dimension symmetry error 0.188707
dtype: float64

I chose a particular random state that gets a representative collection of feature
names. In particular, some features are named as being a power of raw features,
such as mean compactness^2. Others are simply the raw features themselves, such as
perimeter error. Most of the synthetic features are multiplications of two raw ones,
such as smoothness error worst concavity or mean compactness worst concavity.
In concept, synthetic features representing ratios of features might be valuable as
well, but they are not produced automatically. For multi-word feature names, it
might be aesthetically preferable to use a delimiter like an asterisk or a comma rather
than a space, but in any case, a multiplication is what is signified by those latter
names.

With higher-order polynomials, the names of features grow more complex as well,
of course. Varying combinations of up to four raw features are combined, including
powers of individual raw dimensions as possible terms.

names = poly[4].get_feature_names(cancer.feature_names)
row0 = pd.Series(X_poly[4][0], index=names)
row0.sample(6, random_state=2)

mean texture mean symmetry concavity error worst fractal dimension
0.000884
mean texture mean perimeter mean smoothness
0.007345
mean concave points compactness error worst perimeter^2
0.114747

Chapter 7

[413]

fractal dimension error worst radius worst perimeter worst symmetry
0.045447
mean compactness mean fractal dimension worst area worst compactness
0.133861
mean area worst compactness worst concave points^2
0.187367
dtype: float64

R mostly makes it similarly easy to generate polynomial features. A formula is a nice
bit of R syntax that makes it concise to generate all the interaction terms. However,
including the powers of the raw terms becomes somewhat cumbersome to express
in a formula. It is possible, but a support function helps get it right. With a much
simpler dataset, the below code generates degree 3 polynomial features from a tibble.
The actual logic is no different with a higher-dimension X, merely the display is
cleaner with this small example.

%%R
X <- tibble(A = c(0.2, 0.3, 0.4),
 B = c(0.1, -0.3, 0.5),
 C = c(-0.2, 0.3, 0.1))
formula = ~ .^3
poly2 <- as.tibble(model.matrix(formula, data=X))
poly2

A tibble: 3 x 8
 '(Intercept)' A B C 'A:B' 'A:C' 'B:C' 'A:B:C'
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 0.2 0.1 -0.2 0.02 -0.04 -0.02 -0.004
2 1 0.3 -0.3 0.3 -0.09 0.09 -0.09 -0.027
3 1 0.4 0.5 0.1 0.2 0.04 0.05 0.02

This example represents three rows of data, each one containing each of the three
raw features, the pairwise product of each of the three raw features, and the
product of all three raw features.

Feature Selection
Simply having a huge number of synthetic features is not yet of great utility, since
to utilize them we probably have first to discard most of them. The “curse of
dimensionality” can refer to several related problems with highly dimensional data.

Feature Engineering

[414]

In essence, model effectiveness and statistical meaning can become much worse as
the number of parameter dimensions becomes too large.

In deep neural networks, which are a special kind of machine learning design, you
will sometimes encounter an input layer with higher dimensionality than this rule
of thumb suggests. However, even there, the initial layers of such a network almost
always serve to reduce dimensionality. Effectively, networks learn how to perform
feature selection in their training. Hidden layers of neural networks often have
hundreds of neurons, but rarely thousands. Often even deep networks, with many
layers, have fewer than hundreds of neurons in each layer.

This is where feature selection comes in. We need to decide which of our numerous
(mostly synthetic) features genuinely help our model, and which simply add
noise. For a comparison, let us try to model the breast cancer data under various
transformations. We also introduce selection of only the “best” features in this
approach.

There are a number of approaches we can use to select the best features. The
very simplest of these is univariate modeling of the predictive strength of each
feature on its own. This is what is performed, for example, within scikit-learn by
SelectKBest. In the presence of a huge number of features, this is sometimes a
reasonable approach. However, a much more powerful technique is to eliminate
features recursively based on a specific model object (i.e. a class and a collection of
hyperparameters).

Within scikit-learn, RFE and RFECV perform recursive feature elimination. The latter
class is more precise and much slower. The class name abbreviates “recursive feature
elimination and cross-validation”. Plain RFE already repeatedly trains a model with
decreasing numbers of features (e.g. 496 models trained for the degree 2 polynomial
breast cancer data). RFECV takes that a step further by using feature importance
under several different train/test splits and choosing the plurality order. By default
that is five folds, and hence five models for each number of features considered (e.g.
2,480 models trained for the degree 2 polynomial). Robustness under subsampling
gives a reasonably strong confidence in the evaluation.

A very rough rule of thumb is that the number of columns should
be no more than one-tenth the number of rows. This ratio depends
upon the kind of model used, but different choices impose a
stricter requirement than the rule of thumb, which is best treated
as a lower bound. Moreover, even for datasets where you may
have millions of observations, an approximate maximum of several
hundred dimensions should be a goal.

Chapter 7

[415]

Within R, the caret package contains the pair of functions rfe() and rfeControl() to
perform recursive feature elimination, optionally with cross-validation.

A limitation to keep in mind is that not all types of models provide a ranking of
feature importances. For example, that concept is not relevant in the K-neighbors
models that we used in illustrating decomposition for dimensionality reduction.
Linear models provide coefficients, which are sufficiently equivalent to feature
importances that they are also utilized in recursive feature elimination. In those
models where we do not have explicit feature importances, it is still possible to do
univariate feature selection and try various numbers of features that are strongest in
a univariate correlation. It is certainly possible—even likely—that a reduced feature
set will achieve a better metric this way. We simply have less scaffolding to support
the search, in that case.

Let us look at a model type that exposes feature importances, and recursively
eliminate features from the 496 in our degree 2 polynomial synthetic dataset. We set
a number of hyperparameters to the model, and the specific feature selection and
metric evaluation will vary if different ones are used. A few parameters at the end
simply control execution context, and are not material to the model algorithm itself
(i.e. using multiple CPU cores or initializing in a particular random state).

model = RandomForestClassifier(n_estimators=100, max_depth=5,
 n_jobs=4, random_state=2)

The next few lines of code have a lot to understand in them. We create an instance
of the RFECV class that is parameterized with the particular estimator we wish
to train repeatedly. In this case it is a random forest classifier (with specific
hyperparameters), but any kind of model that exposes feature importances is equally
suitable. We then fit the incorporated model numerous times, both as we decrease
the number of features and also as we exclude folds for the cross-validation. Data
about every one of these fitting and implicit scoring operations is stored in attributes
of an RFECV instance, and are available for later inspection.

The most crucial attribute retained is the support, an array indicating which features
are included in the optimal subset and which are not. We can use that attribute to
filter the larger initial matrix to only include the columns that prove more useful to
include than to exclude. That is saved as X_support in this code; we look at its shape
to see that we have reduced features.

rfecv = RFECV(estimator=model, n_jobs=-1)
best_feat = rfecv.fit(X_poly[2], y)
X_support = X_poly[2][:, best_feat.support_]
X_support.shape

(569, 337)

Feature Engineering

[416]

Here we can compare the quality of several different candidate feature sets. We fit
against the raw data, then against the full polynomial data, then finally against that
subset of columns of the polynomial data that passed feature elimination. Each time,
a new model is fitted, then scored against split out test data. Note that we used the
entire dataset in the RFECV to determine the best N (337 in our case), but the trained
model we use for scoring only has access to the training rows to assure this is not
simply overfitting.

for X in (X_raw, X_poly[2], X_support):
 X_train, X_test, y_train, y_test = (
 train_test_split(X, y, random_state=42))
 model.fit(X_train, y_train)
 accuracy = model.score(X_test, y_test)
 error_rate = 100*(1-accuracy)
 print(f"Features | {X.shape=}\t| {error_rate=:.2f}%")

Features | X.shape=(569, 30) | error_rate=2.80%
Features | X.shape=(569, 496) | error_rate=1.40%
Features | X.shape=(569, 337) | error_rate=0.70%

The error rate achieved by these different approaches is illuminating. Even with the
raw features, the random forest model we use here is superior to the K-neighbors
used earlier in this chapter. More relevant here is that we see a greatly improved
error rate by using the polynomial features; we see a dramatically still better error
rate when we winnow down those features only to those that are more predictive.
In some cases we will select an order of magnitude fewer features than we started
with to get a better metric result. Here it is only a moderate reduction in the number
of features; the important element is that accuracy is thereby improved.

Another useful attribute created by the RFECV selection is the grid scores. These
are the metric score obtained after each feature is successively eliminated. Or more
accurately, it is the mean of the score under each fold excluding a portion of the
data from the training. In any case, we see here a typical pattern. For very few
features, the accuracy is low. For a moderate number it achieves nearly the best
metric. Over the bulk of different feature counts, the metric is roughly a plateau.
Choosing any N of those initial features along the plateau will provide a similar
metric. Some particular number is optimal under the particular selection search,
but often the exact number depends on small details such as random initializations.
At times there is also a pattern wherein some range of number of features is clearly
preferable, with a clear decline for additional features.

(pd.Series(best_feat.grid_scores_)
 .plot(figsize=(10, 2.5), linewidth=0.75,
 title="#Features vs. Accuracy on 2-Polynomial Data"));

Chapter 7

[417]

Figure 7.13: Features versus accuracy on 2-polynomial data

Choosing a number of features near the start of the plateau reduces the size of
synthetic data needed, but you must judge whether the plateau has an obvious start.

Exercises
The exercises below ask you to look for “continuous-like” results in discrete events,
and then symmetrically to treat continuous or frequent events as measures of coarser
time units. Both of these modifications to create synthetic features are commonly
useful and appropriate in real-world datasets.

Intermittent Occurrences
This chapter discussed imposing regularity upon timestamp fields, but this exercise
asks you to reverse that goal, in a way. There are times when events are inherently
erratic in occurrence. For example, a Geiger counter measuring radiation produces
a “click” (or other discrete signal) each time a threshold is reached for ionizing
radiation being present. Similarly, we could measure the timestamp when each new
bud appears within a grove of trees; the frequency of occurrences would correspond
in some overall way to the growth rate, but the individual events are stochastically
distributed. Other phenomena—for example, the Covid-19 pandemic (currently
underway, at the time of this writing), with new diagnoses on particular days within
each geopolitical region—have similar discrete events that indirectly define an
overall pattern.

An artificial dataset is provided that contains events measured by any of five
instruments over the one-year interval covering 2020. The recording of events occurs
only at exact minutes, but that does not preclude multiple events occurring during
the same minute. In general, the typical event frequency for each instrument is
less frequent than once per minute. The five instruments are simply named as “A”
through “E”. You are free to imagine this data describing one of the phenomena
mentioned above, or whatever other domain you wish.

Feature Engineering

[418]

The dataset is available at:

https://www.gnosis.cx/cleaning/events.sqlite

Records within the dataset will resemble the following few.

Timestamp Instrument
2020-07-04 11:28:00 A
2020-07-04 11:29:00 B
2020-07-04 11:31:00 C
2020-07-04 11:34:00 D
2020-07-04 11:28:00 A
2020-07-04 11:34:00 A

Notice that the data do not necessarily occur in chronological order. Moreover, the
same timestamp may contain multiple events, either from the same or a different
instrument. For example, in the table, 2020-07-04 11:28:00 measured two events
from instrument A, and 2020-07-04 11:34:00 measured one event from instrument
A and another event from instrument D. There are approximately one million events
recorded in total.

Each instrument exhibits a different pattern in relation to time sequence. Create
however many synthetic features you feel are necessary to reasonably characterize
the behaviors in numeric form. However, do think of features as numbering in tens
or hundreds, not in hundreds of thousands. Put these features into a tidy data frame
that might be used for further statistical analysis or machine learning techniques.
This data frame will have columns corresponding to the synthetic features you have
decided to utilize.

Attempt to characterize the behavior of each instrument in general terms, using
prose descriptions, or perhaps using mathematical functions. Be as specific as you
feel the data warrants, but also describe the limitations or uncertainties of your
characterization as well as possible.

Characterizing Levels
In this exercise, use the same dataset as in the prior exercise, which is available at:

https://www.gnosis.cx/cleaning/events.sqlite

As described above, each of five instruments measures discrete events occurring at
specific timestamps. Events are discerned at one-minute accuracy, and the time series
covers calendar year 2020. Some minutes have multiple events (from either the same
or different instruments), and some have no events.

https://www.gnosis.cx/cleaning/events.sqlite
https://www.gnosis.cx/cleaning/events.sqlite

Chapter 7

[419]

Your goal in this exercise is to characterize each day of the year according to whether
it is “low”, “medium”, or “high” in event frequency. You should characterize
this quantized level both per individual instrument and for the day as a whole.
You should decide what quantization strategy is most appropriate both for the
cumulative frequencies and the per-instrument frequencies. Your choice of strategy
is likely to depend upon the different distributions of events per each instrument.

You may assume that all five instruments measure something roughly
commensurate in aggregating them. For example, if these events are the detection
of a new bud on a tree—per one example in the previous exercise—the different
instruments might be measuring different groves (but not buds versus leaves versus
fruits, for example).

If you feel that the quantization of low/medium/high is not well suited to one or
more of the instrument event distributions, characterize what problem or limitation
you feel applies, and try to think of an alternate approach to characterizing the
instrument behavior.

Denouement
And this old world is a new world
And a bold world
For me
–Nina Simone

Topics covered in this chapter: Date/Time Fields; String Fields; String Vectors;
Decompositions; Quantization; One-Hot Encoding; Polynomial Features.

This chapter looked at many approaches to inventing new features. This stands in
contrast to Chapter 6, Value Imputation, which was about inventing data points. Both
techniques are important in their own ways, but they do something conceptually
different. It often happens that the way we collect data, or are provided it, does not
represent the most meaningful content of that data, yet better representations lurk
within what we have.

Three general themes were presented in the creation of synthetic features. In one
case, we sometimes have a single feature that, as represented, combines two or more
basic features that can be easily pulled apart and represented separately. Similarly,
but moving in the other direction, sometimes a small number of components that
are directly present may be better combined into a single feature. A clear example
for both of these moves is a datetime value that might be either several components,
such as year, month, hour, or minute, or might be a single value.

Feature Engineering

[420]

As a second theme, we looked at the parameter space in which observations live as
vectors. As an abstract mathematical entity, the initial observations need not form
the orthonormal basis (the dimensions) of an observation vector. Often transforming
the basis of the parameter space produces dimensions that are more useful for
statistics and machine learning. However, it is worth remembering that after such
transformations, the synthetic features rarely have any human-meaningful sense to
them, but are exclusively numeric measures.

As a third theme, we looked at synthetic features that emerge from the interaction
of an initial feature with either its domain of values or with other initial features.
Intuitively, there are quantities that are never directly measured: “heat index”
is an interaction of summer temperature and humidity; “body mass index” is
an interaction of human weight and height. At times, the interactions are more
informative than are those things we directly measure. Using polynomial feature
engineering, we can explore the space of all such interactions, but with the pitfall of
sometimes arriving at unworkably many features. In that last circumstance, feature
selection comes to our rescue.

PART IV

Ancillary Matters

[423]

Closure

What You Know
This book hopes to have shown you a good range of the techniques you will need in
preparing data for analysis and modeling. We addressed most of the most common
data formats that you will encounter in your daily work. Hopefully, even if you use
file or data formats this book could not specifically address, or even did not have the
opportunity to mention, the general concepts and principles laid out will still apply.
Only some libraries and interface details will vary. Particular formats can have
particular pitfalls in the ways they facilitate data errors, but, obviously, data can go
bad in numerous ways independent of representations and storage technologies.

Chapters 1, 2, and 3, respectively, looked at tabular, hierarchical, and “special” data
sources. We saw specific tools and specific techniques for moving data from each
of those sources into the tidy formats that are most useful for data science. Most of
the examples shown used Python libraries, or simply its standard library; a smaller
number used corresponding tools in R; and from time to time, we looked at other
programming languages that one might use to perform similar tasks. Relatively
often, I found it relevant to show command-line oriented techniques and tools that
I, myself, often use. These are very commonly the simplest ways to perform some
initial analysis, summarization, or pre-processing. They are available on nearly any
Unix-like system, such as Linux, BSD, OS X, or the Windows Subsystem for Linux.
However, I hope to have inspired ideas and conceptual frameworks for readers to
utilize in approaching their data, much more than simply to have introduced those
specific libraries, APIs, and tools I chose for my examples.

Past the ingestion stages, with sensitivity to some issues characteristic of their
formats, we get into the many stages—ideally pipelined once they reach actual
production—of identifying and remediating problems in data. In terms of
identification, there are two general types of problems to look for, with many
nuances among each. On the one hand, we might look for this or that individual
datum—one isolated reading from one particular instrument, for example—that
went wrong in some manner (recording, transcription, tabulation, and so on).

Closure

[424]

At times, as Chapter 4 focused on, we can identify—at least with reasonable
likelihood—the existence of such problems. On the other hand, we may have more
systematic problems with our data which describe the collection of all (or many)
observations rather than individual data points. Most of the time, this comes down
to bias of one sort or another; at times, however, there are also patterns or trends in
data that are real, genuine, and reflect the underlying phenomena, but that are not
the “data within the data” that most interest us. In Chapter 5, we looked at both bias
and at techniques for normalization and detrending.

Having identified bias and discardable trends, the next stage of your pipeline will
be—broadly speaking—making up data. I have emphasized throughout the book
that versioning data and writing repeatable scripts or automated workflows is
essential to good data science. When you impute values (Chapter 6) or engineer
features (Chapter 7), you should always be conscious of the fact that the data is no
longer raw but rather processed; you should be able to recover each significant stage
in the pipeline and repeat all transformations. The assumptions you make about
what values are reasonable to invent are always subject to later revision as you learn
more. But there are absolutely times when data is missing—either absent in the raw
data or determined to be sufficiently unreliable by analysis—that imputing good
guesses about the missing data is good practice. Moreover, sometimes fields should
be normalized, combined, and/or transformed in deterministic ways before final
modeling or analysis.

The chapters of this book are arranged in something resembling the order of the
stages of the pipelines you will develop in your data science practice. Obviously
you need to determine which specific formats, techniques, and tools are relevant for
your specific problems. Still, in rough order, these stages will be similar to the order
of this book. I have drawn examples from numerous different domains, and used
data of different “shapes.” Nonetheless, of course, your domain and your problem
is, in many or most ways, entirely unlike those in the examples I have presented. I
hope and believe you will find conceptual connections and food for thought from
these other domains. The tasks facing you are far too broad and diverse to reduce
to a small set of recipes, but they nevertheless fit inside a fairly small number of
conceptual realms and overall purposes.

What You Don’t Know (Yet)
Almost nothing you have read in this book addresses which statistical tests or which
machine learning models you should use. Whether a support vector machine, or a
gradient boosted tree, or a deep neural network (DNN) is more applicable to your
problem is something I am agnostic about throughout.

Closure

[425]

I have no idea and no opinion about whether a Kolmogorov–Smirnov, Anderson–
Darling, or Shapiro–Wilk test better tests for normality of your dataset (although
from my sample, one might conclude that your test should have two mathematicians
in its name). You should read other books to help you with those judgements.

Juxtaposed with this deliberate limitation is the fact those choices are mostly
irrelevant to data cleaning. Regardless of what models you utilize, or what statistics
you apply, you want the data that goes into them to be as clean as is possible. The
entire pipeline this book recommends, and describes the stages of, will be both
necessary for every analytic or modeling task, and be also nearly entirely the same,
regardless of that final choice for the next stage of your pipelines. However, this
paragraph comes with a tentative caveat.

A spectre is haunting the data science zeitgeist—the spectre of automation.
Perhaps a large portion of data cleaning would be better performed by very clever
machines—especially deep neural networks that are starting to dominate every
domain—than by human data scientists. In fact, my original plan for this book was
to include a chapter discussing using machine learning for data cleaning. Perhaps a
complex trained model could make a better judgement of “anomaly” versus “reliable
data” than can the relatively simple techniques I discuss. Perhaps additional layers in
a deep network can implicitly separate signal from noise, or detrend the uninteresting
parts of the signal. Perhaps normalization and engineered features are nothing more
than much cruder versions of what a few fully connected, convolutional, or recurrent
layers near the input layer of a DNN will do automatically.

These ideas of automation of data cleaning represent intriguing possibilities. As
of right now, the contours of that automation are uncertain and in flux. A number
of commercial cloud services—as of the middle of 2021—offer frontends and
“systems” whose superficial descriptions make them sound similar to this spectre
of automation, at least at the level of an elevator pitch. However, in my opinion, as
of today, these services do far less in reality than their marketers insinuate: they are
simply an aggregation of enough clustered machines to try out the same models,
hyperparameters, data cleaning pipelines, etc. that you might perform sequentially
yourself. You can—and quite likely should—rent massive parallelism for large data
and sophisticated modeling pipelines, but this is still somehow ontologically shy of
machines genuinely guiding analytic decisions.

Anything I might have written today on data cleaning automation would be out
of date in a year. Still, look for my name, and the names of other data scientists
who think about these issues, when you look for future writing, training materials,
lectures, and so on. I hope to have much more to say about these ideas elsewhere.
And look at the details of what those cloud providers genuinely offer by the
time you read this; my caveats may become less relevant over time. I hope my
recommendations throughout this text, however, will remain germane.

[427]

Glossary
Ontology recapitulates philology.
–Willard Van Orman Quine (c.f. Ernst Haeckel)

Accuracy
In a classification model, there are numerous metrics that might express the
“goodness” of a model. Accuracy is often the default metric used, and is simply
the number of right answers divided by the number of data points. For example,
consider this hypothetical confusion matrix:

Predicted/Actual Human Octopus Penguin
Human 5 0 2
Octopus 3 3 3
Penguin 0 1 11

There are 28 observations of organisms, and 19 were classified accurately, hence the
accuracy is approximately 68%. Other commonly used metrics are precision, recall,
and F1 score.

Related concepts: F1 score, precision, recall

ActiveMQ
Apache ActiveMQ is an open source message broker. As with other message brokers,
the aggregations of messages sent among systems is often a fruitful domain for data
science analysis.

BeautifulSoup
Beautiful Soup is a Python library for parsing and processing HTML and XML
documents, and also for handling not-quite-grammatical HTML that often occurs
on the World Wide Web. Beautiful Soup is often useful for acquiring data via web
scraping.

Glossary

[428]

Berkeley DB
Berkeley DB is an open source library for providing key/value storage systems.

Big data
The concept of “big data” is one that shifts with time, as computing and storage
capabilities increase. Generally, big data is simply data that is too large to handle
using “traditional” and simple tools. What tools are traditional or simple, in turn,
varies with organization, project, and over time. As a rough guideline, data that can
fit inside the memory on a single available server or workstation is “small data,” or
at most “medium-sized data.”

As of 2021, a reasonably powerful single system might have 256 GiB, so big data is
at least tens or hundreds of gigabytes (109) in size. Within a few years of this writing,
the threshold for big data will be at least terabytes (1012), and already today some
datasets reach into exabytes (1018).

Big-endian (see Endianness)
Data arranged into “words” (typically 32-bits), or other units, where the largest
magnitude component (typically a byte) is stored in the last position.

BSON (Binary JSON)
BSON is a binary-encoded serialization of JSON-like documents.

caret (Classification And REgression
Training)
The R package caret is a rich collection of functions for data splitting, pre-processing,
feature selection, resampling, and variable importance estimation.

Cassandra
Apache Cassandra is an open source distributed database system that uses the
Cassandra Query Language (CQL), rather than standard SQL, for queries. CQL
and SQL are largely similar, but vary in specific details.

Glossary

[429]

Categorical variable (see NOIR)
Related concepts: continuous variable, interval variable, nominal variable,
ordinal variable, ratio variable

chardet
The chardet module in Python, and analogous versions in other programming
languages, applies a collection of heuristics to a sequence of bytes thought likely to
encode text. If the protocol or format you encounter explicitly declares an encoding,
try that first. As a fallback, chardet can often make reasonable guesses based on
letter and n-gram frequencies that occur in a different language, and which byte
values are permitted by a given encoding.

Chimera
In Greek mythology, a chimera is an animal combining elements of several
dramatically disparate animals; most commonly, these include the head of a lion,
the body of a goat, and the tail of a snake. In adapted uses as a generic but evocative
adjective, anything that combines surprisingly juxtaposed elements together can be
called chimerical; or metaphorically, the thing might be called a chimera.

Column
A single kind of data item that may have, and usually has, many exemplars, one
per row (a.k.a. sample, observation, record, etc.). A column consists of ordered data
items of the same data type but varying values. A number of synonyms are used for
“columns” with slightly varying focus. Features emphasize the way that columns are
used by machine learning algorithms. Field focuses on the data format used to store
the data items. Measurement is used most often when a column collects empirical
observations, often using some particular instrument. Variable is used when thinking
of equational relationships among different columns (for example, independent
versus dependent).

Overall, columns and rows form columnar or tabular data.

Synonyms: feature, field, measurement, variable

Glossary

[430]

Comma-separated values (CSV)
A representation of columnar data in which each line of text is separated by a
newline character (or carriage return, or CR/LF). Within each line, data values are
separated by commas. Values separated by other delimiters, such as a tab or |, are
also often informally called CSV (the acronym, not the full words).

Variations on the format use several quoting and escaping conventions. String data
items containing commas internally need to be either quoted (usually with quote
characters) or escaped (usually with backslash); but if so, those characters, in turn,
require special behaviors.

Continuous variable (see NOIR)
Related concepts: categorical variable, interval variable, nominal variable, ordinal
variable, ratio variable

Coreutils (GNU Core Utilities)
A collection of shell-oriented utilities for processing text and data. The subset of these
tools that was formerly contained in the separate textutils package, in particular,
is relevant to processing textual data sources. These tools include cat, cut, fmt, fold,
head, sort, tail, tee, tr, uniq, and wc. Other command-line tools such as grep, sed,
shuf, and awk are also widely used in interaction with these tools.

Corpus (pl. corpora)
Corpus is a term from linguistics, but is used also in related natural language
processing (NLP). It simply refers to a large “body” (the Latin root) of text covering
a similar domain, such as a common publisher, genre, or dialect. In general, some
sort of modeling or statistical analysis may apply to a particular body of text and,
by extension, to texts of a similar domain.

CouchDB
Apache CouchDB is an open source document-oriented database. Internally, data
in CouchDB is represented in JSON format.

Glossary

[431]

CrateDB
CrateDB is an open source document-oriented database. CrateDB occupies
an overlapping space with MongoDB or CouchDB, but emphasizes real-time
performance.

Curse of dimensionality
The phrase “curse of dimensionality” was coined by Richard E. Bellman in 1957. It
applies to a number of different numeric or scientific fields. In relation to machine
learning, in particular, the problem is that as the number of dimensions increases,
the size of the parameter space they occupy increases even faster. Even very large
datasets will occupy only a tiny portion of that parameter space defined by the
dimensions. Models are fairly uniformly poor at predicting or characterizing regions
of parameter space where they have few or no observations to train on.

A very rough rule of thumb is that you wish to have fewer than one-tenth as many
dimensions/features as you do observations. However, even very large datasets
perform best if feature engineering, dimensionality reduction, and/or feature
selection can be used to reduce their parameter space to hundreds of dimensions
(i.e. not thousands; often tens are better than hundreds).

However, as a flip side of the curse of dimensionality, we also sometimes see a
“blessing of dimensionality.” Linear models especially can perform very poorly
with only a few dimensions to work with. The very same types of models can
become very good if it is possible to obtain or construct additional (synthetic)
features. Generally, this blessing occurs when models move from, for example,
5 to 10 features, not when they move from 100 to 200 features.

As John von Neumann famously quipped: “With four parameters I can fit an
elephant, and with five I can make him wiggle his trunk.”

Data artifact
An unintended alteration of data, generally as a consequence of hardware or
software bugs. Some artifacts can be caused by flaws in data collection instruments;
others result from errors in transcription, collation, or data transfer. Data artifacts
are often only detectable as anomalies in a dataset.

Glossary

[432]

Data frame
A data frame (sometimes “dataframe”) is an abstraction of tabular data provided
by a variety of programming languages and software libraries. At heart, a data
frame bundles together multiple data type homogeneous series or arrays (columns),
enforcing a few regularities:

•	 All columns in a data frame have the same number of data items within them
(some might be explicitly a “missing” sentinel).

•	 Each column has data items of the same data type.
•	 Data may be selected by indicating collections of rows and collections of

columns.
•	 Predicates may be used to select row sets based on properties of data on a

given row.
•	 Operations on columns are expressed in a vectorized way, operating

conceptually on all elements of a column simultaneously.
•	 Both columns and rows may have names. In some libraries, rows are only

named by index position, but all name columns descriptively.

Popular data frames libraries include Python Pandas and Vaex, R data.table and
tibble, Scala DataFrame, and Julia DataFrames.jl.

data.frame
The data frame library that is included with a standard R distribution. The R
standard data.frame is the oldest data frame object for R and remains widely used.
However, either the Tidyverse tibble or the data.table library are generally preferable
for new development, having been refined based on experience with data.frame.

See also: data frame, data.table, tibble

data.table
A popular data frame library for R. Philosophically, data.table tries to perform
filtering, aggregation, and grouping all with standard arguments to its indexing
operation. The data.table library has a somewhat different attitude than the
Tidyverse, but is generally interoperable with it.

See also: tibble, data.frame

Glossary

[433]

Dataset
A dataset is simply a collection of related data. Often, if the data is tabular, it will
consist of a table, but it may be a number of related tables. In related data that is
arranged in hierarchical or other formats, one or more files (in varying formats)
may constitute the dataset. Often, but not always, a dataset is distributed as a single
archive file containing all relevant components of it.

Denormalization
Denormalization is the duplication of data within a database system to allow for
more “locality” of data to queries performed. This will result in a larger storage
size, but in many cases, also in faster performance of read queries. Denormalization
potentially introduces data integrity problems where data in different locations
falls out of sync.

DMwR (Data Mining with R)
The R package DMwR includes functions and data accompanying the book
Data Mining with R, Learning with Case Studies, by Luis Torgo, CRC Press 2010. A
wide variety of utilities are included, but from the perspective of this book, it is
mentioned because of its inclusion of a SMOTE implementation.

DOM (Document Object Model)
The Document Object Model (DOM) is a language-neutral application programming
interface (API) for working with XML or HTML documents. While the specification
gives a collection of method names that might be implemented in any language, the
inspiration and style is especially inspired by JavaScript.

Domain-specific knowledge
Much of data science, including even that part of it concerning this book’s topic,
cleaning data, can be driven by “the shape of the data itself.” Certain data items may
follow patterns or stand out as anomalous on a purely numeric or analytic basis.
However, in many cases, accurate judgements about which data is important, or
which is of greater importance, lies not in the data themselves but in knowledge
we have about the domains the data describe.

Glossary

[434]

Domain-specific knowledge—or just “domain knowledge”—is what informs us of
those distinctions that the data alone cannot reveal. Not all domain knowledge is
extremely technical; the term might refer to topics that are more “common sense” as
well. For example, it is general knowledge that outdoor temperatures in the northern
hemisphere are usually higher in July than in January. A dataset that conflicted with
this background knowledge would be suspicious even if the individual data values
were all, in themselves, in a reasonable numeric range. Bringing that very common
domain knowledge to a problem is important, where applicable.

Equally, some domain knowledge requires deep subject area expertise. Data in a
psychological survey might show particular population distributions of subscales
from the Minnesota Multiphasic Personality Inventory (MMPI). Some distributions
might be implausible and indicate likely data integrity or sample bias problems,
but a specialized knowledge is needed to judge that. Or radio astronomy data
might show particular emission frequency bands from distant objects. A specialized
knowledge is needed to determine whether that is consistent with expectations of
Hubble redshift distances or might be data errors. Likewise in many domains.

Eagerness
In computer programming and computer science, sometimes the words “lazy” and
“eager” are used to distinguish approaches to solving a larger problem. Commonly,
for example, an algorithm might transform a large dataset. An eager program
will process all the data at once. In contrast, a lazy program will only perform an
individual transformation when that specific result is needed.

See also: laziness

Elasticsearch
Elasticsearch is a search engine based on the Lucene library. As part of implementing
a search engine, Elasticsearch contains a document-oriented database or data store.

Endianness
Endianness in computer representations of numbers is typically either big-endian
or little-endian. This refers to the scaled magnitude of composite values stored
in a particular order. Most typically, the composite values are bytes, and they are
arranged into “words” of 16-bits, 32-bits, 64-bits, or 128-bits (i.e. 2, 4, 8, or 16 bytes
per word).

Glossary

[435]

For example, suppose we wish to store an (unsigned) integer value in a contiguous
32-bit word. Computer systems and filesystems typically have an addressing
resolution of 1 byte, not of individual bits directly, so this is 4 such slots in which
scaled values may be stored. For example, we wish to store the number 1,908,477,236.

First, we can notice that since each byte stores values 0-255, this is a reasonable way
to describe that number:

1,908,477,236 = (52×20) + (13×28) + (193×216) + (113 ×224)

Storing values in each of the 4 bytes in the word could use either of these approaches:

Byte-order Byte 1 Byte 2 Byte 3 Byte 4
Little-endian 52 13 193 113
Big-endian 113 193 13 52

Historically, most CPUs used only one of big-endian and little-endian word
representation, but most modern CPUs offer switchable bi-endianess. Likewise, many
libraries such as NumPy allow flexibility in reading and writing data of different
endianness in storage format.

Formats other than computer words used to store numeric values may also be
endian. Notably, different date formats can be big-endian, little-endian, or indeed
middle-endian. For example, ISO-8601 date format prescribes big-endianness, for
example, 2020-10-31. The year represents the largest magnitude, the month the next
largest, and the day number the smallest resolution of a date. The extension to time
components is similar.

In contrast, a common United States date format can read, for example, October
31, 2020. A spelled-out month name indirectly represents a number here (numbers
are also used with the same endianness and different delimiters; for example,
10/31/2020). From an endianness perspective, this is middle-endian. The largest
magnitude (year) is placed at the end, the next largest magnitude (month) at the
start, and the smallest magnitude (day) in the middle. Clearly, a different middle-
endian format is also possible, but is not widely used (for example, 2020 31 Oct).

Much of the world outside of the United States uses a little-endian date
representation, such as 31/10/2020. While the specific values in the representation
of October 31 would disambiguate the endianness used, for dates such as October
11 or November 10, this is not the case.

Glossary

[436]

F1 Score
In a classification model, there are numerous metrics that might express the
“goodness” of a model. F1 score blends recall and precision, avoiding the extremes
that occur in certain models, and is often a balanced metric. F1 score is derived as:

F1 = 2 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
Related concepts: accuracy, precision, recall

Feature (see Column)
Synonyms: column, field, measurement, variable

Field (see Column)
Synonyms: column, feature, measurement, variable

Fuzzy
Fuzzy is a Python library for analyzing phonetic similarity in English texts.

GDBM (GNU dbm)
GDBM is an open source library for providing key/value storage systems.

General Decimal Arithmetic Specification
The General Decimal Arithmetic Specification is a standard for implementation of
arbitrary precision base-10 arithmetic and numeric representation. It incorporates
configurable “contexts”, such as rounding rules in effect. The Python standard
library decimal module, in particular, is an implementation of this standard.

Gensim
Gensim is an open source Python library for NLP, specifically around unsupervised
topic modeling. Gensim contains an implementation of the word2vec algorithm and
a few closely related variants of it.

Glossary

[437]

Gibibyte (GiB)
Metric prefixes are standardized in the International System of Units (SI), by the
International Bureau of Weights and Measures (BIPM). Orders of magnitude—
powers of 10—are indicated by prefixes ranging from yotta- (1024) down to yocto- (10-

24). In particular, the multipliers of 103 (kilo-), 106 (mega-), and 109 (giga-) are almost
right for dealing with typical quantities seen in computer storage.

However, for both historical and practical reasons, bytes of memory or storage are
typically expressed as multiples of 210 (1024) rather than of 103 (1000). These numbers
are relatively close, but while it is common to misname 210, 220, and 230 as kilobyte,
megabyte, and gigabyte, these are wrong. Since 1998, the International Electrotechnical
Commission (IEC) has standardized the use of kibibyte (KiB), mebibyte (MiB), and
gibibyte (GiB) for accurate description of these powers of 2. For larger sizes, we also
have tebibyte (TiB), pebibyte (PiB), exbibyte (EiB), zebibyte (ZiB), and yobibyte (YiB).

ggplot2
A popular book, The Grammar of Graphics (Statistics and Computing), by Leland
Wilkinson (ISBN: 978-0387245447), first published in 2000, introduced a way of
thinking about graphs and data visualizations that breaks down a graph into
components that can be expressed independently. Changing one such orthogonal
component may change the entire appearance of a graph, but will still reflect the
same underlying data in a different manner.

The R library ggplot2 attempts to translate the concepts of that book into concrete
APIs, and has been widely adopted by the R community. The Python libraries
ggplot, to a strong degree, and Bokeh and Altair, to a somewhat lesser extent, also
try to emulate Wilkinson’s “grammar.” Altair is, in turn, built on top of Vega-Lite
and Vega, which have a similar goal to JavaScript libraries.

Glob
A common and simple pattern matching language that is most frequently used
to identify collections of filenames. Both the Bash shell and libraries in many
programming languages support this syntax.

GQL (Graph Query Language)
Graph Query Language is a (pending) standard for querying graph databases,
based on the Cypher language developed by Neo4j for their product.

Glossary

[438]

Gremlin
Gremlin is a graph query language, distinct from GQL. Queries in Gremlin
emphasize a “fluent programming” and functional style of description of nodes
and classes of interest.

Halting problem
The halting problem is probably the most famous result in the theory of
computation. Alan Turing proved in 1936 that there cannot exist any general-
purpose algorithm that answers the question “Will this program ever terminate?”
For some programs, it is provable, of course, but in the general case it is not. Even
running a program for any finite amount of time, N steps, does not answer the
question, since it might yet terminate at step N+1.

In slightly more informal parlance, saying that a given task is “equivalent to the
halting problem” is an idiomatic way of saying that it cannot be solved. At times, the
phrase is used as a speculation about the difficulty of a problem, but at other times
a mathematical proof is known that shows that solving the novel problem would
imply a solution to the halting problem. Within this book, the phrase is used only
in the strict sense, but with an affection for the jargon of computer science.

h5py
H5py is a Python library for working with hierarchical datasets stored in the HDF5
format.

HDF Compass
HDF Compass is an open source GUI tool for examining the content of HDF5 data
files.

Hierarchical data format (HDF5)
The Hierarchical Data Format (HDF5) is an open source file format that supports
large, complex, heterogeneous data. HDF5 uses a hierarchical structure that allows
you to organize data within a file in nested groups. The “leaf” of a hierarchy is a
dataset. An HDF5 file may contain arbitrary and domain-specific metadata about
each dataset or group. Since many HDF5 files contain (vastly) more data than will fit
in computer memory, tools that work with HDF5 generally provide a means of lazily
reading content so that most data remains solely on disk unless or until it is needed.

Glossary

[439]

Hyperparameter
In machine learning models, a general model type is often pre-configured before
it is trained on actual data. Hyperparameters may comprise multipliers, numeric
limits, recursion depths, algorithm variations, or other differences that still make up
the same kind of model. Models can perform dramatically differently with different
hyperparameters.

Idempotent
Idempotence is a useful concept in mathematics, computer science, and generally in
programming. It means that calling the same function again on its own output will
continue to produce the same answer. This is related to the even fancier concept in
mathematics of an attractor.

Imager
Imager reads and writes many image formats and can perform a variety of analysis
processing actions on such images programmatically within R. Images within the
library are treated as 4-dimensional vectors with two spatial dimensions, one time
dimension, and one color dimension. By including time as a dimension, imager can
work with video as well.

imbalanced-learn
imbalanced-learn is an open source Python software library for sensitive
oversampling data. It implements the SMOTE (Synthetic Minority Oversampling
TEchnique) and ADASYN (Adaptive Synthetic) variations of those algorithms, as
well as undersampling techniques. In the main, imbalanced-learn emulates the APIs
of scikit-learn.

Imputation
The process of replacing missing data points with values that are likely, or at least
plausible, to allow machine learning or statistical tools to process all observations.

Interval variable (see NOIR)
Related concepts: categorical variable, continuous variable, nominal variable, ordinal
variable, ratio variable

Glossary

[440]

ISO-8601
ISO-8601 (Data elements and interchange formats – Information interchange –
Representation of dates and times) is an international standard for the representation
of dates and times. For example, generating one while writing this entry, using
Python:

from datetime import datetime
datetime.now().isoformat()

'2020-11-23T14:43:09.083771'

jq
jq is a flexible and powerful tool for command-line filtering, searching, and
formatting JSON, including JSON Lines.

JSON (Javascript Object Notation)
JSON is a language-independent and human-readable format for representation
of the data structures and scalar values typically encountered in programming
languages. It is widely used both as a data storage format and as a message format
to communicate among services.

Jupyter
Project Jupyter is an open source library, written primarily in Python, but
supporting numerous programming languages, to create, view, run, and edit
“notebooks” for literate programming. This book was written using Jupyter Lab,
and its notebooks can be obtained at the book’s repository. In literate programming,
code and documentation are freely interspersed while both rendering as formatted
documents and running as executable code. Whereas R Markdown achieves similar
goals using lightly annotated plain text, Jupyter uses JSON as the storage format for
its notebooks.

Jupyter supports both the somewhat older “notebook” interface and the more recent
“JupyterLab” interface. Both work with the same underlying notebook documents.

Glossary

[441]

Kafka
Apache Kafka is an open source stream processor. As with other stream processors,
and related message brokers, the aggregation of messages sent among systems is
often a fruitful domain for data science analysis.

Kdb+
Kdb+ is a column-store database that was designed for rapid transactions. It is
widely used within high-frequency trading.

Laziness
In computer programming and computer science, sometimes the words “lazy” and
“eager” are used to distinguish approaches to solving a larger problem. Commonly,
for example, an algorithm might transform a large dataset. An eager program
will process all the data at once. In contrast, a lazy program will only perform an
individual transformation when that specific result is needed.

See also: eagerness

LMDB (Lightning Memory-Mapped
Database)
LMDB is an open source library for providing key/value storage systems.

Lemmatization
Canonicalization of words to their grammatical roots for natural language processing
purposes. In contrast to stemming, lemmatization will look at the context a word
occurs in to try to derive both the simplified form and the part of speech.

For example, the English word “dog” is used both as a noun for the animal, and
occasionally as a verb meaning “annoy.” A lemmatization might produce:

we[PRON] dog[VERB] the[DET] dog[NOUN]

Related concept: stemming

Glossary

[442]

Little-endian (see Endianness)
Data arranged into “words” (typically 32-bits), or other units, where the largest
magnitude component (typically a byte) is stored in the earliest position.

MariaDB
MariaDB is a popular open source relational database management system (RDBMS).
It uses standard SQL for queries and interaction, and implements a few custom
features on top of those required by SQL standards. At a point when the GPL-
licensed MySQL was purchased by Oracle, its creator Michael (Monty) Widenius
forked the project to create MariaDB. Widenius’ elder daughter is named “My” and
his younger daughter “Maria.”

MariaDB is API- and ABI-compatible with MySQL, but it adds a few features such
as additional storage engines.

See also: MySQL

Matplotlib
Matplotlib is a powerful and versatile open source plotting library for Python.
For historical reasons, its API originally resembled MATLAB’s, but a more object-
oriented approach is now encouraged. Numerous higher-level libraries and
abstractions are built on top of Matplotlib, including Basemap, Cartopy, Geoplot,
ggplot, holoviews, Seaborn, Pandas, and others.

Measurement (see Column)
Synonyms: column, feature, field, variable

Memcached
Software that keeps key/value associative arrays in memory for the purposes of
caching or proxying slower server responses. Although contents of a memcached
server are transient, snapshotted contents may be useful to analyze for data science
purposes.

Glossary

[443]

Metaphone
Metaphone is an algorithm for the phonetic canonicalization of English words,
published by Lawrence Philips in 1990. The same author later published Double
Metaphone, and then Metaphone 3, each of which successively better takes
advantage of known patterns in words derived from non-English languages.
Metaphone, and its followups, are more precise than the early Soundex developed
for the same purpose.

Mojibake
Mojibake is the nonsensical text that generally results from trying to decode text
using a character encoding different from that used to encode it. Often this will
produce individual characters that belong to a given language or alphabet, but in
combinations that make no sense (sometimes to humorous effect). The word comes
from Japanese, meaning roughly “character transformation.”

MonetDB
MonetDB is an open source column-oriented database management system that
supports SQL and several other query languages or extensions.

MongoDB
MongoDB is a popular document-oriented database management system. It uses
JSON-like storage of its underlying data, and both queries and responses use
JSON documents. MongoDB uses a distinct query language that reflects its mostly
hierarchical arrangement of data into linked documents.

MySQL
MySQL is a widely popular open source relational database management system
(RDBMS). It uses standard SQL for queries and interaction, and implements a
few custom features on top of those required by SQL standards. At a point when
the GPL-licensed MySQL was purchased by Oracle, its creator Michael (Monty)
Widenius forked the project to create MariaDB. Widenius’ elder daughter is named
“My” and his younger daughter “Maria.”

See also: MariaDB

Glossary

[444]

Neo4j
Neo4j is an open source graph database and database management system.

netcdf4-python
netcdf4-python is a Python interface to the netCDF C library.

Network Common Data Form (NetCDF)
NetCDF (Network Common Data Form) is a set of software libraries and machine-
independent data formats that support the creation, access, and sharing of array-
oriented scientific data. It is built on top of HDF5.

NLTK (Natural Language Toolkit)
NLTK is a suite of tools for natural language processing in Python. It includes
numerous corpora, tools for lexical analysis, for named entity recognition, a part of
speech tagger, stemmers and lemmatizers, and a variety of other tools for NLP.

See also: gensim, spaCy

Node.js
Node.js is an open source, standalone JavaScript interpreter that runs outside of
embedded JavaScript in web browsers. It can be used at the command line in the
manner of scripting languages, with an interactive shell, or as a means to run server
processes. The Node.js environment comes with an excellent package manager
called npm (Node Package Manager) that allows you to install additional libraries
easily (much like pip or conda for Python, RubyGems for Ruby, Cabal for Haskell,
Pkg.jl: for Julia, Maven for Java, and so on).

Nominal variable (see NOIR)
Related concepts: categorical variable, continuous variable, interval variable, ratio
variable

Glossary

[445]

NOIR (Nominal, Ordinal, Interval, Ratio)
The acronym NOIR is sometimes used as a mnemonic for different feature types.
This is the French word for “black” but is especially associated, in English, with
a style of “dark” literature or film. The acronym stands for Nominal/Ordinal/
Interval/Ratio.

Nominal or ordinal variables simply record which of a finite number of possible labels
a data item records. This is sometimes called the classes of the variable.

Ordinal variables express a scale from low to high in the data values, but the spacing
in the data may have little to no relationship to the underlying phenomenon. For
example, perhaps a foot race records the first place, second place, third place, etc.
winners, but not the times taken by each. First place crossed the line before second
place, but we have no information on whether it was milliseconds sooner or hours
sooner. Likewise between second and third position, which might differ significantly
from the first gap.

The last variable types are continuous variables, but interval and ratio variables are
importantly different. The difference is in whether there is a “natural zero” in the
data. The domain zero need not always be numeric zero, but commonly it is. Acidity
or alkalinity measured on the pH scale has a natural zero of 7, and generally values
between 0 and 14 (although those are not sharp physical limits). If we used the pH
measure as a feature, we might re-center to numeric zero to express actual ratios
(albeit log ratios for this measure). It is reasonable to treat pH as a ratio variable.

As an example of an interval that is not a ratio, a newspaper article claimed that the
temperature on a certain winter day, in some city, was twice as hot as in average
years based on an artifact of the Fahrenheit scale in which a difference was between
25 °F and 50 °F. This is nonsense as a ratio. It is perfectly useful to talk about the
mean temperature or the standard deviation in temperature, but the numeric ratio
is meaningless (in Celsius or Fahrenheit; in Kelvin or Rankine, it’s minimally
meaningful, but rarely used to describe temperatures in the range that occur on
the surface of the earth). In contrast, the ratio variable of rainfall has a natural zero,
which is also numeric zero. Zero inches (or centimeters) of rain means there was
none. 2 inches of rain is twice as much water falling as 1 inch of rain is.

NumPy
NumPy is an open source Python library for fast and vectorized computations
on multi-dimensional arrays. Nearly all Python libraries that perform numeric
or scientific computation rely on NumPy as an underlying support library. This
includes tools in machine learning, modeling, statistics, visualization, and so on.

Glossary

[446]

Observation (see Row)
Synonyms: record, row, sample, tuple

Ontology
Ontology in philosophy is the study of “what there is.” In data science, an ontology
describes not only what class/subclass and class/instance relationships exist among
entities, but also the kinds of features an entity has. Perhaps most importantly, an
ontology can describe the kinds of relationships that can exist among various entities.

When different kinds of observations can be made, describing the particular
collection of features that pertain to that observation, and the particular data types
and ranges of permissible values each can take on, is an element of the ontology of
the data. Different tables, or data subsets, may have different feature sets and hence
a different ontological role.

Ontology can be important for categorical data especially. Some labels may be
instances of other labels, for example, with varying degrees of specificity. If one
categorical variable indicates that the entity is “mammal,” another that it is “feline,”
and another that it is “house cat,” those are all possibly descriptions of the identical
entity under different taxonomic levels, and hence part of the ontology of the
domain.

The relationships among entities can sometimes be derived from the data
themselves, but often requires domain knowledge. These relationships can often
inform the kinds of models or statistical analysis that make sense. For example, if
the entity underlying a collection of data is a medical patient, parts of the ontology
of the domain might concern whether several different features observed were
collected with the same instrument, or from the same blood sample, or whether the
observations were made on the same day. Even though the features might measure
very different quantities, the “same-day” or “same-instrument” relationships can
inform analysis.

See also: taxonomy

Ordinal variable (see NOIR)
Related concepts: categorical variable, continuous variable, interval variable, ratio
variable

Glossary

[447]

OrientDB
OrientDB is an open source, multi-model database management system. It supports
graph, document, key/value, and object models. Querying may use either Gremlin
or SQL.

Orthonormal basis
Within a highly dimensional space, specifically a parameter space, the location of
an observation point is simply a parameterized sum of each of the dimensions. For
example, if we measure three features in an observation as having the values a, b,
and c, we can express those measurements in 3-D parameter space, with orthogonal
unit vectors 𝑥𝑥𝑥 , 𝑦𝑦𝑦 , and 𝑧𝑧𝑧 , as: 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜 𝑜𝑜𝑜𝑜𝑜 𝑜 𝑜𝑜𝑜𝑜𝑜 𝑜 𝑜𝑜𝑜𝑜𝑜
However, the choice to represent the observation using those particular unit vectors, 𝑥𝑥𝑥 , 𝑦𝑦𝑦 , and 𝑧𝑧𝑧 is somewhat arbitrary. As long as we choose any orthonormal basis—that
is, N mutually perpendicular unit vectors—we can equally well represent all the
relationships among observations. For example:𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎
Decompositions are a means of selecting an alternate orthonormal basis that
distributes the data within the parameter space in a more useful way. Usually,
this means in a way concentrating variance within the initial components (lowest
numbered axes).

Pandas
Pandas is a widely popular, open source Python library for working with data
frames. The name derives from the econometrics term “panel data.” Pandas is built
on top of NumPy, but adds numerous additional capabilities. One of the great
strengths of Pandas is working with time series data. But as with the underlying
NumPy array library and other data frame libraries, most operations on columns
are fast and vectorized.

Glossary

[448]

Parameter space
The parameter space of a set of observations with N features is simply an
N-dimensional space in which each observation occupies a single point. By default,
the vector bases that define the location of a point correspond directly with the
features themselves. For example, in analyzing weather data, we might define
“temperature” as the x-axis, “humidity” as the y-axis, and “barometric pressure” as
the z-axis. Some portion of that 3-D space has points within it, and they form some
pattern or shape that models might analyze and make predictions about.

Under decompositions of the features, we might choose a new orthonormal basis in
which to represent the same data points in a rotated or mirrored N-dimensional space.

Parquet
Apache Parquet is an open source, column-oriented data storage format that
originated in the Hadoop ecosystem, but is widely supported in other programming
languages as well.

PDF (Portable Document Format)
Portable Document Format is a widely used format used to accurately represent the
appearance of documents in a cross-platform, cross-device manner. For example, the
same document will look nearly identical on a computer monitor, a personal printer,
or from a professional press. Fonts, text, images, colors, and lines are some of the
elements PDF renders to a page, whether displayed or printed. PDF was developed
by Adobe, but is currently governed by the open and freely usable standard ISO
32000-2.

Pillow (forked from PIL)
The Python Imaging Library reads and writes many image formats and can perform
a variety of processing actions on such images programmatically within Python.

Poppler
An open source viewing and processing library for Portable Document Format
(PDF). In particular, Poppler contains numerous command-line tools for converting
PDF files to other formats, including text. Poppler is a fork of Xpdf that aims to
incorporate additional capabilities.

See also: Xpdf

Glossary

[449]

PostgreSQL
PostgreSQL is a widely popular, open source relational database management
system (RDBMS). It uses standard SQL for queries and interaction, and implements
custom features and numerous custom data types on top of those required by SQL
standards.

Precision
In a classification model, there are numerous metrics that might express the
“goodness” of a model. Precision is also called “positive predictive value” and is the
fraction of relevant observations among the predicted observations. More informally,
precision answers the question “given it was predicted, how likely is the prediction
to be accurate?”.

For example, consider this hypothetical confusion matrix:

Predicted/Actual Human Octopus Penguin
Human 5 0 2
Octopus 3 3 3
Penguin 0 1 11

In a binary problem, this can be expressed as:

Precision = 𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

For a multiclass problem, as in the confusion matrix, each label has its own precision.
Given the 8 true humans in the dataset, 5 of them were correctly identified. However,
2 non-humans were also so identified; in other words:

Precisionℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 55 + 2 ≈ 71%

An overall precision for a model is often given by averaging (weighted or
unweighted) the precision for each label.

Related concepts: accuracy, F1 score, recall

Glossary

[450]

PyTables
PyTables is a Python library for working with hierarchical datasets stored in the
HDF5 format.

Query planner
When a query is formulated against a database, whether using SQL or another
querying language, the database management system (DBMS) will internally create
a set of planned steps involved in executing that query. Many DBMSs can expose
these plans prior to executing them; users can use this information to judge the
efficiency of database access (and possibly modify queries or refactor the databases
themselves).

A query planner will make decisions about which indices to use, in what order,
the style of search and comparisons across data that may live in many tables or
documents, and other aspects of how a query may be executed efficiently. When
accessing big datasets, the quality of a query planner can often differentiate different
DBMSs.

R Markdown
R Markdown is a format and technology for literate programming. In literate
programming, code and documentation are freely interspersed while both rendering
as formatted documents and running as executable code. Whereas Jupyter
notebooks, which have many of the same qualities, are stored as JSON documents,
R Markdown is purely an extension of the easily human-readable and editable
Markdown format, which lightly annotates plain text with regular punctuation
characters to describe specific visual and conceptual elements. With R Markdown,
code segments are also included as plain text by indicating their sections with a
textual annotation.

RabbitMQ
RabbitMQ is an open source message broker. As with other message brokers, the
aggregations of messages sent among systems is often a fruitful domain for data
science analysis.

Glossary

[451]

Ratio variable (see NOIR)
Related concepts: categorical variable, continuous variable, interval variable, nominal
variable, ordinal variable

Recall
In a classification model, there are numerous metrics that might express the
“goodness” of a model. Recall is also called “sensitivity.” It is the fraction of true
occurrences that are identified by a model.

For example, consider this hypothetical confusion matrix:

Predicted/Actual Human Octopus Penguin
Human 5 0 2
Octopus 3 3 3
Penguin 0 1 11

In a binary problem, this can be expressed as:

Recall = 𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

For a multiclass problem, as in the confusion matrix, each label has its own recall.
There are 8 true humans in the dataset, and 5 of them were identified correctly.
However, 3 humans failed to be identified (in the whimsical example, all were
predicted to be octopi); in other words:

Recallℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 55 + 3 ≈ 62%

An overall recall for a model is often given by averaging (weighted or unweighted)
the recall for each label.

Related concepts: accuracy, F1 score, precision

Record (see Row)
Synonyms: observation, row, sample, tuple

Glossary

[452]

Redis (Remote Dictionary Server)
Redis is an open source, in-memory key/value database. Redis supports numerous
data types and data structures, including strings, lists, maps, sets, sorted sets,
HyperLogLogs, bitmaps, streams, and spatial indices.

Relational database management system
(RDBMS)
An RDBMS is a system for storing data and implementing the relational model
developed by E. F. Codd in 1970. Under this relational model, data is stored in tables,
with each row constituting a tuple of values, the keys to those values named by the
columns of the table. The term “relational” in the name pertains to the fact that data
in one table may be related to data in other tables by declaring foreign key relations
and/or by performing joins in the query syntax.

For several decades, all RDBMSs have supported the SQL querying language,
sometimes with optional extension syntax related to their additional features or
data types. Often, but not quite always, RDBMSs are used on multi-user distributed
servers, with transactions used to orchestrate write actions among those multiple
users.

Popular RDBMSs include PostgreSQL, MySQL, SQLite, Oracle, Microsoft SQL
Server, IBM DB2, and others.

Requests
Requests is a full-featured, open source HTTP access library for Python. It is not
included in the Python standard library, but is ubiquitous and generally preferred
to tools included with minimal Python distributions.

REST (REpresentational State Transfer)
REST is a software educational style that normatively describes patterns of
interactions between HTTP servers and clients. The adjective RESTful is also
frequently used. Under this style, the HTTP methods GET, POST, PUT, and DELETE
are clearly separated by their intended functions. A main emphasis of the style is
statelessness: each request must contain all information needed to elicit a response,
and that response should not be dependent on the sequence of prior actions that
client made.

Glossary

[453]

rhdf5
rhdf5 is an R library for working with hierarchical datasets stored in the HDF5
format.

rjson
rjson is an R library for working with JavaScript Object Notation (JSON).

ROSE (Random Over-Sampling Examples)
ROSE is an R package that creates synthetic samplings in the presence of class
imbalance. It serves a similar purpose to SMOTE oversampling.

Row
A collection of data consisting of multiple named data items pertaining to the same
entity. Depending on the context, the entity can be defined in various ways. For
an object in the physical world, for example, it is common in scientific, and other,
procedures to take a number of different measurements of that same object, and
a row will describe that object. In simulations or other mathematical modeling, a
row may contain the results of synthetic sampling of possible values. Considered
from the point of view of the actual storage of the data, a focus on the tuple or record
structure of the row are more emphasized.

The named data items collected about a single row are generally indicated in the
columns of the data. Each column may have a different data type within it, but each
different row within that column will share the data type but not generally the data
value.

Synonyms: observation, record, sample, tuple

rvest
The rvest package for R is used to scrape and extract data from HTML web pages.

Sample (see Row)
Synonyms: observation, record, row, tuple

Glossary

[454]

Scikit-learn
Scikit-learn is a wide-ranging open source Python library for many machine learning
(ML) and data science tasks. It implements a large number of ML models (both
supervised and unsupervised), metrics, sampling techniques, decompositions,
clustering algorithms, and other tools useful for data science. Throughout its
capabilities, scikit-learn maintains a common API; many additional libraries have
chosen to implement identical or compatible APIs as well.

Scipy.stats
Scipy.stats is a Python module in the NumPy ecosystem that implements many
probability distributions and statistical functions.

Scrapy
Scrapy is a Python library for spidering and analyzing collections of web pages,
including a high-performance engine to coordinate retrievals of many pages.

Seaborn
Seaborn is a Python data visualization library based on matplotlib. It provides a
high-level interface for drawing attractive and informative statistical graphics.

SeqKit
SeqKit is a toolkit for manipulating files in the FASTA and FASTQ formats, which
are used for storing nucleotide and protein sequences.

Signed integer
An integer represented in computer bits of some specific length. In signed integers,
one bit is reserved to hold the sign (negative or positive) of an integer. The largest
integer that can be represented, for N bits storing a number, is 2N – 1 – 1. The smallest
integer that can be represented is –2N – 1.

The sizes of integers in many programming languages match the sizes of memory
units in modern CPUs, and can be 8-bit, 16-bit, 32-bit, 64-bit, or 128-bit. Other bit
lengths are rarely defined.

Glossary

[455]

In data formats and databases, sizes might be defined by a number of decimal digits
rather than binary bits. Some programming languages, such as Python, TCL, and
Mathematica in their default integers, and numerous other programming languages
using specific libraries, allow for arbitrary-precision integers that have no size
bound. They do this by dynamically allocating more bits to store larger numbers as
needed.

See also: unsigned integer

Solr
Apache Solr is a search engine based on the Lucene library. As a part of
implementing a search engine, Solr contains a document-oriented database or
data store.

spaCy
spaCy is an open source software library for advanced natural language processing.
It is focused on production use and integrates with deep-learning frameworks.

SPARQL Protocol and RDF Query Language
Had J. B. S. Haldane lived later, he might have commented that free software
developers have “an inordinate fondness for recursive acronyms” (YAML, GNU,
and so on). SPARQL is a query language for RDF (Resource Description Framework),
or the “semantic web.” It has been implemented for a variety of programming
languages. SPARQL expresses queries in the form of “subject-predicate-object”
triples. This has some similarity to key/value stores, but more to graph databases.

Sphering (see whitening)
Normalization of data under a decomposition.

Synonym: whitening

SQLAlchemy
SQLAlchemy is a Python library that provides an “object-relational mapping”
between the tabular and relational structure of RDBMS tables and an object-oriented
interface.

Glossary

[456]

SQLAlchemy can use drivers for all popular SQL databases, and exposes a variety of
methods for manipulating their data within Python.

SQLite
SQLite is a small, fast, self-contained, high-reliability, full-featured, SQL database
engine that stores multiple data tables in single files. Bindings to access SQLite
(version 3) are available for all popular programming languages. The library also
comes with a command-line tool and shell for manipulation of data using only SQL.

State machine
A “finite-state machine,” “finite automaton,” or simply “state machine” is a model
of computation in which the focus moves among a finite number of states or nodes
based on a specific sequence of input.

STDOUT / STDERR / STDIN
In Unix-like command shells, there are three special files/streams called “standard
output,” “standard error,” and “standard input.” They are ubiquitously abbreviated
as “STDOUT,” “STDERR,” and “STDIN” respectively. Composed command-line
tools treat these streams in special ways, and they are utilized widely. In particular,
STDOUT is usually “data” output, while STDERR is usually “status” output, even
though they may appear interspersed in terminal sessions.

Stemming
Canonicalization of words to their grammatical roots for natural language processing
purposes. In contrast to lemmatization, stemming only treats words individually
without their context, and hence can be less accurate.

Related concept: lemmatization

Structured data
While the term “unstructured data” is often used, it is somewhat of a misnomer.
“Loosely structured,” or “semi-structured,” would be more accurate. For example,
the paradigmatic example of textual data is at very least structured by the particular
sequence in which words occur.

Glossary

[457]

Quite likely, it is further organized by sequences belonging to chapters, separate
messages, or other such units (themselves likely structured by sequence), and
moreover usually a variety of metadata, such as author identity, subject line, forum,
and thread, also pertain to the text itself.

Tab-separated values (TSV; see Comma-
separated values)
Delimited files where tabs are used as the line delimiter.

Tabula
Tabula-java is the underlying engine for the GUI tool Tabula. Other bindings
include tabula-extractor for Ruby, tabula-py for Python, tabulizer for R, and tabula-js for
Node.js. The engine and the tools that utilize it provide interfaces to extract tabular
data represented in PDF documents.

Taxonomy
Taxonomy is, in some sense, a special aspect of ontology; it describes the hierarchical
relationships among categories of entities. Some labels may be instances of other
labels, for example, with varying degrees of specificity. If one categorical variable
indicates the entity is a “mammal,” another that it is “feline,” and another that it is
“house cat,” those are all possibly descriptions of the identical entity under different
taxonomic levels, and hence part of the ontology of the domain.

While taxonomy is largely narrower than ontology, taxonomy also tends to
indicate a focus on the more global level of the domain, not a narrow region of
that domain. When one speaks of a taxonomy, it generally indicates an interest
in all the relationships among all the classes of entities, and an expectation that
those relationships will be tree-like and hierarchical. One might describe ontological
features of a single entity, or a small collection of entities, but a taxonomy will
normally describe the entire domain of all possible entities.

See also: ontology

Glossary

[458]

tibble
The R library tibble is an implementation of the data frame abstraction, but one
that tries to do less than other libraries. Quoting from the official documentation:

Tibbles are data.frames that are lazy and surly: they do less (i.e. they don’t change
variable names or types, and don’t do partial matching) and complain more (e.g.
when a variable does not exist). This forces you to confront problems earlier, typically
leading to cleaner, more expressive code.

See also: data.frame, data.table

Tidyverse
The Tidyverse is a collection of R packages that share a common philosophy of API
design and that are designed to work well together. Core libraries of the Tidyverse
are ggplot2, dplyr, tidyr, readr, purrr, tibble, stringr, and forcats. A variety of other
optional packages are also designed to work well with the base collection.

At core, the Tidyverse has an attitude of making data into “tidy” forms, in the sense
discussed at more length in Chapter 1, Tabular Formats. As well, the tools within the
Tidyverse lend themselves to composition by piping data between methods in a
“fluent programming” style.

Tuple (see Row)
Synonyms: observation, record, row, sample

Unsigned integer
An integer represented in computer bits of some specific length. In unsigned
integers, no bits are reserved to hold the sign (negative or positive) of an integer,
and hence only number zero through a maximum size can be represented. For N
bits storing a number, the largest number representable is 2N – 1.

Sizes of integers in many programming languages match sizes of memory units in
modern CPUs, and can be 8-bit, 16-bit, 32-bit, 64-bit, or 128-bit. Other bit lengths are
rarely defined. In data formats and databases, sizes might be defined by a number of
decimal digits rather than binary bits.

Glossary

[459]

Some programming languages, such as Python, TCL, and Mathematica in their
default integers, and numerous other programming languages using specific
libraries, allow for arbitrary-precision integers that have no size bound. They do
this by dynamically allocating more bits to store larger numbers as needed.

See also: signed integer

Variable (see Column)
Synonyms: column, feature, field, measurement

Web 0.5
The term “Web 0.5” is a neologism and back-construction from the term “Web 2.0.”
The latter became popular as a term in the late 2000s. Whereas Web 2.0 was meant
as an evolution of the World Wide Web into highly interactive, highly dynamic,
visually rich content, Web 0.5 is meant to hearken back to the static, compact, and
text-oriented web pages that were developed in the early 1990s. The writer Danny
Yee publicized this term, to the minor extent it is used.

Web 0.5 web pages are intended primarily for human readership, in contrast to
RESTful web services, which are primarily intended to communicate data among
computer servers and applications. Their simplicity, however, also makes them
easily accessible to web scraping techniques, where relevant.

Whitening
Normalization of data under a decomposition. Transformations such as Principle
Component Analysis (PCA) reduce the variance of each subsequent component
successively. Whitening is simply rescaling the data within each component to a
common scale and center.

Synonym: sphering

XML (eXtensible Markup Language)
XML is a markup language that defines a grammar for representing documents
and ancillary schema languages for defining dialects within that broad grammar.
The content of XML is always text, and is, in principle, human-readable while also
enforcing a strict structure for automated processing. In essence, XML defines a
hierarchical format in which arbitrary elements may be arranged.

Glossary

[460]

XML is used widely in domains such as internal formats for office applications, for
representing geospatial data, for message-passing among cooperating services, for
scientific data, and for many other application uses.

Xpdf
An open source viewing and processing library for Portable Document Format.
In particular, Xpdf contains several command-line tools for converting PDF files
to other formats, including text. The Poppler fork aims to incorporate additional
capabilities that the Xpdf authors consider out of scope for that project.

See also: Poppler

YAML
YAML is, light-heartedly, an acronym for either “YAML Ain’t Markup Language”
or “Yet Another Markup Language.” It is intended as a highly human-readable
and human-writable format that can represent most of the data structures and data
types widely used in programming languages. Libraries supporting the reading
and writing of YAML from or to native data structures are available for numerous
programming languages.

Share your experience

Thank you for taking the time to read this book. If you enjoyed this book, help
others to find it. Leave a review at https://www.amazon.com/dp/1801071292

https://www.amazon.com/dp/1801071292

[461]

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and

Videos from over 4,000 industry professionals
•	 Improve your learning with Skill Plans built especially for you
•	 Get a free eBook or video every month
•	 Fully searchable for easy access to vital information
•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at packt.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://packt.com
http://packt.com
http://customercare@packtpub.com
http://www.packt.com

[463]

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Clean Code in Python. - Second Edition

Mariano Anaya

ISBN: 978-1-80056-021-5

•	 Set up a productive development environment by leveraging automatic tools
•	 Leverage the magic methods in Python to write better code, abstracting

complexity away and encapsulating details
•	 Create advanced object-oriented designs using unique features of Python,

such as descriptors
•	 Eliminate duplicated code by creating powerful abstractions using software

engineering principles of object-oriented design
•	 Create Python-specific solutions using decorators and descriptors
•	 Refactor code effectively with the help of unit tests
•	 Build the foundations for solid architecture with a clean code base as its

cornerstone

https://www.packtpub.com/product/clean-code-in-python-second-edition/9781800560215

[464]

Other Books You May Enjoy

Machine Learning Using TensorFlow Cookbook

Alexia Audevart

Konrad Banachewicz

Luca Massaron

ISBN: 978-1-80020-886-5

•	 Grasp linear regression techniques with TensorFlow
•	 Use Estimators to train linear models and boosted trees for classification or

regression
•	 Execute neural networks and improve predictions on tabular data
•	 Master convolutional neural networks and recurrent neural networks

through practical recipes
•	 Apply reinforcement learning algorithms using the TF-Agents framework
•	 Implement and fine-tune Transformer models for various NLP tasks
•	 Take TensorFlow into production

https://www.packtpub.com/product/machine-learning-using-tensorflow-cookbook/9781800208865

[465]

Other Books You May Enjoy

Pandas 1.x Cookbook - Second Edition

Matthew Harrison

Theodore Petrou

ISBN: 978-1-83921-310-6

•	 Master data exploration in pandas through dozens of practice problems
•	 Group, aggregate, transform, reshape, and filter data
•	 Merge data from different sources through pandas SQL-like operations
•	 Create visualizations via pandas hooks to matplotlib and seaborn
•	 Use pandas, time series functionality to perform powerful analyses
•	 Import, clean, and prepare real-world datasets for machine learning
•	 Create workflows for processing big data that doesn’t fit in memory

https://www.packtpub.com/product/pandas-1-x-cookbook-second-edition/9781839213106

[466]

Other Books You May Enjoy

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.
com and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that
we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

[467]

Index

A
accuracy 266, 427
Adaptive Synthetic (ADASYN) 341, 439
alternate trend imputation 345, 346
Apache ActiveMQ 427
Apache Arrow 43
Apache Avro 43
Apache Cassandra 43, 428
Apache Hive 53
Apache Parquet 42, 52-54, 448
Apache Pig 53
Apache Solr 455
Apache Spark 53
application programming interface

(API) 433
arrow package 53
autocorrelation 267-271, 280
averaging 315
awk 64

B
bag-of-words 379
bcolz 44
Beautiful Soup 137, 427
Benford’s law 244, 245
Berkeley DB 128, 428
Bespoke validation 282

collation validation 283-287
transcription validation 287-291

bias 233-236
detecting 236-240

biasing trends 233
comparison, to baselines 240-244

big data 428

big-endian 428, 434
binarization 398
Binary JSON (BSON) 121, 428
binary serialized data

structures 165-169
Body Mass Index (BMI) 220

C
canonicalization 456
carriage return (CR) 430
Cartopy 87
Cassandra Query Language (CQL) 428
categorical variables 429
channel manipulation 159, 160
character encodings 175-181
chardet module 180, 429
chimera 429
classes 445
Classification And REgression

Training (caret) 337, 428
class imbalance 246-253
Cloudera Impala 53
collation validation 283-287
column 429
command-line scraping 146, 147
comma-separated values

(CSV) 9, 10, 430
advantages 18-21
disadvantages 13-18
sanity check 10-12
textual data 13

concatenated JSON 83
configuration files 108

concepts 108
Configure Unify Execute (CUE) 93

[468]

content delivery network (CDN) 252
continuous variables 430
Coreutils 430
Corpus 430
correlation imputation 314
CouchDB 121, 430
CrateDB 121, 431
cuDF 58
curse of dimensionality 413, 431
custom text formats 170

character encodings 175-181
structured log 171-174

cyclicity 267-271

D
Dask 14, 19, 58
data artifact 431
database management system

(DBMS) 450
Database Manager (DBM) 128
data characterization

exercises 291-293
data formats 42, 43

HDF5 44
NetCDF-4 44

data frames 55, 56, 432
in Derived Wrappers 58, 59
in Pandas 58, 59
in Scala 56, 57
in Spark 56, 57
in Vaex 59, 60

data frames, in R
data.table 63
Tidyverse 61, 62

Data Mining with R (DMwR) 337, 433
dataset 433
data.table 63, 432
Data Types 78-82
Date/Time fields 353, 354

datetimes, creating 354, 355
duplicated timestamps 358, 359
regularity, imposing 355-357
timestamps, adding 359-363

datetimes, creating 354, 355

decomposition 388
deep neural network (DNN) 424
denormalization 433
Derived Wrappers

data frames 58, 59
detrending 269
dimensionality reduction 391-394
directed acyclic graph (DAG) 58, 71
discovered cycles 278-281
distributed Stochastic Neighbor

Embedding (t-SNE) 394
DNA Data Bank of Japan (DDBJ) 283
Doc2Vec 383
Document Object Model (DOM) 433
document-oriented databases 121-123

CouchDB 121
CrateDB 121
denormalization 125, 126
discontents 125, 126
Elasticsearch 121
missing fields 123-125
MongoDB 121
Solr 121

Document Type Definition (DTD) 100
domain knowledge trends 271-278
domain-specific knowledge 433
double Metaphone 368
dplyr 61
duplicated timestamps 358, 359

E
eagerness 434
Elasticsearch 121, 434
endianness 434, 435

little-endian 434, 442
big-endian 428, 434

entropy 393
Excel

tidy data 65, 66
Exchangeable Image File Format (Exif)

161
explicit categories 372-379
eXtensible Markup Language

(XML) 99, 100, 459
user records 100-102

[469]

F
F1 Score 436
factor 351, 375

weighting 262-266
factor levels 246
false precision 306
fastparquet 53
feather 43
feature 436
feature selection 413-417

decomposition 388
feature selection models

limitations 415
Federal Information Processing

Standards (FIPS) 89
field 436
filled area

exploring 130
fixed bounds 205-210
Flat Custom Formats 109, 110
fonetika 223
formula 413
forward-/backward-fill 314, 315
Fuzzy 369, 436
Fuzzy matching 367-372

G
General Decimal Arithmetic

Specification 436
Gensim 436
Geographic Information Systems

(GISes) 85
GeoJSON 85-88
geometric mean 305
ggplot2 437
Gibibyte (GiB) 437
Glob 437
global imputation

from linear trend 316
GNU dbm (GDBM) 128, 436
Graph Query Language (GQL) 119, 437
Gremlin 119, 438

H
h5py 46, 438
Hadoop File System (HDFS) 53
halting problem 438
harmonic mean 305
HDF Compass 438
Hierarchical Data Format

(HDF5) 42-44, 438
tools and libraries 45-50

hierarchical formats
missing data 196

HTML tables 137-140
hyperparameters 439

I
idempotence 439
image formats 153

channel manipulation 159, 160
metadata 161-164
pixel statistics 156-159

image metadata 153, 155
imager library 154, 439
imbalanced-learn package 337, 439
imputation 439

alternate trend imputation 345, 346
correlation imputation 314
global imputation, from linear trend 316
locality imputation 309-312
trend imputation 313, 314
typical-value imputation 301

independent component analysis
(ICA) 389

INI files 109, 110
International Bureau of Weights and

Measures (BIPM) 437
International System of Units (SI) 437
Internet Engineering Task Force (IETF)

73
interquartile range (IQR) 211-218, 260
interval variables 439
ISO-8601 440

[470]

J
Japan Electronic Industries Development

Association (JEIDA) 165
JavaScript Object Notation

(JSON) 73-75, 440, 453
Binary JSON (BSON) 121, 428
concatenated JSON 83
Data Types 78-82

JSON Lines 82-85
JSON Schema 92-98

length-prefixed JSON 83
missing data 196
Newline Delimited JSON (ndjson) 82
Not-a-Number (NaN), handling 78-82
rjson 453

jq 75, 440
JSON Lines 82-85
JSON Schema 92-98
Jupyter notebooks 440, 450

K
Kafka 441
kdb+ 43, 441
Keyhole Markup Language

(KML) 85, 102-107
key/value store 127-130

L
larger coarse time series 317, 318

consistency, imputing 322-324
data 318, 320
interpolation 325, 327
unstable data, removing 321, 322

latent Dirichlet allocation (LDA) 389
laziness 441
lemmatization 385, 441
length-prefixed JSON 83
levels

characterizing 418
libxml2 101
libxslt 101
Lightning Memory-Mapped Database

(LMDB) 128, 441
little-endian 434, 442

locality imputation 309-312
local regression 314

M
machine learning (ML) 454
machine learning (ML) model

applying 256, 257
MariaDB 43, 442
Matplotlib 442
measurement 442
Memcached 127, 442
metadata 161-164
Metaphone 368, 443
metaphone() function 369
Michelson-Morley experiment 221, 222
Minnesota Multiphasic Personality

Inventory (MMPI) 434
miscoded data 201-204
missing data 191, 192, 228-232

in hierarchical formats 196
in JSON 196
in sentinels 197-200
in SQL 192-196

misspelled words
exercise 223, 224

Mojibake 176, 443
MonetDB 43, 443
MongoDB 121, 443
multiple features

balancing 346-348
multivariate outliers 219-221
MySQL 30, 443

N
National Center for Supercomputing

Applications (NCSA) 44
National Oceanic and Atmospheric

Administration (NOAA) 198
natural language processing

(NLP) 364, 379, 430
Natural Language Toolkit

(NLTK) 380, 444
Neo4j 119, 444
NetCDF-4 44

tools and libraries 45-50

[471]

netcdf4-python 46, 444
Network Common Data Form

(NetCDF) 42, 44, 444
Newline Delimited JSON (ndjson) 82
Node.js 444
Node Package Manager (npm) 444
noise 393
Nominal, Ordinal, Interval, Ratio

(NOIR) 445
nominal variable 444
non-local regression 314
non-negative matrix factorization

(NMF) 389
non-tabular data 140-146
non-temporal trends 327-331
normalization 254, 255
NoSQL databases 119

concepts 120
key/value store 127-130

Not-a-Number (NaN) 78, 191
handling 78-82

NPY parser
enhancing, exercise 182, 183

NumPy 87, 445
NPY format 166

O
observation 445
one-hot encoding 407, 408, 409
ontology 446
optical character recognition (OCR) 154
ordinal variables 445, 446
ordinary least-squares (OLS) 316
OrientDB 119, 447
orthonormal basis 447
outliers 211

interquartile range (IQR) 216-218
Z-Score 211-215

oversampling 339-344
oversampled polls, exercises 294, 295

P
Pandas 447

.melt() 7

.to_datetime() 26

.astype() 27

.sample() 39

.read_parquet() 54
sentinel values 198
.describe() 230
.autocorr() 280
.fillna() 314
.interpolate() 315, 325
.groupby() 321
.drop_duplicates() 358
.get_dummies() 407
data frames 58

paragraph vector 383
parameter space 448
parcel 318
pdftotext tool 148
PIL 154
Pillow 154, 448
pink noise

versus white noise 391
pixel statistics 156-159
polynomial features

constructing 410
generating 410
synthetic features 411, 413

Poppler 148, 448, 460
portable document format

(PDF) 148-153, 448
positive predictive value 449
PostgreSQL 30, 449
precision 449
principal component analysis

(PCA) 389, 459
PROJ 87
Protocol Buffers 43
pyarrow 53
PyTables 46, 450
python-Levenshtein 223

Q
quantization 398-406
query planner 450
quiet NaN

versus signaling NaN 195

[472]

R
R

SQL data, reading 34, 35
RabbitMQ 450
Random Over-Sampling Examples

(ROSE) 337, 453
Raster 153
ratio variable 451
Ray 58
RDF Query Language 455
recall 451
record 451
record separator-delimited 82
regularity, imposing 355-357
relational database management

system (RDBMS) 29, 442-452
relational model

creating 131, 132
Remote Dictionary Server (Redis) 127,

452
Representational State Transfer

(REST) 74, 452
Requests library 137, 452
rhdf5 46, 453
ribosomal RNA (rRNA) 283
rjson 453
R Markdown 450
rotation 389
row 453
R package stringdist 223
R tibbles 15
rvest package 137, 453

S
sample 453
sample weighting 263-266
sampling 332-334
Scala

data frames 56, 57
scaling 254, 255

scaling layer 262
techniques 257-262

Scikit-learn 454
Scipy.stats 454

Scrapy 137, 454
Seaborn 230, 454
sensitivity 451
sentinels

missing data 197-200
sentinel value 191

SeqKit 454
using 284

Shapely 87
signaling NaN

versus quiet NaN 195
signed integer 454
Solr 121
Soundex 367
spaCy 383, 455
Spark 19

data frames 56, 57
sparklyr 53
SPARQL Protocol and RDF Query

Language (SPARQL) 119, 455
spectre of automation 425
sphering 389, 455
spreadsheets

disadvantages 21-28
SQLAlchemy 30, 455
SQLite 42, 50-52, 456
SQLite3 30
SQL RDBMS 29, 30

massaging data types 30-34
StandardScaler 258
statelessness 452
state machine 456
STDERR 456
STDIN 456
STDOUT 456
stemming 385, 456
string fields 364-366

explicit categories 372-379
Fuzzy matching 367-372

string vectors 379-387
structured data 456
structured log 171-174
Structured Query Language (SQL) 29

disadvantages 36-41
missing data 192-196
tidy data 67

[473]

support attribute 415
synthetic features

generating 411, 413
Synthetic Minority Over-sampling

TEchnique (SMOTE) 341, 439

T
tab-separated values (TSV) 457
Tabula 148

tabula-extractor 148
tabula-java 148, 457
tabula-js 148
tabula-py 148
tabulizer 148

Taxonomy 457
t-distributed stochastic neighbor

embedding (t-SNE) 389
Thrift 43
tibble 458
tidy data 4-9

from Excel 65, 66
from SQL 67

Tidy Geography 88-92
tidyr package 8
Tidyverse 61, 458
time-sensitive regression 314, 315
timestamps, adding 359-363
tokenization 381
Tom’s Obvious, Minimal Language

(TOML) 108-113
transcription validation 287-291
trend imputation 313, 314
trends

types 314
tuple 458
type affinity 51
typical tabular data 302-308
typical-value imputation 301

U
undersampling 335-338
Uniform Manifold Approximation and

Projection (UMAP) 396
unit in the last place (ULP) 258

unsigned integer 458, 459
user interface (UI) 28

V
Vaex 14

data frames 59, 60
variables 459
vectorization techniques

bag-of-words 379
Word2Vec 383

visualization 394-397

W
Wayback Machine 137
Web 0.5 459
web scraping 136, 137

command-line scraping 146, 147
HTML tables 137-140
non-tabular data 140-146

Web traffic
scraping, exercise 183, 185

whitening 389, 391, 459
white noise

versus pink noise 391
Word2Vec 383

X
Xpdf 148, 448, 460

Y
YAML Ain’t Markup Language

(YAML) 108, 114-118, 460

Z
Zarr 44
Z-Score 211-215

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Part I - Data Ingestion
	Chapter 1: Tabular Formats
	Tidying Up
	CSV
	Sanity Checks
	The Good, the Bad, and the Textual Data
	The Bad
	The Good

	Spreadsheets Considered Harmful
	SQL RDBMS
	Massaging Data Types
	Repeating in R
	Where SQL Goes Wrong (and How to Notice It)

	Other Formats
	HDF5 and NetCDF-4
	Tools and Libraries

	SQLite
	Apache Parquet

	Data Frames
	Spark/Scala
	Pandas and Derived Wrappers
	Vaex
	Data Frames in R (Tidyverse)
	Data Frames in R (data.table)
	Bash for Fun

	Exercises
	Tidy Data from Excel
	Tidy Data from SQL

	Denouement

	Chapter 2: Hierarchical Formats
	JSON
	What JSON Looks Like
	NaN Handling and Data Types
	JSON Lines
	GeoJSON
	Tidy Geography
	JSON Schema

	XML
	User Records
	Keyhole Markup Language

	Configuration Files
	INI and Flat Custom Formats
	TOML
	Yet Another Markup Language

	NoSQL Databases
	Document-Oriented Databases
	Missing Fields
	Denormalization and Its Discontents

	Key/Value Stores

	Exercises
	Exploring Filled Area
	Create a Relational Model

	Denouement

	Chapter 3: Repurposing Data Sources
	Web Scraping
	HTML Tables
	Non-Tabular Data
	Command-Line Scraping

	Portable Document Format
	Image Formats
	Pixel Statistics
	Channel Manipulation
	Metadata

	Binary Serialized Data Structures
	Custom Text Formats
	A Structured Log
	Character Encodings

	Exercises
	Enhancing the NPY Parser
	Scraping Web Traffic
	Denouement

	Part II - The Vicissitudes of Error
	Chapter 4: Anomaly Detection
	Missing Data
	SQL
	Hierarchical Formats
	Sentinels

	Miscoded Data
	Fixed Bounds
	Outliers
	Z-Score
	Interquartile Range

	Multivariate Outliers
	Exercises
	A Famous Experiment
	Misspelled Words

	Denouement

	Chapter 5: Data Quality
	Missing Data
	Biasing Trends
	Understanding Bias
	Detecting Bias
	Comparison to Baselines
	Benford’s Law

	Class Imbalance
	Normalization and Scaling
	Applying a Machine Learning Model
	Scaling Techniques
	Factor and Sample Weighting

	Cyclicity and Autocorrelation
	Domain Knowledge Trends
	Discovered Cycles

	Bespoke Validation
	Collation Validation
	Transcription Validation

	Exercises
	Data Characterization
	Oversampled Polls

	Denouement

	Part III - Rectification and Creation
	Chapter 6: Value Imputation
	Typical-Value Imputation
	Typical Tabular Data
	Locality Imputation

	Trend Imputation
	Types of Trends
	A Larger Coarse Time Series
	Understanding the Data
	Removing Unusable Data
	Imputing Consistency
	Interpolation

	Non-Temporal Trends

	Sampling
	Undersampling
	Oversampling

	Exercises
	Alternate Trend Imputation
	Balancing Multiple Features

	Denouement

	Chapter 7: Feature Engineering
	Date/Time Fields
	Creating Datetimes
	Imposing Regularity
	Duplicated Timestamps
	Adding Timestamps

	String Fields
	Fuzzy Matching
	Explicit Categories

	String Vectors
	Decompositions
	Rotation and Whitening
	Dimensionality Reduction
	Visualization

	Quantization and Binarization
	One-Hot Encoding
	Polynomial Features
	Generating Synthetic Features
	Feature Selection

	Exercises
	Intermittent Occurrences
	Characterizing Levels
	Denouement

	Part IV - Ancillary Matters
	Closure
	What You Know
	What You Don’t Know (Yet)

	Glossary
	Other Books You May Enjoy
	Index

