
“TPiP” — 2006/1/30 — 15:07 — page i — #1i
i

i
i

i
i

i
i

half title page

“TPiP” — 2006/1/30 — 15:07 — page ii — #2i
i

i
i

i
i

i
i

BLANK

“TPiP” — 2006/1/30 — 15:07 — page iii — #3i
i

i
i

i
i

i
i

title page

“TPiP” — 2006/1/30 — 15:07 — page iv — #4i
i

i
i

i
i

i
i

copyright page

“TPiP” — 2006/1/30 — 15:07 — page v — #5i
i

i
i

i
i

i
i

Contents

PREFACE ix
0.1 What Is Text Processing? . ix
0.2 The Philosophy of Text Processing . x
0.3 What You’ll Need to Use This Book . xi
0.4 Conventions Used in This Book . xii
0.5 A Word on Source Code Examples . xiv
0.6 External Resources . xiv

0.6.1 General Resources . xiv
0.6.2 Books . xv
0.6.3 Software Directories . xv
0.6.4 Specific Software . xvi

ACKNOWLEDGMENTS xvii

1 PYTHON BASICS 1
1.1 Techniques and Patterns . 1

1.1.1 Utilizing Higher-Order Functions in Text Processing 1
1.1.2 Exercise: More on combinatorial functions 7
1.1.3 Specializing Python Datatypes 8
1.1.4 Base Classes for Datatypes . 13
1.1.5 Exercise: Filling out the forms (or deciding not to) 34
1.1.6 Problem: Working with lines from a large file 37

1.2 Standard Modules . 41
1.2.1 Working with the Python Interpreter 41
1.2.2 Working with the Local Filesystem 57
1.2.3 Running External Commands and Accessing OS Features 73
1.2.4 Special Data Values and Formats 82

1.3 Other Modules in the Standard Library 89
1.3.1 Serializing and Storing Python Objects 90
1.3.2 Platform-Specific Operations . 100
1.3.3 Working with Multimedia Formats 104
1.3.4 Miscellaneous Other Modules . 105

“TPiP” — 2006/1/30 — 15:07 — page vi — #6i
i

i
i

i
i

i
i

vi CONTENTS

2 BASIC STRING OPERATIONS 111
2.1 Some Common Tasks . 112

2.1.1 Problem: Quickly sorting lines on custom criteria 112
2.1.2 Problem: Reformatting paragraphs of text 115
2.1.3 Problem: Column statistics for delimited or flat-record files . . . 117
2.1.4 Problem: Counting characters, words, lines, and

paragraphs . 120
2.1.5 Problem: Transmitting binary data as ASCII 121
2.1.6 Problem: Creating word or letter histograms 123
2.1.7 Problem: Reading a file backwards by record, line, or paragraph 126

2.2 Standard Modules . 128
2.2.1 Basic String Transformations . 128
2.2.2 Strings as Files, and Files as Strings 147
2.2.3 Converting Between Binary and ASCII 158
2.2.4 Cryptography . 163
2.2.5 Compression . 172
2.2.6 Unicode . 185

2.3 Solving Problems . 194
2.3.1 Exercise: Many ways to take out the garbage 194
2.3.2 Exercise: Making sure things are what they should be 195
2.3.3 Exercise: Finding needles in haystacks (full-text indexing) 199

3 REGULAR EXPRESSIONS 203
3.1 A Regular Expression Tutorial . 204

3.1.1 Just What Is a Regular Expression, Anyway? 204
3.1.2 Matching Patterns in Text: The Basics 205
3.1.3 Matching Patterns in Text: Intermediate 209
3.1.4 Advanced Regular Expression Extensions 215

3.2 Some Common Tasks . 220
3.2.1 Problem: Making a text block flush left 220
3.2.2 Problem: Summarizing command-line option

documentation . 221
3.2.3 Problem: Detecting duplicate words 223
3.2.4 Problem: Checking for server errors 224
3.2.5 Problem: Reading lines with continuation characters 226
3.2.6 Problem: Identifying URLs and email addresses in texts 228
3.2.7 Problem: Pretty-printing numbers 229

3.3 Standard Modules . 231
3.3.1 Versions and Optimizations . 231
3.3.2 Simple Pattern Matching . 232
3.3.3 Regular Expression Modules . 234

“TPiP” — 2006/1/30 — 15:07 — page vii — #7i
i

i
i

i
i

i
i

CONTENTS vii

4 PARSERS AND STATE MACHINES 257
4.1 An Introduction to Parsers . 258

4.1.1 When Data Becomes Deep and Texts Become Stateful 258
4.1.2 What Is a Grammar? . 260
4.1.3 An EBNF Grammar for IF/THEN/END Structures 263
4.1.4 Pencil-and-Paper Parsing . 264
4.1.5 Exercise: Some variations on the language 265

4.2 An Introduction to State Machines . 267
4.2.1 Understanding State Machines 267
4.2.2 Text Processing State Machines 268
4.2.3 When Not to Use a State Machine 269
4.2.4 When to Use a State Machine . 272
4.2.5 An Abstract State Machine Class 273
4.2.6 Processing a Report with a Concrete State Machine 274
4.2.7 Subgraphs and State Reuse . 280
4.2.8 Exercise: Finding other solutions 281

4.3 Parser Libraries for Python . 282
4.3.1 Specialized Parsers in the Standard Library 282
4.3.2 Low-Level State Machine Parsing 286
4.3.3 High-Level EBNF Parsing . 316
4.3.4 High-Level Programmatic Parsing 328

5 INTERNET TOOLS AND TECHNIQUES 343
5.1 Working with Email and Newsgroups . 344

5.1.1 Manipulating and Creating Message Texts 345
5.1.2 Communicating with Mail Servers 366
5.1.3 Message Collections and Message Parts 372

5.2 World Wide Web Applications . 376
5.2.1 Common Gateway Interface . 376
5.2.2 Parsing, Creating, and Manipulating HTML Documents 383
5.2.3 Accessing Internet Resources . 388

5.3 Synopses of Other Internet Modules . 394
5.3.1 Standard Internet-Related Tools 395
5.3.2 Third-Party Internet-Related Tools 398

5.4 Understanding XML . 399
5.4.1 Python Standard Library XML Modules 403
5.4.2 Third-Party XML-Related Tools 408

A A Selective and Impressionistic Short Review of Python 417
A.1 What Kind of Language Is Python? . 418
A.2 Namespaces and Bindings . 418

A.2.1 Assignment and Dereferencing 418
A.2.2 Function and Class Definitions 419
A.2.3 import Statements . 420
A.2.4 for Statements . 420
A.2.5 except Statements . 421

“TPiP” — 2006/1/30 — 15:07 — page viii — #8i
i

i
i

i
i

i
i

viii CONTENTS

A.3 Datatypes . 421
A.3.1 Simple Types . 421
A.3.2 String Interpolation . 423
A.3.3 Printing . 425
A.3.4 Container Types . 427
A.3.5 Compound Types . 430

A.4 Flow Control . 432
A.4.1 if/then/else Statements . 433
A.4.2 Boolean Shortcutting . 434
A.4.3 for/continue/break Statements 434
A.4.4 map(), filter(), reduce(), and List Comprehensions 435
A.4.5 while/else/continue/break Statements 438
A.4.6 Functions, Simple Generators, and the yield Statement 439
A.4.7 Raising and Catching Exceptions 441
A.4.8 Data as Code . 445

A.5 Functional Programming . 446
A.5.1 Emphasizing Expressions Using lambda 447
A.5.2 Special List Functions . 448
A.5.3 List-Application Functions as Flow Control 450
A.5.4 Extended Call Syntax and apply() 450

B A DATA COMPRESSION PRIMER 453
B.1 Introduction . 453
B.2 Lossless and Lossy Compression . 454
B.3 A Data Set Example . 454
B.4 Whitespace Compression . 455
B.5 Run-Length Encoding . 455
B.6 Huffman Encoding . 456
B.7 Lempel-Ziv Compression . 457
B.8 Solving the Right Problem . 458
B.9 A Custom Text Compressor . 459
B.10 References . 464

C UNDERSTANDING UNICODE 465
C.1 Some Background on Characters . 465
C.2 What Is Unicode? . 466
C.3 Encodings . 467
C.4 Declarations . 468
C.5 Finding Codepoints . 469
C.6 Resources . 470

D A STATE MACHINE FOR ADDING MARKUP TO TEXT 471

E GLOSSARY 481

F INDEX 485

“TPiP” — 2006/1/30 — 15:07 — page ix — #9i
i

i
i

i
i

i
i

ix

PREFACE

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one—and preferably only one—obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.
Although never is often better than right now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea—let’s do more of those!
—Tim Peters, “The Zen of Python”

0.1 What Is Text Processing?

At the broadest level text processing is simply taking textual information and doing
something with it. This doing might be restructuring or reformatting it, extracting
smaller bits of information from it, algorithmically modifying the content of the infor-
mation, or performing calculations that depend on the textual information. The lines
between “text” and the even more general term “data” are extremely fuzzy; at an ap-
proximation, “text” is just data that lives in forms that people can themselves read—at
least in principle, and maybe with a bit of effort. Most typically computer “text” is
composed of sequences of bits that have a “natural” representation as letters, numerals,
and symbols; most often such text is delimited (if delimited at all) by symbols and

“TPiP” — 2006/1/30 — 15:07 — page x — #10i
i

i
i

i
i

i
i

x PREFACE

formatting that can be easily pronounced as “next datum.”
The lines are fuzzy, but the data that seems least like text—and that, therefore,

this particular book is least concerned with—is the data that makes up “multimedia”
(pictures, sounds, video, animation, etc.) and data that makes up UI “events” (draw
a window, move the mouse, open an application, etc.). Like I said, the lines are fuzzy,
and some representations of the most nontextual data are themselves pretty textual.
But in general, the subject of this book is all the stuff on the near side of that fuzzy
line.

Text processing is arguably what most programmers spend most of their time doing.
The information that lives in business software systems mostly comes down to collec-
tions of words about the application domain—maybe with a few special symbols mixed
in. Internet communications protocols consist mostly of a few special words used as
headers, a little bit of constrained formatting, and message bodies consisting of addi-
tional wordish texts. Configuration files, log files, CSV and fixed-length data files, error
files, documentation, and source code itself are all just sequences of words with bits of
constraint and formatting applied.

Programmers and developers spend so much time with text processing that it is easy
to forget that that is what we are doing. The most common text processing applica-
tion is probably your favorite text editor. Beyond simple entry of new characters, text
editors perform such text processing tasks as search/replace and copy/paste, which—
given guided interaction with the user—accomplish sophisticated manipulation of tex-
tual sources. Many text editors go farther than these simple capabilities and include
their own complete programming systems (usually called “macro processing”); in those
cases where editors include “Turing-complete” macro languages, text editors suffice, in
principle, to accomplish anything that the examples in this book can.

After text editors, a variety of text processing tools are widely used by developers.
Tools like “File Find” under Windows, or “grep” on Unix (and other platforms), perform
the basic chore of locating text patterns. “Little languages” like sed and awk perform
basic text manipulation (or even nonbasic). A large number of utilities—especially in
Unix-like environments—perform small custom text processing tasks: wc, sort, tr,
md5sum, uniq, split, strings, and many others.

At the top of the text processing food chain are general-purpose programming lan-
guages, such as Python. I wrote this book on Python in large part because Python is
such a clear, expressive, and general-purpose language. But for all Python’s virtues,
text editors and “little” utilities will always have an important place for developers
“getting the job done.” As simple as Python is, it is still more complicated than you
need to achieve many basic tasks. But once you get past the very simple, Python is a
perfect language for making the difficult things possible (and it is also good at making
the easy things simple).

0.2 The Philosophy of Text Processing

Hang around any Python discussion groups for a little while, and you will certainly be
dazzled by the contributions of the Python developer, Tim Peters (and by a number
of other Pythonistas). His “Zen of Python” captures much of the reason that I choose

“TPiP” — 2006/1/30 — 15:07 — page xi — #11i
i

i
i

i
i

i
i

0.3 What You’ll Need to Use This Book xi

Python as the language in which to solve most programming tasks that are presented
to me. But to understand what is most special about text processing as a programming
task, it is worth turning to Perl creator Larry Wall’s cardinal virtues of programming:
laziness, impatience, hubris.

What sets text processing most clearly apart from other tasks computer programmers
accomplish is the frequency with which we perform text processing on an ad hoc or “one-
shot” basis. One rarely bothers to create a one-shot GUI interface for a program. You
even less frequently perform a one-shot normalization of a relational database. But every
programmer with a little experience has had numerous occasions where she has received
a trickle of textual information (or maybe a deluge of it) from another department, from
a client, from a developer working on a different project, or from data dumped out of
a DBMS; the problem in such cases is always to “process” the text so that it is usable
for your own project, program, database, or work unit. Text processing to the rescue.
This is where the virtue of impatience first appears—we just want the stuff processed,
right now!

But text processing tasks that were obviously one-shot tasks that we knew we would
never need again have a habit of coming back like restless ghosts. It turns out that
that client needs to update the one-time data they sent last month. Or the boss decides
that she would really like a feature of that text summarized in a slightly different way.
The virtue of laziness is our friend here—with our foresight not to actually delete those
one-shot scripts, we have them available for easy reuse and/or modification when the
need arises.

Enough is not enough, however. That script you reluctantly used a second time turns
out to be quite similar to a more general task you will need to perform frequently,
perhaps even automatically. You imagine that with only a slight amount of extra work
you can generalize and expand the script, maybe add a little error checking and some
runtime options while you are at it; and do it all in time and under budget (or even as a
side project, off the budget). Obviously, this is the voice of that greatest of programmers’
virtues: hubris.

The goal of this book is to make its readers a little lazier, a smidgeon more impatient,
and a whole bunch more hubristic. Python just happens to be the language best suited
to the study of virtue.

0.3 What You’ll Need to Use This Book

This book is ideally suited for programmers who are a little bit familiar with Python,
and whose daily tasks involve a fair amount of text processing chores. Programmers
who have some background in other programming languages—especially with other
“scripting” languages—should be able to pick up enough Python to get going by reading
Appendix A.

While Python is a rather simple language at heart, this book is not intended as a
tutorial on Python for nonprogrammers. Instead, this book is about two other things:
getting the job done, pragmatically and efficiently; and understanding why what works
works and what doesn’t work doesn’t work, theoretically and conceptually. As such,

“TPiP” — 2006/1/30 — 15:07 — page xii — #12i
i

i
i

i
i

i
i

xii PREFACE

we hope this book can be useful both to working programmers and to students of
programming at a level just past the introductory.

Many sections of this book are accompanied by problems and exercises, and these in
turn often pose questions for users. In most cases, the answers to the listed questions
are somewhat open-ended—there are no simple right answers. I believe that work-
ing through the provided questions will help both self-directed and instructor-guided
learners; the questions can typically be answered at several levels and often have an
underlying subtlety. Instructors who wish to use this text are encouraged to contact
the author for assistance in structuring a curriculum involving it. All readers are en-
couraged to consult the book’s Web site to see possible answers provided by both the
author and other readers; additional related questions will be added to the Web site
over time, along with other resources.

The Python language itself is conservative. Almost every Python script written ten
years ago for Python 1.0 will run fine in Python 2.3+. However, as versions improve,
a certain number of new features have been added. The most significant changes have
matched the version number changes—Python 2.0 introduced list comprehensions, aug-
mented assignments, Unicode support, and a standard XML package. Many scripts
written in the most natural and efficient manner using Python 2.0+ will not run with-
out changes in earlier versions of Python.

The general target of this book will be users of Python 2.1+, but some 2.2+ specific
features will be utilized in examples. Maybe half the examples in this book will run fine
on Python 1.5.1+ (and slightly fewer on older versions), but examples will not necessarily
indicate their requirement for Python 2.0+ (where it exists). On the other hand, new
features introduced with Python 2.1 and above will only be utilized where they make
a task significantly easier, or where the feature itself is being illustrated. In any case,
examples requiring versions past Python 2.0 will usually indicate this explicitly.

In the case of modules and packages—whether in the standard library or third-party—
we will explicitly indicate what Python version is required and, where relevant, which
version added the module or package to the standard library. In some cases, it will be
possible to use later standard library modules with earlier Python versions. In important
cases, this possibility will be noted.

0.4 Conventions Used in This Book

Several typographic conventions are used in main text to guide the readers eye. Both
block and inline literals are presented in a fixed font, including names of utilities, URLs,
variable names, and code samples. Names of objects in the standard library, however,
are presented in italics. Names of modules and packages are printed in a sans serif
typeface. Heading come in several different fonts, depending on their level and purpose.

All constants, functions, and classes in discussions and cross-references will be explic-
itly prepended with their namespace (module). Methods will additionally be prepended
with their class. In some cases, code examples will use the local namespace, but a pref-
erence for explicit namespace identification will be present in sample code also. For
example, a reference might read:

“TPiP” — 2006/1/30 — 15:07 — page xiii — #13i
i

i
i

i
i

i
i

0.4 Conventions Used in This Book xiii

See Also: email.Generator.DecodedGenerator.flatten() 351; raw input() 446;
tempfile.mktemp() 71;

The first is a class method in the email.Generator module; the second, a built-in
function; the last, a function in the tempfile module.

In the special case of built-in methods on types, the expression for an empty type
object will be used in the style of a namespace modifier. For example:

Methods of built-in types include [].sort() , "".islower() , {}.keys() , and
(lambda:1).func code .

The file object type will be indicated by the name FILE in capitals. A reference to a
file object method will appear as, for example:

See Also: FILE.flush() 16;

Brief inline illustrations of Python concepts and usage will be taken from the Python
interactive shell. This approach allows readers to see the immediate evaluation of
constructs, much as they might explore Python themselves. Moreover, examples
presented in this manner will be self-sufficient (not requiring external data), and may
be entered—with variations—by readers trying to get a grasp on a concept. For
example:

>>> 13/7 # integer division
1
>>> 13/7. # float division
1.8571428571428572

In documentation of module functions, where named arguments are available, they are
listed with their default value. Optional arguments are listed in square brackets. These
conventions are also used in the Python Library Reference. For example:

foobar.spam(s, val=23 [,taste=”spicy”])

The function foobar.spam() uses the argument s to . . .

If a named argument does not have a specifiable default value, the argument is listed
followed by an equal sign and ellipsis. For example:

foobar.baz(string=. . . , maxlen=. . .)

The foobar.baz() function . . .

With the introduction of Unicode support to Python, an equivalence between a
character and a byte no longer holds in all cases. Where an operation takes a
numeric argument affecting a string-like object, the documentation will specify whether
characters or bytes are being counted. For example:

“TPiP” — 2006/1/30 — 15:07 — page xiv — #14i
i

i
i

i
i

i
i

xiv PREFACE

Operation A reads num bytes from the buffer. Operation B reads num characters
from the buffer.

The first operation indicates a number of actual 8-bit bytes affected. The second
operation indicates an indefinite number of bytes are affected, but that they compose
a number of (maybe multibyte) characters.

0.5 A Word on Source Code Examples

First things first. All the source code in this book is hereby released to the public
domain. You can use it however you like, without restriction. You can include it in free
software, or in commercial/proprietary projects. Change it to your heart’s content, and
in any manner you want. If you feel like giving credit to the author (or sending him
large checks) for code you find useful, that is fine—but no obligation to do so exists.

All the source code in this book, and various other public domain examples, can be
found at the book’s Web site. If such an electronic form is more convenient for you,
we hope this helps you. In fact, if you are able, you might benefit from visiting this
location, where you might find updated versions of examples or other useful utilities not
mentioned in the book.

First things out of the way, let us turn to second things. Little of the source code
in this book is intended as a final say on how to perform a given task. Many of the
examples are easy enough to copy directly into your own program, or to use as stand-
alone utilities. But the real goal in presenting the examples is educational. We really
hope you will think about what the examples do, and why they do it the way they do.
In fact, we hope readers will think of better, faster, and more general ways of performing
the same tasks. If the examples work their best, they should be better as inspirations
than as instructions.

0.6 External Resources

0.6.1 General Resources

A good clearinghouse for resources and links related to this book is the book’s Web site.
Over time, I will add errata and additional examples, questions, answers, utilities, and
so on to the site, so check it from time to time:

<http://gnosis.cx/TPiP/>

The first place you should probably turn for any question on Python programming
(after this book), is:

<http://www.python.org/>

The Python newsgroup <comp.lang.python> is an amazingly useful resource, with
discussion that is generally both friendly and erudite. You may also post to and follow
the newsgroup via a mirrored mailing list:

<http://mail.python.org/mailman/listinfo/python-list>

“TPiP” — 2006/1/30 — 15:07 — page xv — #15i
i

i
i

i
i

i
i

0.6 External Resources xv

0.6.2 Books

This book generally aims at an intermediate reader. Other Python books are better
introductory texts (especially for those fairly new to programming generally). Some
good introductory texts are:

Core Python Programming, Wesley J. Chun, Prentice Hall, 2001. ISBN:
0-130-26036-3.

Learning Python, Mark Lutz & David Ascher, O’Reilly, 1999. ISBN: 1-
56592-464-9.

The Quick Python Book, Daryl Harms & Kenneth McDonald, Manning,
2000. ISBN: 1-884777-74-0.

As introductions, I would generally recommend these books in the order listed, but
learning styles vary between readers.

Two texts that overlap this book somewhat, but focus more narrowly on referencing
the standard library, are:

Python Essential Reference, Second Edition, David M. Beazley, New Riders,
2001. ISBN: 0-7357-1091-0.

Python Standard Library, Fredrik Lundh, O’Reilly, 2001. ISBN: 0-596-
00096-0.

For coverage of XML, at a far more detailed level than this book has room for, is the
excellent text:

Python & XML, Christopher A. Jones & Fred L. Drake, Jr., O’Reilly, 2002.
ISBN: 0-596-00128-2.

0.6.3 Software Directories

Currently, the best Python-specific directory for software is the Vaults of Parnassus:

<http://www.vex.net/parnassus/>

SourceForge is a general open source software resource. Many projects—Python and
otherwise—are hosted at that site, and the site provides search capabilities, keywords,
category browsing, and the like:

<http://sourceforge.net/>

Freshmeat is another widely used directory of software projects (mostly open source).
Like the Vaults of Parnassus, Freshmeat does not directly host project files, but simply
acts as an information clearinghouse for finding relevant projects:

<http://freshmeat.net/>

“TPiP” — 2006/1/30 — 15:07 — page xvi — #16i
i

i
i

i
i

i
i

xvi PREFACE

0.6.4 Specific Software

A number of Python projects are discussed in this book. Most of those are listed in
one or more of the software directories mentioned above. A general search engine like
Google, <http://google.com>, is also useful in locating project home pages. Below
are a number of project URLs that are current at the time of this writing. If any of
these fall out of date by the time you read this book, try searching in a search engine
or software directory for an updated URL.

The author’s Gnosis Utilities contains a number of Python packages mentioned in this
book, including gnosis.indexer , gnosis.xml.indexer , gnosis.xml.pickle, and others. You can
download the most current version from:

<http://gnosis.cx/download/Gnosis Utils-current.tar.gz>

eGenix.com provides a number of useful Python extensions, some of which are docu-
mented in this book. These include mx.TextTools, mx.DateTime, several new datatypes,
and other facilities:

<http://egenix.com/files/python/eGenix-mx-Extensions.html>

SimpleParse is hosted by SourceForge, at:

<http://simpleparse.sourceforge.net/>

The PLY parsers has a home page at:

<http://systems.cs.uchicago.edu/ply/ply.html>

“TPiP” — 2006/1/30 — 15:07 — page xvii — #17i
i

i
i

i
i

i
i

xvii

ACKNOWLEDGMENTS

Portions of this book are adapted from my column Charming Python and other writing
first published by IBM developerWorks, <http://ibm.com/developerWorks/>. I wish
to thank IBM for publishing me, for granting permission to use this material, and most
especially for maintaining such a general and useful resource for programmers.

The Python community is a wonderfully friendly place. I made drafts of this book, while
in progress, available on the Internet. I received numerous helpful and kind responses,
many that helped make the book better than it would otherwise have been.

In particular, the following folks made suggestions and contributions to the book while
in draft form. I apologize to any correspondents I may have omitted from the list; your
advice was appreciated even if momentarily lost in the bulk of my saved email.

Sam Penrose <sam@ddmweb.com>

UserDict string substitution hacks.

Roman Suzi <rnd@onego.ru>

More on string substitution hacks.

Samuel S. Chessman <chessman@tux.org>

Helpful observations of various typos.

John W. Krahn <krahnj@acm.org>

Helpful observations of various typos.

Terry J. Reedy <tjreedy@udel.edu>

Found lots of typos and made good organizational suggestions.

Amund Tveit <amund.tveit@idi.ntnu.no>

Pointers to word-based Huffman compression for Appendix B.

“TPiP” — 2006/1/30 — 15:07 — page xviii — #18i
i

i
i

i
i

i
i

xviii ACKNOWLEDGMENTS

Pascal Oberndoerfer <oberndoerfer@mac.com>

Suggestions about focus of parser discussion.

Bob Weiner <bob@deepware.com>

Suggestions about focus of parser discussion.

Max M <maxm@mxm.dk>

Thought provocation about XML and Unicode entities.

John Machin <sjmachin@lexicon.net>

Nudging to improve sample regular expression functions.

Magnus Lie Hetland <magnus@hetland.org>

Called use of default “static” arguments “spooky code” and failed to appre-
ciate the clarity of the <> operator.

Tim Andrews <Tim.Andrews@adpro.com.au>

Found lots of typos in Chapters 3 and 2.

Marc-Andre Lemburg <mal@lemburg.com>

Wrote mx.TextTools in the first place and made helpful comments on my
coverage of it.

Mike C. Fletcher <mcfletch@users.sourceforge.net>

Wrote SimpleParse in the first place and made helpful comments on my
coverage of it.

Lorenzo M. Catucci <lorenzo@sancho.ccd.uniroma2.it>

Suggested glossary entries for CRC and hash.

David LeBlanc <whisper@oz.net>

Various organizational ideas while in draft. Then he wound up acting as one
of my technical reviewers and provided a huge amount of helpful advice on
both content and organization.

Mike Dussault <dussault@valvesoftware.com>

Found an error in combinatorial HOFs and made good suggestions on Ap-
pendix A.

“TPiP” — 2006/1/30 — 15:07 — page xix — #19i
i

i
i

i
i

i
i

xix

Guillermo Fernandez <guillermo.fernandez@epfl.ch>

Advice on clarifying explanations of compression techniques.

Roland Gerlach <roland@rkga.com.au>

Typos are boundless, but a bit less for his email.

Antonio Cuni <cuni@programmazione.it>

Found error in original Schwartzian sort example and another in
map()/zip() discussion.

Michele Simionato <mis6+@pitt.edu>

Acted as a nice sounding board for deciding on final organization of the
appendices.

Jesper Hertel <jh@magnus.dk>

Was frustrated that I refused to take his well-reasoned advice for code con-
ventions.

Andrew MacIntyre <andymac@bullseye.apana.org.au>

Did not comment on this book, but has maintained the OS/2 port of Python
for several versions. This made my life easier by letting me test and write
examples on my favorite machine.

Tim Churches <tchur@optushome.com.au>

A great deal of subversive entertainment, despite not actually fixing anything
in this book.

Moshe Zadka <moshez@twistedmatrix.com>

Served as technical reviewer of this book in manuscript and brought both
erudition and an eye for detail to the job.

Sergey Konozenko <sergey konozenko@ieee.org>

Boosted my confidence in final preparation with the enthusiasm he brought
to his technical review—and even more so with the acuity with which he
“got” my attempts to impose mental challenge on my readers.

“TPiP” — 2006/1/30 — 15:07 — page xx — #20i
i

i
i

i
i

i
i

xx ACKNOWLEDGMENTS

Errata were found in the first printing by the following helpful readers.

-
Glenn R Williams <gloonie@earthlink.net>
Bill Scherer <Bill.Scherer@verizonwireless.com>
Greg Lee <glee@pharsight.com>
John Hazen <john@hazen.net>
Bob Kimble <bob@iplicity.com>
Gary Duncan <gmduncan@netspace.net.au>
Tim Churches <tchur@optushome.com.au>
Andrew Purshottam <andy@andypurshottam.com>
Nils Barth <nils barth@post.harvard.edu>
John W. Warren, CAA <John.Warren@caa.army.mil>
Chen Levy <gnosis.cx@chenlevy.com>

“TPiP” — 2006/1/30 — 15:07 — page 1 — #21i
i

i
i

i
i

i
i

1

Chapter 1

PYTHON BASICS

This chapter discusses Python capabilities that are likely to be used in text
processing applications. For an introduction to Python syntax and semantics per
se, readers might want to skip ahead to Appendix A (A Selective and Im-
pressionistic Short Review of Python); Guido van Rossum’s Python Tutorial at
<http://python.org/doc/current/tut/tut.html> is also quite excellent. The focus
here occupies a somewhat higher level: not the Python language narrowly, but also not
yet specific to text processing.

In Section 1.1, I look at some programming techniques that flow out of the Python lan-
guage itself, but that are usually not obvious to Python beginners—and are sometimes
not obvious even to intermediate Python programmers. The programming techniques
that are discussed are ones that tend to be applicable to text processing contexts—other
programming tasks are likely to have their own tricks and idioms that are not explicitly
documented in this book.

In Section 1.2, I document modules in the Python standard library that you will
probably use in your text processing application, or at the very least want to keep
in the back of your mind. A number of other Python standard library modules are
far enough afield of text processing that you are unlikely to use them in this type of
application. Such remaining modules are documented very briefly with one- or two-
line descriptions. More details on each module can be found with Python’s standard
documentation.

1.1 Techniques and Patterns

1.1.1 Utilizing Higher-Order Functions in Text Processing

This first topic merits a warning. It jumps feet-first into higher-order functions (HOFs)
at a fairly sophisticated level and may be unfamiliar even to experienced Python pro-
grammers. Do not be too frightened by this first topic—you can understand the rest of
the book without it. If the functional programming (FP) concepts in this topic seem
unfamiliar to you, I recommend you jump ahead to Appendix A, especially its final

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 2 --- #22i
i

i
i

i
i

i
i

2 PYTHON BASICS

section on FP concepts.
In text processing, one frequently acts upon a series of chunks of text that are,

in a sense, homogeneous. Most often, these chunks are lines, delimited by newline
characters—but sometimes other sorts of fields and blocks are relevant. Moreover,
Python has standard functions and syntax for reading in lines from a file (sensitive to
platform differences). Obviously, these chunks are not entirely homogeneous—they can
contain varying data. But at the level we worry about during processing, each chunk
contains a natural parcel of instruction or information.

As an example, consider an imperative style code fragment that selects only those
lines of text that match a criterion isCond():

selected = [] # temp list to hold matches
fp = open(filename):
for line in fp.readlines(): # Py2.2 -> "for line in fp:"

if isCond(line): # (2.2 version reads lazily)
selected.append(line)

del line # Cleanup transient variable

There is nothing wrong with these few lines (see xreadlines on efficiency issues). But
it does take a few seconds to read through them. In my opinion, even this small block
of lines does not parse as a single thought, even though its operation really is such. Also
the variable line is slightly superfluous (and it retains a value as a side effect after the
loop and also could conceivably step on a previously defined value). In FP style, we
could write the simpler:

selected = filter(isCond, open(filename).readlines())
Py2.2 -> filter(isCond, open(filename))

In the concrete, a textual source that one frequently wants to process as a list of
lines is a log file. All sorts of applications produce log files, most typically either ones
that cause system changes that might need to be examined or long-running applications
that perform actions intermittently. For example, the PythonLabs Windows installer
for Python 2.2 produces a file called INSTALL.LOG that contains a list of actions taken
during the install. Below is a highly abridged copy of this file from one of my computers:

INSTALL.LOG sample data file

Title: Python 2.2
Source: C:\DOWNLOAD\PYTHON-2.2.EXE | 02-23-2002 | 01:40:54 | 7074248
Made Dir: D:\Python22
File Copy: D:\Python22\UNWISE.EXE | 05-24-2001 | 12:59:30 | | ...
RegDB Key: Software\Microsoft\Windows\CurrentVersion\Uninstall\Py...
RegDB Val: Python 2.2
File Copy: D:\Python22\w9xpopen.exe | 12-21-2001 | 12:22:34 | | ...
Made Dir: D:\PYTHON22\DLLs
File Overwrite: C:\WINDOWS\SYSTEM\MSVCRT.DLL | | | | 295000 | 770c8856

“TPiP” — 2006/1/30 — 15:07 — page 3 — #23i
i

i
i

i
i

i
i

1.1 Techniques and Patterns 3

RegDB Root: 2
RegDB Key: Software\Microsoft\Windows\CurrentVersion\App Paths\Py...
RegDB Val: D:\PYTHON22\Python.exe
Shell Link: C:\WINDOWS\Start Menu\Programs\Python 2.2\Uninstall Py...
Link Info: D:\Python22\UNWISE.EXE | D:\PYTHON22 | | 0 | 1 | 0 |
Shell Link: C:\WINDOWS\Start Menu\Programs\Python 2.2\Python ...
Link Info: D:\Python22\python.exe | D:\PYTHON22 | D:\PYTHON22\...

You can see that each action recorded belongs to one of several types. A processing
application would presumably handle each type of action differently (especially since
each action has different data fields associated with it). It is easy enough to write
Boolean functions that identify line types, for example:

def isFileCopy(line):
return line[:10]==’File Copy:’ # or line.startswith(...)

def isFileOverwrite(line):
return line[:15]==’File Overwrite:’

The string method "".startswith() is less error prone than an initial slice for recent
Python versions, but these examples are compatible with Python 1.5. In a slightly more
compact functional programming style, you can also write these like:

isRegDBRoot = lambda line: line[:11]==’RegDB Root:’
isRegDBKey = lambda line: line[:10]==’RegDB Key:’
isRegDBVal = lambda line: line[:10]==’RegDB Val:’

Selecting lines of a certain type is done exactly as above:

lines = open(r’d:\python22\install.log’).readlines()
regroot_lines = filter(isRegDBRoot, lines)

But if you want to select upon multiple criteria, an FP style can initially become
cumbersome. For example, suppose you are interested in all the “RegDB” lines; you
could write a new custom function for this filter:

def isAnyRegDB(line):
if line[:11]==’RegDB Root:’: return 1
elif line[:10]==’RegDB Key:’: return 1
elif line[:10]==’RegDB Val:’: return 1
else: return 0

For recent Pythons, line.startswith(...) is better

Programming a custom function for each combined condition can produce a glut of
named functions. More importantly, each such custom function requires a modicum
of work to write and has a nonzero chance of introducing a bug. For conditions that
should be jointly satisfied, you can either write custom functions or nest several filters
within each other. For example:

“TPiP” — 2006/1/30 — 15:07 — page 4 — #24i
i

i
i

i
i

i
i

4 PYTHON BASICS

shortline = lambda line: len(line) < 25
short_regvals = filter(shortline, filter(isRegDBVal, lines))

In this example, we rely on previously defined functions for the filter. Any error in
the filters will be in either shortline() or isRegDBVal(), but not independently in
some third function isShortRegVal(). Such nested filters, however, are difficult to
read—especially if more than two are involved.

Calls to map() are sometimes similarly nested if several operations are to be per-
formed on the same string. For a fairly trivial example, suppose you wished to reverse,
capitalize, and normalize whitespace in lines of text. Creating the support functions is
straightforward, and they could be nested in map() calls:

from string import upper, join, split
def flip(s):

a = list(s)
a.reverse()
return join(a,’’)

normalize = lambda s: join(split(s),’ ’)
cap_flip_norms = map(upper, map(flip, map(normalize, lines)))

This type of map() or filter() nest is difficult to read, and should be avoided.
Moreover, one can sometimes be drawn into nesting alternating map() and filter()

calls, making matters still worse. For example, suppose you want to perform several
operations on each of the lines that meet several criteria. To avoid this trap, many
programmers fall back to a more verbose imperative coding style that simply wraps the
lists in a few loops and creates some temporary variables for intermediate results.

Within a functional programming style, it is nonetheless possible to avoid the pitfall
of excessive call nesting. The key to doing this is an intelligent selection of a few
combinatorial higher-order functions. In general, a higher-order function is one that
takes as argument or returns as result a function object. First-order functions just take
some data as arguments and produce a datum as an answer (perhaps a data-structure
like a list or dictionary). In contrast, the “inputs” and “outputs” of a HOF are more
function objects—ones generally intended to be eventually called somewhere later in
the program flow.

One example of a higher-order function is a function factory : a function (or class)
that returns a function, or collection of functions, that are somehow “configured” at the
time of their creation. The “Hello World” of function factories is an “adder” factory.
Like “Hello World,” an adder factory exists just to show what can be done; it doesn’t
really do anything useful by itself. Pretty much every explanation of function factories
uses an example such as:

>>> def adder_factory(n):
... return lambda m, n=n: m+n
...

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 5 --- #25i
i

i
i

i
i

i
i

1.1 Techniques and Patterns 5

>>> add10 = adder_factory(10)
>>> add10
<function <lambda> at 0x00FB0020>
>>> add10(4)
14
>>> add10(20)
30
>>> add5 = adder_factory(5)
>>> add5(4)
9

For text processing tasks, simple function factories are of less interest than are com-
binatorial HOFs. The idea of a combinatorial higher-order function is to take several
(usually first-order) functions as arguments and return a new function that somehow
synthesizes the operations of the argument functions. Below is a simple library of com-
binatorial higher-order functions that achieve surprisingly much in a small number of
lines:

combinatorial.py

from operator import mul, add, truth
apply_each = lambda fns, args=[]: map(apply, fns, [args]*len(fns))
bools = lambda lst: map(truth, lst)
bool_each = lambda fns, args=[]: bools(apply_each(fns, args))
conjoin = lambda fns, args=[]: reduce(mul, bool_each(fns, args))
all = lambda fns: lambda arg, fns=fns: conjoin(fns, (arg,))
both = lambda f,g: all((f,g))
all3 = lambda f,g,h: all((f,g,h))
and_ = lambda f,g: lambda x, f=f, g=g: f(x) and g(x)
disjoin = lambda fns, args=[]: reduce(add, bool_each(fns, args))
some = lambda fns: lambda arg, fns=fns: disjoin(fns, (arg,))
either = lambda f,g: some((f,g))
anyof3 = lambda f,g,h: some((f,g,h))
compose = lambda f,g: lambda x, f=f, g=g: f(g(x))
compose3 = lambda f,g,h: lambda x, f=f, g=g, h=h: f(g(h(x)))
ident = lambda x: x

Even with just over a dozen lines, many of these combinatorial functions are merely
convenience functions that wrap other more general ones. Let us take a look at how we
can use these HOFs to simplify some of the earlier examples. The same names are used
for results, so look above for comparisons:

“TPiP” — 2006/1/30 — 15:07 — page 6 — #26i
i

i
i

i
i

i
i

6 PYTHON BASICS

Some examples using higher-order functions

Don’t nest filters, just produce func that does both
short_regvals = filter(both(shortline, isRegDBVal), lines)

Don’t multiply ad hoc functions, just describe need
regroot_lines = \

filter(some([isRegDBRoot, isRegDBKey, isRegDBVal]), lines)

Don’t nest transformations, make one combined transform
capFlipNorm = compose3(upper, flip, normalize)
cap_flip_norms = map(capFlipNorm, lines)

In the example, we bind the composed function capFlipNorm for readability. The cor-
responding map() line expresses just the single thought of applying a common operation
to all the lines. But the binding also illustrates some of the flexibility of combinato-
rial functions. By condensing the several operations previously nested in several map()
calls, we can save the combined operation for reuse elsewhere in the program.

As a rule of thumb, I recommend not using more than one filter() and one map()

in any given line of code. If these “list application” functions need to nest more deeply
than this, readability is preserved by saving results to intermediate names. Successive
lines of such functional programming style calls themselves revert to a more imperative
style—but a wonderful thing about Python is the degree to which it allows seamless
combinations of different programming styles. For example:

intermed = filter(niceProperty, map(someTransform, lines))
final = map(otherTransform, intermed)

Any nesting of successive filter() or map() calls, however, can be reduced to single
functions using the proper combinatorial HOFs. Therefore, the number of procedural
steps needed is pretty much always quite small. However, the reduction in total lines-
of-code is offset by the lines used for giving names to combinatorial functions. Overall,
FP style code is usually about one-half the length of imperative style equivalents (fewer
lines generally mean correspondingly fewer bugs).

A nice feature of combinatorial functions is that they can provide a complete Boolean
algebra for functions that have not been called yet (the use of operator.add and
operator.mul in combinatorial.py is more than accidental, in that sense). For ex-
ample, with a collection of simple values, you might express a (complex) relation of
multiple truth values as:

satisfied = (this or that) and (foo or bar)

In the case of text processing on chunks of text, these truth values are often the results
of predicative functions applied to a chunk:

satisfied = (thisP(s) or thatP(s)) and (fooP(s) or barP(s))

“TPiP” — 2006/1/30 — 15:07 — page 7 — #27i
i

i
i

i
i

i
i

1.1 Techniques and Patterns 7

In an expression like the above one, several predicative functions are applied to the
same string (or other object), and a set of logical relations on the results are evaluated.
But this expression is itself a logical predicate of the string. For naming clarity—and
especially if you wish to evaluate the same predicate more than once—it is convenient
to create an actual function expressing the predicate:

satisfiedP = both(either(thisP,thatP), either(fooP,barP))

Using a predicative function created with combinatorial techniques is the same as
using any other function:

selected = filter(satisfiedP, lines)

1.1.2 Exercise: More on combinatorial functions

The module combinatorial.py presented above provides some of the most commonly
useful combinatorial higher-order functions. But there is room for enhancement in the
brief example. Creating a personal or organization library of useful HOFs is a way to
improve the reusability of your current text processing libraries.

QUESTIONS

1. Some of the functions defined in combinatorial.py are not, strictly speaking,
combinatorial. In a precise sense, a combinatorial function should take one or
several functions as arguments and return one or more function objects that “com-
bine” the input arguments. Identify which functions are not “strictly” combina-
torial, and determine exactly what type of thing each one does return.

2. The functions both() and and () do almost the same thing. But they differ in
an important, albeit subtle, way. and (), like the Python operator and , uses
shortcutting in its evaluation. Consider these lines:

>>> f = lambda n: n**2 > 10
>>> g = lambda n: 100/n > 10
>>> and_(f,g)(5)
1
>>> both(f,g)(5)
1
>>> and_(f,g)(0)
0
>>> both(f,g)(0)
Traceback (most recent call last):
...

The shortcutting and () can potentially allow the first function to act as a “guard”
for the second one. The second function never gets called if the first function
returns a false value on a given argument.

“TPiP” — 2006/1/30 — 15:07 — page 8 — #28i
i

i
i

i
i

i
i

8 PYTHON BASICS

a. Create a similarly shortcutting combinatorial or () function for your library.

b. Create general shortcutting functions shortcut all() and shortcut some()
that behave similarly to the functions all() and some(), respectively.

c. Describe some situations where nonshortcutting combinatorial functions like
both(), all(), or anyof3() are more desirable than similar shortcutting func-
tions.

3. The function ident() would appear to be pointless, since it simply returns what-
ever value is passed to it. In truth, ident() is an almost indispensable function
for a combinatorial collection. Explain the significance of ident().

Hint: Suppose you have a list of lines of text, where some of the lines may be
empty strings. What filter can you apply to find all the lines that start with a #?

4. The function not () might make a nice addition to a combinatorial library. We
could define this function as:

>>> not_ = lambda f: lambda x, f=f: not f(x)

Explore some situations where a not () function would aid combinatoric program-
ming.

5. The function apply each() is used in combinatorial.py to build some other
functions. But the utility of apply each() is more general than its supporting
role might suggest. A trivial usage of apply each() might look something like:

>>> apply_each(map(adder_factory, range(5)),(10,))
[10, 11, 12, 13, 14]

Explore some situations where apply each() simplifies applying multiple opera-
tions to a chunk of text.

6. Unlike the functions all() and some(), the functions compose() and compose3()
take a fixed number of input functions as arguments. Create a generalized compo-
sition function that takes a list of input functions, of any length, as an argument.

7. What other combinatorial higher-order functions that have not been discussed here
are likely to prove useful in text processing? Consider other ways of combining
first-order functions into useful operations, and add these to your library. What
are good names for these enhanced HOFs?

1.1.3 Specializing Python Datatypes

Python comes with an excellent collection of standard datatypes—Appendix A discusses
each built-in type. At the same time, an important principle of Python programming
makes types less important than programmers coming from other languages tend to
expect. According to Python’s “principle of pervasive polymorphism” (my own coinage),

“TPiP” — 2006/1/30 — 15:07 — page 9 — #29i
i

i
i

i
i

i
i

1.1 Techniques and Patterns 9

it is more important what an object does than what it is. Another common way of
putting the principle is: if it walks like a duck and quacks like a duck, treat it like a
duck.

Broadly, the idea behind polymorphism is letting the same function or operator work
on things of different types. In C++ or Java, for example, you might use signature-
based method overloading to let an operation apply to several types of things (acting
differently as needed). For example:

C++ signature-based polymorphism

#include <stdio.h>
class Print {
public:

void print(int i) { printf("int %d\n", i); }
void print(double d) { printf("double %f\n", d); }
void print(float f) { printf("float %f\n", f); }

};
main() {

Print *p = new Print();
p->print(37); /* --> "int 37" */
p->print(37.0); /* --> "double 37.000000" */

}

The most direct Python translation of signature-based overloading is a function that
performs type checks on its argument(s). It is simple to write such functions:

Python “signature-based” polymorphism

def Print(x):
from types import *
if type(x) is FloatType: print "float", x
elif type(x) is IntType: print "int", x
elif type(x) is LongType: print "long", x

Writing signature-based functions, however, is extremely un-Pythonic. If you find
yourself performing these sorts of explicit type checks, you have probably not understood
the problem you want to solve correctly! What you should (usually) be interested in is
not what type x is, but rather whether x can perform the action you need it to perform
(regardless of what type of thing it is strictly).

PYTHONIC POLYMORPHISM

Probably the single most common case where pervasive polymorphism is useful is in
identifying “file-like” objects. There are many objects that can do things that files can
do, such as those created with urllib, cStringIO, zipfile, and by other means. Various
objects can perform only subsets of what actual files can: some can read, others can

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 10 --- #30i
i

i
i

i
i

i
i

10 PYTHON BASICS

write, still others can seek, and so on. But for many purposes, you have no need to
exercise every “file-like” capability—it is good enough to make sure that a specified
object has those capabilities you actually need.

Here is a typical example. I have a module that uses DOM to work with XML
documents; I would like users to be able to specify an XML source in any of several
ways: using the name of an XML file, passing a file-like object that contains XML, or
indicating an already-built DOM object to work with (built with any of several XML
libraries). Moreover, future users of my module may get their XML from novel places
I have not even thought of (an RDBMS, over sockets, etc.). By looking at what a
candidate object can do, I can just utilize whichever capabilities that object has:

Python capability-based polymorphism

def toDOM(xml_src=None):
from xml.dom import minidom
if hasattr(xml_src, ’documentElement’):

return xml_src # it is already a DOM object
elif hasattr(xml_src,’read’):

it is something that knows how to read data
return minidom.parseString(xml_src.read())

elif type(xml_src) in (StringType, UnicodeType):
it is a filename of an XML document
xml = open(xml_src).read()
return minidom.parseString(xml)

else:
raise ValueError, "Must be initialized with " +\

"filename, file-like object, or DOM object"

Even simple-seeming numeric types have varying capabilities. As with other objects,
you should not usually care about the internal representation of an object, but rather
about what it can do. Of course, as one way to assure that an object has a capability,
it is often appropriate to coerce it to a type using the built-in functions complex() ,
dict() , float() , int() , list() , long() , str() , tuple() , and unicode() . All of
these functions make a good effort to transform anything that looks a little bit like the
type of thing they name into a true instance of it. It is usually not necessary, however,
actually to transform values to prescribed types; again we can just check capabilities.

For example, suppose that you want to remove the “least significant” portion of any
number—perhaps because they represent measurements of limited accuracy. For whole
numbers—ints or longs—you might mask out some low-order bits; for fractional values
you might round to a given precision. Rather than testing value types explicitly, you
can look for numeric capabilities. One common way to test a capability in Python is
to try to do something, and catch any exceptions that occur (then try something else).
Below is a simple example:

“TPiP” — 2006/1/30 — 15:07 — page 11 — #31i
i

i
i

i
i

i
i

1.1 Techniques and Patterns 11

Checking what numbers can do

def approx(x): # int attributes require 2.2+
if hasattr(x,’__and__’): # supports bitwise-and

return x & ~0x0FL
try: # supports real/imag

return (round(x.real,2)+round(x.imag,2)*1j)
except AttributeError:

return round(x,2)

ENHANCED OBJECTS

The reason that the principle of pervasive polymorphism matters is because Python
makes it easy to create new objects that behave mostly—but not exactly—like basic
datatypes. File-like objects were already mentioned as examples; you may or may not
think of a file object as a datatype precisely. But even basic datatypes like numbers,
strings, lists, and dictionaries can be easily specialized and/or emulated.

There are two details to pay attention to when emulating basic datatypes. The
most important matter to understand is that the capabilities of an object—even those
utilized with syntactic constructs—are generally implemented by its “magic” methods,
each named with leading and trailing double underscores. Any object that has the right
magic methods can act like a basic datatype in those contexts that use the supplied
methods. At heart, a basic datatype is just an object with some well-optimized versions
of the right collection of magic methods.

The second detail concerns exactly how you get at the magic methods—or rather,
how best to make use of existing implementations. There is nothing stopping you
from writing your own version of any basic datatype, except for the piddling details of
doing so. However, there are quite a few such details, and the easiest way to get the
functionality you want is to specialize an existing class. Under all non-ancient versions of
Python, the standard library provides the pure-Python modules UserDict, UserList, and
UserString as starting points for custom datatypes. You can inherit from an appropriate
parent class and specialize (magic) methods as needed. No sample parents are provided
for tuples, ints, floats, and the rest, however.

Under Python 2.2 and above, a better option is available. “New-style” Python classes
let you inherit from the underlying C implementations of all the Python basic datatypes.
Moreover, these parent classes have become the self-same callable objects that are used
to coerce types and construct objects: int() , list() , unicode() , and so on. There
is a lot of arcana and subtle profundities that accompany new-style classes, but you
generally do not need to worry about these. All you need to know is that a class
that inherits from string is faster than one that inherits from UserString ; likewise for
list versus UserList and dict versus UserDict (assuming your scripts all run on a recent
enough version of Python).

Custom datatypes, however, need not specialize full-fledged implementations. You are
free to create classes that implement “just enough” of the interface of a basic datatype
to be used for a given purpose. Of course, in practice, the reason you would create
such custom datatypes is either because you want them to contain non-magic methods

“TPiP” — 2006/1/30 — 15:07 — page 12 — #32i
i

i
i

i
i

i
i

12 PYTHON BASICS

of their own or because you want them to implement the magic methods associated
with multiple basic datatypes. For example, below is a custom datatype that can be
passed to the prior approx() function, and that also provides a (slightly) useful custom
method:

>>> class I: # "Fuzzy" integer datatype
... def __init__(self, i): self.i = i
... def __and__(self, i): return self.i & i
... def err_range(self):
... lbound = approx(self.i)
... return "Value: [%d, %d)" % (lbound, lbound+0x0F)
...
>>> i1, i2 = I(29), I(20)
>>> approx(i1), approx(i2)
(16L, 16L)
>>> i2.err_range()
’Value: [16, 31)’

Despite supporting an extra method and being able to get passed into the approx()
function, I is not a very versatile datatype. If you try to add, or divide, or multiply
using “fuzzy integers,” you will raise a TypeError. Since there is no module called
UserInt, under an older Python version you would need to implement every needed
magic method yourself.

Using new-style classes in Python 2.2+, you could derive a “fuzzy integer” from the
underlying int datatype. A partial implementation could look like:

>>> class I2(int): # New-style fuzzy integer
... def __add__(self, j):
... vals = map(int, [approx(self), approx(j)])
... k = int.__add__(*vals)
... return I2(int.__add__(k, 0x0F))
... def err_range(self):
... lbound = approx(self)
... return "Value: [%d, %d)" %(lbound,lbound+0x0F)
...
>>> i1, i2 = I2(29), I2(20)
>>> print "i1 =", i1.err_range(),": i2 =", i2.err_range()
i1 = Value: [16, 31) : i2 = Value: [16, 31)
>>> i3 = i1 + i2
>>> print i3, type(i3)
47 <class ’__main__.I2’>

Since the new-style class int already supports bitwise-and, there is no need to im-
plement it again. With new-style classes, you refer to data values directly with self,
rather than as an attribute that holds the data (e.g., self.i in class I). As well, it
is generally unsafe to use syntactic operators within magic methods that define their

“TPiP” — 2006/1/30 — 15:07 — page 13 — #33i
i

i
i

i
i

i
i

1.1 Techniques and Patterns 13

operation; for example, I utilize the . add () method of the parent int rather than
the + operator in the I2. add () method.

In practice, you are less likely to want to create number-like datatypes than you are
to emulate container types. But it is worth understanding just how and why even plain
integers are a fuzzy concept in Python (the fuzziness of the concepts is of a different
sort than the fuzziness of I2 integers, though). Even a function that operates on whole
numbers need not operate on objects of IntType or LongType—just on an object that
satisfies the desired protocols.

1.1.4 Base Classes for Datatypes

There are several magic methods that are often useful to define for any custom datatype.
In fact, these methods are useful even for classes that do not really define datatypes
(in some sense, every object is a datatype since it can contain attribute values, but not
every object supports special syntax such as arithmetic operators and indexing). Not
quite every magic method that you can define is documented in this book, but most
are under the parent datatype each is most relevant to. Moreover, each new version of
Python has introduced a few additional magic methods; those covered either have been
around for a few versions or are particularly important.

In documenting class methods of base classes, the same general conventions are used
as for documenting module functions. The one special convention for these base class
methods is the use of self as the first argument to all methods. Since the name self
is purely arbitrary, this convention is less special than it might appear. For example,
both of the following uses of self are equally legal:

>>> import string
>>> self = ’spam’
>>> object.__repr__(self)
’<str object at 0x12c0a0>’
>>> string.upper(self)
’SPAM’

However, there is usually little reason to use class methods in place of perfectly good
built-in and module functions with the same purpose. Normally, these methods of
datatype classes are used only in child classes that override the base classes, as in:

>>> class UpperObject(object):
... def __repr__(self):
... return object.__repr__(self).upper()
...
>>> uo = UpperObject()
>>> print uo
<__MAIN__.UPPEROBJECT OBJECT AT 0X1C2C6C>

“TPiP” — 2006/1/30 — 15:07 — page 14 — #34i
i

i
i

i
i

i
i

14 PYTHON BASICS

object � Ancestor class for new-style datatypes

Under Python 2.2+, object has become a base for new-style classes. Inheriting from
object enables a custom class to use a few new capabilities, such as slots and properties.
But usually if you are interested in creating a custom datatype, it is better to inherit
from a child of object, such as list, float, or dict.

METHODS

object. eq (self, other)

Return a Boolean comparison between self and other. Determines how a datatype
responds to the == operator. The parent class object does not implement . eq ()
since by default object equality means the same thing as identity (the is operator).
A child is free to implement this in order to affect comparisons.

object. ne (self, other)

Return a Boolean comparison between self and other. Determines how a datatype
responds to the != and <> operators. The parent class object does not implement
. ne () since by default object inequality means the same thing as nonidentity
(the is not operator). Although it might seem that equality and inequality always
return opposite values, the methods are not explicitly defined in terms of each other.
You could force the relationship with:

>>> class EQ(object):
... # Abstract parent class for equality classes
... def __eq__(self, o): return not self <> o
... def __ne__(self, o): return not self == o
...
>>> class Comparable(EQ):
... # By def’ing inequlty, get equlty (or vice versa)
... def __ne__(self, other):
... return someComplexComparison(self, other)

object. nonzero (self)

Return a Boolean value for an object. Determines how a datatype responds to the
Boolean comparisons or, and, and not, and to if and filter(None,...) tests. An
object whose . nonzero () method returns a true value is itself treated as a true
value.

object. len (self)
len(object)

Return an integer representing the “length” of the object. For collection types, this
is fairly straightforward—how many objects are in the collection? Custom types
may change the behavior to some other meaningful value.

“TPiP” — 2006/1/30 — 15:07 — page 15 — #35i
i

i
i

i
i

i
i

1.1 Techniques and Patterns 15

object. repr (self)
repr(object)
object. str (self)
str(object)

Return a string representation of the object self. Determines how a datatype
responds to the repr() and str() built-in functions, to the print keyword, and
to the back-tick operator.

Where feasible, it is desirable to have the . repr () method return a represen-
tation with sufficient information in it to reconstruct an identical object. The goal
here is to fulfill the equality obj==eval(repr(obj)). In many cases, however, you
cannot encode sufficient information in a string, and the repr() of an object is
either identical to, or slightly more detailed than, the str() representation of the
same object.

See Also: repr 96; operator 47;

file � New-style base class for file objects

Under Python 2.2+, it is possible to create a custom file-like object by inheriting from
the built-in class file. In older Python versions you may only create file-like objects
by defining the methods that define an object as “file-like.” However, even in recent
versions of Python, inheritance from file buys you little—if the data contents come
from somewhere other than a native filesystem, you will have to reimplement every
method you wish to support.

Even more than for other object types, what makes an object file-like is a fuzzy
concept. Depending on your purpose you may be happy with an object that can only
read, or one that can only write. You may need to seek within the object, or you may
be happy with a linear stream. In general, however, file-like objects are expected to
read and write strings. Custom classes only need implement those methods that are
meaningful to them and should only be used in contexts where their capabilities are
sufficient.

In documenting the methods of file-like objects, I adopt a slightly different convention
than for other built-in types. Since actually inheriting from file is unusual, I use the
capitalized name FILE to indicate a general file-like object. Instances of the actual file
class are examples (and implement all the methods named), but other types of objects
can be equally good FILE instances.

BUILT-IN FUNCTIONS

open(fname [,mode [,buffering]])
file(fname [,mode [,buffering]])

Return a file object that attaches to the filename fname. The optional argument
mode describes the capabilities and access style of the object. An r mode is for

“TPiP” — 2006/1/30 — 15:07 — page 16 — #36i
i

i
i

i
i

i
i

16 PYTHON BASICS

reading; w for writing (truncating any existing content); a for appending (writing
to the end). Each of these modes may also have the binary flag b for platforms
like Windows that distinguish text and binary files. The flag + may be used to
allow both reading and writing. The argument buffering may be 0 for none, 1 for
line-oriented, a larger integer for number of bytes.

>>> open(’tmp’,’w’).write(’spam and eggs\n’)
>>> print open(’tmp’,’r’).read(),
spam and eggs
>>> open(’tmp’,’w’).write(’this and that\n’)
>>> print open(’tmp’,’r’).read(),
this and that
>>> open(’tmp’,’a’).write(’something else\n’)
>>> print open(’tmp’,’r’).read(),
this and that
something else

METHODS AND ATTRIBUTES

FILE.close()

Close a file object. Reading and writing are disallowed after a file is closed.

FILE.closed

Return a Boolean value indicating whether the file has been closed.

FILE.fileno()

Return a file descriptor number for the file. File-like objects that do not attach to
actual files should not implement this method.

FILE.flush()

Write any pending data to the underlying file. File-like objects that do not cache
data can still implement this method as pass.

FILE.isatty()

Return a Boolean value indicating whether the file is a TTY-like device. The stan-
dard documentation says that file-like objects that do not attach to actual files
should not implement this method, but implementing it to always return 0 is prob-
ably a better approach.

FILE.mode

Attribute containing the mode of the file, normally identical to the mode argument
passed to the object’s initializer.

FILE.name

The name of the file. For file-like objects without a filesystem name, some string
identifying the object should be put into this attribute.

“TPiP” — 2006/1/30 — 15:07 — page 17 — #37i
i

i
i

i
i

i
i

1.1 Techniques and Patterns 17

FILE.read([size=sys.maxint])

Return a string containing up to size bytes of content from the file. Stop the read
if an EOF is encountered or upon another condition that makes sense for the object
type. Move the file position forward immediately past the read in bytes. A negative
size argument is treated as the default value.

FILE.readline([size=sys.maxint])

Return a string containing one line from the file, including the trailing newline, if
any. A maximum of size bytes are read. The file position is moved forward past
the read. A negative size argument is treated as the default value.

FILE.readlines([size=sys.maxint])

Return a list of lines from the file, each line including its trailing newline. If the
argument size is given, limit the read to approximately size bytes worth of lines.
The file position is moved forward past the read in bytes. A negative size argument
is treated as the default value.

FILE.seek(offset [,whence=0])

Move the file position by offset bytes (positive or negative). The argument whence
specifies where the initial file position is prior to the move: 0 for BOF; 1 for current
position; 2 for EOF.

FILE.tell()

Return the current file position.

FILE.truncate([size=0])

Truncate the file contents (it becomes size length).

FILE.write(s)

Write the string s to the file, starting at the current file position. The file position
is moved forward past the written bytes.

FILE.writelines(lines)

Write the lines in the sequence lines to the file. No newlines are added during the
write. The file position is moved forward past the written bytes.

FILE.xreadlines()

Memory-efficient iterator over lines in a file. In Python 2.2+, you might implement
this as a generator that returns one line per each yield.

See Also: xreadlines 72;

“TPiP” — 2006/1/30 — 15:07 — page 18 — #38i
i

i
i

i
i

i
i

18 PYTHON BASICS

int � New-style base class for integer objects

long � New-style base class for long integers

In Python, there are two standard datatypes for representing integers. Objects of type
IntType have a fixed range that depends on the underlying platform—usually between
plus and minus 2**31. Objects of type LongType are unbounded in size. In Python
2.2+, operations on integers that exceed the range of an int object results in automatic
promotion to long objects. However, no operation on a long will demote the result
back to an int object (even if the result is of small magnitude)—with the exception of
the int() function, of course.

From a user point of view ints and longs provide exactly the same interface. The
difference between them is only in underlying implementation, with ints typically being
significantly faster to operate on (since they use raw CPU instructions fairly directly).
Most of the magic methods integers have are shared by floating point numbers as well
and are discussed below. For example, consult the discussion of float. mul () for
information on the corresponding int. mul () method. The special capability that
integers have over floating point numbers is their ability to perform bitwise operations.

Under Python 2.2+, you may create a custom datatype that inherits from int or
long; under earlier versions, you would need to manually define all the magic methods
you wished to utilize (generally a lot of work, and probably not worth it).

Each binary bit operation has a left-associative and a right-associative version. If
you define both versions and perform an operation on two custom objects, the left-
associative version is chosen. However, if you perform an operation with a basic int
and a custom object, the custom right-associative method will be chosen over the basic
operation. For example:

>>> class I(int):
... def __xor__(self, other):
... return "XOR"
... def __rxor__(self, other):
... return "RXOR"
...
>>> 0xFF ^ 0xFF
0
>>> 0xFF ^ I(0xFF)
’RXOR’
>>> I(0xFF) ^ 0xFF
’XOR’
>>> I(0xFF) ^ I(0xFF)
’XOR’

METHODS

int. and (self, other)
int. rand (self, other)

“TPiP” — 2006/1/30 — 15:07 — page 19 — #39i
i

i
i

i
i

i
i

1.1 Techniques and Patterns 19

Return a bitwise-and between self and other. Determines how a datatype responds
to the & operator.

int. hex (self)

Return a hex string representing self. Determines how a datatype responds to the
built-in hex() function.

int. invert (self)

Return a bitwise inversion of self. Determines how a datatype responds to the ∼
operator.

int. lshift (self, other)
int. rlshift (self, other)

Return the result of bit-shifting self to the left by other bits. The right-associative
version shifts other by self bits. Determines how a datatype responds to the <<
operator.

int. oct (self)

Return an octal string representing self. Determines how a datatype responds to
the built-in oct() function.

int. or (self, other)
int. ror (self, other)

Return a bitwise-or between self and other. Determines how a datatype responds
to the | operator.

int. rshift (self, other)
int. rrshift (self, other)

Return the result of bit-shifting self to the right by other bits. The right-
associative version shifts other by self bits. Determines how a datatype responds
to the >> operator.

int. xor (self, other)
int. rxor (self, other)

Return a bitwise-xor between self and other. Determines how a datatype responds
to the ^ operator.

See Also: float 19; int 421; long 422; sys.maxint 50; operator 47;

float � New-style base class for floating point numbers

Python floating point numbers are mostly implemented using the underlying C floating
point library of your platform; that is, to a greater or lesser degree based on the IEEE
754 standard. A complex number is just a Python object that wraps a pair of floats
with a few extra operations on these pairs.

“TPiP” — 2006/1/30 — 15:07 — page 20 — #40i
i

i
i

i
i

i
i

20 PYTHON BASICS

DIGRESSION

Although the details are far outside the scope of this book, a general warning is in
order. Floating point math is harder than you think! If you think you understand just
how complex IEEE 754 math is, you are not yet aware of all of the subtleties. By
way of indication, Python luminary and erstwhile professor of numeric computing Alex
Martelli commented in 2001 (on <comp.lang.python>):

Anybody who thinks he knows what he’s doing when floating point is in-
volved IS either naive, or Tim Peters (well, it COULD be W. Kahan I guess,
but I don’t think he writes here).

Fellow Python guru Tim Peters observed:

I find it’s possible to be both (wink). But nothing about fp comes easily
to anyone, and even Kahan works his butt off to come up with the amazing
things that he does.

Peters illustrated further by way of Donald Knuth (The Art of Computer Programming,
Third Edition, Addison-Wesley, 1997; ISBN: 0201896842, vol. 2, p. 229):

Many serious mathematicians have attempted to analyze a sequence of float-
ing point operations rigorously, but found the task so formidable that they
have tried to be content with plausibility arguments instead.

The trick about floating point numbers is that although they are extremely useful for
representing real-life (fractional) quantities, operations on them do not obey the arith-
metic rules we learned in middle school: associativity, transitivity, commutativity; more-
over, many very ordinary-seeming numbers can be represented only approximately with
floating point numbers. For example:

>>> 1./3
0.33333333333333331
>>> .3
0.29999999999999999
>>> 7 == 7./25 * 25
0
>>> 7 == 7./24 * 24
1

CAPABILITIES

In the hierarchy of Python numeric types, floating point numbers are higher up the
scale than integers, and complex numbers higher than floats. That is, operations on
mixed types get promoted upwards. However, the magic methods that make a datatype
“float-like” are strictly a subset of those associated with integers. All of the magic
methods listed below for floats apply equally to ints and longs (or integer-like custom
datatypes). Complex numbers support a few addition methods.

“TPiP” — 2006/1/30 — 15:07 — page 21 — #41i
i

i
i

i
i

i
i

1.1 Techniques and Patterns 21

Under Python 2.2+, you may create a custom datatype that inherits from float
or complex; under earlier versions, you would need to manually define all the magic
methods you wished to utilize (generally a lot of work, and probably not worth it).

Each binary operation has a left-associative and a right-associative version. If you
define both versions and perform an operation on two custom objects, the left-associative
version is chosen. However, if you perform an operation with a basic datatype and
a custom object, the custom right-associative method will be chosen over the basic
operation. See the example under int.

METHODS

float. abs (self)

Return the absolute value of self. Determines how a datatype responds to the
built-in function abs() .

float. add (self, other)
float. radd (self, other)

Return the sum of self and other. Determines how a datatype responds to the +
operator.

float. cmp (self, other)

Return a value indicating the order of self and other. Determines how a datatype
responds to the numeric comparison operators <, >, <=, >=, ==, <>, and !=.
Also determines the behavior of the built-in cmp() function. Should return -1
for self<other, 0 for self==other, and 1 for self>other. If other comparison
methods are defined, they take precedence over . cmp (): . ge (), . gt (),
. le (), and . lt ().

float. div (self, other)
float. rdiv (self, other)

Return the ratio of self and other. Determines how a datatype responds to the
/ operator. In Python 2.3+, this method will instead determine how a datatype
responds to the floor division operator //.

float. divmod (self, other)
float. rdivmod (self, other)

Return the pair (div, remainder). Determines how a datatype responds to the
built-in divmod() function.

float. floordiv (self, other)
float. rfloordiv (self, other)

Return the number of whole times self goes into other. Determines how a datatype
responds to the Python 2.2+ floor division operator //.

float. mod (self, other)
float. rmod (self, other)

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 22 --- #42i
i

i
i

i
i

i
i

22 PYTHON BASICS

Return the modulo division of self into other. Determines how a datatype re-
sponds to the % operator.

float. mul (self, other)
float. rmul (self, other)

Return the product of self and other. Determines how a datatype responds to the
* operator.

float. neg (self)

Return the negative of self. Determines how a datatype responds to the unary -
operator.

float. pow (self, other)
float. rpow (self, other)

Return self raised to the other power. Determines how a datatype responds to
the ^ operator.

float. sub (self, other)
float. rsub (self, other)

Return the difference between self and other. Determines how a datatype responds
to the binary - operator.

float. truediv (self, other)
float. rtruediv (self, other)

Return the ratio of self and other. Determines how a datatype responds to the
Python 2.3+ true division operator /.

See Also: complex 22; int 18; float 422; operator 47;

complex � New-style base class for complex numbers

Complex numbers implement all the above documented methods of floating point num-
bers, and a few additional ones.

Inequality operations on complex numbers are not supported in recent versions
of Python, even though they were previously. In Python 2.1+, the methods
complex. ge () , complex. gt () , complex. le () , and complex. lt () all
raise TypeError rather than return Boolean values indicating the order. There is a cer-
tain logic to this change inasmuch as complex numbers do not have a “natural” ordering.
But there is also significant breakage with this change—this is one of the few changes
in Python, since version 1.4 when I started using it, that I feel was a real mistake. The
important breakage comes when you want to sort a list of various things, some of which
might be complex numbers:

>>> lst = ["string", 1.0, 1, 1L, (’t’,’u’,’p’)]
>>> lst.sort()

“TPiP” — 2006/1/30 — 15:07 — page 23 — #43i
i

i
i

i
i

i
i

1.1 Techniques and Patterns 23

>>> lst
[1.0, 1, 1L, ’string’, (’t’, ’u’, ’p’)]
>>> lst.append(1j)
>>> lst.sort()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: cannot compare complex numbers using <, <=, >, >=

It is true that there is no obvious correct ordering between a complex number and
another number (complex or otherwise), but there is also no natural ordering between a
string, a tuple, and a number. Nonetheless, it is frequently useful to sort a heterogeneous
list in order to create a canonical (even if meaningless) order. In Python 2.2+, you can
remedy this shortcoming of recent Python versions in the style below (under 2.1 you
are largely out of luck):

>>> class C(complex):
... def __lt__(self, o):
... if hasattr(o, ’imag’):
... return (self.real,self.imag) < (o.real,o.imag)
... else:
... return self.real < o
... def __le__(self, o): return self < o or self==o
... def __gt__(self, o): return not (self==o or self < o)
... def __ge__(self, o): return self > o or self==o
...
>>> lst = ["str", 1.0, 1, 1L, (1,2,3), C(1+1j), C(2-2j)]
>>> lst.sort()
>>> lst
[1.0, 1, 1L, (1+1j), (2-2j), ’str’, (1, 2, 3)]

Of course, if you adopt this strategy, you have to create all of your complex values using
the custom datatype C. And unfortunately, unless you override arithmetic operations
also, a binary operation between a C object and another number reverts to a basic
complex datatype. The reader can work out the details of this solution if she needs it.

METHODS

complex.conjugate(self)

Return the complex conjugate of self. A quick refresher here: If self is n+mj its
conjugate is n-mj.

complex.imag

Imaginary component of a complex number.

“TPiP” — 2006/1/30 — 15:07 — page 24 — #44i
i

i
i

i
i

i
i

24 PYTHON BASICS

complex.real

Real component of a complex number.

See Also: float 19; complex 422;

UserDict � Custom wrapper around dictionary objects

dict � New-style base class for dictionary objects

Dictionaries in Python provide a well-optimized mapping between immutable objects
and other Python objects (see Glossary entry on “immutable”). You may create custom
datatypes that respond to various dictionary operations. There are a few syntactic
operations associated with dictionaries, all involving indexing with square braces. But
unlike with numeric datatypes, there are several regular methods that are reasonable
to consider as part of the general interface for dictionary-like objects.

If you create a dictionary-like datatype by subclassing from UserDict.UserDict , all
the special methods defined by the parent are proxies to the true dictionary stored in
the object’s .data member. If, under Python 2.2+, you subclass from dict itself, the
object itself inherits dictionary behaviors. In either case, you may customize whichever
methods you wish. Below is an example of the two styles for subclassing a dictionary-like
datatype:

>>> from sys import stderr
>>> from UserDict import UserDict
>>> class LogDictOld(UserDict):
... def __setitem__(self, key, val):
... stderr.write("Set: "+str(key)+"->"+str(val)+"\n")
... self.data[key] = val
...
>>> ldo = LogDictOld()
>>> ldo[’this’] = ’that’
Set: this->that
>>> class LogDictNew(dict):
... def __setitem__(self, key, val):
... stderr.write("Set: "+str(key)+"->"+str(val)+"\n")
... dict.__setitem__(self, key, val)
...
>>> ldn = LogDictNew()
>>> ldn[’this’] = ’that’
Set: this->that

METHODS

dict. cmp (self, other)
UserDict.UserDict. cmp (self, other)

“TPiP” — 2006/1/30 — 15:07 — page 25 — #45i
i

i
i

i
i

i
i

1.1 Techniques and Patterns 25

Return a value indicating the order of self and other. Determines how a datatype
responds to the numeric comparison operators <, >, <=, >=, ==, <>, and !=.
Also determines the behavior of the built-in cmp() function. Should return -1
for self<other, 0 for self==other, and 1 for self>other. If other comparison
methods are defined, they take precedence over . cmp (): . ge (), . gt (),
. le (), and . lt ().

dict. contains (self, x)
UserDict.UserDict. contains (self, x)

Return a Boolean value indicating whether self “contains” the value x. By default,
being contained in a dictionary means matching one of its keys, but you can change
this behavior by overriding it (e.g., check whether x is in a value rather than a key).
Determines how a datatype responds to the in operator.

dict. delitem (self, x)
UserDict.UserDict. delitem (self, x)

Remove an item from a dictionary-like datatype. By default, removing an item
means removing the pair whose key equals x. Determines how a datatype responds
to the del statement, as in: del self[x].

dict. getitem (self, x)
UserDict.UserDict. getitem (self, x)

By default, return the value associated with the key x. Determines how a datatype
responds to indexing with square braces. You may override this method to either
search differently or return special values. For example:

>>> class BagOfPairs(dict):
... def __getitem__(self, x):
... if self.has_key(x):
... return (x, dict.__getitem__(self,x))
... else:
... tmp = dict([(v,k) for k,v in self.items()])
... return (dict.__getitem__(tmp,x), x)
...
>>> bop = BagOfPairs({’this’:’that’, ’spam’:’eggs’})
>>> bop[’this’]
(’this’, ’that’)
>>> bop[’eggs’]
(’spam’, ’eggs’)
>>> bop[’bacon’] = ’sausage’
>>> bop
{’this’: ’that’, ’bacon’: ’sausage’, ’spam’: ’eggs’}
>>> bop[’nowhere’]
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "<stdin>", line 7, in __getitem__

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 26 --- #46i
i

i
i

i
i

i
i

26 PYTHON BASICS

KeyError: nowhere

dict. len (self)
UserDict.UserDict. len (self)

Return the length of the dictionary. By default this is simply a count of the key/val
pairs, but you could perform a different calculation if you wished (e.g, perhaps you
would cache the size of a record set returned from a database query that emulated
a dictionary). Determines how a datatype responds to the built-in len() function.

dict. setitem (self, key, val)
UserDict.UserDict. setitem (self, key, val)

Set the dictionary key key to value val. Determines how a datatype responds
to indexed assignment; that is, self[key]=val. A custom version might actually
perform some calculation based on val and/or key before adding an item.

dict.clear(self)
UserDict.UserDict.clear(self)

Remove all items from self.

dict.copy(self)
UserDict.UserDict.copy(self)

Return a copy of the dictionary self (i.e., a distinct object with the same items).

dict.get(self, key [,default=None])
UserDict.UserDict.get(self, key [,default=None])

Return the value associated with the key key. If no item with the key exists, return
default instead of raising a KeyError.

dict.has key(self, key)
UserDict.UserDict.has key(self, key)

Return a Boolean value indicating whether self has the key key.

dict.items(self)
UserDict.UserDict.items(self)
dict.iteritems(self)
UserDict.UserDict.iteritems(self)

Return the items in a dictionary, in an unspecified order. The .items() method
returns a true list of (key,val) pairs, while the .iteritems() method (in Python
2.2+) returns a generator object that successively yields items. The latter method
is useful if your dictionary is not a true in-memory structure, but rather some sort
of incremental query or calculation. Either method responds externally similarly to
a for loop:

>>> d = {1:2, 3:4}
>>> for k,v in d.iteritems(): print k,v,’:’,

“TPiP” — 2006/1/30 — 15:07 — page 27 — #47i
i

i
i

i
i

i
i

1.1 Techniques and Patterns 27

...
1 2 : 3 4 :
>>> for k,v in d.items(): print k,v,’:’,
...
1 2 : 3 4 :

dict.keys(self)
UserDict.UserDict.keys(self)
dict.iterkeys(self)
UserDict.UserDict.iterkeys(self)

Return the keys in a dictionary, in an unspecified order. The .keys() method
returns a true list of keys, while the .iterkeys() method (in Python 2.2+) returns
a generator object.

See Also: dict.items() 26;

dict.popitem(self)
UserDict.UserDict.popitem(self)

Return a (key,val) pair for the dictionary, or raise as KeyError if the dictionary
is empty. Removes the returned item from the dictionary. As with other dictionary
methods, the order in which items are popped is unspecified (and can vary between
versions and platforms).

dict.setdefault(self, key [,default=None])
UserDict.UserDict.setdefault(self, key [,default=None])

If key is currently in the dictionary, return the corresponding value. If key is not
currently in the dictionary, set self[key]=default, then return default.

See Also: dict.get() 26;

dict.update(self, other)
UserDict.UserDict.update(self, other)

Update the dictionary self using the dictionary other. If a key in other already
exists in self, the corresponding value from other is used in self. If a (key,val)
pair in other is not in self, it is added.

dict.values(self)
UserDict.UserDict.values(self)
dict.itervalues(self)
UserDict.UserDict.itervalues(self)

Return the values in a dictionary, in an unspecified order. The .values() method
returns a true list of keys, while the .itervalues() method (in Python 2.2+)
returns a generator object.

See Also: dict.items() 26;

See Also: dict 428; list 28; operator 47;

“TPiP” — 2006/1/30 — 15:07 — page 28 — #48i
i

i
i

i
i

i
i

28 PYTHON BASICS

UserList � Custom wrapper around list objects

list � New-style base class for list objects

tuple � New-style base class for tuple objects

A Python list is a (possibly) heterogeneous mutable sequence of Python objects. A
tuple is a similar immutable sequence (see Glossary entry on “immutable”). Most of
the magic methods of lists and tuples are the same, but a tuple does not have those
methods associated with internal transformation.

If you create a list-like datatype by subclassing from UserList.UserList , all the
special methods defined by the parent are proxies to the true list stored in the object’s
.data member. If, under Python 2.2+, you subclass from list (or tuple) itself, the
object itself inherits list (tuple) behaviors. In either case, you may customize whichever
methods you wish. The discussion of dict and UserDict shows an example of the different
styles of specialization.

The difference between a list-like object and a tuple-like object runs less deep than
you might think. Mutability is only really important for using objects as dictionary
keys, but dictionaries only check the mutability of an object by examining the return
value of an object’s . hash () method. If this method fails to return an integer, an
object is considered mutable (and ineligible to serve as a dictionary key). The reason
that tuples are useful as keys is because every tuple composed of the same items has
the same hash; two lists (or dictionaries), by contrast, may also have the same items,
but only as a passing matter (since either can be changed).

You can easily give a hash value to a list-like datatype. However, there is an obvious
and wrong way to do so:

>>> class L(list):
... __hash__ = lambda self: hash(tuple(self))
...
>>> lst = L([1,2,3])
>>> dct = {lst:33, 7:8}
>>> print dct
{[1, 2, 3]: 33, 7: 8}
>>> dct[lst]
33
>>> lst.append(4)
>>> print dct
{[1, 2, 3, 4]: 33, 7: 8}
>>> dct[lst]
Traceback (most recent call last):

File "<stdin>", line 1, in ?
KeyError: [1, 2, 3, 4]

As soon as lst changes, its hash changes, and you cannot reach the dictionary item

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 29 --- #49i
i

i
i

i
i

i
i

1.1 Techniques and Patterns 29

keyed to it. What you need is something that does not change as the object changes:

>>> class L(list):
... __hash__ = lambda self: id(self)
...
>>> lst = L([1,2,3])
>>> dct = {lst:33, 7:8}
>>> dct[lst]
33
>>> lst.append(4)
>>> dct
{[1, 2, 3, 4]: 33, 7: 8}
>>> dct[lst]
33

As with most everything about Python datatypes and operations, mutability is merely
a protocol that you can choose to support or not support in your custom datatypes.

Sequence datatypes may choose to support order comparisons—in fact they probably
should. The methods . cmp (), . ge (), . gt (), . le (), and . lt () have
the same meanings for sequences that they do for other datatypes; see operator , float,
and dict for details.

METHODS

list. add (self, other)
UserList.UserList. add (self, other)
tuple. add (self, other)
list. iadd (self, other)
UserList.UserList. iadd (self, other)

Determine how a datatype responds to the + and += operators. Augmented as-
signments (“in-place add”) are supported in Python 2.0+. For list-like datatypes,
normally the statements lst+=other and lst=lst+other have the same effect, but
the augmented version might be more efficient.

Under standard meaning, addition of the two sequence objects produces a new (dis-
tinct) sequence object with all the items in both self and other. An in-place add
(. iadd) mutates the left-hand object without creating a new object. A custom
datatype might choose to give a special meaning to addition, perhaps depending on
the datatype of the object added in. For example:

>>> class XList(list):
... def __iadd__(self, other):
... if issubclass(other.__class__, list):
... return list.__iadd__(self, other)
... else:
... from operator import add

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 30 --- #50i
i

i
i

i
i

i
i

30 PYTHON BASICS

... return map(add, self, [other]*len(self))

...
>>> xl = XList([1,2,3])
>>> xl += [4,5,6]
>>> xl
[1, 2, 3, 4, 5, 6]
>>> xl += 10
>>> xl
[11, 12, 13, 14, 15, 16]

list. contains (self, x)
UserList.UserList. contains (self, x)
tuple. contains (self, x)

Return a Boolean value indicating whether self contains the value x. Determines
how a datatype responds to the in operator.

list. delitem (self, x)
UserList.UserList. delitem (self, x)

Remove an item from a list-like datatype. Determines how a datatype responds to
the del statement, as in del self[x].

list. delslice (self, start, end)
UserList.UserList. delslice (self, start, end)

Remove a range of items from a list-like datatype. Determines how a datatype
responds to the del statement applied to a slice, as in del self[start:end].

list. getitem (self, pos)
UserList.UserList. getitem (self, pos)
tuple. getitem (self, pos)

Return the value at offset pos in the list. Determines how a datatype responds
to indexing with square braces. The default behavior on list indices is to raise an
IndexError for nonexistent offsets.

list. getslice (self, start, end)
UserList.UserList. getslice (self, start, end)
tuple. getslice (self, start, end)

Return a subsequence of the sequence self. Determines how a datatype responds
to indexing with a slice parameter, as in self[start:end].

list. hash (self)
UserList.UserList. hash (self)
tuple. hash (self)

Return an integer that distinctly identifies an object. Determines how a datatype
responds to the built-in hash() function—and probably more importantly the hash
is used internally in dictionaries. By default, tuples (and other immutable types)
will return hash values but lists will raise a TypeError. Dictionaries will handle
hash collisions gracefully, but it is best to try to make hashes unique per object.

“TPiP” — 2006/1/30 — 15:07 — page 31 — #51i
i

i
i

i
i

i
i

1.1 Techniques and Patterns 31

>>> hash(219750523), hash((1,2))
(219750523, 219750523)
>>> dct = {219750523:1, (1,2):2}
>>> dct[219750523]
1

list. len (self
UserList.UserList. len (self
tuple. len (self

Return the length of a sequence. Determines how a datatype responds to the built-in
len() function.

list. mul (self, num)
UserList.UserList. mul (self, num)
tuple. mul (self, num)
list. rmul (self, num)
UserList.UserList. rmul (self, num)
tuple. rmul (self, num)
list. imul (self, num)
UserList.UserList. imul (self, num)

Determine how a datatype responds to the * and *= operators. Augmented as-
signments (“in-place add”) are supported in Python 2.0+. For list-like datatypes,
normally the statements lst*=other and lst=lst*other have the same effect, but
the augmented version might be more efficient.

The right-associative version . rmul () determines the value of num*self, the left-
associative . mul () determines the value of self*num. Under standard meaning,
the product of a sequence and a number produces a new (distinct) sequence object
with the items in self duplicated num times:

>>> [1,2,3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

list. setitem (self, pos, val)
UserList.UserList. setitem (self, pos, val)

Set the value at offset pos to value value. Determines how a datatype responds
to indexed assignment; that is, self[pos]=val. A custom version might actually
perform some calculation based on val and/or key before adding an item.

list. setslice (self, start, end, other)
UserList.UserList. setslice (self, start, end, other)

Replace the subsequence self[start:end] with the sequence other. The replaced
and new sequences are not necessarily the same length, and the resulting sequence
might be longer or shorter than self. Determines how a datatype responds to
assignment to a slice, as in self[start:end]=other.

“TPiP” — 2006/1/30 — 15:07 — page 32 — #52i
i

i
i

i
i

i
i

32 PYTHON BASICS

list.append(self, item)
UserList.UserList.append(self, item)

Add the object item to the end of the sequence self. Increases the length of self
by one.

list.count(self, item)
UserList.UserList.count(self, item)

Return the integer number of occurrences of item in self.

list.extend(self, seq)
UserList.UserList.extend(self, seq)

Add each item in seq to the end of the sequence self. Increases the length of self
by len(seq).

list.index(self, item)
UserList.UserList.index(self, item)

Return the offset index of the first occurrence of item in self.

list.insert(self, pos, item)
UserList.UserList.insert(self, pos, item)

Add the object item to the sequence self before the offset pos. Increases the length
of self by one.

list.pop(self [,pos=-1])
UserList.UserList.pop(self [,pos=-1])

Return the item at offset pos of the sequence self, and remove the returned item
from the sequence. By default, remove the last item, which lets a list act like a stack
using the .pop() and .append() operations.

list.remove(self, item)
UserList.UserList.remove(self, item)

Remove the first occurrence of item in self. Decreases the length of self by one.

list.reverse(self)
UserList.UserList.reverse(self)

Reverse the list self in place.

list.sort(self [cmpfunc])
UserList.UserList.sort(self [,cmpfunc])

Sort the list self in place. If a comparison function cmpfunc is given, perform
comparisons using that function.

See Also: list 427; tuple 427; dict 24; operator 47;

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 33 --- #53i
i

i
i

i
i

i
i

1.1 Techniques and Patterns 33

UserString � Custom wrapper around string objects

str � New-style base class for string objects

A string in Python is an immutable sequence of characters (see Glossary entry on
“immutable”). There is special syntax for creating strings—single and triple quoting,
character escaping, and so on—but in terms of object behaviors and magic methods,
most of what a string does a tuple does, too. Both may be sliced and indexed, and both
respond to pseudo-arithmetic operators + and *.

For the str and UserString magic methods that are strictly a matter of the
sequence quality of strings, see the corresponding tuple documentation. These
include str. add () , str. getitem () , str. getslice () , str. hash () ,
str. len () , str. mul () , and str. rmul () . Each of these methods is also
defined in UserString . The UserString module also includes a few explicit definitions
of magic methods that are not in the new-style str class: UserString. iadd () ,
UserString. imul () , and UserString. radd () . However, you may define your
own implementations of these methods, even if you inherit from str (in Python 2.2+).
In any case, internally, in-place operations are still performed on all strings.

Strings have quite a number of nonmagic methods as well. If you wish to create a
custom datatype that can be utilized in the same functions that expect strings, you may
want to specialize some of these common string methods. The behavior of string meth-
ods is documented in the discussion of the string module, even for the few string methods
that are not also defined in the string module. However, inheriting from either str or
UserString provides very reasonable default behaviors for all these methods.

See Also: "".capitalize() 132; "".title() 133; "".center() 133; "".count() 134;
"".endswith() 134; "".expandtabs() 134; "".find() 135; "".index() 135; "".isalpha() 136;
"".isalnum() 136; "".isdigit() 136; "".islower() 136; "".isspace() 136; "".istitle() 136;
"".isupper() 136; "".join() 137; "".ljust() 138; "".lower() 138; "".lstrip() 139; "".re-
place() 139; "".rfind() 140; "".rindex() 141; "".rjust() 141; "".rstrip() 142; "".split()
142; "".splitlines() 144; "".startswith() 144; "".strip() 144; "".swapcase() 145; "".trans-
late() 145; "".upper() 146; "".encode() 188;

METHODS

str. contains (self, x)
UserString.UserString. contains (self, x)

Return a Boolean value indicating whether self contains the character x. Deter-
mines how a datatype responds to the in operator.

In Python versions through 2.2, the in operator applied to strings has a semantics
that tends to trip me up. Fortunately, Python 2.3+ has the behavior that I expect.
In older Python versions, in can only be used to determine the presence of a single
character in a string—this makes sense if you think of a string as a sequence of
characters, but I nonetheless intuitively want something like the code below to work:

“TPiP” — 2006/1/30 — 15:07 — page 34 — #54i
i

i
i

i
i

i
i

34 PYTHON BASICS

>>> s = "The cat in the hat"
>>> if "the" in s: print "Has definite article"
...
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: ’in <string>’ requires character as left operand

It is easy to get the “expected” behavior in a custom string-like datatype (while still
always producing the same result whenever x is indeed a character):

>>> class S(str):
... def __contains__(self, x):
... for i in range(len(self)):
... if self.startswith(x,i): return 1
...
>>> s = S("The cat in the hat")
>>> "the" in s
1
>>> "an" in s
0

Python 2.3 strings behave the same way as my datatype S.

See Also: string 422; string 129; operator 47; tuple 28;

1.1.5 Exercise: Filling out the forms (or deciding not to)

DISCUSSION

A particular little task that was quite frequent and general before the advent of Web
servers has become absolutely ubiquitous for slightly dynamic Web pages. The pattern
one encounters is that one has a certain general format that is desired for a document
or file, but miscellaneous little details differ from instance to instance. Form letters are
another common case where one comes across this pattern, but thematically related
collections of Web pages rule the roost of templating techniques.

It turns out that everyone and her sister has developed her own little templating
system. Creating a templating system is a very appealing task for users of most scripting
languages, just a little while after they have gotten a firm grasp of “Hello World!” Some
of these are discussed in Chapter 5, but many others are not addressed. Often, these
templating systems will be HTML/CGI oriented and will often include some degree of
dynamic calculation of fill-in values—the inspiration in these cases comes from systems
like Allaire’s ColdFusion, Java Server Pages, Active Server Pages, and PHP, in which
some program code gets sprinkled around in documents that are primarily made of
HTML.

“TPiP” — 2006/1/30 — 15:07 — page 35 — #55i
i

i
i

i
i

i
i

1.1 Techniques and Patterns 35

At the very simplest, Python provides interpolation of special characters in strings,
in a style similar to the C sprintf() function. So a simple example might appear like:

>>> form_letter="""Dear %s %s,
...
... You owe us $%s for account (#%s). Please Pay.
...
... The Company"""
>>> fname = ’David’
>>> lname = ’Mertz’
>>> due = 500
>>> acct = ’123-T745’
>>> print form_letter % (fname,lname,due,acct)
Dear David Mertz,

You owe us $500 for account (#123-T745). Please Pay.

The Company

This approach does the basic templating, but it would be easy to make an error in com-
posing the tuple of insertion values. And moreover, a slight change to the form letter
template—such as the addition or subtraction of a field—would produce wrong results.

A bit more robust approach is to use Python’s dictionary-based string interpolation.
For example:

>>> form_letter="""Dear %(fname)s %(lname)s,
...
... You owe us $%(due)s for account (#%(acct)s). Please Pay.
...
... The Company"""
>>> fields = {’lname’:’Mertz’, ’fname’:’David’}
>>> fields[’acct’] = ’123-T745’
>>> fields[’due’] = 500
>>> fields[’last_letter’] = ’01/02/2001’
>>> print form_letter % fields
Dear David Mertz,

You owe us $500 for account (#123-T745). Please Pay.

The Company

With this approach, the fields need not be listed in a particular order for the insertion.
Furthermore, if the order of fields is rearranged in the template, or if the same fields
are used for a different template, the fields dictionary may still be used for insertion
values. If fields has unused dictionary keys, it doesn’t hurt the interpolation, either.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 36 --- #56i
i

i
i

i
i

i
i

36 PYTHON BASICS

The dictionary interpolation approach is still subject to failure if dictionary keys are
missing. Two improvements using the UserDict module can improve matters, in two
different (and incompatible) ways. In Python 2.2+ the built-in dict type can be a
parent for a “new-style class”; if available everywhere you need it to run, dict is a
better parent than is UserDict.UserDict . One approach is to avoid all key misses
during dictionary interpolation:

>>> form_letter="""%(salutation)s %(fname)s %(lname)s,
...
... You owe us $%(due)s for account (#%(acct)s). Please Pay.
...
... %(closing)s The Company"""
>>> from UserDict import UserDict
>>> class AutoFillingDict(UserDict):
... def __init__(self,dict={}): UserDict.__init__(self,dict)
... def __getitem__(self,key):
... return self.data.get(self, key, ’’)
>>> fields = AutoFillingDict()
>>> fields[’salutation’] = ’Dear’
>>> fields
{’salutation’: ’Dear’}
>>> fields[’fname’] = ’David’
>>> fields[’due’] = 500
>>> fields[’closing’] = ’Sincerely,’
>>> print form_letter % fields
Dear David ,

You owe us $500 for account (#). Please Pay.

Sincerely, The Company

Even though the fields lname and acct are not specified, the interpolation has man-
aged to produce a basically sensible letter (instead of crashing with a KeyError).

Another approach is to create a custom dictionary-like object that will allow for “par-
tial interpolation.” This approach is particularly useful to gather bits of the information
needed for the final string over the course of the program run (rather than all at once):

>>> form_letter="""%(salutation)s %(fname)s %(lname)s,
...
... You owe us $%(due)s for account (#%(acct)s). Please Pay.
...
... %(closing)s The Company"""
>>> from UserDict import UserDict
>>> class ClosureDict(UserDict):
... def __init__(self,dict={}): UserDict.__init__(self,dict)
... def __getitem__(self,key):
... return self.data.get(self, key, ’%(’+key+’)s’)

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 37 --- #57i
i

i
i

i
i

i
i

1.1 Techniques and Patterns 37

>>> name_dict = ClosureDict({’fname’:’David’,’lname’:’Mertz’})
>>> print form_letter % name_dict
%(salutation)s David Mertz,

You owe us $%(due)s for account (#%(acct)s). Please Pay.

%(closing)s The Company

Interpolating using a ClosureDict simply fills in whatever portion of the information
it knows, then returns a new string that is closer to being filled in.

See Also: dict 24; UserDict 24; UserList 28; UserString 33;

QUESTIONS

1. What are some other ways to provide “smart” string interpolation? Can you
think of ways that the UserList or UserString modules might be used to implement
a similar enhanced interpolation?

2. Consider other “magic” methods that you might add to classes inheriting from
UserDict.UserDict . How might these additional behaviors make templating
techniques more powerful?

3. How far do you think you can go in using Python’s string interpolation as a
templating technique? At what point would you decide you had to apply other
techniques, such as regular expression substitutions or a parser? Why?

4. What sorts of error checking might you implement for customized interpolation?
The simple list or dictionary interpolation could fail fairly easily, but at least those
were trappable errors (they let the application know something is amiss). How
would you create a system with both flexible interpolation and good guards on
the quality and completeness of the final result?

1.1.6 Problem: Working with lines from a large file

At its simplest, reading a file in a line-oriented style is just a matter of using the
.readline(), .readlines(), and .xreadlines() methods of a file object. Python
2.2+ provides a simplified syntax for this frequent operation by letting the file object
itself efficiently iterate over lines (strictly in forward sequence). To read in an entire
file, you may use the .read() method and possibly split it into lines or other chunks
using the string.split() function. Some examples:

>>> for line in open(’chap1.txt’): # Python 2.2+
... # process each line in some manner
... pass
...
>>> linelist = open(’chap1.txt’).readlines()

“TPiP” — 2006/1/30 — 15:07 — page 38 — #58i
i

i
i

i
i

i
i

38 PYTHON BASICS

>>> print linelist[1849],
EXERCISE: Working with lines from a large file

>>> txt = open(’chap1.txt’).read()
>>> from os import linesep
>>> linelist2 = txt.split(linesep)

For moderately sized files, reading the entire contents is not a big issue. But large
files make time and memory issues more important. Complex documents or active log
files, for example, might be multiple megabytes, or even gigabytes, in size—even if the
contents of such files do not strictly exceed the size of available memory, reading them
can still be time consuming. A related technique to those discussed here is discussed
in the “Problem: Reading a file backwards by record, line, or paragraph” section of
Chapter 2.

Obviously, if you need to process every line in a file, you have to read the whole file;
xreadlines does so in a memory-friendly way, assuming you are able to process them
sequentially. But for applications that only need a subset of lines in a large file, it is not
hard to make improvements. The most important module to look to for support here
is linecache.

A CACHED LINE LIST

It is straightforward to read a particular line from a file using linecache:

>>> import linecache
>>> print linecache.getline(’chap1.txt’,1850),

PROBLEM: Working with lines from a large file

Notice that linecache.getline() uses one-based counting, in contrast to the zero-
based list indexing in the prior example. While there is not much to this, it would be
even nicer to have an object that combined the efficiency of linecache with the interfaces
we expect in lists. Existing code might exist to process lists of lines, or you might want
to write a function that is agnostic about the source of a list of lines. In addition to
being able to enumerate and index, it would be useful to be able to slice linecache-based
objects, just as we might do to real lists (including with extended slices, which were
added to lists in Python 2.3).

cachedlinelist.py

import linecache, types
class CachedLineList:

Note: in Python 2.2+, it is probably worth including:
__slots__ = (’_fname’)
...and inheriting from ’object’
def __init__(self, fname):

self._fname = fname

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 39 --- #59i
i

i
i

i
i

i
i

1.1 Techniques and Patterns 39

def __getitem__(self, x):
if type(x) is types.SliceType:

return [linecache.getline(self._fname, n+1)
for n in range(x.start, x.stop, x.step)]

else:
return linecache.getline(self._fname, x+1)

def __getslice__(self, beg, end):
pass to __getitem__ which does extended slices also
return self[beg:end:1]

Using these new objects is almost identical to using a list created by
open(fname).readlines(), but more efficient (especially in memory usage):

>>> from cachedlinelist import CachedLineList
>>> cll = CachedLineList(’../chap1.txt’)
>>> cll[1849]
’ PROBLEM: Working with lines from a large file\r\n’
>>> for line in cll[1849:1851]: print line,
...

PROBLEM: Working with lines from a large file
--

>>> for line in cll[1853:1857:2]: print line,
...

a matter of using the ’.readline()’, ’.readlines()’ and
simplified syntax for this frequent operation by letting the

A RANDOM LINE

Occasionally—especially for testing purposes—you might want to check “typical” lines
in a line-oriented file. It is easy to fall into the trap of making sure that a process
works for the first few lines of a file, and maybe for the last few, then assuming it works
everywhere. Unfortunately, the first and last few lines of many files tend to be atypical:
sometimes headers or footers are used; sometimes a log file’s first lines were logged
during development rather than usage; and so on. Then again, exhaustive testing of
entire files might provide more data than you want to worry about. Depending on the
nature of the processing, complete testing could be time consuming as well.

On most systems, seeking to a particular position in a file is far quicker than reading
all the bytes up to that position. Even using linecache, you need to read a file byte-
by-byte up to the point of a cached line. A fast approach to finding random lines from
a large file is to seek to a random position within a file, then read comparatively few
bytes before and after that position, identifying a line within that chunk.

“TPiP” — 2006/1/30 — 15:07 — page 40 — #60i
i

i
i

i
i

i
i

40 PYTHON BASICS

randline.py

#!/usr/bin/python
"""Iterate over random lines in a file (req Python 2.2+)
From command-line use: % randline.py <fname> <numlines>
"""
import sys
from os import stat, linesep
from stat import ST_SIZE
from random import randrange
MAX_LINE_LEN = 4096

#-- Iterable class
class randline(object):

__slots__ = (’_fp’,’_size’,’_limit’)
def __init__(self, fname, limit=sys.maxint):

self._size = stat(fname)[ST_SIZE]
self._fp = open(fname,’rb’)
self._limit = limit

def __iter__(self):
return self

def next(self):
if self._limit <= 0:

raise StopIteration
self._limit -= 1
pos = randrange(self._size)
priorlen = min(pos, MAX_LINE_LEN) # maybe near start
self._fp.seek(pos-priorlen)
Add extra linesep at beg/end in case pos at beg/end
prior = linesep + self._fp.read(priorlen)
post = self._fp.read(MAX_LINE_LEN) + linesep
begln = prior.rfind(linesep) + len(linesep)
endln = post.find(linesep)
return prior[begln:]+post[:endln]

#-- Use as command-line tool
if __name__==’__main__’:

fname, numlines = sys.argv[1], int(sys.argv[2])
for line in randline(fname, numlines):

print line

The presented randline module may be used either imported into another application
or as a command-line tool. In the latter case, you could pipe a collection of random
lines to another application, as in:

“TPiP” — 2006/1/30 — 15:07 — page 41 — #61i
i

i
i

i
i

i
i

1.2 Standard Modules 41

% randline.py reallybig.log 1000 | testapp

A couple details should be noted in my implementation. (1) The same line can be
chosen more than once in a line iteration. If you choose a small number of lines from
a large file, this probably will not happen (but the so-called “birthday paradox” makes
an occasional collision more likely than you might expect; see the Glossary). (2) What
is selected is “the line that contains a random position in the file,” which means that
short lines are less likely to be chosen than long lines. That distribution could be a bug
or feature, depending on your needs. In practical terms, for testing “enough” typical
cases, the precise distribution is not all that important.

See Also: xreadlines 72; linecache 64; random 82;

1.2 Standard Modules

There are a variety of tasks that many or most text processing applications will perform,
but that are not themselves text processing tasks. For example, texts typically live inside
files, so for a concrete application you might want to check whether files exist, whether
you have access to them, and whether they have certain attributes; you might also want
to read their contents. The text processing per se does not happen until the text makes
it into a Python value, but getting the text into local memory is a necessary step.

Another task is making Python objects persistent so that final or intermediate pro-
cessing results can be saved in computer-usable forms. Or again, Python applications
often benefit from being able to call external processes and possibly work with the
results of those calls.

Yet another class of modules helps you deal with Python internals in ways that go
beyond what the inherent syntax does. I have made a judgment call in this book as
to which such “Python internal” modules are sufficiently general and frequently used
in text processing applications; a number of “internal” modules are given only one-line
descriptions under the “Other Modules” topic.

1.2.1 Working with the Python Interpreter

Some of the modules in the standard library contain functionality that is nearly as
important to Python as the basic syntax. Such modularity is an important strength of
Python’s design, but users of other languages may be surprised to find capabilities for
reading command-line arguments, catching exceptions, copying objects, or the like in
external modules.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 42 --- #62i
i

i
i

i
i

i
i

42 PYTHON BASICS

copy � Generic copying operations

Names in Python programs are merely bindings to underlying objects; many of these
objects are mutable. This point is simple, but it winds up biting almost every beginning
Python programmer—and even a few experienced Pythoners get caught, too. The
problem is that binding another name (including a sequence position, dictionary entry,
or attribute) to an object leaves you with two names bound to the same object. If you
change the underlying object using one name, the other name also points to a changed
object. Sometimes you want that, sometimes you do not.

One variant of the binding trap is a particularly frequent pitfall. Say you want a
2D table of values, initialized as zeros. Later on, you would like to be able to refer
to a row/column position as, for example, table[2][3] (as in many programming
languages). Here is what you would probably try first, along with its failure:

>>> row = [0]*4
>>> print row
[0, 0, 0, 0]
>>> table = [row]*4 # or ’table = [[0]*4]*4
>>> for row in table: print row
...
[0, 0, 0, 0]
[0, 0, 0, 0]
[0, 0, 0, 0]
[0, 0, 0, 0]
>>> table[2][3] = 7
>>> for row in table: print row
...
[0, 0, 0, 7]
[0, 0, 0, 7]
[0, 0, 0, 7]
[0, 0, 0, 7]
>>> id(table[2]), id(table[3])
(6207968, 6207968)

The problem with the example is that table is a list of four positional bindings to
the exact same list object. You cannot change just one row, since all four point to just
one object. What you need instead is a copy of row to put in each row of table.

Python provides a number of ways to create copies of objects (and bind them to
names). Such a copy is a “snapshot” of the state of the object that can be modified
independently of changes to the original. A few ways to correct the table problem are:

>>> table1 = map(list, [(0,)*4]*4)
>>> id(table1[2]), id(table1[3])
(6361712, 6361808)
>>> table2 = [lst[:] for lst in [[0]*4]*4]
>>> id(table2[2]), id(table2[3])

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 43 --- #63i
i

i
i

i
i

i
i

1.2 Standard Modules 43

(6356720, 6356800)
>>> from copy import copy
>>> row = [0]*4
>>> table3 = map(copy, [row]*4)
>>> id(table3[2]), id(table3[3])
(6498640, 6498720)

In general, slices always create new lists. In Python 2.2+, the constructors list()
and dict() likewise construct new/copied lists/dicts (possibly using other sequence or
association types as arguments).

But the most general way to make a new copy of whatever object you might need
is with the copy module. If you use the copy module you do not need to worry about
issues of whether a given sequence is a list, or merely list-like, which the list() coercion
forces into a list.

FUNCTIONS

copy.copy(obj)

Return a shallow copy of a Python object. Most (but not quite all) types of Python
objects can be copied. A shallow copy binds its elements/members to the same
objects as bound in the original—but the object itself is distinct.

>>> import copy
>>> class C: pass
...
>>> o1 = C()
>>> o1.lst = [1,2,3]
>>> o1.str = "spam"
>>> o2 = copy.copy(o1)
>>> o1.lst.append(17)
>>> o2.lst
[1, 2, 3, 17]
>>> o1.str = ’eggs’
>>> o2.str
’spam’

copy.deepcopy(obj)

Return a deep copy of a Python object. Each element or member in an object is itself
recursively copied. For nested containers, it is usually more desirable to perform a
deep copy—otherwise you can run into problems like the 2D table example above.

>>> o1 = C()
>>> o1.lst = [1,2,3]
>>> o3 = copy.deepcopy(o1)
>>> o1.lst.append(17)

“TPiP” — 2006/1/30 — 15:07 — page 44 — #64i
i

i
i

i
i

i
i

44 PYTHON BASICS

>>> o3.lst
[1, 2, 3]
>>> o1.lst
[1, 2, 3, 17]

exceptions � Standard exception class hierarchy

Various actions in Python raise exceptions, and these exceptions can be caught using
an except clause. Although strings can serve as exceptions for backwards-compatibility
reasons, it is greatly preferable to use class-based exceptions.

When you catch an exception in using an except clause, you also catch any descendent
exceptions. By utilizing a hierarchy of standard and user-defined exception classes, you
can tailor exception handling to meet your specific code requirements.

>>> class MyException(StandardError): pass
...
>>> try:
... raise MyException
... except StandardError:
... print "Caught parent"
... except MyException:
... print "Caught specific class"
... except:
... print "Caught generic leftover"
...
Caught parent

In general, if you need to raise exceptions manually, you should either use a built-in
exception close to your situation, or inherit from that built-in exception. The outline
in Figure 1.1 shows the exception classes defined in exceptions.

getopt � Parser for command line options

Utility applications—whether for text processing or otherwise—frequently accept a va-
riety of command-line switches to configure their behavior. In principle, and frequently
in practice, all that you need to do to process command-line options is read through the
list sys.argv[1:] and handle each element of the option line. I have certainly written
my own small “sys.argv parser” more than once; it is not hard if you do not expect too
much.

“TPiP” — 2006/1/30 — 15:07 — page 45 — #65i
i

i
i

i
i

i
i

1.2 Standard Modules 45

� Exception Root class for all built−in exceptions
� StandardError Base for "normal" exceptions

� ArithmeticError Base for arithmetic exceptions
� OverflowError Number too large to represent
� ZeroDivisionError Dividing by zero
� FloatingPointError Problem in floating point operation

� LookupError Problem accessing a value in a collection
� IndexError Problem accessing a value in a sequence
� KeyError Problem accessing a value in a mapping

� NameError Problem accessing local or global name
� UnboundLocalError Reference to non−existent name

� AttributeError Problem accessing or setting an attribute
� TypeError Operation or function applied to wrong type
� ValueError Operation or function on unusable value

� UnicodeError Problem encoding or decoding
� EnvironmentError Problem outside of Python itself

� IOError Problem performing I/O
� OSError Error passed from the operating system

� WindowsError Windows−specific OS problem
� AssertionError Failure of an assert statement
� EOFError End−of−file without a read
� ImportError Problem importing a module
� ReferenceError Problem accessing collected weakref
� KeyboardInterrupt User pressed interrupt (ctrl−c) key
� MemoryError Operation runs out of memory (try del’ing)
� SyntaxError Problem parsing Python code
� SystemError Internal (recoverable) error in Python
� RuntimeError Error not falling under any other category
� NotImplementedError Functionality not yet available

� StopIteration Iterator has no more items available
� SystemExit Raised by sys.exit()

Figure 1.1: Standard exceptions

The getopt module provides some automation and error handling for option
parsing. It takes just a few lines of code to tell getopt what options it
should handle, and which switch prefixes and parameter styles to use. How-
ever, getopt is not necessarily the final word in parsing command lines. Python
2.3 includes Greg Ward’s optik module <http://optik.sourceforge.net/> re-
named as optparse, and the Twisted Matrix library contains twisted.python.usage
<http://www.twistedmatrix.com/documents/howto/options>. These modules, and
other third-party tools, were written because of perceived limitations in getopt.

“TPiP” — 2006/1/30 — 15:07 — page 46 — #66i
i

i
i

i
i

i
i

46 PYTHON BASICS

For most purposes, getopt is a perfectly good tool. Moreover, even if some enhanced
module is included in later Python versions, either this enhancement will be backwards
compatible or getopt will remain in the distribution to support existing scripts.

See Also: sys.argv 49;

FUNCTIONS

getopt.getopt(args, options [,long options]])

The argument args is the actual list of options being parsed, most commonly
sys.argv[1:]. The argument options and the optional argument long options
contain formats for acceptable options. If any options specified in args do not match
any acceptable format, a getopt.GetoptError exception is raised. All options must
begin with either a single dash for single-letter options or a double dash for long
options (DOS-style leading slashes are not usable, unfortunately).

The return value of getopt.getopt() is a pair containing an option list and a
list of additional arguments. The latter is typically a list of filenames the utility
will operate on. The option list is a list of pairs of the form (option, value).
Under recent versions of Python, you can convert an option list to a dictionary with
dict(optlist), which is likely to be useful.

The options format string is a sequence of letters, each optionally followed by a
colon. Any option letter followed by a colon takes a (mandatory) value after the
option.

The format for long options is a list of strings indicating the option names (ex-
cluding the leading dashes). If an option name ends with an equal sign, it requires
a value after the option.

It is easiest to see getopt in action:

>>> import getopt
>>> opts=’-a1 -b -c 2 --foo=bar --baz file1 file2’.split()
>>> optlist, args = getopt.getopt(opts,’a:bc:’,[’foo=’,’baz’])
>>> optlist
[(’-a’, ’1’), (’-b’, ’’), (’-c’, ’2’), (’--foo’, ’bar’),
(’--baz’, ’’)]
>>> args
[’file1’, ’file2’]
>>> nodash = lambda s: \
... s.translate(’’.join(map(chr,range(256))),’-’)
>>> todict = lambda l: \
... dict([(nodash(opt),val) for opt,val in l])
>>> optdict = todict(optlist)
>>> optdict
{’a’: ’1’, ’c’: ’2’, ’b’: ’’, ’baz’: ’’, ’foo’: ’bar’}

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 47 --- #67i
i

i
i

i
i

i
i

1.2 Standard Modules 47

You can examine options given either by looping through optlist or by performing
optdict.get(key, default) type tests as needed in your program flow.

operator � Standard operations as functions

All of the standard Python syntactic operators are available in functional form using
the operator module. In most cases, it is more clear to use the actual operators, but in
a few cases functions are useful. The most common usage for operator is in conjunction
with functional programming constructs. For example:

>>> import operator
>>> lst = [1, 0, (), ’’, ’abc’]
>>> map(operator.not_, lst) # fp-style negated bool vals
[0, 1, 1, 1, 0]
>>> tmplst = [] # imperative style
>>> for item in lst:
... tmplst.append(not item)
...
>>> tmplst
[0, 1, 1, 1, 0]
>>> del tmplst # must cleanup stray name

As well as being shorter, I find the FP style more clear. The source code below
provides sample implementations of the functions in the operator module. The actual
implementations are faster and are written directly in C, but the samples illustrate what
each function does.

operator2.py

Comparison functions
lt = __lt__ = lambda a,b: a < b
le = __le__ = lambda a,b: a <= b
eq = __eq__ = lambda a,b: a == b
ne = __ne__ = lambda a,b: a != b
ge = __ge__ = lambda a,b: a >= b
gt = __gt__ = lambda a,b: a > b
Boolean functions
not_ = __not__ = lambda o: not o
truth = lambda o: not not o
Arithmetic functions
abs = __abs__ = abs # same as built-in function
add = __add__ = lambda a,b: a + b
and_ = __and__ = lambda a,b: a & b # bitwise, not boolean
div = __div__ = \

lambda a,b: a/b # depends on __future__.division

“TPiP” — 2006/1/30 — 15:07 — page 48 — #68i
i

i
i

i
i

i
i

48 PYTHON BASICS

floordiv = __floordiv__ = lambda a,b: a/b # Only for 2.2+
inv = invert = __inv__ = __invert__ = lambda o: ~o
lshift = __lshift__ = lambda a,b: a << b
rshift = __rshift__ = lambda a,b: a >> b
mod = __mod__ = lambda a,b: a % b
mul = __mul__ = lambda a,b: a * b
neg = __neg__ = lambda o: -o
or_ = __or__ = lambda a,b: a | b # bitwise, not boolean
pos = __pos__ = lambda o: +o # identity for numbers
sub = __sub__ = lambda a,b: a - b
truediv = __truediv__ = lambda a,b: 1.0*a/b # New in 2.2+
xor = __xor__ = lambda a,b: a ^ b
Sequence functions (note overloaded syntactic operators)
concat = __concat__ = add
contains = __contains__ = lambda a,b: b in a
countOf = lambda seq,a: len([x for x in seq if x==a])
def delitem(seq,a): del seq[a]
__delitem__ = delitem
def delslice(seq,b,e): del seq[b:e]
__delslice__ = delslice
getitem = __getitem__ = lambda seq,i: seq[i]
getslice = __getslice__ = lambda seq,b,e: seq[b:e]
indexOf = lambda seq,o: seq.index(o)
repeat = __repeat__ = mul
def setitem(seq,i,v): seq[i] = v
__setitem__ = setitem
def setslice(seq,b,e,v): seq[b:e] = v
__setslice__ = setslice
Functionality functions (not implemented here)
The precise interfaces required to pass the below tests
are ill-defined, and might vary at limit-cases between
Python versions and custom data types.
import operator
isCallable = callable # just use built-in ’callable()’
isMappingType = operator.isMappingType
isNumberType = operator.isNumberType
isSequenceType = operator.isSequenceType

“TPiP” — 2006/1/30 — 15:07 — page 49 — #69i
i

i
i

i
i

i
i

1.2 Standard Modules 49

sys � Information about current Python interpreter

As with the Python “userland” objects you create within your applications, the Python
interpreter itself is very open to introspection. Using the sys module, you can examine
and modify many aspects of the Python runtime environment. However, as with much
of the functionality in the os module, some of what sys provides is too esoteric to
address in this book about text processing. Consult the Python Library Reference for
information on those attributes and functions not covered here.

The module attributes sys.exc type , sys.exc value , and sys.exc traceback

have been deprecated in favor of the function sys.exc info() . All of these, and also
sys.last type , sys.last value , sys.last traceback , and sys.tracebacklimit ,
let you poke into exceptions and stack frames to a finer degree than the basic try and
except statements do. sys.exec prefix and sys.executable provide information
on installed paths for Python.

The functions sys.displayhook() and sys.excepthook() control where program
output goes, and sys. displayhook and sys. excepthook retain their original
values (e.g., STDOUT and STDERR). sys.exitfunc affects interpreter cleanup. The
attributes sys.ps1 and sys.ps2 control prompts in the Python interactive shell.

Other attributes and methods simply provide more detail than you almost ever need to
know for text processing applications. The attributes sys.dllhandle and sys.winver

are Windows specific; sys.setdlopenflags() , and sys.getdlopenflags()

are Unix only. Methods like sys.builtin module names , sys. getframe() ,
sys.prefix , sys.getrecursionlimit() , sys.setprofile() , sys.settrace() ,
sys.setcheckinterval() , sys.setrecursionlimit() , sys.modules , and also
sys.warnoptions concern Python internals. Unicode behavior is affected by the
sys.setdefaultencoding() method, but is overridable with arguments anyway.

ATTRIBUTES

sys.argv

A list of command-line arguments passed to a Python script. The first item,
argv[0], is the script name itself, so you are normally interested in argv[1:] when
parsing arguments.

See Also: getopt 44; sys.stdin 51; sys.stdout 51;

sys.byteorder

The native byte order (endianness) of the current platform. Possible values are big
and little. Available in Python 2.0+.

sys.copyright

A string with copyright information for the current Python interpreter.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 50 --- #70i
i

i
i

i
i

i
i

50 PYTHON BASICS

sys.hexversion

The version number of the current Python interpreter as an integer. This number
increases with every version, even nonproduction releases. This attribute is not
very human-readable; sys.version or sys.version info is generally easier to
work with.

See Also: sys.version 51; sys.version info 52;

sys.maxint

The largest positive integer supported by Python’s regular integer type, on most
platforms, 2**31-1. The largest negative integer is -sys.maxint-1.

sys.maxunicode

The integer of the largest supported code point for a Unicode character under the
current configuration. Unicode characters are stored as UCS-2 or UCS-4.

sys.path

A list of the pathnames searched for modules. You may modify this path to control
module loading.

sys.platform

A string identifying the OS platform.

See Also: os.uname() 81;

sys.stderr
sys. stderr

File object for standard error stream (STDERR). sys. stderr retains the original
value in case sys.stderr is modified during program execution. Error messages and
warnings from the Python interpreter are written to sys.stderr . The most typical
use of sys.stderr is for application messages that indicate “abnormal” conditions.
For example:

% cat cap_file.py
#!/usr/bin/env python
import sys, string
if len(sys.argv) < 2:

sys.stderr.write("No filename specified\n")
else:

fname = sys.argv[1]
try:

input = open(fname).read()
sys.stdout.write(string.upper(input))

except:
sys.stderr.write("Could not read ’%s’\n" % fname)

“TPiP” — 2006/1/30 — 15:07 — page 51 — #71i
i

i
i

i
i

i
i

1.2 Standard Modules 51

% ./cap_file.py this > CAPS
% ./cap_file.py nosuchfile > CAPS
Could not read ’nosuchfile’
% ./cap_file.py > CAPS
No filename specified

See Also: sys.argv 49; sys.stdin 51; sys.stdout 51;

sys.stdin
sys. stdin

File object for standard input stream (STDIN). sys. stdin retains the origi-
nal value in case sys.stdin is modified during program execution. input() and
raw input() are read from sys.stdin , but the most typical use of sys.stdin is
for piped and redirected streams on the command line. For example:

% cat cap_stdin.py
#!/usr/bin/env python
import sys, string
input = sys.stdin.read()
print string.upper(input)
% echo "this and that" | ./cap_stdin.py
THIS AND THAT

See Also: sys.argv 49; sys.stderr 50; sys.stdout 51;

sys.stdout
sys. stdout

File object for standard output stream (STDOUT). sys. stdout retains the orig-
inal value in case sys.stdout is modified during program execution. The formatted
output of the print statement goes to sys.stdout , and you may also use regular
file methods, such as sys.stdout.write() .

See Also: sys.argv 49; sys.stderr 50; sys.stdin 51;

sys.version

A string containing version information on the current Python interpreter. The form
of the string is version (#build num, build date, build time) [compiler].
For example:

>>> print sys.version
1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]

Or:

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 52 --- #72i
i

i
i

i
i

i
i

52 PYTHON BASICS

>>> print sys.version
2.2 (#1, Apr 17 2002, 16:11:12)
[GCC 2.95.2 19991024 (release)]

This version-independent way to find the major, minor, and micro version compo-
nents should work for 1.5-2.3.x (at least):

>>> from string import split
>>> from sys import version
>>> ver_tup = map(int, split(split(version)[0],’.’))+[0]
>>> major, minor, point = ver_tup[:3]
>>> if (major, minor) >= (1, 6):
... print "New Way"
... else:
... print "Old Way"
...
New Way

sys.version info

A 5-tuple containing five components of the version number of the current Python
interpreter: (major, minor, micro, releaselevel, serial). releaselevel is
a descriptive phrase; the other are integers.

>>> sys.version_info
(2, 2, 0, ’final’, 0)

Unfortunately, this attribute was added to Python 2.0, so its items are not entirely
useful in requiring a minimal version for some desired functionality.

See Also: sys.version 51;

FUNCTIONS

sys.exit([code=0])

Exit Python with exit code code. Cleanup actions specified by finally clauses
of try statements are honored, and it is possible to intercept the exit attempt by
catching the SystemExit exception. You may specify a numeric exit code for those
systems that codify them; you may also specify a string exit code, which is printed
to STDERR (with the actual exit code set to 1).

sys.getdefaultencoding()

Return the name of the default Unicode string encoding in Python 2.0+.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 53 --- #73i
i

i
i

i
i

i
i

1.2 Standard Modules 53

sys.getrefcount(obj)

Return the number of references to the object obj. The value returned is one higher
than you might expect, because it includes the (temporary) reference passed as the
argument.

>>> x = y = "hi there"
>>> import sys
>>> sys.getrefcount(x)
3
>>> lst = [x, x, x]
>>> sys.getrefcount(x)
6

See Also: os 74;

types � Standard Python object types

Every object in Python has a type; you can find it by using the built-in function type() .
Often Python functions use a sort of ad hoc overloading, which is implemented by
checking features of objects passed as arguments. Programmers coming from languages
like C or Java are sometimes surprised by this style, since they are accustomed to seeing
multiple “type signatures” for each set of argument types the function can accept. But
that is not the Python way.

Experienced Python programmers try not to rely on the precise types of objects, not
even in an inheritance sense. This attitude is also sometimes surprising to programmers
of other languages (especially statically typed). What is usually important to a Python
program is what an object can do, not what it is. In fact, it has become much more
complicated to describe what many objects are with the “type/class unification” in
Python 2.2 and above (the details are outside the scope of this book).

For example, you might be inclined to write an overloaded function in the following
manner:

Naive overloading of argument

import types, exceptions
def overloaded_get_text(o):

if type(o) is types.FileType:
text = o.read()

elif type(o) is types.StringType:
text = o

elif type(o) in (types.IntType, types.FloatType,
types.LongType, types.ComplexType):

text = repr(o)
else:

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 54 --- #74i
i

i
i

i
i

i
i

54 PYTHON BASICS

raise exceptions.TypeError
return text

The problem with this rigidly typed code is that it is far more fragile than is nec-
essary. Something need not be an actual FileType to read its text, it just needs to
be sufficiently “file-like” (e.g., a urllib.urlopen() or cStringIO.StringIO() object
is file-like enough for this purpose). Similarly, a new-style object that descends from
types.StringType or a UserString.UserString() object is “string-like” enough to
return as such, and similarly for other numeric types.

A better implementation of the function above is:

“Quacks like a duck” overloading of argument

def overloaded_get_text(o):
if hasattr(o,’read’):

return o.read()
try:

return ""+o
except TypeError:

pass
try:

return repr(0+o)
except TypeError:

pass
raise

At times, nonetheless, it is useful to have symbolic names available to name specific
object types. In many such cases, an empty or minimal version of the type of object
may be used in conjunction with the type() function equally well—the choice is mostly
stylistic:

>>> type(’’) == types.StringType
1
>>> type(0.0) == types.FloatType
1
>>> type(None) == types.NoneType
1
>>> type([]) == types.ListType
1

BUILT-IN

type(o)

Return the datatype of any object o. The return value of this function is itself an
object of the type types.TypeType . TypeType objects implement . str () and
. repr () methods to create readable descriptions of object types.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 55 --- #75i
i

i
i

i
i

i
i

1.2 Standard Modules 55

>>> print type(1)
<type ’int’>
>>> print type(type(1))
<type ’type’>
>>> type(1) is type(0)
1

CONSTANTS

types.BuiltinFunctionType
types.BuiltinMethodType

The type for built-in functions like abs() , len() , and dir() , and for functions
in “standard” C extensions like sys and os. However, extensions like string and
re are actually Python wrappers for C extensions, so their functions are of type
types.FunctionType . A general Python programmer need not worry about these
fussy details.

types.BufferType

The type for objects created by the built-in buffer() function.

types.ClassType

The type for user-defined classes.

>>> from operator import eq
>>> from types import *
>>> map(eq, [type(C), type(C()), type(C().foo)],
... [ClassType, InstanceType, MethodType])
[1, 1, 1]

See Also: types.InstanceType 56; types.MethodType 56;

types.CodeType

The type for code objects such as returned by compile().

types.ComplexType

Same as type(0+0j).

types.DictType
types.DictionaryType

Same as type({}).

types.EllipsisType

The type for built-in Ellipsis object.

types.FileType

The type for open file objects.

“TPiP” — 2006/1/30 — 15:07 — page 56 — #76i
i

i
i

i
i

i
i

56 PYTHON BASICS

>>> from sys import stdout
>>> fp = open(’tst’,’w’)
>>> [type(stdout), type(fp)] == [types.FileType]*2
1

types.FloatType

Same as type(0.0).

types.FrameType

The type for frame objects such as tb.tb frame in which tb has the type
types.TracebackType .

types.FunctionType
types.LambdaType

Same as type(lambda:0).

types.GeneratorType

The type for generator-iterator objects in Python 2.2+.

>>> from __future__ import generators
>>> def foo(): yield 0
...
>>> type(foo) == types.FunctionType
1
>>> type(foo()) == types.GeneratorType
1

See Also: types.FunctionType 56;

types.InstanceType

The type for instances of user-defined classes.

See Also: types.ClassType 55; types.MethodType 56;

types.IntType

Same as type(0).

types.ListType

Same as type().

types.LongType

Same as type(0L).

types.MethodType
types.UnboundMethodType

The type for methods of user-defined class instances.

“TPiP” — 2006/1/30 — 15:07 — page 57 — #77i
i

i
i

i
i

i
i

1.2 Standard Modules 57

See Also: types.ClassType 55; types.InstanceType 56;

types.ModuleType

The type for modules.

>>> import os, re, sys
>>> [type(os), type(re), type(sys)] == [types.ModuleType]*3
1

types.NoneType

Same as type(None).

types.StringType

Same as type("").

types.TracebackType

The type for traceback objects found in sys.exc traceback .

types.TupleType

Same as type(()).

types.UnicodeType

Same as type(u"").

types.SliceType

The type for objects returned by slice().

types.StringTypes

Same as (types.StringType,types.UnicodeType).

See Also: types.StringType 57; types.UnicodeType 57;

types.TypeType

Same as type(type(obj)) (for any obj).

types.XRangeType

Same as type(xrange(1)).

1.2.2 Working with the Local Filesystem

dircache � Read and cache directory listings

The dircache module is an enhanced version of the os.listdir() function. Unlike the
os function, dircache keeps prior directory listings in memory to avoid the need for a new
call to the filesystem. Since dircache is smart enough to check whether a directory has
been touched since last caching, dircache is a complete replacement for os.listdir()

(with possible minor speed gains).

“TPiP” — 2006/1/30 — 15:07 — page 58 — #78i
i

i
i

i
i

i
i

58 PYTHON BASICS

FUNCTIONS

dircache.listdir(path)

Return a directory listing of path path. Uses a list cached in memory where possible.

dircache.opendir(path)

Identical to dircache.listdir() . Legacy function to support old scripts.

dircache.annotate(path, lst)

Modify the list lst in place to indicate which items are directories, and which are
plain files. The string path should indicate the path to reach the listed files.

>>> l = dircache.listdir(’/tmp’)
>>> l
[’501’, ’md10834.db’]
>>> dircache.annotate(’/tmp’, l)
>>> l
[’501/’, ’md10834.db’]

filecmp � Compare files and directories

The filecmp module lets you check whether two files are identical, and whether two
directories contain some identical files. You have several options in determining how
thorough of a comparison is performed.

FUNCTIONS

filecmp.cmp(fname1, fname2 [,shallow=1 [,use statcache=0]])

Compare the file named by the string fname1 with the file named by the string
fname2. If the default true value of shallow is used, the comparison is based only
on the mode, size, and modification time of the two files. If shallow is a false value,
the files are compared byte by byte. Unless you are concerned that someone will
deliberately falsify timestamps on files (as in a cryptography context), a shallow
comparison is quite reliable. However, tar and untar can also change timestamps.

>>> import filecmp
>>> filecmp.cmp(’dir1/file1’, ’dir2/file1’)
0
>>> filecmp.cmp(’dir1/file2’, ’dir2/file2’, shallow=0)
1

The use statcache argument is not relevant for Python 2.2+. In older Python
versions, the statcache module provided (slightly) more efficient cached access to file
stats, but its use is no longer needed.

“TPiP” — 2006/1/30 — 15:07 — page 59 — #79i
i

i
i

i
i

i
i

1.2 Standard Modules 59

filecmp.cmpfiles(dirname1, dirname2, fnamelist [,shallow=1
[,use statcache=0]])

Compare those filenames listed in fnamelist if they occur in both the directory
dirname1 and the directory dirname2. filecmp.cmpfiles() returns a tuple of
three lists (some of the lists may be empty): (matches,mismatches,errors).
matches are identical files in both directories, mismatches are nonidentical files
in both directories. errors will contain names if a file exists in neither, or in only
one, of the two directories, or if either file cannot be read for any reason (permissions,
disk problems, etc.).

>>> import filecmp, os
>>> filecmp.cmpfiles(’dir1’,’dir2’,[’this’,’that’,’other’])
([’this’], [’that’], [’other’])
>>> print os.popen(’ls -l dir1’).read()
-rwxr-xr-x 1 quilty staff 169 Sep 27 00:13 this
-rwxr-xr-x 1 quilty staff 687 Sep 27 00:13 that
-rwxr-xr-x 1 quilty staff 737 Sep 27 00:16 other
-rwxr-xr-x 1 quilty staff 518 Sep 12 11:57 spam
>>> print os.popen(’ls -l dir2’).read()
-rwxr-xr-x 1 quilty staff 169 Sep 27 00:13 this
-rwxr-xr-x 1 quilty staff 692 Sep 27 00:32 that

The shallow and use statcache arguments are the same as those to
filecmp.cmp() .

CLASSES

filecmp.dircmp(dirname1, dirname2 [,ignore=. . . [,hide=. . .])

Create a directory comparison object. dirname1 and dirname2 are two directories
to compare. The optional argument ignore is a sequence of pathnames to ignore
and defaults to ["RCS","CVS","tags"]; hide is a sequence of pathnames to hide
and defaults to [os.curdir,os.pardir] (i.e., [".",".."]).

METHODS AND ATTRIBUTES

The attributes of filecmp.dircmp are read-only. Do not attempt to modify them.

filecmp.dircmp.report()

Print a comparison report on the two directories.

>>> mycmp = filecmp.dircmp(’dir1’,’dir2’)
>>> mycmp.report()
diff dir1 dir2
Only in dir1 : [’other’, ’spam’]

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 60 --- #80i
i

i
i

i
i

i
i

60 PYTHON BASICS

Identical files : [’this’]
Differing files : [’that’]

filecmp.dircmp.report partial closure()

Print a comparison report on the two directories, including immediate subdirecto-
ries. The method name has nothing to do with the theoretical term “closure” from
functional programming.

filecmp.dircmp.report full closure()

Print a comparison report on the two directories, recursively including all nested
subdirectories.

filecmp.dircmp.left list

Pathnames in the dirname1 directory, filtering out the hide and ignore lists.

filecmp.dircmp.right list

Pathnames in the dirname2 directory, filtering out the hide and ignore lists.

filecmp.dircmp.common

Pathnames in both directories.

filecmp.dircmp.left only

Pathnames in dirname1 but not dirname2.

filecmp.dircmp.right only

Pathnames in dirname2 but not dirname1.

filecmp.dircmp.common dirs

Subdirectories in both directories.

filecmp.dircmp.common files

Filenames in both directories.

filecmp.dircmp.common funny

Pathnames in both directories, but of different types.

filecmp.dircmp.same files

Filenames of identical files in both directories.

filecmp.dircmp.diff files

Filenames of nonidentical files whose name occurs in both directories.

filecmp.dircmp.funny files

Filenames in both directories where something goes wrong during comparison.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 61 --- #81i
i

i
i

i
i

i
i

1.2 Standard Modules 61

filecmp.dircmp.subdirs

A dictionary mapping filecmp.dircmp.common dirs strings to corresponding
filecmp.dircmp objects; for example:

>>> usercmp = filecmp.dircmp(’/Users/quilty’,’/Users/dqm’)
>>> usercmp.subdirs[’Public’].common
[’Drop Box’]

See Also: os.stat() 79; os.listdir() 76;

fileinput � Read multiple files or STDIN

Many utilities, especially on Unix-like systems, operate line-by-line on one or more files
and/or on redirected input. A flexibility in treating input sources in a homogeneous
fashion is part of the “Unix philosophy.” The fileinput module allows you to write a
Python application that uses these common conventions with almost no special pro-
gramming to adjust to input sources.

A common, minimal, but extremely useful Unix utility is cat, which simply writes
its input to STDOUT (allowing redirection of STDOUT as needed). Below are a few
simple examples of cat:

% cat a
AAAAA
% cat a b
AAAAA
BBBBB
% cat - b < a
AAAAA
BBBBB
% cat < b
BBBBB
% cat a < b
AAAAA
% echo "XXX" | cat a -
AAAAA
XXX

Notice that STDIN is read only if either “-” is given as an argument, or no arguments
are given at all. We can implement a Python version of cat using the fileinput module
as follows:

“TPiP” — 2006/1/30 — 15:07 — page 62 — #82i
i

i
i

i
i

i
i

62 PYTHON BASICS

cat.py

#!/usr/bin/env python
import fileinput
for line in fileinput.input():

print line,

FUNCTIONS

fileinput.input([files=sys.argv[1:] [,inplace=0 [,backup=”.bak”]]])

Most commonly, this function will be used without any of its optional arguments,
as in the introductory example of cat.py. However, behavior may be customized
for special cases.

The argument files is a sequence of filenames to process. By default, it consists of
all the arguments given on the command line. Commonly, however, you might want
to treat some of these arguments as flags rather than filenames (e.g., if they start
with - or /). Any list of filenames you like may be used as the files argument,
whether or not it is built from sys.argv.

If you specify a true value for inplace, output will go into each file specified rather
than to STDOUT. Input taken from STDIN, however, will still go to STDOUT. For
in-place operation, a temporary backup file is created as the actual input source and
is given the extension indicated by the backup argument. For example:

% cat a b
AAAAA
BBBBB
% cat modify.py
#!/usr/bin/env python
import fileinput, sys
for line in fileinput.input(sys.argv[1:], inplace=1):

print "MODIFIED", line,
% echo "XXX" | ./modify.py a b -
MODIFIED XXX
% cat a b
MODIFIED AAAAA
MODIFIED BBBBB

fileinput.close()

Close the input sequence.

“TPiP” — 2006/1/30 — 15:07 — page 63 — #83i
i

i
i

i
i

i
i

1.2 Standard Modules 63

fileinput.nextfile()

Close the current file, and proceed to the next one. Any unread lines in the current
file will not be counted towards the line total.

There are several functions in the fileinput module that provide information about the
current input state. These tests can be used to process the current line in a context-
dependent way.

fileinput.filelineno()

The number of lines read from the current file.

fileinput.filename()

The name of the file from which the last line was read. Before a line is read, the
function returns None.

fileinput.isfirstline()

Same as fileinput.filelineno()==1.

fileinput.isstdin()

True if the last line read was from STDIN.

fileinput.lineno()

The number of lines read during the input loop, cumulative between files.

CLASSES

fileinput.FileInput([files [,inplace=0 [,backup=”.bak”]]])

The methods of fileinput.FileInput are the same as the module-level func-
tions, plus an additional .readline() method that matches that of file objects.
fileinput.FileInput objects also have a . getitem () method to support se-
quential access.

The arguments to initialize a fileinput.FileInput object are the same as those
passed to the fileinput.input() function. The class exists primarily in order to
allow subclassing. For normal usage, it is best to just use the fileinput functions.

See Also: multifile 285; xreadlines 72;

“TPiP” — 2006/1/30 — 15:07 — page 64 — #84i
i

i
i

i
i

i
i

64 PYTHON BASICS

glob � Filename globing utility

The glob module provides a list of pathnames matching a glob-style pattern. The
fnmatch module is used internally to determine whether a path matches.

FUNCTIONS

glob.glob(pat)

Both directories and plain files are returned, so if you are only interested in one type
of path, use os.path.isdir() or os.path.isfile() ; other functions in os.path
also support other filters.

Pathnames returned by glob.glob() contain as much absolute or relative path
information as the pattern pat gives. For example:

>>> import glob, os.path
>>> glob.glob(’/Users/quilty/Book/chap[3-4].txt’)
[’/Users/quilty/Book/chap3.txt’, ’/Users/quilty/Book/chap4.txt’]
>>> glob.glob(’chap[3-6].txt’)
[’chap3.txt’, ’chap4.txt’, ’chap5.txt’, ’chap6.txt’]
>>> filter(os.path.isdir, glob.glob(’/Users/quilty/Book/[A-Z]*’))
[’/Users/quilty/Book/SCRIPTS’, ’/Users/quilty/Book/XML’]

See Also: fnmatch 232; os.path 65;

linecache � Cache lines from files

The module linecache can be used to simulate relatively efficient random access to the
lines in a file. Lines that are read are cached for later access.

FUNCTIONS

linecache.getline(fname, linenum)

Read line linenum from the file named fname. If an error occurs reading the line, the
function will catch the error and return an empty string. sys.path is also searched
for the filename if it is not found in the current directory.

>>> import linecache
>>> linecache.getline(’/etc/hosts’, 15)
’192.168.1.108 hermes hermes.gnosis.lan\n’

linecache.clearcache()

Clear the cache of read lines.

“TPiP” — 2006/1/30 — 15:07 — page 65 — #85i
i

i
i

i
i

i
i

1.2 Standard Modules 65

linecache.checkcache()

Check whether files in the cache have been modified since they were cached.

os.path � Common pathname manipulations

The os.path module provides a variety of functions to analyze and manipulate filesystem
paths in a cross-platform fashion.

FUNCTIONS

os.path.abspath(pathname)

Return an absolute path for a (relative) pathname.

>>> os.path.abspath(’SCRIPTS/mk_book’)
’/Users/quilty/Book/SCRIPTS/mk_book’

os.path.basename(pathname)

Same as os.path.split(pathname)[1].

os .path.commonprefix(pathlist)

Return the path to the most nested parent directory shared by all elements of the
sequence pathlist.

>>> os.path.commonprefix([’/usr/X11R6/bin/twm’,
... ’/usr/sbin/bash’,
... ’/usr/local/bin/dada’])
’/usr/’

os.path.dirname(pathname)

Same as os.path.split(pathname)[0].

os.path.exists(pathname)

Return true if the pathname pathname exists.

os.path.expanduser(pathname)

Expand pathnames that include the tilde character: ∼. Under standard Unix shells,
an initial tilde refers to a user’s home directory, and a tilde followed by a name refers
to the named user’s home directory. This function emulates that behavior on other
platforms.

>>> os.path.expanduser(’~dqm’)
’/Users/dqm’
>>> os.path.expanduser(’~/Book’)
’/Users/quilty/Book’

“TPiP” — 2006/1/30 — 15:07 — page 66 — #86i
i

i
i

i
i

i
i

66 PYTHON BASICS

os.path.expandvars(pathname)

Expand pathname by replacing environment variables in a Unix shell style. While
this function is in the os.path module, you could equally use it for bash-like scripting
in Python, generally (this is not necessarily a good idea, but it is possible).

>>> os.path.expandvars(’$HOME/Book’)
’/Users/quilty/Book’
>>> from os.path import expandvars as ev # Python 2.0+
>>> if ev(’$HOSTTYPE’)==’macintosh’ and ev(’$OSTYPE’)==’darwin’:
... print ev("The vendor is $VENDOR, the CPU is $MACHTYPE")
...
The vendor is apple, the CPU is powerpc

os.path.getatime(pathname)

Return the last access time of pathname (or raise os.error if checking is not pos-
sible).

os.path.getmtime(pathname)

Return the modification time of pathname (or raise os.error if checking is not
possible).

os.path.getsize(pathname)

Return the size of pathname in bytes (or raise os.error if checking is not possible).

os.path.isabs(pathname)

Return true if pathname is an absolute path.

os.path.isdir(pathname)

Return true if pathname is a directory.

os.path.isfile(pathname)

Return true if pathname is a regular file (including symbolic links).

os.path.islink(pathname)

Return true if pathname is a symbolic link.

os.path.ismount(pathname)

Return true if pathname is a mount point (on POSIX systems).

os.path.join(path1 [,path2 [. . .]])

Join multiple path components intelligently.

>>> os.path.join(’/Users/quilty/’,’Book’,’SCRIPTS/’,’mk_book’)
’/Users/quilty/Book/SCRIPTS/mk_book’

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 67 --- #87i
i

i
i

i
i

i
i

1.2 Standard Modules 67

os.path.normcase(pathname)

Convert pathname to canonical lowercase on case-insensitive filesystems. Also con-
vert slashes on Windows systems.

os.path.normpath(pathname)

Remove redundant path information.

>>> os.path.normpath(’/usr/local/bin/../include/./slang.h’)
’/usr/local/include/slang.h’

os.path.realpath(pathname)

Return the “real” path to pathname after de-aliasing any symbolic links. New in
Python 2.2+.

>>> os.path.realpath(’/usr/bin/newaliases’)
’/usr/sbin/sendmail’

os.path.samefile(pathname1, pathname2)

Return true if pathname1 and pathname2 are the same file.

See Also: filecmp 58;

os.path.sameopenfile(fp1, fp2)

Return true if the file handles fp1 and fp2 refer to the same file. Not available on
Windows.

os.path.split(pathname)

Return a tuple containing the path leading up to the named pathname and the
named directory or filename in isolation.

>>> os.path.split(’/Users/quilty/Book/SCRIPTS’)
(’/Users/quilty/Book’, ’SCRIPTS’)

os.path.splitdrive(pathname)

Return a tuple containing the drive letter and the rest of the path. On systems that
do not use a drive letter, the drive letter is empty (as it is where none is specified
on Windows-like systems).

os.path.walk(pathname, visitfunc, arg)

For every directory recursively contained in pathname, call visitfunc(arg,
dirname, pathnames) for each path.

“TPiP” — 2006/1/30 — 15:07 — page 68 — #88i
i

i
i

i
i

i
i

68 PYTHON BASICS

>>> def big_files(minsize, dirname, files):
... for file in files:
... fullname = os.path.join(dirname,file)
... if os.path.isfile(fullname):
... if os.path.getsize(fullname) >= minsize:
... print fullname
...
>>> os.path.walk(’/usr/’, big_files, 5e6)
/usr/lib/libSystem.B_debug.dylib
/usr/lib/libSystem.B_profile.dylib

shutil � Copy files and directory trees

The functions in the shutil module make working with files a bit easier. There is nothing
in this module that you could not do using basic file objects and os.path functions, but
shutil often provides a more direct means and handles minor details for you. The
functions in shutil match fairly closely the capabilities you would find in Unix filesystem
utilities like cp and rm.

FUNCTIONS

shutil.copy(src, dst)

Copy the file named src to the pathname dst. If dst is a directory, the created file
is given the name os.path.join(dst+os.path.basename(src)).

See Also: os.path.join() 66; os.path.basename() 65;

shutil.copy2(src, dst)

Same as shutil.copy() except that the access and creation time of dst are set to
the values in src.

shutil.copyfile(src, dst)

Copy the file named src to the filename dst (overwriting dst if present). Basically,
this has the same effect as open(dst,"wb").write(open(src,"rb").read()).

shutil.copyfileobj(fpsrc, fpdst [,buffer=-1])

Copy the file-like object fpsrc to the file-like object fpdst. If the optional argument
buffer is given, only the specified number of bytes are read into memory at a time;
this allows copying very large files.

shutil.copymode(src, dst)

Copy the permission bits from the file named src to the filename dst.

“TPiP” — 2006/1/30 — 15:07 — page 69 — #89i
i

i
i

i
i

i
i

1.2 Standard Modules 69

shutil.copystat(src, dst)

Copy the permission and timestamp data from the file named src to the filename
dst.

shutil.copytree(src, dst [,symlinks=0])

Copy the directory src to the destination dst recursively. If the optional argument
symlinks is a true value, copy symbolic links as links rather than the default be-
havior of copying the content of the link target. This function may not be entirely
reliable on every platform and filesystem.

shutil.rmtree(dirname [ignore [,errorhandler]])

Remove an entire directory tree rooted at dirname. If optional argument ignore
is a true value, errors will be silently ignored. If errorhandler is given, a custom
error handler is used to catch errors. This function may not be entirely reliable on
every platform and filesystem.

See Also: open() 15; os.path 65;

stat � Constants/functions for os.stat()

The stat module provides two types of support for analyzing the results of os.stat() ,
os.lstat() , and os.fstat() calls.

Several functions exist to allow you to perform tests on a file. If you simply wish to
check one predicate of a file, it is more direct to use one of the os.path.is*() functions,
but for performing several such tests, it is faster to read the mode once and perform
several stat.S *() tests.

As well as helper functions, stat defines symbolic constants to access the fields of the
10-tuple returned by os.stat() and friends. For example:

>>> from stat import *
>>> import os
>>> fileinfo = os.stat(’chap1.txt’)
>>> fileinfo[ST_SIZE]
68666L
>>> mode = fileinfo[ST_MODE]
>>> S_ISSOCK(mode)
0
>>> S_ISDIR(mode)
0
>>> S_ISREG(mode)
1

FUNCTIONS

stat.S ISDIR(mode)

“TPiP” — 2006/1/30 — 15:07 — page 70 — #90i
i

i
i

i
i

i
i

70 PYTHON BASICS

Mode indicates a directory.

stat.S ISCHR(mode)

Mode indicates a character special device file.

stat.S ISBLK(mode)

Mode indicates a block special device file.

stat.S ISREG(mode)

Mode indicates a regular file.

stat.S ISFIFO(mode)

Mode indicates a FIFO (named pipe).

stat.S ISLNK(mode)

Mode indicates a symbolic link.

stat.S ISSOCK(mode)

Mode indicates a socket.

CONSTANTS

stat.ST MODE

I-node protection mode.

stat.ST INO

I-node number.

stat.ST DEV

Device.

stat.ST NLINK

Number of links to this i-node.

stat.ST UID

User id of file owner.

stat.ST GID

Group id of file owner.

stat.ST SIZE

Size of file.

stat.ST ATIME

Last access time.

“TPiP” — 2006/1/30 — 15:07 — page 71 — #91i
i

i
i

i
i

i
i

1.2 Standard Modules 71

stat.ST MTIME

Modification time.

stat.ST CTIME

Time of last status change.

tempfile � Temporary files and filenames

The tempfile module is useful when you need to store transient data using a file-like
interface. In contrast to the file-like interface of StringIO, tempfile uses the actual
filesystem for storage rather than simulating the interface to a file in memory. In
memory-constrained contexts, therefore, tempfile is preferable.

The temporary files created by tempfile are as secure against external modification
as is supported by the underlying platform. You can be fairly confident that your
temporary data will not be read or changed either while your program is running or
afterwards (temporary files are deleted when closed). While you should not count on
tempfile to provide you with cryptographic-level security, it is good enough to prevent
accidents and casual inspection.

FUNCTIONS

tempfile.mktemp([suffix=””])

Return an absolute path to a unique temporary filename. If optional argument
suffix is specified, the name will end with the suffix string.

tempfile.TemporaryFile([mode=”w+b” [,buffsize=-1 [suffix=””]]])

Return a temporary file object. In general, there is little reason to change the default
mode argument of w+b; there is no existing file to append to before the creation, and
it does little good to write temporary data you cannot read. Likewise, the optional
suffix argument generally will not ever be visible, since the file is deleted when
closed. The default buffsize uses the platform defaults, but may be modified if
needed.

>>> tmpfp = tempfile.TemporaryFile()
>>> tmpfp.write(’this and that\n’)
>>> tmpfp.write(’something else\n’)
>>> tmpfp.tell()
29L
>>> tmpfp.seek(0)
>>> tmpfp.read()
’this and that\nsomething else\n’

See Also: StringIO 153; cStringIO 153;

“TPiP” — 2006/1/30 — 15:07 — page 72 — #92i
i

i
i

i
i

i
i

72 PYTHON BASICS

xreadlines � Efficient iteration over a file

Reading over the lines of a file had some pitfalls in older versions of Python: There was
a memory-friendly way, and there was a fast way, but never the twain shall meet. These
techniques were:

>>> fp = open(’bigfile’)
>>> line = fp.readline()
>>> while line:
... # Memory-friendly but slow
... # ...do stuff...
... line = fp.readline()

>>> for line in open(’bigfile’).readlines():
... # Fast but memory-hungry
... # ...do stuff...

Fortunately, with Python 2.1 a more efficient technique was provided. In Python
2.2+, this efficient technique was also wrapped into a more elegant syntactic form (in
keeping with the new iterator). With Python 2.3+, xreadlines is officially deprecated in
favor of the idiom “for line in file:”.

FUNCTIONS

xreadlines.xreadlines(fp)

Iterate over the lines of file object fp in an efficient way (both speed-wise and in
memory usage).

>>> for line in xreadlines.xreadlines(open(’tmp’)):
... # Efficient all around
... # ...do stuff...

Corresponding to this xreadlines module function is the .xreadlines() method of file
objects.

>>> for line in open(’tmp’).xreadlines():
... # As a file object method
... # ...do stuff...

If you use Python 2.2 or above, an even nicer version is available:

>>> for line in open(’tmp’):
... # ...do stuff...

See Also: linecache 64; FILE.xreadlines() 17; os.tmpfile() 80;

“TPiP” — 2006/1/30 — 15:07 — page 73 — #93i
i

i
i

i
i

i
i

1.2 Standard Modules 73

1.2.3 Running External Commands and Accessing OS Features

commands � Quick access to external commands

The commands module exists primarily as a convenience wrapper for calls to
os.popen*() functions on Unix-like systems. STDERR is combined with STDOUT
in the results.

FUNCTIONS

commands.getoutput(cmd)

Return the output from running cmd. This function could also be implemented as:

>>> def getoutput(cmd):
... import os
... return os.popen(’{ ’+cmd+’; } 2>&1’).read()

commands.getstatusoutput(cmd)

Return a tuple containing the exit status and output from running cmd. This func-
tion could also be implemented as:

>>> def getstatusoutput(cmd):
... import os
... fp = os.popen(’{ ’+cmd+’; } 2>&1’)
... output = fp.read()
... status = fp.close()
... if not status: status=0 # Want zero rather than None
... return (status, output)
...
>>> getstatusoutput(’ls nosuchfile’)
(256, ’ls: nosuchfile: No such file or directory\n’)
>>> getstatusoutput(’ls c*[1-3].txt’)
(0, ’chap1.txt\nchap2.txt\nchap3.txt\n’)

commands.getstatus(filename)

Same as commands.getoutput(’ls -ld ’+filename).

See Also: os.popen() 77; os.popen2() 77; os.popen3() 78; os.popen4() 78;

“TPiP” — 2006/1/30 — 15:07 — page 74 — #94i
i

i
i

i
i

i
i

74 PYTHON BASICS

os � Portable operating system services

The os module contains a large number of functions, attributes, and constants for calling
on or determining features of the operating system that Python runs on. In many cases,
functions in os are internally implemented using modules like posix , os2 , riscos, or mac ,
but for portability it is better to use the os module.

Not everything in the os module is documented in this book. You can read about
those features that are unlikely to be used in text processing applications in the Python
Library Reference that accompanies Python distributions.

Functions and constants not documented here fall into several categories. The
functions and attributes os.confstr() , os.confstr names , os.sysconf() , and
os.sysconf names let you probe system configuration. As well, I skip some
functions specific to process permissions on Unix-like systems: os.ctermid() ,
os.getegid() , os.geteuid() , os.getgid() , os.getgroups() , os.getlogin() ,
os.getpgrp() , os.getppid() , os.getuid() , os.setegid() , os.seteuid() ,
os.setgid() , os.setgroups() , os.setpgrp() , os.setpgid() , os.setreuid() ,
os.setregid() , os.setsid() , and os.setuid(uid) .

The functions os.abort() , os.exec*() , os. exit() , os.fork() , os.forkpty() ,
os.plock() , os.spawn*() , os.times() , os.wait() , os.waitpid() , os.WIF*() ,
os.WEXITSTATUS() , os.WSTOPSIG()‘, and os.WTERMSIG() and the constants os.P *

and os.WNOHANG all deal with process creation and management. These are not doc-
umented in this book, since creating and managing multiple processes is not typically
central to text processing tasks. However, I briefly document the basic capabilities in
os.kill() , os.nice() , os.startfile() , and os.system() and in the os.popen()

family. Some of the omitted functionality can also be found in the commands and sys
modules.

A number of functions in the os module allow you to perform low-level I/O using file
descriptors. In general, it is simpler to perform I/O using file objects created with the
built-in open() function or the os.popen*() family. These file objects provide methods
like FILE.readline() , FILE.write() , FILE.seek() , and FILE.close() . Information
about files can be determined using the os.stat() function or functions in the os.path
and shutil modules. Therefore, the functions os.close() , os.dup() , os.dup2() ,
os.fpathconf() , os.fstat() , os.fstatvfs() , os.ftruncate() , os.isatty() ,
os.lseek() , os.open() , os.openpty() , os.pathconf() , os.pipe() , os.read() ,
os.statvfs() , os.tcgetpgrp() , os.tcsetpgrp() , os.ttyname() , os.umask() , and
os.write() are not covered here. As well, the supporting constants os.O * and
os.pathconf names are omitted.

See Also: commands 73; os.path 65; shutil 68; sys 49;

FUNCTIONS

os.access(pathname, operation)

Check the permission for the file or directory pathname. If the type of operation
specified is allowed, return a true value. The argument operation is a number

“TPiP” — 2006/1/30 — 15:07 — page 75 — #95i
i

i
i

i
i

i
i

1.2 Standard Modules 75

between 0 and 7, inclusive, and encodes four features: exists, executable, writable,
and readable. These features have symbolic names:

>>> import os
>>> os.F_OK, os.X_OK, os.W_OK, os.R_OK
(0, 1, 2, 4)

To query a specific combination of features, you may add or bitwise-or the individual
features.

>>> os.access(’myfile’, os.W_OK | os.R_OK)
1
>>> os.access(’myfile’, os.X_OK + os.R_OK)
0
>>> os.access(’myfile’, 6)
1

os.chdir(pathname)

Change the current working directory to the path pathname.

See Also: os.getcwd() 75;

os.chmod(pathname, mode)

Change the mode of file or directory pathname to numeric mode mode. See the man
page for the chmod utility for more information on modes.

os.chown(pathname, uid, gid)

Change the owner and group of file or directory pathname to uid and gid respec-
tively. See the man page for the chown utility for more information.

os.chroot(pathname)

Change the root directory under Unix-like systems (on Python 2.2+). See the man
page for the chroot utility for more information.

os.getcwd()

Return the current working directory as a string.

>>> os.getcwd()
’/Users/quilty/Book’

See Also: os.chdir() 75;

os.getenv(var [,value=None])

Return the value of environment variable var. If the environment variable is not
defined, return value. An equivalent call is os.environ.get(var, value).

“TPiP” — 2006/1/30 — 15:07 — page 76 — #96i
i

i
i

i
i

i
i

76 PYTHON BASICS

See Also: os.environ 81; os.putenv() 78;

os.getpid()

Return the current process id. Possibly useful for calls to external utilities that use
process id’s.

See Also: os.kill() 76;

os.kill(pid, sig)

Kill an external process on Unix-like systems. You will need to determine values
for the pid argument by some means, such as a call to the ps utility. Values for
the signal sig sent to the process may be found in the signal module or with man
signal. For example:

>>> from signal import *
>>> SIGHUP, SIGINT, SIGQUIT, SIGIOT, SIGKILL
(1, 2, 3, 6, 9)
>>> def kill_by_name(progname):
... pidstr = os.popen(’ps|grep ’+progname+’|sort’).read()
... pid = int(pidstr.split()[0])
... os.kill(pid, 9)
...
>>> kill_by_name(’myprog’)

os.link(src, dst)

Create a hard link from path src to path dst on Unix-like systems. See the man
page on the ln utility for more information.

See Also: os.symlink() 80;

os.listdir(pathname)

Return a list of the names of files and directories at path pathname. The special
entries for the current and parent directories (typically “.” and “..”) are excluded
from the list.

os.lstat(pathname)

Information on file or directory pathname. See os.stat() for details. os.lstat()

does not follow symbolic links.

See Also: os.stat() 79; stat 69;

os.mkdir(pathname [,mode=0777])

Create a directory named pathname with the numeric mode mode. On some op-
erating systems, mode is ignored. See the man page for the chmod utility for more
information on modes.

“TPiP” — 2006/1/30 — 15:07 — page 77 — #97i
i

i
i

i
i

i
i

1.2 Standard Modules 77

See Also: os.chmod() 75; os.makedirs() 77;

os.makedirs(pathname [,mode=0777])

Create a directory named pathname with the numeric mode mode. Unlike
os.mkdir() , this function will create any intermediate directories needed for a
nested directory.

See Also: os.mkdir() 76;

os.mkfifo(pathname [,mode=0666])

Create a named pipe on Unix-like systems.

os.nice(increment)

Decrease the process priority of the current application under Unix-like systems.
This is useful if you do not wish for your application to hog system CPU resources.

The four functions in the os.popen*() family allow you to run external processes and
capture their STDOUT and STDERR and/or set their STDIN. The members of the
family differ somewhat in how these three pipes are handled.

os.popen(cmd [,mode=”r” [,bufsize]])

Open a pipe to or from the external command cmd. The return value of the function
is an open file object connected to the pipe. The mode may be r for read (the
default) or w for write. The exit status of the command is returned when the file
object is closed. An optional buffer size bufsize may be specified.

>>> import os
>>> def ls(pat):
... stdout = os.popen(’ls ’+pat)
... result = stdout.read()
... status = stdout.close()
... if status: print "Error status", status
... else: print result
...
>>> ls(’nosuchfile’)
ls: nosuchfile: No such file or directory
Error status 256
>>> ls(’chap[7-9].txt’)
chap7.txt

os.popen2(cmd [,mode [,bufsize]])

Open both STDIN and STDOUT pipes to the external command cmd. The return
value is a pair of file objects connecting to the two respective pipes. mode and
bufsize work as with os.popen() .

“TPiP” — 2006/1/30 — 15:07 — page 78 — #98i
i

i
i

i
i

i
i

78 PYTHON BASICS

See Also: os.popen3() 78; os.popen() 77;

os.popen3(cmd [,mode [,bufsize]])

Open STDIN, STDOUT, and STDERR pipes to the external command cmd. The
return value is a 3-tuple of file objects connecting to the three respective pipes. mode
and bufsize work as with os.popen() .

>>> import os
>>> stdin, stdout, stderr = os.popen3(’sed s/line/LINE/’)
>>> print >>stdin, ’line one’
>>> print >>stdin, ’line two’
>>> stdin.write(’line three\n)’
>>> stdin.close()
>>> stdout.read()
’LINE one\nLINE two\nLINE three\n’
>>> stderr.read()
’’

os.popen4(cmd [,mode [,bufsize]])

Open STDIN, STDOUT, and STDERR pipes to the external command cmd. In
contrast to os.popen3() , os.popen4() combines STDOUT and STDERR on the
same pipe. The return value is a pipe of file objects connecting to the two respective
pipes. mode and bufsize work as with os.popen() .

See Also: os.popen3() 78; os.popen() 77;

os.putenv(var, value)

Set the environment variable var to the value value. Changes to the current en-
vironment only affect subprocesses of the current process, such as those launched
with os.system() or os.popen() , not the whole OS.

Calls to os.putenv() will update the environment, but not the os.environ vari-
able. Therefore, it is better to update os.environ directly (which also changes the
external environment).

See Also: os.environ 81; os.getenv() 75; os.popen() 77; os.system() 80;

os.readlink(linkname)

Return a string containing the path symbolic link linkname points to. Works on
Unix-like systems.

See Also: os.symlink() 80;

os.remove(filename)

Remove the file named filename. This function is identical to os.unlink() . If the
file cannot be removed, an OSError is raised.

“TPiP” — 2006/1/30 — 15:07 — page 79 — #99i
i

i
i

i
i

i
i

1.2 Standard Modules 79

See Also: os.unlink() 81;

os.removedirs(pathname)

Remove the directory named pathname and any subdirectories of pathname. This
function will not remove directories with files, and will raise an OSError if you
attempt to do so.

See Also: os.rmdir() 79;

os.rename(src, dst)

Rename the file or directory src as dst. Depending on the operating system, the
operation may raise an OSError if dst already exists.

See Also: os.renames() 79;

os.renames(src, dst)

Rename the file or directory src as dst. Unlike os.rename() , this function will
create any intermediate directories needed for a nested directory.

See Also: os.rename() 79;

os.rmdir(pathname)

Remove the directory named pathname. This function will not remove nonempty
directories and will raise an OSError if you attempt to do so.

See Also: os.removedirs() 79;

os.startfile(path)

Launch an application under Windows system. The behavior is the same as if
path was double-clicked in a Drives window or as if you typed start <path> at a
command line. Using Windows associations, a data file can be launched in the same
manner as an actual executable application.

See Also: os.system() 80;

os.stat(pathname)

Create a stat result object that contains information on the file or directory
pathname. A stat result object has a number of attributes and also behaves
like a tuple of numeric values. Before Python 2.2, only the tuple was provided. The
attributes of a stat result object are named the same as the constants in the stat
module, but in lowercase.

>>> import os, stat
>>> file_info = os.stat(’chap1.txt’)
>>> file_info.st_size
87735L
>>> file_info[stat.ST_SIZE]
87735L

“TPiP” — 2006/1/30 — 15:07 — page 80 — #100i
i

i
i

i
i

i
i

80 PYTHON BASICS

On some platforms, additional attributes are available. For example, Unix-like sys-
tems usually have .st blocks, .st blksize, and .st rdev attributes; MacOS has
.st rsize, .st creator, and .st type; RISCOS has .st ftype, .st attrs, and
.st obtype.

See Also: stat 69; os.lstat() 76;

os.strerror(code)

Give a description for a numeric error code code, such as that returned by
os.popen(bad cmd).close().

See Also: os.popen() 77;

os.symlink(src, dst)

Create a soft link from path src to path dst on Unix-like systems. See the man page
on the ln utility for more information.

See Also: os.link() 76; os.readlink() 78;

os.system(cmd)

Execute the command cmd in a subshell. Unlike execution using os.popen()

the output of the executed process is not captured (but it may still echo to the
same terminal as the current Python application). In some cases, you can use
os.system() on non-Windows systems to detach an application in a manner similar
to os.startfile() . For example, under MacOSX, you could launch the TextEdit
application with:

>>> import os
>>> cmd="/Applications/TextEdit.app/Contents/MacOS/TextEdit &"
>>> os.system(cmd)
0

See Also: os.popen() 77; os.startfile() 79; commands 73;

os.tempnam([dir [,prefix]])

Return a unique filename for a temporary file. If optional argument dir is specified,
that directory will be used in the path; if prefix is specified, the file will have
the indicated prefix. For most purposes, it is more secure to use os.tmpfile() to
directly obtain a file object rather than first generating a name.

See Also: tempfile 71; os.tmpfile() 80;

os.tmpfile()

Return an “invisible” file object in update mode. This file does not create a directory
entry, but simply acts as a transient buffer for data on the filesystem.

“TPiP” — 2006/1/30 — 15:07 — page 81 — #101i
i

i
i

i
i

i
i

1.2 Standard Modules 81

See Also: tempfile 71; StringIO 153; cStringIO 153;

os.uname()

Return detailed information about the current operating system on recent Unix-like
systems. The returned 5-tuple contains sysname, nodename, release, version, and
machine, each as descriptive strings.

os.unlink(filename)

Remove the file named filename. This function is identical to os.remove() . If the
file cannot be removed, an OSError is raised.

See Also: os.remove() 78;

os.utime(pathname, times)

Set the access and modification timestamps of file pathname to the tuple (atime,
mtime) specified in times. Alternately, if times is None, set both timestamps to
the current time.

See Also: time 86; os.chmod() 75; os.chown() 75; os.stat() 79;

CONSTANTS AND ATTRIBUTES

os.altsep

Usually None, but an alternative path delimiter (“/”) under Windows.

os.curdir

The string the operating system uses to refer to the current directory; for example,
“.” on Unix or “:” on Macintosh (before MacOSX).

os.defpath

The search path used by exec*p*() and spawn*p*() absent a PATH environment
variable.

os.environ

A dictionary-like object containing the current environment.

>>> os.environ[’TERM’]
’vt100’
>>> os.environ[’TERM’] = ’vt220’
>>> os.getenv(’TERM’)
’vt220’

See Also: os.getenv() 75; os.putenv() 78;

“TPiP” — 2006/1/30 — 15:07 — page 82 — #102i
i

i
i

i
i

i
i

82 PYTHON BASICS

os.linesep

The string that delimits lines in a file; for example “\n” on Unix, “\r” on Macintosh,
“\r\n” on Windows.

os.name

A string identifying the operating system the current Python interpreter is running
on. Possible strings include posix, nt, dos, mac, os2, ce, java, and riscos.

os.pardir

The string the operating system uses to refer to the parent directory; for example,
“..” on Unix or “::” on Macintosh (before MacOSX).

os.pathsep

The string that delimits search paths; for example, “;” on Windows or “:” on Unix.

os.sep

The string the operating system uses to refer to path delimiters; for example “/” on
Unix, “\” on Windows, “:” on Macintosh.

See Also: sys 49; os.path 65;

1.2.4 Special Data Values and Formats

random � Pseudo-random value generator

Python provides better pseudo-random number generation than do most C libraries
with a rand() function, but not good enough for cryptographic purposes. The period
of Python’s Wichmann-Hill generator is about 7 trillion (7e13), but that merely indicates
how long it will take a particular seeded generator to cycle; a different seed will produce a
different sequence of numbers. Python 2.3 uses the superior Mersenne Twister generator,
which has a longer period and has been better analyzed. For practical purposes, pseudo-
random numbers generated by Python are more than adequate for random-seeming
behavior in applications.

The underlying pseudo-random numbers generated by the random module can be
mapped into a variety of nonuniform patterns and distributions. Moreover, you can
capture and tinker with the state of a pseudo-random generator; you can even subclass
the random.Random class that operates behind the scenes. However, this latter sort of
specialization is outside the scope of this book, and the class random.Random and func-
tions random.getstate() , random.jumpahead() , and random.setstate() are omit-
ted from this discussion. The functions random.whseed() and random.randint() are
deprecated.

FUNCTIONS

random.betavariate(alpha, beta)

Return a floating point value in the range [0.0, 1.0) with a beta distribution.

“TPiP” — 2006/1/30 — 15:07 — page 83 — #103i
i

i
i

i
i

i
i

1.2 Standard Modules 83

random.choice(seq)

Select a random element from the nonempty sequence seq.

random.cunifvariate(mean, arc)

Return a floating point value in the range [mean-arc/2, mean+arc/2) with a circular
uniform distribution. Arguments and result are expressed in radians.

random.expovariate(lambda)

Return a floating point value in the range [0.0, +inf) with an exponential distribu-
tion. The argument lambda gives the inverse of the mean of the distribution.

>>> import random
>>> t1,t2 = 0,0
>>> for x in range(100):
... t1 += random.expovariate(1./20)
... t2 += random.expovariate(20.)
...
>>> print t1/100, t2/100
18.4021962198 0.0558234063338

random.gamma(alpha, beta)

Return a floating point value with a gamma distribution (not the gamma function).

random.gauss(mu, sigma)

Return a floating point value with a Gaussian distribution; the mean is mu and the
sigma is sigma. random.gauss() is slightly faster than random.normalvariate() .

random.lognormvariate(mu, sigma)

Return a floating point value with a log normal distribution; the natural logarithm
of this distribution is Gaussian with mean mu and sigma sigma.

random.normalvariate(mu, sigma)

Return a floating point value with a Gaussian distribution; the mean is mu and the
sigma is sigma.

random.paretovariate(alpha)

Return a floating point value with a Pareto distribution. alpha specifies the shape
parameter.

random.random()

Return a floating point value in the range [0.0, 1.0).

random.randrange([start=0,] stop [,step=1])

Return a random element from the specified range. Functionally equivalent to
the expression random.choice(range(start,stop,step)), but it does not build
the actual range object. Use random.randrange() in place of the deprecated
random.randint() .

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 84 --- #104i
i

i
i

i
i

i
i

84 PYTHON BASICS

random.seed([x=time.time()])

Initialize the Wichmann-Hill generator. You do not necessarily need to call
random.seed() , since the current system time is used to initialize the generator
upon module import. But if you wish to provide more entropy in the initial state,
you may pass any hashable object as argument x. Your best choice for x is a posi-
tive long integer less than 27814431486575L, whose value is selected at random by
independent means.

random.shuffle(seq [,random=random.random])

Permute the mutable sequence seq in place. An optional argument random may be
specified to use an alternate random generator, but it is unlikely you will want to
use one. Possible permutations get very big very quickly, so even for moderately
sized sequences, not every permutation will occur.

random.uniform(min, max)

Return a random floating point value in the range [min, max).

random.vonmisesvariate(mu, kappa)

Return a floating point value with a von Mises distribution. mu is the mean angle
expressed in radians, and kappa is the concentration parameter.

random.weibullvariate(alpha, beta)

Return a floating point value with a Weibull distribution. alpha is the scale param-
eter, and beta is the shape parameter.

struct � Create and read packed binary strings

The struct module allows you to encode compactly Python numeric values. This module
may also be used to read C structs that use the same formats; some formatting codes
are only useful for reading C structs. The exception struct.error is raised if a format
does not match its string or values.

A format string consists of a sequence of alphabetic formatting codes. Each code is
represented by zero or more bytes in the encoded packed binary string. Each formatting
code may be preceded by a number indicating a number of occurrences. The entire
format string may be preceded by a global flag. If the flag @ is used, platform-native
data sizes and endianness are used. In all other cases, standard data sizes are used. The
flag = explicitly indicates platform endianness; < indicates little-endian representations;
> or ! indicates big-endian representations.

The available formatting codes are listed below. The standard sizes are given (check
your platform for its sizes if platform-native sizes are needed).

“TPiP” — 2006/1/30 — 15:07 — page 85 — #105i
i

i
i

i
i

i
i

1.2 Standard Modules 85

Formatting codes for struct module

x pad byte 0 bytes
c char 1 bytes
b signed char 1 bytes
B unsigned char 1 bytes
h short int 2 bytes
H unsigned short 2 bytes
i int 4 bytes
I unsigned int 4 bytes
l long int 4 bytes
L unsigned long 4 bytes
q long long int 8 bytes
Q unsigned long long 8 bytes
f float 4 bytes
d double 8 bytes
s string padded to size
p Pascal string padded to size
P char pointer 4 bytes

Some usage examples clarify the encoding:

>>> import struct
>>> struct.pack(’5s5p2c’, ’sss’,’ppp’,’c’,’c’)
’sss\x00\x00\x03ppp\x00cc’
>>> struct.pack(’h’, 1)
’\x00\x01’
>>> struct.pack(’I’, 1)
’\x00\x00\x00\x01’
>>> struct.pack(’l’, 1)
’\x00\x00\x00\x01’
>>> struct.pack(’<l’, 1)
’\x01\x00\x00\x00’
>>> struct.pack(’f’, 1)
’?\x80\x00\x00’
>>> struct.pack(’hil’, 1,2,3)
’\x00\x01\x00\x00\x00\x00\x00\x02\x00\x00\x00\x03’

FUNCTIONS

struct.calcsize(fmt)

Return the length of the string that corresponds to the format fmt.

struct.pack(fmt, v1 [,v2 [. . .]])

Return a string with values v1, et alia, packed according to the format fmt.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 86 --- #106i
i

i
i

i
i

i
i

86 PYTHON BASICS

struct.unpack(fmt, s)

Return a tuple of values represented by string s packed according to the format fmt.

time � Functions to manipulate date/time values

The time module is useful both for computing and displaying dates and time incre-
ments, and for simple benchmarking of applications and functions. For some purposes,
eGenix.com’s mx.Date module is more useful for manipulating datetimes than is time.
You may obtain mx.Date from:

<http://egenix.com/files/python/eGenix-mx-Extensions.html>

Time tuples—used by several functions—consist of year, month, day, hour, minute,
second, weekday, Julian day, and Daylight Savings flag. All values are integers. Month,
day, and Julian day (day of year) are one-based; hour, minute, second, and weekday are
zero-based (Monday is 0). The Daylight Savings flag uses 1 for DST, 0 for Standard
Time, and -1 for “best guess.”

CONSTANTS AND ATTRIBUTES

time.accept2dyear

Boolean to allow two-digit years in date tuples. Default is true value, in which case
the first matching date since time.gmtime(0) is extrapolated.

>>> import time
>>> time.accept2dyear
1
>>> time.localtime(time.mktime((99,1,1,0,0,0,0,0,0)))
(1999, 1, 1, 0, 0, 0, 4, 1, 0)
>>> time.gmtime(0)
(1970, 1, 1, 0, 0, 0, 3, 1, 0)

time.altzone
time.daylight
time.timezone
time.tzname

These several constants show information on the current timezone. Different loca-
tions use Daylight Savings adjustments during different portions of the year, usually
but not always a one-hour adjustment. time.daylight indicates only whether such
an adjustment is available in time.altzone . time.timezone indicates how many
seconds west of UTC the current zone is; time.altzone adjusts that for Daylight
Savings if possible. time.tzname gives a tuple of strings describing the current
zone.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 87 --- #107i
i

i
i

i
i

i
i

1.2 Standard Modules 87

>>> time.daylight, time.tzname
(1, (’EST’, ’EDT’))
>>> time.altzone, time.timezone
(14400, 18000)

FUNCTIONS

time.asctime([tuple=time.localtime()])

Return a string description of a time tuple.

>>> time.asctime((2002, 10, 25, 1, 51, 48, 4, 298, 1))
’Fri Oct 25 01:51:48 2002’

See Also: time.ctime() 87; time.strftime() 88;

time.clock()

Return the processor time for the current process. The raw value returned has little
inherent meaning, but the value is guaranteed to increase roughly in proportion to
the amount of CPU time used by the process. This makes time.clock() useful for
comparative benchmarking of various operations or approaches. The values returned
should not be compared between different CPUs, OSs, and so on, but are meaningful
on one machine. For example:

import time
start1 = time.clock()
approach_one()
time1 = time.clock()-start1
start2 = time.clock()
approach_two()
time2 = time.clock()-start2
if time1 > time2:

print "The second approach seems better"
else:

print "The first approach seems better"

Always use time.clock() for benchmarking rather than time.time() . The latter
is a low-resolution “wall clock” only.

time.ctime([seconds=time.time()])

Return a string description of seconds since epoch.

>>> time.ctime(1035526125)
’Fri Oct 25 02:08:45 2002’

“TPiP” — 2006/1/30 — 15:07 — page 88 — #108i
i

i
i

i
i

i
i

88 PYTHON BASICS

See Also: time.asctime() 87;

time.gmtime([seconds=time.time()])

Return a time tuple of seconds since epoch, giving Greenwich Mean Time.

>>> time.gmtime(1035526125)
(2002, 10, 25, 6, 8, 45, 4, 298, 0)

See Also: time.localtime() 88;

time.localtime([seconds=time.time()])

Return a time tuple of seconds since epoch, giving the local time.

>>> time.localtime(1035526125)
(2002, 10, 25, 2, 8, 45, 4, 298, 1)

See Also: time.gmtime() 88; time.mktime() 88;

time.mktime(tuple)

Return a number of seconds since epoch corresponding to a time tuple.

>>> time.mktime((2002, 10, 25, 2, 8, 45, 4, 298, 1))
1035526125.0

See Also: time.localtime() 88;

time.sleep(seconds)

Suspend execution for approximately seconds measured in “wall clock” time (not
CPU time). The argument seconds is a floating point value (precision subject to
system timer) and is fully thread safe.

time.strftime(format [,tuple=time.localtime()])

Return a custom string description of a time tuple. The format given in the string
format may contain the following fields: %a/%A/%w for abbreviated/full/decimal
weekday name; %b/%B/%m for abbreviated/full/decimal month; %y/%Y for abbrevi-
ated/full year; %d for day-of-month; %H/%I for 24/12 clock hour; %j for day-of-
year; %M for minute; %p for AM/PM; %S for seconds; %U/%W for week-of-year (Sun-
day/Monday start); %c/%x/%X for locale-appropriate datetime/date/time; %Z for
timezone name. Other characters may occur in the format also and will appear as
literals (a literal % can be escaped).

>>> import time
>>> tuple = (2002, 10, 25, 2, 8, 45, 4, 298, 1)
>>> time.strftime("%A, %B %d ’%y (week %U)", tuple)
"Friday, October 25 ’02 (week 42)"

“TPiP” — 2006/1/30 — 15:07 — page 89 — #109i
i

i
i

i
i

i
i

1.3 Other Modules in the Standard Library 89

See Also: time.asctime() 87; time.ctime() 87; time.strptime() 89;

time.strptime(s [,format=”%a %b %d %H:%M:%S %Y”])

Return a time tuple based on a string description of a time. The format given in
the string format follows the same rules as in time.strftime() . Not available on
most platforms.

See Also: time.strftime() 88;

time.time()

Return the number of seconds since the epoch for the current time. You can specif-
ically determine the epoch using time.ctime(0), but normally you will use other
functions in the time module to generate useful values. Even though time.time()

is also generally nondecreasing in its return values, you should use time.clock()

for benchmarking purposes.

>>> time.ctime(0)
’Wed Dec 31 19:00:00 1969’
>>> time.time()
1035585490.484154
>>> time.ctime(1035585437)
’Fri Oct 25 18:37:17 2002’

See Also: time.clock() 87; time.ctime() 87;

See Also: calendar 100;

1.3 Other Modules in the Standard Library

If your application performs other types of tasks besides text processing, a skim of this
module list can suggest where to look for relevant functionality. As well, readers who
find themselves maintaining code written by other developers may find that unfamiliar
modules are imported by the existing code. If an imported module is not summarized
in the list below, nor documented elsewhere, it is probably an in-house or third-party
module. For standard library modules, the summaries here will at least give you a sense
of the general purpose of a given module.

builtin

Access to built-in functions, exceptions, and other objects. Python does a great job
of exposing its own internals, but “normal” developers do not need to worry about
this.

“TPiP” — 2006/1/30 — 15:07 — page 90 — #110i
i

i
i

i
i

i
i

90 PYTHON BASICS

1.3.1 Serializing and Storing Python Objects

In object-oriented programming (OOP) languages like Python, compound data and
structured data is frequently represented at runtime as native objects. At times these
objects belong to basic datatypes—lists, tuples, and dictionaries—but more often, once
you reach a certain degree of complexity, hierarchies of instances containing attributes
become more likely.

For simple objects, especially sequences, serialization and storage is rather straight-
forward. For example, lists can easily be represented in delimited or fixed-length strings.
Lists-of-lists can be saved in line-oriented files, each line containing delimited fields, or
in rows of RDBMS tables. But once the dimension of nested sequences goes past two,
and even more so for heterogeneous data structures, traditional table-oriented storage
is a less-obvious fit.

While it is possible to create “object/relational adaptors” that write OOP instances
to flat tables, that usually requires custom programming. A number of more general
solutions exist, both in the Python standard library and in third-party tools. There
are actually two separate issues involved in storing Python objects. The first issue is
how to convert them into strings in the first place; the second issue is how to create a
general persistence mechanism for such serialized objects. At a minimal level, of course,
it is simple enough to store (and retrieve) a serialization string the same way you would
any other string—to a file, a database, and so on. The various *dbm modules create a
“dictionary on disk,” while the shelve module automatically utilizes cPickle serialization
to write arbitrary objects as values (keys are still strings).

Several third-party modules support object serialization with special features. If you
need an XML dialect for your object representation, the modules gnosis.xml.pickle and
xmlrpclib are useful. The YAML format is both human-readable/editable and has sup-
port libraries for Python, Perl, Ruby, and Java; using these various libraries, you can
exchange objects between these several programming languages.

See Also: gnosis.xml.pickle 410; yaml 415; xmlrpclib 407;

DBM � Interfaces to dbm-style databases

A dbm-style database is a “dictionary on disk.” Using a database of this sort allows
you to store a set of key/val pairs to a file, or files, on the local filesystem, and to
access and set them as if they were an in-memory dictionary. A dbm-style database,
unlike a standard dictionary, always maps strings to strings. If you need to store other
types of objects, you will need to convert them to strings (or use the shelve module as
a wrapper).

Depending on your platform, and on which external libraries are installed, different
dbm modules might be available. The performance characteristics of the various mod-
ules vary significantly. As well, some DBM modules support some special functionality.
Most of the time, however, your best approach is to access the locally supported DBM
module using the wrapper module anydbm. Calls to this module will select the best

“TPiP” — 2006/1/30 — 15:07 — page 91 — #111i
i

i
i

i
i

i
i

1.3 Other Modules in the Standard Library 91

available DBM for the current environment without a programmer or user having to
worry about the underlying support mechanism.

Functions and methods are documents using the nonspecific capitalized form DBM. In
real usage, you would use the name of a specific module. Most of the time, you will
get or set DBM values using standard named indexing; for example, db["key"]. A
few methods characteristic of dictionaries are also supported, as well as a few methods
special to DBM databases.

See Also: shelve 98; dict 24; UserDict 24;

FUNCTIONS

DBM.open(fname [,flag=”r” [,mode=0666]])

Open the filename fname for dbm access. The optional argument flag specifies how
the database is accessed. A value of r is for read-only access (on an existing dbm
file); w opens an already existing file for read/write access; c will create a database
or use an existing one, with read/write access; the option n will always create a new
database, erasing the one named in fname if it already existed. The optional mode
argument specifies the Unix mode of the file(s) created.

METHODS

DBM.close()

Close the database and flush any pending writes.

DBM.first()

Return the first key/val pair in the DBM. The order is arbitrary but stable. You
may use the DBM.first() method, combined with repeated calls to DBM.next() ,
to process every item in the dictionary.

In Python 2.2+, you can implement an items() function to emulate the behavior
of the .items() method of dictionaries for DBMs:

>>> from __future__ import generators
>>> def items(db):
... try:
... yield db.first()
... while 1:
... yield db.next()
... except KeyError:
... raise StopIteration
...
>>> for k,v in items(d): # typical usage
... print k,v

“TPiP” — 2006/1/30 — 15:07 — page 92 — #112i
i

i
i

i
i

i
i

92 PYTHON BASICS

DBM.has key(key)

Return a true value if the DBM has the key key.

DBM.keys()

Return a list of string keys in the DBM.

DBM.last()

Return the last key/val pair in the DBM. The order is arbitrary but stable. You may
use the DBM.last() method, combined with repeated calls to DBM.previous() , to
process every item in the dictionary in reverse order.

DBM.next()

Return the next key/val pair in the DBM. A pointer to the current position is
always maintained, so the methods DBM.next() and DBM.previous() can be used
to access relative items.

DBM.previous()

Return the previous key/val pair in the DBM. A pointer to the current position is
always maintained, so the methods DBM.next() and DBM.previous() can be used
to access relative items.

DBM.sync()

Force any pending data to be written to disk.

See Also: FILE.flush() 16;

MODULES

anydbm

Generic interface to underlying DBM support. Calls to this module use the func-
tionality of the “best available” DBM module. If you open an existing database file,
its type is guessed and used—assuming the current machine supports that style.

See Also: whichdb 93;

bsddb

Interface to the Berkeley DB library.

dbhash

Interface to the BSD DB library.

dbm

Interface to the Unix (n)dbm library.

dumbdbm

Interface to slow, but portable pure Python DBM.

“TPiP” — 2006/1/30 — 15:07 — page 93 — #113i
i

i
i

i
i

i
i

1.3 Other Modules in the Standard Library 93

gdbm

Interface to the GNU DBM (GDBM) library.

whichdb

Guess which db package to use to open a db file. This module contains the single
function whichdb.whichdb() . If you open an existing DBM file with anydbm, this
function is called automatically behind the scenes.

See Also: shelve 98;

cPickle � Fast Python object serialization

pickle � Standard Python object serialization

The module cPickle is a comparatively fast C implementation of the pure Python pickle
module. The streams produced and read by cPickle and pickle are interchangeable. The
only time you should prefer pickle is in the uncommon case where you wish to subclass
the pickling base class; cPickle is many times faster to use. The class pickle.Pickler

is not documented here.
The cPickle and pickle modules support a both binary and an ASCII format. Neither

is designed for human readability, but it is not hugely difficult to read an ASCII pickle.
Nonetheless, if readability is a goal, yaml or gnosis.xml.pickle are better choices. Binary
format produces smaller pickles that are faster to write or load.

It is possible to fine-tune the pickling behavior of objects by defining the methods
. getstate (), . setstate (), and . getinitargs (). The particular black
magic invocations involved in defining these methods, however, are not addressed in
this book and are rarely necessary for “normal” objects (i.e., those that represent data
structures).

Use of the cPickle or pickle module is quite simple:

>>> import cPickle
>>> from somewhere import my_complex_object
>>> s = cPickle.dumps(my_complex_object)
>>> new_obj = cPickle.loads(s)

FUNCTIONS

pickle.dump(o, file [,bin=0])
cPickle.dump(o, file [,bin=0])

Write a serialized form of the object o to the file-like object file. If the optional
argument bin is given a true value, use binary format.

pickle.dumps(o [,bin=0])
cPickle.dumps(o [,bin=0])

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 94 --- #114i
i

i
i

i
i

i
i

94 PYTHON BASICS

Return a serialized form of the object o as a string. If the optional argument bin is
given a true value, use binary format.

pickle.load(file)
cPickle.load(file)

Return an object that was serialized as the contents of the file-like object file.

pickle.loads(s)
cPickle.load(s)

Return an object that was serialized in the string s.

See Also: gnosis.xml.pickle 410; yaml 415;

marshal

Internal Python object serialization. For more general object serialization, use
pickle, cPickle, or gnosis.xml.pickle, or the YAML tools at <http://yaml.org>; mar-
shal is a limited-purpose serialization to the pseudo-compiled byte-code format used
by Python .pyc files.

pprint � Pretty-print basic datatypes

The module pprint is similar to the built-in function repr() and the module repr .
The purpose of pprint is to represent objects of basic datatypes in a more readable
fashion, especially in cases where collection types nest inside each other. In simple cases
pprint.pformat and repr() produce the same result; for more complex objects, pprint
uses newlines and indentation to illustrate the structure of a collection. Where possible,
the string representation produced by pprint functions can be used to re-create objects
with the built-in eval() .

I find the module pprint somewhat limited in that it does not produce a particularly
helpful representation of objects of custom types, which might themselves represent
compound data. Instance attributes are very frequently used in a manner similar to
dictionary keys. For example:

>>> import pprint
>>> dct = {1.7:2.5, (’t’,’u’,’p’):[’l’,’i’,’s’,’t’]}
>>> dct2 = {’this’:’that’, ’num’:38, ’dct’:dct}
>>> class Container: pass
...
>>> inst = Container()
>>> inst.this, inst.num, inst.dct = ’that’, 38, dct
>>> pprint.pprint(dct2)
{’dct’: {(’t’, ’u’, ’p’): [’l’, ’i’, ’s’, ’t’], 1.7: 2.5},
’num’: 38,
’this’: ’that’}

“TPiP” — 2006/1/30 — 15:07 — page 95 — #115i
i

i
i

i
i

i
i

1.3 Other Modules in the Standard Library 95

>>> pprint.pprint(inst)
<__main__.Container instance at 0x415770>

In the example, dct2 and inst have the same structure, and either might plausibly
be chosen in an application as a data container. But the latter pprint representation
only tells us the barest information about what an object is, not what data it contains.
The mini-module below enhances pretty-printing:

pprint2.py

from pprint import pformat
import string, sys
def pformat2(o):

if hasattr(o,’__dict__’):
lines = []
klass = o.__class__.__name__
module = o.__module__
desc = ’<%s.%s instance at 0x%x>’ % (module, klass, id(o))
lines.append(desc)
for k,v in o.__dict__.items():

lines.append(’instance.%s=%s’ % (k, pformat(v)))
return string.join(lines,’\n’)

else:
return pprint.pformat(o)

def pprint2(o, stream=sys.stdout):
stream.write(pformat2(o)+’\n’)

Continuing the session above, we get a more useful report:

>>> import pprint2
>>> pprint2.pprint2(inst)
<__main__.Container instance at 0x415770>
instance.this=’that’
instance.dct={(’t’, ’u’, ’p’): [’l’, ’i’, ’s’, ’t’], 1.7: 2.5}
instance.num=38

FUNCTIONS

pprint.isreadable(o)

Return a true value if the equality below holds:

o == eval(pprint.pformat(o))

pprint.isrecursive(o)

Return a true value if the object o contains recursive containers. Objects that
contain themselves at any nested level cannot be restored with eval() .

“TPiP” — 2006/1/30 — 15:07 — page 96 — #116i
i

i
i

i
i

i
i

96 PYTHON BASICS

pprint.pformat(o)

Return a formatted string representation of the object o.

pprint.pprint(o [,stream=sys.stdout])

Print the formatted representation of the object o to the file-like object stream.

CLASSES

pprint.PrettyPrinter(width=80, depth=. . . , indent=1, stream=sys.stdout)

Return a pretty-printing object that will format using a width of width, will limit
recursion to depth depth, and will indent each new level by indent spaces. The
method pprint.PrettyPrinter.pprint() will write to the file-like object stream.

>>> pp = pprint.PrettyPrinter(width=30)
>>> pp.pprint(dct2)
{’dct’: {1.7: 2.5,

(’t’, ’u’, ’p’): [’l’,
’i’,
’s’,
’t’]},

’num’: 38,
’this’: ’that’}

METHODS

The class pprint.PrettyPrinter has the same methods as the module level functions.
The only difference is that the stream used for pprint.PrettyPrinter.pprint() is
configured when an instance is initialized rather than passed as an optional argument.

See Also: gnosis.xml.pickle 410; yaml 415;

repr � Alternative object representation

The module repr contains code for customizing the string representation of objects. In
its default behavior the function repr.repr() provides a length-limited string repre-
sentation of objects—in the case of large collections, displaying the entire collection can
be unwieldy, and unnecessary for merely distinguishing objects. For example:

>>> dct = dict([(n,str(n)) for n in range(6)])
>>> repr(dct) # much worse for, e.g., 1000 item dict
"{0: ’0’, 1: ’1’, 2: ’2’, 3: ’3’, 4: ’4’, 5: ’5’}"
>>> from repr import repr
>>> repr(dct)
"{0: ’0’, 1: ’1’, 2: ’2’, 3: ’3’, ...}"

“TPiP” — 2006/1/30 — 15:07 — page 97 — #117i
i

i
i

i
i

i
i

1.3 Other Modules in the Standard Library 97

>>> ‘dct‘
"{0: ’0’, 1: ’1’, 2: ’2’, 3: ’3’, 4: ’4’, 5: ’5’}"

The back-tick operator does not change behavior if the built-in repr() function is
replaced.

Your can change the behavior of the repr.repr() by modifying attributes of the
instance object repr.aRepr .

>>> dct = dict([(n,str(n)) for n in range(6)])
>>> repr(dct)
"{0: ’0’, 1: ’1’, 2: ’2’, 3: ’3’, 4: ’4’, 5: ’5’}"
>>> import repr
>>> repr.repr(dct)
"{0: ’0’, 1: ’1’, 2: ’2’, 3: ’3’, ...}"
>>> repr.aRepr.maxdict = 5
>>> repr.repr(dct)
"{0: ’0’, 1: ’1’, 2: ’2’, 3: ’3’, 4: ’4’, ...}"

In my opinion, the choice of the name for this module is unfortunate, since it is
identical to that of the built-in function. You can avoid some of the collision by using
the as form of importing, as in:

>>> import repr as _repr
>>> from repr import repr as newrepr

For fine-tuned control of object representation, you may subclass the class repr.Repr .
Potentially, you could use substitutable repr() functions to change the behavior of
application output, but if you anticipate such a need, it is better practice to give a
name that indicates this; for example, overridable repr().

CLASSES

repr.Repr()

Base for customized object representations. The instance repr.aRepr automatically
exists in the module namespace, so this class is useful primarily as a parent class.
To change an attribute, it is simplest just to set it in an instance.

ATTRIBUTES

repr.maxlevel

Depth of recursive objects to follow.

repr.maxdict
repr.maxlist
repr.maxtuple

Number of items in a collection of the indicated type to include in the representation.
Sequences default to 6, dicts to 4.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 98 --- #118i
i

i
i

i
i

i
i

98 PYTHON BASICS

repr.maxlong

Number of digits of a long integer to stringify. Default is 40.

repr.maxstring

Length of string representation (e.g., s[:N]). Default is 30.

repr.maxother

“Catch-all” maximum length of other representations.

FUNCTIONS

repr.repr(o)

Behaves like built-in repr() , but potentially with a different string representation
created.

repr.repr TYPE(o, level)

Represent an object of the type TYPE, where the names used are the standard type
names. The argument level indicates the level of recursion when this method
is called (you might want to decide what to print based on how deep within the
representation the object is). The Python Library Reference gives the example:

class MyRepr(repr.Repr):
def repr_file(self, obj, level):

if obj.name in [’<stdin>’, ’<stdout>’, ’<stderr>’]:
return obj.name

else:
return ‘obj‘

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints ’<stdin>’

shelve � General persistent dictionary

The module shelve builds on the capabilities of the DBM modules, but takes things a
step forward. Unlike with the DBM modules, you may write arbitrary Python objects
as values in a shelve database. The keys in shelve databases, however, must still be
strings.

The methods of shelve databases are generally the same as those for their underlying
DBMs. However, shelves do not have the .first(), .last(), .next(), or .previous()
methods; nor do they have the .items() method that actual dictionaries do. Most of the
time you will simply use name-indexed assignment and access. But from time to time,
the available shelve.get() , shelve.keys() , shelve.sync() , shelve.has key() ,
and shelve.close() methods are useful.

Usage of a shelve consists of a few simple steps like the ones below:

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 99 --- #119i
i

i
i

i
i

i
i

1.3 Other Modules in the Standard Library 99

>>> import shelve
>>> sh = shelve.open(’test_shelve’)
>>> sh.keys()
[’this’]
>>> sh[’new_key’] = {1:2, 3:4, (’t’,’u’,’p’):[’l’,’i’,’s’,’t’]}
>>> sh.keys()
[’this’, ’new_key’]
>>> sh[’new_key’]
{1: 2, 3: 4, (’t’, ’u’, ’p’): [’l’, ’i’, ’s’, ’t’]}
>>> del sh[’this’]
>>> sh.keys()
[’new_key’]
>>> sh.close()

In the example, I opened an existing shelve, and the previously existing key/value
pair was available. Deleting a key/value pair is the same as doing so from a standard
dictionary. Opening a new shelve automatically creates the necessary file(s).

Although shelve only allows strings to be used as keys, in a pinch it is not difficult
to generate strings that characterize other types of immutable objects. For the same
reasons that you do not generally want to use mutable objects as dictionary keys, it is
also a bad idea to use mutable objects as shelve keys. Using the built-in hash() method
is a good way to generate strings—but keep in mind that this technique does not strictly
guarantee uniqueness, so it is possible (but unlikely) to accidentally overwrite entries
using this hack:

>>> ’%x’ % hash((1,2,3,4,5))
’866123f4’
>>> ’%x’ % hash(3.1415)
’6aad0902’
>>> ’%x’ % hash(38)
’26’
>>> ’%x’ % hash(’38’)
’92bb58e3’

Integers, notice, are their own hash, and strings of digits are common. Therefore, if
you adopted this approach, you would want to hash strings as well, before using them
as keys. There is no real problem with doing so, merely an extra indirection step that
you need to remember to use consistently:

>>> sh[’%x’ % hash(’another_key’)] = ’another value’
>>> sh.keys()
[’new_key’, ’8f9ef0ca’]
>>> sh[’%x’ % hash(’another_key’)]
’another value’
>>> sh[’another_key’]
Traceback (most recent call last):

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 100 --- #120i
i

i
i

i
i

i
i

100 PYTHON BASICS

File "<stdin>", line 1, in ?
File "/sw/lib/python2.2/shelve.py", line 70, in __getitem__

f = StringIO(self.dict[key])
KeyError: another_key

If you want to go beyond the capabilities of shelve in several ways, you might want
to investigate the third-party library Zope Object Database (ZODB). ZODB allows
arbitrary objects to be persistent, not only dictionary-like objects. Moreover, ZODB
lets you store data in ways other than in local files, and also has adaptors for multiuser
simultaneous access. Look for details at:

<http://www.zope.org/Wikis/ZODB/StandaloneZODB>

See Also: DBM 90; dict 24;

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
The rest of the listed modules are comparatively unlikely to be needed in text pro-

cessing applications. Some modules are specific to a particular platform; if so, this is
indicated parenthetically. Recent distributions of Python have taken a “batteries in-
cluded” approach—much more is included in a base Python distribution than is with
other free programming languages (but other popular languages still have a range of
existing libraries that can be downloaded separately).

1.3.2 Platform-Specific Operations

winreg

Access to the Windows registry (Windows).

AE

AppleEvents (Macintosh; replaced by Carbon.AE).

aepack

Conversion between Python variables and AppleEvent data containers (Macintosh).

aetypes

AppleEvent objects (Macintosh).

applesingle

Rudimentary decoder for AppleSingle format files (Macintosh).

buildtools

Build MacOS applets (Macintosh).

calendar

Print calendars, much like the Unix cal utility. A variety of functions allow you to
print or stringify calendars for various time frames. For example,

“TPiP” — 2006/1/30 — 15:07 — page 101 — #121i
i

i
i

i
i

i
i

1.3 Other Modules in the Standard Library 101

>>> print calendar.month(2002,11)
November 2002

Mo Tu We Th Fr Sa Su
1 2 3

4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

Carbon.AE, Carbon.App, Carbon.CF, Carbon.Cm, Carbon.Ctl, Carbon.Dlg,
Carbon.Evt, Carbon.Fm, Carbon.Help, Carbon.List, Carbon.Menu, Carbon.Mlte,
Carbon.Qd, Carbon.Qdoffs, Carbon.Qt, Carbon.Res, Carbon.Scrap, Carbon.Snd,
Carbon.TE, Carbon.Win

Interfaces to Carbon API (Macintosh).

cd

CD-ROM access on SGI systems (IRIX).

cfmfile

Code Fragment Resource module (Macintosh).

ColorPicker

Interface to the standard color selection dialog (Macintosh).

ctb

Interface to the Communications Tool Box (Macintosh).

dl

Call C functions in shared objects (Unix).

EasyDialogs

Basic Macintosh dialogs (Macintosh).

fcntl

Access to Unix fcntl() and iocntl() system functions (Unix).

findertools

AppleEvents interface to MacOS finder (Macintosh).

fl, FL, flp

Functions and constants for working with the FORMS library (IRIX).

fm, FM

Functions and constants for working with the Font Manager library (IRIX).

“TPiP” — 2006/1/30 — 15:07 — page 102 — #122i
i

i
i

i
i

i
i

102 PYTHON BASICS

fpectl

Floating point exception control (Unix).

FrameWork, MiniAEFrame

Structured development of MacOS applications (Macintosh).

gettext

The module gettext eases the development of multilingual applications. While actual
translations must be performed manually, this module aids in identifying strings for
translation and runtime substitutions of language-specific strings.

grp

Information on Unix groups (Unix).

locale

Control the language and regional settings for an application. The locale set-
ting affects the behavior of several functions, such as time.strftime() and
string.lower() . The locale module is also useful for creating strings such as
number with grouped digits and currency strings for specific nations.

mac, macerrors, macpath

Macintosh implementation of os module functionality. It is generally better to use
os directly and let it call mac where needed (Macintosh).

macfs, macfsn, macostools

Filesystem services (Macintosh).

MacOS

Access to MacOS Python interpreter (Macintosh).

macresource

Locate script resources (Macintosh).

macspeech

Interface to Speech Manager (Macintosh).

mactty

Easy access serial to line connections (Macintosh).

mkcwproject

Create CodeWarrior projects (Macintosh).

msvcrt

Miscellaneous Windows-specific functions provided in Microsoft’s Visual C++ Run-
time libraries (Windows).

“TPiP” — 2006/1/30 — 15:07 — page 103 — #123i
i

i
i

i
i

i
i

1.3 Other Modules in the Standard Library 103

Nac

Interface to Navigation Services (Macintosh).

nis

Access to Sun’s NIS Yellow Pages (Unix).

pipes

Manage pipes at a finer level than done by os.popen() and its relatives. Reliability
varies between platforms (Unix).

PixMapWrapper

Wrap PixMap objects (Macintosh).

posix, posixfile

Access to operating system functionality under Unix. The os module provides more
portable version of the same functionality and should be used instead (Unix).

preferences

Application preferences manager (Macintosh).

pty

Pseudo terminal utilities (IRIX, Linux).

pwd

Access to Unix password database (Unix).

pythonprefs

Preferences manager for Python (Macintosh).

py resource

Helper to create PYC resources for compiled applications (Macintosh).

quietconsole

Buffered, nonvisible STDOUT output (Macintosh).

resource

Examine resource usage (Unix).

syslog

Interface to Unix syslog library (Unix).

tty, termios, TERMIOS

POSIX tty control (Unix).

W

Widgets for the Mac (Macintosh).

“TPiP” — 2006/1/30 — 15:07 — page 104 — #124i
i

i
i

i
i

i
i

104 PYTHON BASICS

waste

Interface to the WorldScript-Aware Styled Text Engine (Macintosh).

winsound

Interface to audio hardware under Windows (Windows).

xdrlib

Implements (a subset of) Sun eXternal Data Representation (XDR). In concept,
xdrlib is similar to the struct module, but the format is less widely used.

1.3.3 Working with Multimedia Formats

aifc

Read and write AIFC and AIFF audio files. The interface to aifc is the same as for
the sunau and wave modules.

al, AL

Audio functions for SGI (IRIX).

audioop

Manipulate raw audio data.

chunk

Read chunks of IFF audio data.

colorsys

Convert between RGB color model and YIQ, HLS, and HSV color spaces.

gl, DEVICE, GL

Functions and constants for working with Silicon Graphics’ Graphics Library (IRIX).

imageop

Manipulate image data stored as Python strings. For most operations on im-
age files, the third-party Python Imaging Library (usually called “PIL”; see
<http://www.pythonware.com/products/pil/>) is a versatile and powerful tool.

imgfile

Support for imglib files (IRIX).

jpeg

Read and write JPEG files on SGI (IRIX). The Python Imaging Library
(<http://www.pythonware.com/products/pil/>) provides a cross-platform means
of working with a large number of image formats and is preferable for most purposes.

“TPiP” — 2006/1/30 — 15:07 — page 105 — #125i
i

i
i

i
i

i
i

1.3 Other Modules in the Standard Library 105

rgbimg

Read and write SGI RGB files (IRIX).

sunau

Read and write Sun AU audio files. The interface to sunau is the same as for the
aifc and wave modules.

sunaudiodev, SUNAUDIODEV

Interface to Sun audio hardware (SunOS/Solaris).

videoreader

Read QuickTime movies frame by frame (Macintosh).

wave

Read and write WAV audio files. The interface to wave is the same as for the aifc
and sunau modules.

1.3.4 Miscellaneous Other Modules

array

Typed arrays of numeric values. More efficient than standard Python lists, where
applicable.

atexit

Exit handlers. Same functionality as sys.exitfunc , but different interface.

BaseHTTPServer, SimpleHTTPServer, SimpleXMLRPCServer, CGIHTTPServer

HTTP server classes. BaseHTTPServer should usually be treated as an abstract
class. The other modules provide sufficient customization for usage in the specific
context indicated by their names. All may be customized for your application’s
needs.

Bastion

Restricted object access. Used in conjunction with rexec .

bisect

List insertion maintaining sort order.

cmath

Mathematical functions over complex numbers.

cmd

Build line-oriented command interpreters.

code

Utilities to emulate Python’s interactive interpreter.

“TPiP” — 2006/1/30 — 15:07 — page 106 — #126i
i

i
i

i
i

i
i

106 PYTHON BASICS

codeop

Compile possibly incomplete Python source code.

compileall

Module/script to compile .py files to cached byte-code files.

compile, compile.ast, compile.visitor

Analyze Python source code and generate Python byte-codes.

copy reg

Helper to provide extensibility for pickle/cPickle.

curses, curses.ascii, curses.panel, curses.textpad, curses.wrapper

Full-screen terminal handling with the (n)curses library.

dircache

Cached directory listing. This module enhances the functionality of os.listdir() .

dis

Disassembler of Python byte-code into mnemonics.

distutils

Build and install Python modules and packages. distutils provides a standard mech-
anism for creating distribution packages of Python tools and libraries, and also for
installing them on target machines. Although distutils is likely to be useful for text
processing applications that are distributed to users, a discussion of the details of
working with distutils is outside the scope of this book. Useful information can be
found in the Python standard documentation, especially Greg Ward’s Distributing
Python Modules and Installing Python Modules.

doctest

Check the accuracy of doc strings.

errno

Standard errno system symbols.

fpformat

General floating point formatting functions. Duplicates string interpolation func-
tionality.

gc

Control Python’s (optional) cyclic garbage collection.

getpass

Utilities to collect a password without echoing to screen.

“TPiP” — 2006/1/30 — 15:07 — page 107 — #127i
i

i
i

i
i

i
i

1.3 Other Modules in the Standard Library 107

imp

Access the internals of the import statement.

inspect

Get useful information from live Python objects for Python 2.1+.

keyword

Check whether string is a Python keyword.

math

Various trigonometric and algebraic functions and constants. These functions gen-
erally operate on floating point numbers—use cmath for calculations on complex
numbers.

mutex

Work with mutual exclusion locks, typically for threaded applications.

new

Create special Python objects in customizable ways. For example, Python hackers
can create a module object without using a file of the same name or create an instance
while bypassing the normal . init () call. “Normal” techniques generally suffice
for text processing applications.

pdb

A Python debugger.

popen2

Functions to spawn commands with pipes to STDIN, STDOUT, and optionally
STDERR. In Python 2.0+, this functionality is copied to the os module in slightly
improved form. Generally you should use the os module (unless you are running
Python 1.52 or earlier).

profile

Profile the performance characteristics of Python code. If speed becomes an issue
in your application, your first step in solving any problem issues should be profiling
the code. But details of using profile are outside the scope of this book. Moreover, it
is usually a bad idea to assume speed is a problem until it is actually found to be so.

pstats

Print reports on profiled Python code.

pyclbr

Python class browser; useful for implementing code development environments for
editing Python.

“TPiP” — 2006/1/30 — 15:07 — page 108 — #128i
i

i
i

i
i

i
i

108 PYTHON BASICS

pydoc

Extremely useful script and module for examining Python documentation. pydoc is
included with Python 2.1+, but is compatible with earlier versions if downloaded.
pydoc can provide help similar to Unix man pages, help in the interactive shell, and
also a Web browser interface to documentation. This tool is worth using frequently
while developing Python applications, but its details are outside the scope of this
book.

py compile

“Compile” a .py file to a .pyc (or .pyo) file.

Queue

A multiproducer, multiconsumer queue, especially for threaded programming.

readline, rlcompleter

Interface to GNU readline (Unix).

rexec

Restricted execution facilities.

sched

General event scheduler.

signal

Handlers for asynchronous events.

site, user

Customizable startup module that can be modified to change the behavior of the
local Python installation.

statcache

Maintain a cache of os.stat() information on files. Deprecated in Python 2.2+.

statvfs

Constants for interpreting the results of os.statvfs() and os.fstatvfs() .

thread, threading

Create multithreaded applications with Python. Although text processing appli-
cations—like other applications—might use a threaded approach, this topic is out-
side the scope of this book. Most, but not all, Python platforms support threaded
applications.

Tkinter, ScrolledText, Tix, turtle

Python interface to TCL/TK and higher-level widgets for TK. Supported on many
platforms, but not on all Python installations.

“TPiP” — 2006/1/30 — 15:07 — page 109 — #129i
i

i
i

i
i

i
i

1.3 Other Modules in the Standard Library 109

traceback

Extract, format, and print information about Python stack traces. Useful for de-
bugging applications.

unittest

Unit testing framework. Like a number of other documenting, testing, and debug-
ging modules, unittest is a useful facility—and its usage is recommended for Python
applications in general. But this module is not specific enough to text processing
applications to be addressed in this book.

warnings

Python 2.1 added a set of warning messages for conditions a user should be aware of,
but that fall below the threshold for raising exceptions. By default, such messages
are printed to STDERR, but the warning module can be used to modify the behavior
of warning messages.

weakref

Create references to objects that do not limit garbage collection. At first brush,
weak references seem strange, and the strangeness does not really go away quickly.
If you do not know why you would want to use these, do not worry about it—you
do not need to.

whrandom

Wichmann-Hill random number generator. Deprecated since Python 2.1, and not
necessary to use directly before that—use the module random to create pseudo-
random values.

“TPiP” — 2006/1/30 — 15:07 — page 110 — #130i
i

i
i

i
i

i
i

“TPiP” — 2006/1/30 — 15:07 — page 111 — #131i
i

i
i

i
i

i
i

111

Chapter 2

BASIC STRING
OPERATIONS

The cheapest, fastest and most reliable components of a
computer system are those that aren’t there.
—Gordon Bell, Encore Computer Corporation

If you are writing programs in Python to accomplish text processing tasks, most of
what you need to know is in this chapter. Sure, you will probably need to know how
to do some basic things with pipes, files, and arguments to get your text to process
(covered in Chapter 1); but for actually processing the text you have gotten, the string
module and string methods—and Python’s basic data structures—do most all of what
you need done, almost all the time. To a lesser extent, the various custom modules to
perform encodings, encryptions, and compressions are handy to have around (and you
certainly do not want the work of implementing them yourself). But at the heart of
text processing are basic transformations of bits of text. That’s what string functions
and string methods do.

There are a lot of interesting techniques elsewhere in this book. I wouldn’t have
written about them if I did not find them important. But be cautious before doing
interesting things. Specifically, given a fixed task in mind, before cracking this book
open to any of the other chapters, consider very carefully whether your problem can be
solved using the techniques in this chapter. If you can answer this question affirmatively,
you should usually eschew the complications of using the higher-level modules and
techniques that other chapters discuss. By all means read all of this book for the
insight and edification that I hope it provides; but still focus on the “Zen of Python,”
and prefer simple to complex when simple is enough.

This chapter does several things. Section 2.1 looks at a number of common problems
in text processing that can (and should) be solved using (predominantly) the techniques
documented in this chapter. Each of these “Problems” presents working solutions that
can often be adopted with little change to real-life jobs. But a larger goal is to provide

“TPiP” — 2006/1/30 — 15:07 — page 112 — #132i
i

i
i

i
i

i
i

112 BASIC STRING OPERATIONS

readers with a starting point for adaptation of the examples. It is not my goal to provide
mere collections of packaged utilities and modules—plenty of those exist on the Web,
and resources like the Vaults of Parnassus <http://www.vex.net/parnassus/> and
the Python Cookbook <http://aspn.activestate.com/ASPN/Python/Cookbook/>
are worth investigating as part of any project/task (and new and better utilities will
be written between the time I write this and when you read it). It is better for readers
to receive a solid foundation and starting point from which to develop the functionality
they need for their own projects and tasks. And even better than spurring adaptation,
these examples aim to encourage contemplation. In presenting examples, this book tries
to embody a way of thinking about problems and an attitude towards solving them.
More than any individual technique, such ideas are what I would most like to share
with readers.

Section 2.2 is a “reference with commentary” on the Python standard library modules
for doing basic text manipulations. The discussions interspersed with each module try
to give some guidance on why you would want to use a given module or function, and the
reference documentation tries to contain more examples of actual typical usage than does
a plain reference. In many cases, the examples and discussion of individual functions
addresses common and productive design patterns in Python. The cross-references are
intended to contextualize a given function (or other thing) in terms of related ones (and
to help you decide which is right for you). The actual listing of functions, constants,
classes, and the like is in alphabetical order within type of thing.

Section 2.3 in many ways continues Section 2.1, but also provides some aids for using
this book in a learning context. The problems and solutions presented in Section 2.3
are somewhat more open-ended than those in Section 2.1. As well, each section labeled
as “Discussion” is followed by one labeled “Questions.” These questions are ones that
could be assigned by a teacher to students; but they are also intended to be issues
that general readers will enjoy and benefit from contemplating. In many cases, the
questions point to limitations of the approaches initially presented, and ask readers to
think about ways to address or move beyond these limitations—exactly what readers
need to do when writing their own custom code to accomplish outside tasks. However,
each Discussion in Section 2.3 should stand on its own, even if the Questions are skipped
over by the reader.

2.1 Some Common Tasks

2.1.1 Problem: Quickly sorting lines on custom criteria

Sorting is one of the real meat-and-potatoes algorithms of text processing and, in fact, of
most programming. Fortunately for Python developers, the native [].sort method is
extraordinarily fast. Moreover, Python lists with almost any heterogeneous objects as el-
ements can be sorted—Python cannot rely on the uniform arrays of a language like C (an
unfortunate exception to this general power was introduced in recent Python versions
where comparisons of complex numbers raise a TypeError; and [1+1j,2+2j].sort()
dies for the same reason; Unicode strings in lists can cause similar problems).

“TPiP” — 2006/1/30 — 15:07 — page 113 — #133i
i

i
i

i
i

i
i

2.1 Some Common Tasks 113

See Also: complex 22;

The list sort method is wonderful when you want to sort items in their “natural” order—
or in the order that Python considers natural, in the case of items of varying types.
Unfortunately, a lot of times, you want to sort things in “unnatural” orders. For lines
of text, in particular, any order that is not simple alphabetization of the lines is “un-
natural.” But often text lines contain meaningful bits of information in positions other
than the first character position: A last name may occur as the second word of a list of
people (for example, with first name as the first word); an IP address may occur several
fields into a server log file; a money total may occur at position 70 of each line; and so
on. What if you want to sort lines based on this style of meaningful order that Python
doesn’t quite understand?

The list sort method [].sort() supports an optional custom comparison function
argument. The job this function has is to return -1 if the first thing should come first,
return 0 if the two things are equal order-wise, and return 1 if the first thing should
come second. The built-in function cmp() does this in a manner identical to the default
[].sort() (except in terms of speed, lst.sort() is much faster than lst.sort(cmp)).
For short lists and quick solutions, a custom comparison function is probably the best
thing. In a lot of cases, you can even get by with an in-line lambda function as the
custom comparison function, which is a pleasant and handy idiom.

When it comes to speed, however, use of custom comparison functions is fairly aw-
ful. Part of the problem is Python’s function call overhead, but a lot of other factors
contribute to the slowness. Fortunately, a technique called “Schwartzian Transforms”
can make for much faster custom sorts. Schwartzian Transforms are named after Ran-
dal Schwartz, who proposed the technique for working with Perl; but the technique is
equally applicable to Python.

The pattern involved in the Schwartzian Transform technique consists of three steps
(these can more precisely be called the Guttman-Rosler Transform, which is based on
the Schwartzian Transform):

1. Transform the list in a reversible way into one that sorts “naturally.”

2. Call Python’s native [].sort() method.

3. Reverse the transformation in (1) to restore the original list items (in new sorted
order).

The reason this technique works is that, for a list of size N, it only requires O(2N)
transformation operations, which is easy to amortize over the necessary O(N log N)
compare/flip operations for large lists. The sort dominates computational time, so
anything that makes the sort more efficient is a win in the limit case (this limit is
reached quickly).

Below is an example of a simple, but plausible, custom sorting algorithm. The sort is
on the fourth and subsequent words of a list of input lines. Lines that are shorter than
four words sort to the bottom. Running the test against a file with about 20,000 lines—
about 1 megabyte—performed the Schwartzian Transform sort in less than 2 seconds,
while taking over 12 seconds for the custom comparison function sort (outputs were

“TPiP” — 2006/1/30 — 15:07 — page 114 — #134i
i

i
i

i
i

i
i

114 BASIC STRING OPERATIONS

verified as identical). Any number of factors will change the exact relative timings, but
a better than six times gain can generally be expected.

schwartzian sort.py

Timing test for "sort on fourth word"
Specifically, two lines >= 4 words will be sorted
lexographically on the 4th, 5th, etc.. words.
Any line with fewer than four words will be sorted to
the end, and will occur in "natural" order.

import sys, string, time
wrerr = sys.stderr.write

naive custom sort
def fourth_word(ln1,ln2):

lst1 = string.split(ln1)
lst2 = string.split(ln2)
#-- Compare "long" lines
if len(lst1) >= 4 and len(lst2) >= 4:

return cmp(lst1[3:],lst2[3:])
#-- Long lines before short lines
elif len(lst1) >= 4 and len(lst2) < 4:

return -1
#-- Short lines after long lines
elif len(lst1) < 4 and len(lst2) >= 4:

return 1
else: # Natural order

return cmp(ln1,ln2)

Don’t count the read itself in the time
lines = open(sys.argv[1]).readlines()

Time the custom comparison sort
start = time.time()
lines.sort(fourth_word)

end = time.time()
wrerr("Custom comparison func in %3.2f secs\n" % (end-start))
open(’tmp.custom’,’w’).writelines(lines)

Don’t count the read itself in the time
lines = open(sys.argv[1]).readlines()

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 115 --- #135i
i

i
i

i
i

i
i

2.1 Some Common Tasks 115

Time the Schwartzian sort
start = time.time()
for n in range(len(lines)): # Create the transform

lst = string.split(lines[n])
if len(lst) >= 4: # Tuple w/ sort info first

lines[n] = (lst[3:], lines[n])
else: # Short lines to end

lines[n] = ([’\377’], lines[n])

lines.sort() # Native sort

for n in range(len(lines)): # Restore original lines
lines[n] = lines[n][1]

end = time.time()
wrerr("Schwartzian transform sort in %3.2f secs\n" % (end-start))
open(’tmp.schwartzian’,’w’).writelines(lines)

Only one particular example is presented, but readers should be able to generalize
this technique to any sort they need to perform frequently or on large files.

2.1.2 Problem: Reformatting paragraphs of text

While I mourn the decline of plaintext ASCII as a communication format—and its
eclipse by unnecessarily complicated and large (and often proprietary) formats—there
is still plenty of life left in text files full of prose. READMEs, HOWTOs, email, Usenet
posts, and this book itself are written in plaintext (or at least something close enough to
plaintext that generic processing techniques are valuable). Moreover, many formats like
HTML and LATEX are frequently enough hand-edited that their plaintext appearance is
important.

One task that is extremely common when working with prose text files is reformat-
ting paragraphs to conform to desired margins. Python 2.3 adds the module textwrap,
which performs more limited reformatting than the code below. Most of the time, this
task gets done within text editors, which are indeed quite capable of performing the
task. However, sometimes it would be nice to automate the formatting process. The
task is simple enough that it is slightly surprising that Python has no standard module
function to do this. There is the class formatter.DumbWriter , or the possibility of
inheriting from and customizing formatter.AbstractWriter . These classes are dis-
cussed in Chapter 5; but frankly, the amount of customization and sophistication needed
to use these classes and their many methods is way out of proportion for the task at
hand.

Below is a simple solution that can be used either as a command-line tool (reading
from STDIN and writing to STDOUT) or by import to a larger application.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 116 --- #136i
i

i
i

i
i

i
i

116 BASIC STRING OPERATIONS

reformat para.py

Simple paragraph reformatter. Allows specification
of left and right margins, and of justification style
(using constants defined in module).

LEFT,RIGHT,CENTER = ’LEFT’,’RIGHT’,’CENTER’

def reformat_para(para=’’,left=0,right=72,just=LEFT):
words = para.split()
lines = []
line = ’’
word = 0
end_words = 0
while not end_words:

if len(words[word]) > right-left: # Handle very long words
line = words[word]
word +=1
if word >= len(words):

end_words = 1
else: # Compose line of words

while len(line)+len(words[word]) <= right-left:
line += words[word]+’ ’
word += 1
if word >= len(words):

end_words = 1
break

lines.append(line)
line = ’’

if just==CENTER:
r, l = right, left
return ’\n’.join([’ ’*left+ln.center(r-l) for ln in lines])

elif just==RIGHT:
return ’\n’.join([line.rjust(right) for line in lines])

else: # left justify
return ’\n’.join([’ ’*left+line for line in lines])

if __name__==’__main__’:
import sys
if len(sys.argv) <> 4:

print "Please specify left_margin, right_marg, justification"
else:

left = int(sys.argv[1])
right = int(sys.argv[2])
just = sys.argv[3].upper()

Simplistic approach to finding initial paragraphs

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 117 --- #137i
i

i
i

i
i

i
i

2.1 Some Common Tasks 117

for p in sys.stdin.read().split(’\n\n’):
print reformat_para(p,left,right,just),’\n’

A number of enhancements are left to readers, if needed. You might want to allow
hanging indents or indented first lines, for example. Or paragraphs meeting certain
criteria might not be appropriate for wrapping (e.g., headers). A custom application
might also determine the input paragraphs differently, either by a different parsing of
an input file, or by generating paragraphs internally in some manner.

2.1.3 Problem: Column statistics for delimited or flat-record
files

Data feeds, DBMS dumps, log files, and flat-file databases all tend to contain ontolog-
ically similar records—one per line—with a collection of fields in each record. Usually
such fields are separated either by a specified delimiter or by specific column positions
where fields are to occur.

Parsing these structured text records is quite easy, and performing computations on
fields is equally straightforward. But in working with a variety of such “structured text
databases,” it is easy to keep writing almost the same code over again for each variation
in format and computation.

The example below provides a generic framework for every similar computation on a
structured text database.

fields stats.py

Perform calculations on one or more of the
fields in a structured text database.

import operator
from types import *
from xreadlines import xreadlines # req 2.1, but is much faster...

could use .readline() meth < 2.1
#-- Symbolic Constants
DELIMITED = 1
FLATFILE = 2

#-- Some sample "statistical" func (in functional programming style)
nillFunc = lambda lst: None
toFloat = lambda lst: map(float, lst)
avg_lst = lambda lst: reduce(operator.add, toFloat(lst))/len(lst)
sum_lst = lambda lst: reduce(operator.add, toFloat(lst))
max_lst = lambda lst: reduce(max, toFloat(lst))

class FieldStats:
"""Gather statistics about structured text database fields

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 118 --- #138i
i

i
i

i
i

i
i

118 BASIC STRING OPERATIONS

text_db may be either string (incl. Unicode) or file-like object
style may be in (DELIMITED, FLATFILE)
delimiter specifies the field separator in DELIMITED style text_db
column_positions lists all field positions for FLATFILE style,

using one-based indexing (first column is 1).
E.g.: (1, 7, 40) would take fields one, two, three

from columns 1, 7, 40 respectively.
field_funcs is a dictionary with column positions as keys,

and functions on lists as values.
E.g.: {1:avg_lst, 4:sum_lst, 5:max_lst} would specify the

average of column one, the sum of column 4, and the
max of column 5. All other cols--incl 2,3, >=6--
are ignored.

"""
def __init__(self,

text_db=’’,
style=DELIMITED,
delimiter=’,’,
column_positions=(1,),
field_funcs={}):

self.text_db = text_db
self.style = style
self.delimiter = delimiter
self.column_positions = column_positions
self.field_funcs = field_funcs

def calc(self):
"""Calculate the column statistics
"""
#-- 1st, create a list of lists for data (incl. unused flds)
used_cols = self.field_funcs.keys()
used_cols.sort()
one-based column naming: column[0] is always unused
columns = []
for n in range(1+used_cols[-1]):

hint: ’[[]]*num’ creates refs to same list
columns.append([])

#-- 2nd, fill lists used for calculated fields
might use a string directly for text_db

if type(self.text_db) in (StringType,UnicodeType):
for line in self.text_db.split(’\n’):

fields = self.splitter(line)
for col in used_cols:

field = fields[col-1] # zero-based index

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 119 --- #139i
i

i
i

i
i

i
i

2.1 Some Common Tasks 119

columns[col].append(field)
else: # Something file-like for text_db

for line in xreadlines(self.text_db):
fields = self.splitter(line)
for col in used_cols:

field = fields[col-1] # zero-based index
columns[col].append(field)

#-- 3rd, apply the field funcs to column lists
results = [None] * (1+used_cols[-1])
for col in used_cols:

results[col] = \
apply(self.field_funcs[col],(columns[col],))

#-- Finally, return the result list
return results

def splitter(self, line):
"""Split a line into fields according to curr inst specs"""
if self.style == DELIMITED:

return line.split(self.delimiter)
elif self.style == FLATFILE:

fields = []
Adjust offsets to Python zero-based indexing,
and also add final position after the line
num_positions = len(self.column_positions)
offsets = [(pos-1) for pos in self.column_positions]
offsets.append(len(line))
for pos in range(num_positions):

start = offsets[pos]
end = offsets[pos+1]
fields.append(line[start:end])

return fields
else:

raise ValueError, \
"Text database must be DELIMITED or FLATFILE"

#-- Test data
First Name, Last Name, Salary, Years Seniority, Department
delim = ’’’
Kevin,Smith,50000,5,Media Relations
Tom,Woo,30000,7,Accounting
Sally,Jones,62000,10,Management
’’’.strip() # no leading/trailing newlines

Comment First Last Salary Years Dept
flat = ’’’

“TPiP” — 2006/1/30 — 15:07 — page 120 — #140i
i

i
i

i
i

i
i

120 BASIC STRING OPERATIONS

tech note Kevin Smith 50000 5 Media Relations
more filler Tom Woo 30000 7 Accounting
yet more... Sally Jones 62000 10 Management
’’’.strip() # no leading/trailing newlines

#-- Run self-test code
if __name__ == ’__main__’:

getdelim = FieldStats(delim, field_funcs={3:avg_lst,4:max_lst})
print ’Delimited Calculations:’
results = getdelim.calc()
print ’ Average salary -’, results[3]
print ’ Max years worked -’, results[4]

getflat = FieldStats(flat, field_funcs={3:avg_lst,4:max_lst},
style=FLATFILE,
column_positions=(15,25,35,45,52))

print ’Flat Calculations:’
results = getflat.calc()
print ’ Average salary -’, results[3]
print ’ Max years worked -’, results[4]

The example above includes some efficiency considerations that make it a good model
for working with large data sets. In the first place, class FieldStats can (optionally)
deal with a file-like object, rather than keeping the whole structured text database
in memory. The generator xreadlines.xreadlines() is an extremely fast and ef-
ficient file reader, but it requires Python 2.1+—otherwise use FILE.readline() or
FILE.readlines() (for either memory or speed efficiency, respectively). Moreover,
only the data that is actually of interest is collected into lists, in order to save memory.
However, rather than require multiple passes to collect statistics on multiple fields, as
many field columns and summary functions as wanted can be used in one pass.

One possible improvement would be to allow multiple summary functions against the
same field during a pass. But that is left as an exercise to the reader, if she desires to
do it.

2.1.4 Problem: Counting characters, words, lines, and
paragraphs

There is a wonderful utility under Unix-like systems called wc. What it does is so basic,
and so obvious, that it is hard to imagine working without it. wc simply counts the
characters, words, and lines of files (or STDIN). A few command-line options control
which results are displayed, but I rarely use them.

In writing this chapter, I found myself on a system without wc, and felt a remedy
was in order. The example below is actually an “enhanced” wc since it also counts
paragraphs (but it lacks the command-line switches). Unlike the external wc, it is
easy to use the technique directly within Python and is available anywhere Python is.
The main trick—inasmuch as there is one—is a compact use of the "".join() and

“TPiP” — 2006/1/30 — 15:07 — page 121 — #141i
i

i
i

i
i

i
i

2.1 Some Common Tasks 121

"".split() methods (string.join() and string.split() could also be used, for
example, to be compatible with Python 1.5.2 or below).

wc.py

Report the chars, words, lines, paragraphs
on STDIN or in wildcard filename patterns
import sys, glob
if len(sys.argv) > 1:

c, w, l, p = 0, 0, 0, 0
for pat in sys.argv[1:]:

for file in glob.glob(pat):
s = open(file).read()
wc = len(s), len(s.split()), \

len(s.split(’\n’)), len(s.split(’\n\n’))
print ’\t’.join(map(str, wc)),’\t’+file
c, w, l, p = c+wc[0], w+wc[1], l+wc[2], p+wc[3]

wc = (c,w,l,p)
print ’\t’.join(map(str, wc)), ’\tTOTAL’

else:
s = sys.stdin.read()
wc = len(s), len(s.split()), len(s.split(’\n’)), \

len(s.split(’\n\n’))
print ’\t’.join(map(str, wc)), ’\tSTDIN’

This little functionality could be wrapped up in a function, but it is almost too
compact to bother with doing so. Most of the work is in the interaction with the shell
environment, with the counting basically taking only two lines.

The solution above is quite likely the “one obvious way to do it,” and therefore
Pythonic. On the other hand a slightly more adventurous reader might consider this
assignment (if only for fun):

>>> wc = map(len,[s]+map(s.split,(None,’\n’,’\n\n’)))

A real daredevil might be able to reduce the entire program to a single print state-
ment.

2.1.5 Problem: Transmitting binary data as ASCII

Many channels require that the information that travels over them is 7-bit ASCII. Any
bytes with a high-order first bit of one will be handled unpredictably when transmitting
data over protocols like Simple Mail Transport Protocol (SMTP), Network News Trans-
port Protocol (NNTP), or HTTP (depending on content encoding), or even just when
displaying them in many standard tools like editors. In order to encode 8-bit binary
data as ASCII, a number of techniques have been invented over time.

An obvious, but obese, encoding technique is to translate each binary byte into its
hexadecimal digits. UUencoding is an older standard that developed around the need to

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 122 --- #142i
i

i
i

i
i

i
i

122 BASIC STRING OPERATIONS

transmit binary files over the Usenet and on BBSs. Binhex is a similar technique from
the MacOS world. In recent years, base64—which is specified by RFC1521—has edged
out the other styles of encoding. All of the techniques are basically 4/3 encodings—that
is, four ASCII bytes are used to represent three binary bytes—but they differ somewhat
in line ending and header conventions (as well as in the encoding as such). Quoted
printable is yet another format, but of variable encoding length. In quoted printable
encoding, most plain ASCII bytes are left unchanged, but a few special characters and
all high-bit bytes are escaped.

Python provides modules for all the encoding styles mentioned. The high-level wrap-
pers uu, binhex , base64 , and quopri all operate on input and output file-like objects,
encoding the data therein. They also each have slightly different method names and
arguments. binhex , for example, closes its output file after encoding, which makes it
unusable in conjunction with a cStringIO file-like object. All of the high-level encoders
utilize the services of the low-level C module binascii . binascii , in turn, implements
the actual low-level block conversions, but assumes that it will be passed the right size
blocks for a given encoding.

The standard library, therefore, does not contain quite the right intermediate-level
functionality for when the goal is just encoding the binary data in arbitrary strings. It
is easy to wrap that up, though:

encode binary.py

Provide encoders for arbitrary binary data
in Python strings. Handles block size issues
transparently, and returns a string.
Precompression of the input string can reduce
or eliminate any size penalty for encoding.

import sys
import zlib
import binascii

UU = 45
BASE64 = 57
BINHEX = sys.maxint

def ASCIIencode(s=’’, type=BASE64, compress=1):
"""ASCII encode a binary string"""
First, decide the encoding style
if type == BASE64: encode = binascii.b2a_base64
elif type == UU: encode = binascii.b2a_uu
elif type == BINHEX: encode = binascii.b2a_hqx
else: raise ValueError, "Encoding must be in UU, BASE64, BINHEX"
Second, compress the source if specified
if compress: s = zlib.compress(s)
Third, encode the string, block-by-block

“TPiP” — 2006/1/30 — 15:07 — page 123 — #143i
i

i
i

i
i

i
i

2.1 Some Common Tasks 123

offset = 0
blocks = []
while 1:

blocks.append(encode(s[offset:offset+type]))
offset += type
if offset > len(s):

break
Fourth, return the concatenated blocks
return ’’.join(blocks)

def ASCIIdecode(s=’’, type=BASE64, compress=1):
"""Decode ASCII to a binary string"""
First, decide the encoding style
if type == BASE64: s = binascii.a2b_base64(s)
elif type == BINHEX: s = binascii.a2b_hqx(s)
elif type == UU:

s = ’’.join([binascii.a2b_uu(line) for line in s.split(’\n’)])
Second, decompress the source if specified
if compress: s = zlib.decompress(s)
Third, return the decoded binary string
return s

Encode/decode STDIN for self-test
if __name__ == ’__main__’:

decode, TYPE = 0, BASE64
for arg in sys.argv:

if arg.lower()==’-d’: decode = 1
elif arg.upper()==’UU’: TYPE=UU
elif arg.upper()==’BINHEX’: TYPE=BINHEX
elif arg.upper()==’BASE64’: TYPE=BASE64

if decode:
print ASCIIdecode(sys.stdin.read(),type=TYPE)

else:
print ASCIIencode(sys.stdin.read(),type=TYPE)

The example above does not attach any headers or delimit the encoded block (by
design); for that, a wrapper like uu, mimify , or MimeWriter is a better choice. Or a
custom wrapper around encode binary.py.

2.1.6 Problem: Creating word or letter histograms

A histogram is an analysis of the relative occurrence frequency of each of a number
of possible values. In terms of text processing, the occurrences in question are almost
always either words or byte values. Creating histograms is quite simple using Python
dictionaries, but the technique is not always immediately obvious to people thinking
about it. The example below has a good generality, provides several utility functions
associated with histograms, and can be used in a command-line operation mode.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 124 --- #144i
i

i
i

i
i

i
i

124 BASIC STRING OPERATIONS

histogram.py

Create occurrence counts of words or characters
A few utility functions for presenting results
Avoids requirement of recent Python features

from string import split, maketrans, translate, punctuation, digits
import sys
from types import *
import types

def word_histogram(source):
"""Create histogram of normalized words (no punct or digits)"""
hist = {}
trans = maketrans(’’,’’)
if type(source) in (StringType,UnicodeType): # String-like src

for word in split(source):
word = translate(word, trans, punctuation+digits)
if len(word) > 0:

hist[word] = hist.get(word,0) + 1
elif hasattr(source,’read’): # File-like src

try:
from xreadlines import xreadlines # Check for module
for line in xreadlines(source):

for word in split(line):
word = translate(word, trans, punctuation+digits)
if len(word) > 0:

hist[word] = hist.get(word,0) + 1
except ImportError: # Older Python ver

line = source.readline() # Slow but mem-friendly
while line:

for word in split(line):
word = translate(word, trans, punctuation+digits)
if len(word) > 0:

hist[word] = hist.get(word,0) + 1
line = source.readline()

else:
raise TypeError, \

"source must be a string-like or file-like object"
return hist

def char_histogram(source, sizehint=1024*1024):
hist = {}
if type(source) in (StringType,UnicodeType): # String-like src

for char in source:
hist[char] = hist.get(char,0) + 1

elif hasattr(source,’read’): # File-like src

“TPiP” — 2006/1/30 — 15:07 — page 125 — #145i
i

i
i

i
i

i
i

2.1 Some Common Tasks 125

chunk = source.read(sizehint)
while chunk:

for char in chunk:
hist[char] = hist.get(char,0) + 1

chunk = source.read(sizehint)
else:

raise TypeError, \
"source must be a string-like or file-like object"

return hist

def most_common(hist, num=1):
pairs = []
for pair in hist.items():

pairs.append((pair[1],pair[0]))
pairs.sort()
pairs.reverse()
return pairs[:num]

def first_things(hist, num=1):
pairs = []
things = hist.keys()
things.sort()
for thing in things:

pairs.append((thing,hist[thing]))
pairs.sort()
return pairs[:num]

if __name__ == ’__main__’:
if len(sys.argv) > 1:

hist = word_histogram(open(sys.argv[1]))
else:

hist = word_histogram(sys.stdin)

print "Ten most common words:"
for pair in most_common(hist, 10):

print ’\t’, pair[1], pair[0]

print "First ten words alphabetically:"
for pair in first_things(hist, 10):

print ’\t’, pair[0], pair[1]

a more practical command-line version might use:
for pair in most_common(hist,len(hist)):
print pair[1],’\t’,pair[0]

Several of the design choices are somewhat arbitrary. Words have all their punctu-
ation stripped to identify “real” words. But on the other hand, words are still case-
sensitive, which may not be what is desired. The sorting functions first things() and

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 126 --- #146i
i

i
i

i
i

i
i

126 BASIC STRING OPERATIONS

most common() only return an initial sublist. Perhaps it would be better to return the
whole list, and let the user slice the result. It is simple to customize around these sorts
of issues, though.

2.1.7 Problem: Reading a file backwards by record, line, or
paragraph

Reading a file line by line is a common task in Python, or in most any language. Files
like server logs, configuration files, structured text databases, and others frequently
arrange information into logical records, one per line. Very often, the job of a program
is to perform some calculation on each record in turn.

Python provides a number of convenient methods on file-like objects for such line-
by-line reading. FILE.readlines() reads a whole file at once and returns a list of
lines. The technique is very fast, but requires the whole contents of the file be kept
in memory. For very large files, this can be a problem. FILE.readline() is memory-
friendly—it just reads a line at a time and can be called repeatedly until the EOF is
reached—but it is also much slower. The best solution for recent Python versions is
xreadlines.xreadlines() or FILE.xreadlines() in Python 2.1+. These techniques
are memory-friendly, while still being fast and presenting a “virtual list” of lines (by
way of Python’s new generator/iterator interface).

The above techniques work nicely for reading a file in its natural order, but what if
you want to start at the end of a file and work backwards from there? This need is
frequently encountered when you want to read log files that have records appended over
time (and when you want to look at the most recent records first). It comes up in other
situations also. There is a very easy technique if memory usage is not an issue:

>>> open(’lines’,’w’).write(’\n’.join([‘n‘ for n in range(100)]))
>>> fp = open(’lines’)
>>> lines = fp.readlines()
>>> lines.reverse()
>>> for line in lines[1:5]:
... # Processing suite here
... print line,
...
98
97
96
95

For large input files, however, this technique is not feasible. It would be nice to have
something analogous to xreadlines here. The example below provides a good starting
point (the example works equally well for file-like objects).

“TPiP” — 2006/1/30 — 15:07 — page 127 — #147i
i

i
i

i
i

i
i

2.1 Some Common Tasks 127

read backwards.py

Read blocks of a file from end to beginning.
Blocks may be defined by any delimiter, but the
constants LINE and PARA are useful ones.
Works much like the file object method ’.readline()’:
repeated calls continue to get "next" part, and
function returns empty string once BOF is reached.

Define constants
from os import linesep
LINE = linesep
PARA = linesep*2
READSIZE = 1000

Global variables
buffer = ’’

def read_backwards(fp, mode=LINE, sizehint=READSIZE, _init=[0]):
"""Read blocks of file backwards (return empty string when done)"""
Trick of mutable default argument to hold state between calls
if not _init[0]:

fp.seek(0,2)
_init[0] = 1

Find a block (using global buffer)
global buffer
while 1:

first check for block in buffer
delim = buffer.rfind(mode)
if delim <> -1: # block is in buffer, return it

block = buffer[delim+len(mode):]
buffer = buffer[:delim]
return block+mode

#-- BOF reached, return remainder (or empty string)
elif fp.tell()==0:

block = buffer
buffer = ’’
return block

else: # Read some more data into the buffer
readsize = min(fp.tell(),sizehint)
fp.seek(-readsize,1)
buffer = fp.read(readsize) + buffer
fp.seek(-readsize,1)

“TPiP” — 2006/1/30 — 15:07 — page 128 — #148i
i

i
i

i
i

i
i

128 BASIC STRING OPERATIONS

#-- Self test of read_backwards()
if __name__ == ’__main__’:

Let’s create a test file to read in backwards
fp = open(’lines’,’wb’)
fp.write(LINE.join([’--- %d ---’%n for n in range(15)]))
Now open for reading backwards
fp = open(’lines’,’rb’)
Read the blocks in, one per call (block==line by default)
block = read_backwards(fp)
while block:

print block,
block = read_backwards(fp)

Notice that anything could serve as a block delimiter. The constants provided just
happened to work for lines and block paragraphs (and block paragraphs only with the
current OS’s style of line breaks). But other delimiters could be used. It would not be
immediately possible to read backwards word-by-word—a space delimiter would come
close, but would not be quite right for other whitespace. However, reading a line (and
maybe reversing its words) is generally good enough.

Another enhancement is possible with Python 2.2+. Using the new yield keyword,
read backwards() could be programmed as an iterator rather than as a multi-call func-
tion. The performance will not differ significantly, but the function might be expressed
more clearly (and a “list-like” interface like FILE.readlines() makes the application’s
loop simpler).

QUESTIONS

1. Write a generator-based version of read backwards() that uses the yield key-
word. Modify the self-test code to utilize the generator instead.

2. Explore and explain some pitfalls with the use of a mutable default value as a
function argument. Explain also how the style allows functions to encapsulate
data and contrast with the encapsulation of class instances.

2.2 Standard Modules

2.2.1 Basic String Transformations

The module string forms the core of Python’s text manipulation libraries. That module
is certainly the place to look before other modules. Most of the methods in the string
module, you should note, have been copied to methods of string objects from Python
1.6+. Moreover, methods of string objects are a little bit faster to use than are the
corresponding module functions. A few new methods of string objects do not have
equivalents in the string module, but are still documented here.

See Also: str 33; UserString 33;

“TPiP” — 2006/1/30 — 15:07 — page 129 — #149i
i

i
i

i
i

i
i

2.2 Standard Modules 129

string � A collection of string operations

There are a number of general things to notice about the functions in the string module
(which is composed entirely of functions and constants; no classes).

1. Strings are immutable (as discussed in Chapter 1). This means that there is no
such thing as changing a string “in place” (as we might do in many other languages,
such as C, by changing the bytes at certain offsets within the string). Whenever
a string module function takes a string object as an argument, it returns a brand-
new string object and leaves the original one as is. However, the very common
pattern of binding the same name on the left of an assignment as was passed on
the right side within the string module function somewhat conceals this fact. For
example:

>>> import string
>>> str = "Mary had a little lamb"
>>> str = string.replace(str, ’had’, ’ate’)
>>> str
’Mary ate a little lamb’

The first string object never gets modified per se; but since the first string object
is no longer bound to any name after the example runs, the object is subject
to garbage collection and will disappear from memory. In short, calling a string
module function will not change any existing strings, but rebinding a name can
make it look like they changed.

2. Many string module functions are now also available as string object methods. To
use these string object methods, there is no need to import the string module, and
the expression is usually slightly more concise. Moreover, using a string object
method is usually slightly faster than the corresponding string module function.
However, the most thorough documentation of each function/method that exists
as both a string module function and a string object method is contained in this
reference to the string module.

3. The form string.join(string.split(...)) is a frequent Python idiom. A
more thorough discussion is contained in the reference items for string.join()

and string.split() , but in general, combining these two functions is very often
a useful way of breaking down a text, processing the parts, then putting together
the pieces.

4. Think about clever string.replace() patterns. By combining multiple
string.replace() calls with use of “place holder” string patterns, a surprising
range of results can be achieved (especially when also manipulating the intermedi-
ate strings with other techniques). See the reference item for string.replace()

for some discussion and examples.

“TPiP” — 2006/1/30 — 15:07 — page 130 — #150i
i

i
i

i
i

i
i

130 BASIC STRING OPERATIONS

5. A mutable string of sorts can be obtained by using built-in lists, or the array
module. Lists can contain a collection of substrings, each one of which may be
replaced or modified individually. The array module can define arrays of individual
characters, each position modifiable, included with slice notation. The function
string.join() or the method "".join() may be used to re-create true strings;
for example:

>>> lst = [’spam’,’and’,’eggs’]
>>> lst[2] = ’toast’
>>> print ’’.join(lst)
spamandtoast
>>> print ’ ’.join(lst)
spam and toast

Or:

>>> import array
>>> a = array.array(’c’,’spam and eggs’)
>>> print ’’.join(a)
spam and eggs
>>> a[0] = ’S’
>>> print ’’.join(a)
Spam and eggs
>>> a[-4:] = array.array(’c’,’toast’)
>>> print ’’.join(a)
Spam and toast

CONSTANTS

The string module contains constants for a number of frequently used collections of
characters. Each of these constants is itself simply a string (rather than a list, tuple,
or other collection). As such, it is easy to define constants alongside those provided by
the string module, should you need them. For example:

>>> import string
>>> string.brackets = "[]{}()<>"
>>> print string.brackets
[]{}()<>

string.digits

The decimal numerals (“0123456789”).

string.hexdigits

The hexadecimal numerals (“0123456789abcdefABCDEF”).

string.octdigits

The octal numerals (“01234567”).

“TPiP” — 2006/1/30 — 15:07 — page 131 — #151i
i

i
i

i
i

i
i

2.2 Standard Modules 131

string.lowercase

The lowercase letters; can vary by language. In English versions of Python (most
systems):

>>> import string
>>> string.lowercase
’abcdefghijklmnopqrstuvwxyz’

You should not modify string.lowercase for a source text language, but rather
define a new attribute, such as string.spanish lowercase with an appropriate
string (some methods depend on this constant).

string.uppercase

The uppercase letters; can vary by language. In English versions of Python (most
systems):

>>> import string
>>> string.uppercase
’ABCDEFGHIJKLMNOPQRSTUVWXYZ’

You should not modify string.uppercase for a source text language, but rather
define a new attribute, such as string.spanish uppercase with an appropriate
string (some methods depend on this constant).

string.letters

All the letters (string.lowercase+string.uppercase).

string.punctuation

The characters normally considered as punctuation; can vary by language. In En-
glish versions of Python (most systems):

>>> import string
>>> string.punctuation
’!"#$%&\’()*+,-./:;<=>?@[\\]^_‘{|}~’

string.whitespace

The “empty” characters. Normally these consist of tab, linefeed, vertical tab, form-
feed, carriage return, and space (in that order):

>>> import string
>>> string.whitespace
’\011\012\013\014\015 ’

“TPiP” — 2006/1/30 — 15:07 — page 132 — #152i
i

i
i

i
i

i
i

132 BASIC STRING OPERATIONS

You should not modify string.whitespace (some methods depend on this con-
stant).

string.printable

All the characters that can be printed to any device; can vary by language
(string.digits+string.letters+string.punctuation+string.whitespace).

FUNCTIONS

string.atof(s=. . .)

Deprecated. Use float() .

Converts a string to a floating point value.

See Also: eval() 445; float() 422;

string.atoi(s=. . . [,base=10])

Deprecated with Python 2.0. Use int() if no custom base is needed or if using
Python 2.0+.

Converts a string to an integer value (if the string should be assumed to be in a
base other than 10, the base may be specified as the second argument).

See Also: eval() 445; int() 421; long() 422;

string.atol(s=. . . [,base=10])

Deprecated with Python 2.0. Use long() if no custom base is needed or if using
Python 2.0+.

Converts a string to an unlimited length integer value (if the string should be as-
sumed to be in a base other than 10, the base may be specified as the second
argument).

See Also: eval() 445; long() 422; int() 421;

string.capitalize(s=. . .)
””.capitalize()

Return a string consisting of the initial character converted to uppercase (if appli-
cable), and all other characters converted to lowercase (if applicable):

>>> import string
>>> string.capitalize("mary had a little lamb!")
’Mary had a little lamb!’
>>> string.capitalize("Mary had a Little Lamb!")
’Mary had a little lamb!’
>>> string.capitalize("2 Lambs had Mary!")
’2 lambs had mary!’

“TPiP” — 2006/1/30 — 15:07 — page 133 — #153i
i

i
i

i
i

i
i

2.2 Standard Modules 133

For Python 1.6+, use of a string object method is marginally faster and is stylistically
preferred in most cases:

>>> "mary had a little lamb".capitalize()
’Mary had a little lamb’

See Also: string.capwords() 133; string.lower() 138;

string.capwords(s=. . .)
””.title()

Return a string consisting of the capitalized words. An equivalent expression is:

string.join(map(string.capitalize,string.split(s))

But string.capwords() is a clearer way of writing it. An effect of this implemen-
tation is that whitespace is “normalized” by the process:

>>> import string
>>> string.capwords("mary HAD a little lamb!")
’Mary Had A Little Lamb!’
>>> string.capwords("Mary had a Little Lamb!")
’Mary Had A Little Lamb!’

With the creation of string methods in Python 1.6, the module function
string.capwords() was renamed as a string method to "".title() .

See Also: string.capitalize() 132; string.lower() 138; "".istitle() 136;

string.center(s=. . . , width=. . .)
””.center(width)

Return a string with s padded with symmetrical leading and trailing spaces (but
not truncated) to occupy length width (or more).

>>> import string
>>> string.center(width=30,s="Mary had a little lamb")
’ Mary had a little lamb ’
>>> string.center("Mary had a little lamb", 5)
’Mary had a little lamb’

For Python 1.6+, use of a string object method is stylistically preferred in many
cases:

>>> "Mary had a little lamb".center(25)
’ Mary had a little lamb ’

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 134 --- #154i
i

i
i

i
i

i
i

134 BASIC STRING OPERATIONS

See Also: string.ljust() 138; string.rjust() 141;

string.count(s, sub [,start [,end]])
””.count(sub [,start [,end]])

Return the number of nonoverlapping occurrences of sub in s. If the optional third
or fourth arguments are specified, only the corresponding slice of s is examined.

>>> import string
>>> string.count("mary had a little lamb", "a")
4
>>> string.count("mary had a little lamb", "a", 3, 10)
2

For Python 1.6+, use of a string object method is stylistically preferred in many
cases:

>>> ’mary had a little lamb’.count("a")
4

””.endswith(suffix [,start [,end]])

This string method does not have an equivalent in the string module. Return a
Boolean value indicating whether the string ends with the suffix suffix. If the
optional second argument start is specified, only consider the terminal substring
after offset start. If the optional third argument end is given, only consider the
slice [start:end].

See Also: "".startswith() 144; string.find() 135;

string.expandtabs(s=. . . [,tabsize=8])
””.expandtabs([,tabsize=8])

Return a string with tabs replaced by a variable number of spaces. The replacement
causes text blocks to line up at “tab stops.” If no second argument is given, the
new string will line up at multiples of 8 spaces. A newline implies a new set of tab
stops.

>>> import string
>>> s = ’mary\011had a little lamb’
>>> print s
mary had a little lamb
>>> string.expandtabs(s, 16)
’mary had a little lamb’
>>> string.expandtabs(tabsize=1, s=s)
’mary had a little lamb’

“TPiP” — 2006/1/30 — 15:07 — page 135 — #155i
i

i
i

i
i

i
i

2.2 Standard Modules 135

For Python 1.6+, use of a string object method is stylistically preferred in many
cases:

>>> ’mary\011had a little lamb’.expandtabs(25)
’mary had a little lamb’

string.find(s, sub [,start [,end]])
””.find(sub [,start [,end]])

Return the index position of the first occurrence of sub in s. If the optional third or
fourth arguments are specified, only the corresponding slice of s is examined (but
result is position in s as a whole). Return -1 if no occurrence is found. Position is
zero-based, as with Python list indexing:

>>> import string
>>> string.find("mary had a little lamb", "a")
1
>>> string.find("mary had a little lamb", "a", 3, 10)
6
>>> string.find("mary had a little lamb", "b")
21
>>> string.find("mary had a little lamb", "b", 3, 10)
-1

For Python 1.6+, use of a string object method is stylistically preferred in many
cases:

>>> ’mary had a little lamb’.find("ad")
6

See Also: string.index() 135; string.rfind() 140;

string.index(s, sub [,start [,end]])
””.index(sub [,start [,end]])

Return the same value as does string.find() with same arguments, except raise
ValueError instead of returning -1 when sub does not occur in s.

>>> import string
>>> string.index("mary had a little lamb", "b")
21
>>> string.index("mary had a little lamb", "b", 3, 10)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "d:/py20sl/lib/string.py", line 139, in index

return s.index(*args)
ValueError: substring not found in string.index

“TPiP” — 2006/1/30 — 15:07 — page 136 — #156i
i

i
i

i
i

i
i

136 BASIC STRING OPERATIONS

For Python 1.6+, use of a string object method is stylistically preferred in many
cases:

>>> ’mary had a little lamb’.index("ad")
6

See Also: string.find() 135; string.rindex() 141;

Several string methods that return Boolean values indicating whether a string has a
certain property. None of the .is*() methods, however, have equivalents in the string
module:

””.isalpha()

Return a true value if all the characters are alphabetic.

””.isalnum()

Return a true value if all the characters are alphanumeric.

””.isdigit()

Return a true value if all the characters are digits.

””.islower()

Return a true value if all the characters are lowercase and there is at least one cased
character:

>>> "ab123".islower(), ’123’.islower(), ’Ab123’.islower()
(1, 0, 0)

See Also: "".lower() 138;

””.isspace()

Return a true value if all the characters are whitespace.

””.istitle()

Return a true value if all the string has title casing (each word capitalized).

See Also: "".title() 133;

””.isupper()

Return a true value if all the characters are uppercase and there is at least one cased
character.

See Also: "".upper() 146;

“TPiP” — 2006/1/30 — 15:07 — page 137 — #157i
i

i
i

i
i

i
i

2.2 Standard Modules 137

string.join(words=. . . [,sep=” ”])
””.join(words)

Return a string that results from concatenating the elements of the list words to-
gether, with sep between each. The function string.join() differs from all other
string module functions in that it takes a list (of strings) as a primary argument,
rather than a string.

It is worth noting string.join() and string.split() are inverse functions if sep
is specified to both; in other words, string.join(string.split(s,sep),sep)==s
for all s and sep.

Typically, string.join() is used in contexts where it is natural to generate lists of
strings. For example, here is a small program to output the list of all-capital words
from STDIN to STDOUT, one per line:

list capwords.py

import string,sys
capwords = []

for line in sys.stdin.readlines():
for word in line.split():

if word == word.upper() and word.isalpha():
capwords.append(word)

print string.join(capwords, ’\n’)

The technique in the sample list capwords.py script can be considerably more
efficient than building up a string by direct concatenation. However, Python 2.0’s
augmented assignment reduces the performance difference:

>>> import string
>>> s = "Mary had a little lamb"
>>> t = "its fleece was white as snow"
>>> s = s +" "+ t # relatively "expensive" for big strings
>>> s += " " + t # "cheaper" than Python 1.x style
>>> lst = [s]
>>> lst.append(t) # "cheapest" way of building long string
>>> s = string.join(lst)

For Python 1.6+, use of a string object method is stylistically preferred in some
cases. However, just as string.join() is special in taking a list as a first argu-
ment, the string object method "".join() is unusual in being an operation on the
(optional) sep string, not on the (required) words list (this surprises many new
Python programmers).

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 138 --- #158i
i

i
i

i
i

i
i

138 BASIC STRING OPERATIONS

See Also: string.split() 142;

string.joinfields(. . .)

Identical to string.join() .

string.ljust(s=. . . , width=. . .)
””.ljust(width)

Return a string with s padded with trailing spaces (but not truncated) to occupy
length width (or more).

>>> import string
>>> string.ljust(width=30,s="Mary had a little lamb")
’Mary had a little lamb ’
>>> string.ljust("Mary had a little lamb", 5)
’Mary had a little lamb’

For Python 1.6+, use of a string object method is stylistically preferred in many
cases:

>>> "Mary had a little lamb".ljust(25)
’Mary had a little lamb ’

See Also: string.rjust() 141; string.center() 133;

string.lower(s=. . .)
””.lower()

Return a string with any uppercase letters converted to lowercase.

>>> import string
>>> string.lower("mary HAD a little lamb!")
’mary had a little lamb!’
>>> string.lower("Mary had a Little Lamb!")
’mary had a little lamb!’

For Python 1.6+, use of a string object method is stylistically preferred in many
cases:

>>> "Mary had a Little Lamb!".lower()
’mary had a little lamb!’

See Also: string.upper() 146;

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 139 --- #159i
i

i
i

i
i

i
i

2.2 Standard Modules 139

string.lstrip(s=. . .)
””.lstrip([chars=string.whitespace])

Return a string with leading whitespace characters removed. For Python 1.6+, use
of a string object method is stylistically preferred in many cases:

>>> import string
>>> s = """
... Mary had a little lamb \011"""
>>> string.lstrip(s)
’Mary had a little lamb \011’
>>> s.lstrip()
’Mary had a little lamb \011’

Python 2.3+ accepts the optional argument chars to the string object method. All
characters in the string chars will be removed.

See Also: string.rstrip() 142; string.strip() 144;

string.maketrans(from, to)

Return a translation table string for use with string.translate() . The strings
from and to must be the same length. A translation table is a string of 256 successive
byte values, where each position defines a translation from the chr() value of the
index to the character contained at that index position.

>>> import string
>>> ord(’A’)
65
>>> ord(’z’)
122
>>> string.maketrans(’ABC’,’abc’)[65:123]
’abcDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_‘abcdefghijklmnopqrstuvwxyz’
>>> string.maketrans(’ABCxyz’,’abcXYZ’)[65:123]
’abcDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_‘abcdefghijklmnopqrstuvwXYZ’

See Also: string.translate() 145;

string.replace(s=. . . , old=. . . , new=. . . [,maxsplit=. . .])
””.replace(old, new [,maxsplit])

Return a string based on s with occurrences of old replaced by new. If the fourth
argument maxsplit is specified, only replace maxsplit initial occurrences.

>>> import string
>>> string.replace("Mary had a little lamb", "a little", "some")
’Mary had some lamb’

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 140 --- #160i
i

i
i

i
i

i
i

140 BASIC STRING OPERATIONS

For Python 1.6+, use of a string object method is stylistically preferred in many
cases:

>>> "Mary had a little lamb".replace("a little", "some")
’Mary had some lamb’

A common “trick” involving string.replace() is to use it multiple times to achieve
a goal. Obviously, simply to replace several different substrings in a string, mul-
tiple string.replace() operations are almost inevitable. But there is another
class of cases where string.replace() can be used to create an intermediate
string with “placeholders” for an original substring in a particular context. The
same goal can always be achieved with regular expressions, but sometimes staged
string.replace() operations are both faster and easier to program:

>>> import string
>>> line = ’variable = val # see comments #3 and #4’
>>> # we’d like ’#3’ and ’#4’ spelled out within comment
>>> string.replace(line,’#’,’number ’) # doesn’t work
’variable = val number see comments number 3 and number 4’
>>> place_holder=string.replace(line,’ # ’,’ !!! ’) # insrt plcholder
>>> place_holder
’variable = val !!! see comments #3 and #4’
>>> place_holder=place_holder.replace(’#’,’number ’) # almost there
>>> place_holder
’variable = val !!! see comments number 3 and number 4’
>>> line = string.replace(place_holder,’!!!’,’#’) # restore orig
>>> line
’variable = val # see comments number 3 and number 4’

Obviously, for jobs like this, a placeholder must be chosen so as not ever to occur
within the strings undergoing “staged transformation”; but that should be possible
generally since placeholders may be as long as needed.

See Also: string.translate() 145; mx.TextTools.replace() 314;

string.rfind(s, sub [,start [,end]])
””.rfind(sub [,start [,end]])

Return the index position of the last occurrence of sub in s. If the optional third or
fourth arguments are specified, only the corresponding slice of s is examined (but
result is position in s as a whole). Return -1 if no occurrence is found. Position is
zero-based, as with Python list indexing:

>>> import string
>>> string.rfind("mary had a little lamb", "a")

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 141 --- #161i
i

i
i

i
i

i
i

2.2 Standard Modules 141

19
>>> string.rfind("mary had a little lamb", "a", 3, 10)
9
>>> string.rfind("mary had a little lamb", "b")
21
>>> string.rfind("mary had a little lamb", "b", 3, 10)
-1

For Python 1.6+, use of a string object method is stylistically preferred in many
cases:

>>> ’mary had a little lamb’.rfind("ad")
6

See Also: string.rindex() 141; string.find() 135;

string.rindex(s, sub [,start [,end]])
””.rindex(sub [,start [,end]])

Return the same value as does string.rfind() with same arguments, except raise
ValueError instead of returning -1 when sub does not occur in s.

>>> import string
>>> string.rindex("mary had a little lamb", "b")
21
>>> string.rindex("mary had a little lamb", "b", 3, 10)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "d:/py20sl/lib/string.py", line 148, in rindex

return s.rindex(*args)
ValueError: substring not found in string.rindex

For Python 1.6+, use of a string object method is stylistically preferred in many
cases:

>>> ’mary had a little lamb’.index("ad")
6

See Also: string.rfind() 140; string.index() 135;

string.rjust(s=. . . , width=. . .)
””.rjust(width)

Return a string with s padded with leading spaces (but not truncated) to occupy
length width (or more).

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 142 --- #162i
i

i
i

i
i

i
i

142 BASIC STRING OPERATIONS

>>> import string
>>> string.rjust(width=30,s="Mary had a little lamb")
’ Mary had a little lamb’
>>> string.rjust("Mary had a little lamb", 5)
’Mary had a little lamb’

For Python 1.6+, use of a string object method is stylistically preferred in many
cases:

>>> "Mary had a little lamb".rjust(25)
’ Mary had a little lamb’

See Also: string.ljust() 138; string.center() 133;

string.rstrip(s=. . .)
””.rstrip([chars=string.whitespace])

Return a string with trailing whitespace characters removed. For Python 1.6+, use
of a string object method is stylistically preferred in many cases:

>>> import string
>>> s = """
... Mary had a little lamb \011"""
>>> string.rstrip(s)
’\012 Mary had a little lamb’
>>> s.rstrip()
’\012 Mary had a little lamb’

Python 2.3+ accepts the optional argument chars to the string object method. All
characters in the string chars will be removed.

See Also: string.lstrip() 139; string.strip() 144;

string.split(s=. . . [,sep=. . . [,maxsplit=. . .]])
””.split([,sep [,maxsplit]])

Return a list of nonoverlapping substrings of s. If the second argument sep is speci-
fied, the substrings are divided around the occurrences of sep. If sep is not specified,
the substrings are divided around any whitespace characters. The dividing strings
do not appear in the resultant list. If the third argument maxsplit is specified,
everything “left over” after splitting maxsplit parts is appended to the list, giving
the list length ’maxsplit’+1.

>>> import string
>>> s = ’mary had a little lamb ...with a glass of sherry’
>>> string.split(s, ’ a ’)

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 143 --- #163i
i

i
i

i
i

i
i

2.2 Standard Modules 143

[’mary had’, ’little lamb ...with’, ’glass of sherry’]
>>> string.split(s)
[’mary’, ’had’, ’a’, ’little’, ’lamb’, ’...with’, ’a’, ’glass’,
’of’, ’sherry’]
>>> string.split(s,maxsplit=5)
[’mary’, ’had’, ’a’, ’little’, ’lamb’, ’...with a glass of sherry’]

For Python 1.6+, use of a string object method is stylistically preferred in many
cases:

>>> "Mary had a Little Lamb!".split()
[’Mary’, ’had’, ’a’, ’Little’, ’Lamb!’]

The string.split() function (and corresponding string object method) is surpris-
ingly versatile for working with texts, especially ones that resemble prose. Its default
behavior of treating all whitespace as a single divider allows string.split() to act
as a quick-and-dirty word parser:

>>> wc = lambda s: len(s.split())
>>> wc("Mary had a Little Lamb")
5
>>> s = """Mary had a Little Lamb
... its fleece as white as snow.
... And everywhere that Mary went ... the lamb was sure to go."""
>>> print s
Mary had a Little Lamb
its fleece as white as snow.
And everywhere that Mary went ... the lamb was sure to go.
>>> wc(s)
23

The function string.split() is very often used in conjunction with
string.join() . The pattern involved is “pull the string apart, modify the parts,
put it back together.” Often the parts will be words, but this also works with lines
(dividing on \n) or other chunks. For example:

>>> import string
>>> s = """Mary had a Little Lamb
... its fleece as white as snow.
... And everywhere that Mary went ... the lamb was sure to go."""
>>> string.join(string.split(s))
’Mary had a Little Lamb its fleece as white as snow. And everywhere
... that Mary went the lamb was sure to go.’

“TPiP” — 2006/1/30 — 15:07 — page 144 — #164i
i

i
i

i
i

i
i

144 BASIC STRING OPERATIONS

A Python 1.6+ idiom for string object methods expresses this technique compactly:

>>> "-".join(s.split())
’Mary-had-a-Little-Lamb-its-fleece-as-white-as-snow.-And-everywhere
...-that-Mary-went--the-lamb-was-sure-to-go.’

See Also: string.join() 137; mx.TextTools.setsplit() 314; mx.TextTools.charsplit()
311; mx.TextTools.splitat() 315; mx.TextTools.splitlines() 315;

string.splitfields(. . .)

Identical to string.split() .

””.splitlines([keepends=0])

This string method does not have an equivalent in the string module. Return a list
of lines in the string. The optional argument keepends determines whether line
break character(s) are included in the line strings.

””.startswith(prefix [,start [,end]])

This string method does not have an equivalent in the string module. Return a
Boolean value indicating whether the string begins with the prefix prefix. If the
optional second argument start is specified, only consider the terminal substring
after the offset start. If the optional third argument end is given, only consider the
slice [start:end].

See Also: "".endswith() 134; string.find() 135;

string.strip(s=. . .)
””.strip([chars=string.whitespace])

Return a string with leading and trailing whitespace characters removed. For Python
1.6+, use of a string object method is stylistically preferred in many cases:

>>> import string
>>> s = """
... Mary had a little lamb \011"""
>>> string.strip(s)
’Mary had a little lamb’
>>> s.strip()
’Mary had a little lamb’

Python 2.3+ accepts the optional argument chars to the string object method. All
characters in the string chars will be removed.

>>> s = "MARY had a LITTLE lamb STEW"
>>> s.strip("ABCDEFGHIJKLMNOPQRSTUVWXYZ") # strip caps
’ had a LITTLE lamb ’

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 145 --- #165i
i

i
i

i
i

i
i

2.2 Standard Modules 145

See Also: string.rstrip() 142; string.lstrip() 139;

string.swapcase(s=. . .)
””.swapcase()

Return a string with any uppercase letters converted to lowercase and any lowercase
letters converted to uppercase.

>>> import string
>>> string.swapcase("mary HAD a little lamb!")
’MARY had A LITTLE LAMB!’

For Python 1.6+, use of a string object method is stylistically preferred in many
cases:

>>> "mary HAD a little lamb!".swapcase()
’MARY had A LITTLE LAMB!’

See Also: string.upper() 146; string.lower() 138;

string.translate(s=. . . , table=. . . [,deletechars=””])
””.translate(table [,deletechars=””])

Return a string, based on s, with deletechars deleted (if the third argument is
specified) and with any remaining characters translated according to the translation
table.

>>> import string
>>> tab = string.maketrans(’ABC’,’abc’)
>>> string.translate(’MARY HAD a little LAMB’, tab, ’Atl’)
’MRY HD a ie LMb’

For Python 1.6+, use of a string object method is stylistically preferred in many
cases. However, if string.maketrans() is used to create the translation table, one
will need to import the string module anyway:

>>> ’MARY HAD a little LAMB’.translate(tab, ’Atl’)
’MRY HD a ie LMb’

The string.translate() function is a very fast way to modify a string. Setting up
the translation table takes some getting used to, but the resultant transformation is
much faster than a procedural technique such as:

“TPiP” — 2006/1/30 — 15:07 — page 146 — #166i
i

i
i

i
i

i
i

146 BASIC STRING OPERATIONS

>>> (new,frm,to,dlt) = ("",’ABC’,’abc’,’Alt’)
>>> for c in ’MARY HAD a little LAMB’:
... if c not in dlt:
... pos = frm.find(c)
... if pos == -1: new += c
... else: new += to[pos]
...
>>> new
’MRY HD a ie LMb’

See Also: string.maketrans() 139;

string.upper(s=. . .)
””.upper()

Return a string with any lowercase letters converted to uppercase.

>>> import string
>>> string.upper("mary HAD a little lamb!")
’MARY HAD A LITTLE LAMB!’
>>> string.upper("Mary had a Little Lamb!")
’MARY HAD A LITTLE LAMB!’

For Python 1.6+, use of a string object method is stylistically preferred in many
cases:

>>> "Mary had a Little Lamb!".upper()
’MARY HAD A LITTLE LAMB!’

See Also: string.lower() 138;

string.zfill(s=. . . , width=. . .)

Return a string with s padded with leading zeros (but not truncated) to occupy
length width (or more). If a leading sign is present, it “floats” to the beginning of
the return value. In general, string.zfill() is designed for alignment of numeric
values, but no checking is done to see if a string looks number-like.

>>> import string
>>> string.zfill("this", 20)
’0000000000000000this’
>>> string.zfill("-37", 20)
’-0000000000000000037’
>>> string.zfill("+3.7", 20)
’+00000000000000003.7’

“TPiP” — 2006/1/30 — 15:07 — page 147 — #167i
i

i
i

i
i

i
i

2.2 Standard Modules 147

Based on the example of string.rjust() , one might expect a string object method
"".zfill() ; however, no such method exists.

See Also: string.rjust() 141;

2.2.2 Strings as Files, and Files as Strings

In many ways, strings and files do a similar job. Both provide a storage container for
an unlimited amount of (textual) information that is directly structured only by linear
position of the bytes. A first inclination is to suppose that the difference between files
and strings is one of persistence—files hang around when the current program is no
longer running. But that distinction is not really tenable. On the one hand, standard
Python modules like shelve, pickle, and marshal—and third-party modules like xml pickle
and ZODB—provide simple ways of making strings persist (but not thereby correspond
in any direct way to a filesystem). On the other hand, many files are not particularly
persistent: Special files like STDIN and STDOUT under Unix-like systems exist only
for program life; other peculiar files like /dev/cua0 and similar “device files” are really
just streams; and even files that live on transient memory disks, or get deleted with
program cleanup, are not very persistent.

The real difference between files and strings in Python is no more or less than the set
of techniques available to operate on them. File objects can do things like .read() and
.seek() on themselves. Notably, file objects have a concept of a “current position” that
emulates an imaginary “read-head” passing over the physical storage media. Strings,
on the other hand, can be sliced and indexed—for example, str[4:10] or for c in
str:—and can be processed with string object methods and by functions of modules
like string and re. Moreover, a number of special-purpose Python objects act “file-like”
without quite being files; for example, gzip.open() and urllib.urlopen() . Of course,
Python itself does not impose any strict condition for just how “file-like” something has
to be to work in a file-like context. A programmer has to figure that out for each type
of object she wishes to apply techniques to (but most of the time things “just work”
right).

Happily, Python provides some standard modules to make files and strings easily
interoperable.

mmap � Memory-mapped file support

The mmap module allows a programmer to create “memory-mapped” file objects. These
special mmap objects enable most of the techniques you might apply to “true” file
objects and simultaneously most of the techniques you might apply to “true” strings.
Keep in mind the hinted caveat about “most,” however: Many string module functions
are implemented using the corresponding string object methods. Since a mmap object
is only somewhat “string-like,” it basically only implements the .find() method and
those “magic” methods associated with slicing and indexing. This is enough to support
most string object idioms.

“TPiP” — 2006/1/30 — 15:07 — page 148 — #168i
i

i
i

i
i

i
i

148 BASIC STRING OPERATIONS

When a string-like change is made to a mmap object, that change is propagated to the
underlying file, and the change is persistent (assuming the underlying file is persistent,
and that the object called .flush() before destruction). mmap thereby provides an
efficient route to “persistent strings.”

Some examples of working with memory-mapped file objects are worth looking at:

>>> # Create a file with some test data
>>> open(’test’,’w’).write(’ #’.join(map(str, range(1000))))
>>> fp = open(’test’,’r+’)
>>> import mmap
>>> mm = mmap.mmap(fp.fileno(),1000)
>>> len(mm)
1000
>>> mm[-20:]
’218 #219 #220 #221 #’
>>> import string # apply a string module method
>>> mm.seek(string.find(mm, ’21’))
>>> mm.read(10)
’21 #22 #23’
>>> mm.read(10) # next ten bytes
’ #24 #25 #’
>>> mm.find(’21’) # object method to find next occurrence
402
>>> try: string.rfind(mm, ’21’)
... except AttributeError: print "Unsupported string function"
...
Unsupported string function
>>> ’/’.join(re.findall(’..21..’,mm)) # regex’s work nicely
’ #21 #/#121 #/ #210 / #212 / #214 / #216 / #218 /#221 #’

It is worth emphasizing that the bytes in a file on disk are in fixed positions. You
may use the mmap.mmap.resize() method to write into different portions of a file, but
you cannot expand the file from the middle, only by adding to the end.

CLASSES

mmap.mmap(fileno, length [,tagname]) (Windows)
mmap.mmap(fileno, length [,flags=MAP SHARED,

prot=PROT READ|PROT WRITE])

Create a new memory-mapped file object. fileno is the numeric file handle to base
the mapping on. Generally this number should be obtained using the .fileno()
method of a file object. length specifies the length of the mapping. Under Windows,
the value 0 may be given for length to specify the current length of the file. If
length smaller than the current file is specified, only the initial portion of the file
will be mapped. If length larger than the current file is specified, the file can be
extended with additional string content.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 149 --- #169i
i

i
i

i
i

i
i

2.2 Standard Modules 149

The underlying file for a memory-mapped file object must be opened for updating,
using the “+” mode modifier.

According to the official Python documentation for Python 2.1, a third argument
tagname may be specified. If it is, multiple memory-maps against the same file are
created. In practice, however, each instance of mmap.mmap() creates a new memory-
map whether or not a tagname is specified. In any case, this allows multiple file-like
updates to the same underlying file, generally at different positions in the file.

>>> open(’test’,’w’).write(’ #’.join([str(n) for n in range(1000)]))
>>> fp = open(’test’,’r+’)
>>> import mmap
>>> mm1 = mmap.mmap(fp.fileno(),1000)
>>> mm2 = mmap.mmap(fp.fileno(),1000)
>>> mm1.seek(500)
>>> mm1.read(10)
’122 #123 #’
>>> mm2.read(10)
’0 #1 #2 #3’

Under Unix, the third argument flags may be MAP PRIVATE or MAP SHARED.
If MAP SHARED is specified for flags, all processes mapping the file will see the
changes made to a mmap object. Otherwise, the changes are restricted to the current
process. The fourth argument, prot, may be used to disallow certain types of access
by other processes to the mapped file regions.

METHODS

mmap.mmap.close()

Close the memory-mapped file object. Subsequent calls to the other methods of
the mmap object will raise an exception. Under Windows, the behavior of a mmap
object after .close() is somewhat erratic, however. Note that closing the memory-
mapped file object is not the same as closing the underlying file object. Closing the
underlying file will make the contents inaccessible, but closing the memory-mapped
file object will not affect the underlying file object.

See Also: FILE.close() 16;

mmap.mmap.find(sub [,pos])

Similar to string.find() . Return the index position of the first occurrence of sub
in the mmap object. If the optional second argument pos is specified, the result is
the offset returned relative to pos. Return -1 if no occurrence is found:

>>> open(’test’,’w’).write(’ #’.join([str(n) for n in range(1000)]))
>>> fp = open(’test’,’r+’)

“TPiP” — 2006/1/30 — 15:07 — page 150 — #170i
i

i
i

i
i

i
i

150 BASIC STRING OPERATIONS

>>> import mmap
>>> mm = mmap.mmap(fp.fileno(), 0)
>>> mm.find(’21’)
74
>>> mm.find(’21’,100)
-26
>>> mm.tell()
0

See Also: mmap.mmap.seek() 152; string.find() 135;

mmap.mmap.flush([offset, size])

Writes changes made in memory to mmap object back to disk. The first argument
offset and second argument size must either both be specified or both be omitted.
If offset and size are specified, only the position starting at offset or length size
will be written back to disk.

mmap.mmap.flush() is necessary to guarantee that changes are written to disk;
however, no guarantee is given that changes will not be written to disk as part of
normal Python interpreter housekeeping. mmap should not be used for systems with
“cancelable” changes (since changes may not be cancelable).

See Also: FILE.flush() 16;

mmap.mmap.move(target, source, length)

Copy a substring within a memory-mapped file object. The length of the substring
is the third argument length. The target location is the first argument target. The
substring is copied from the position source. It is allowable to have the substring’s
original position overlap its target range, but it must not go past the last position
of the mmap object.

>>> open(’test’,’w’).write(’’.join([c*10 for c in ’ABCDE’]))
>>> fp = open(’test’,’r+’)
>>> import mmap
>>> mm = mmap.mmap(fp.fileno(),0)
>>> mm[:]
’AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE’
>>> mm.move(40,0,5)
>>> mm[:]
’AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDAAAAAEEEEE’

mmap.mmap.read(num)

Return a string containing num bytes, starting at the current file position. The file
position is moved to the end of the read string. In contrast to the .read() method

“TPiP” — 2006/1/30 — 15:07 — page 151 — #171i
i

i
i

i
i

i
i

2.2 Standard Modules 151

of file objects, mmap.mmap.read() always requires that a byte count be specified,
which makes a memory-map file object not fully substitutable for a file object when
data is read. However, the following is safe for both true file objects and memory-
mapped file objects:

>>> open(’test’,’w’).write(’ #’.join([str(n) for n in range(1000)]))
>>> fp = open(’test’,’r+’)
>>> import mmap
>>> mm = mmap.mmap(fp.fileno(),0)
>>> def safe_readall(file):
... try:
... length = len(file)
... return file.read(length)
... except TypeError:
... return file.read()
...
>>> s1 = safe_readall(fp)
>>> s2 = safe_readall(mm)
>>> s1 == s2
1

See Also: mmap.mmap.read byte() 151; mmap.mmap.readline() 151;
mmap.mmap.write() 153; FILE.read() 17;

mmap.mmap.read byte()

Return a one-byte string from the current file position and advance the current
position by one. Same as mmap.mmap.read(1).

See Also: mmap.mmap.read() 150; mmap.mmap.readline() 151;

mmap.mmap.readline()

Return a string from the memory-mapped file object, starting from the current file
position and going to the next newline character. Advance the current file position
by the amount read.

See Also: mmap.mmap.read() 150; mmap.mmap.read byte() 151; FILE.readline()
17;

mmap.mmap.resize(newsize)

Change the size of a memory-mapped file object. This may be used to expand the
size of an underlying file or merely to expand the area of a file that is memory-
mapped. An expanded file is padded with null bytes (\000) unless otherwise filled
with content. As with other operations on mmap objects, changes to the underlying
file system may not occur until a .flush() is performed.

“TPiP” — 2006/1/30 — 15:07 — page 152 — #172i
i

i
i

i
i

i
i

152 BASIC STRING OPERATIONS

See Also: mmap.mmap.flush() 150;

mmap.mmap.seek(offset [,mode])

Change the current file position. If a second argument mode is given, a different
seek mode can be selected. The default is 0, absolute file positioning. Mode 1 seeks
relative to the current file position. Mode 2 is relative to the end of the memory-
mapped file (which may be smaller than the whole size of the underlying file). The
first argument offset specifies the distance to move the current file position—in
mode 0 it should be positive, in mode 2 it should be negative, in mode 1 the current
position can be moved either forward or backward.

See Also: FILE.seek() 17;

mmap.mmap.size()

Return the length of the underlying file. The size of the actual memory-map may
be smaller if less than the whole file is mapped:

>>> open(’test’,’w’).write(’X’*100)
>>> fp = open(’test’,’r+’)
>>> import mmap
>>> mm = mmap.mmap(fp.fileno(),50)
>>> mm.size()
100
>>> len(mm)
50

See Also: len() 14; mmap.mmap.seek() 152; mmap.mmap.tell() 152;

mmap.mmap.tell()

Return the current file position.

>>> open(’test’,’w’).write(’X’*100)
>>> fp = open(’test’,’r+’)
>>> import mmap
>>> mm = mmap.mmap(fp.fileno(), 0)
>>> mm.tell()
0
>>> mm.seek(20)
>>> mm.tell()
20
>>> mm.read(20)
’XXXXXXXXXXXXXXXXXXXX’
>>> mm.tell()
40

“TPiP” — 2006/1/30 — 15:07 — page 153 — #173i
i

i
i

i
i

i
i

2.2 Standard Modules 153

See Also: FILE.tell() 17; mmap.mmap.seek() 152;

mmap.mmap.write(s)

Write s into the memory-mapped file object at the current file position. The
current file position is updated to the position following the write. The method
mmap.mmap.write() is useful for functions that expect to be passed a file-like ob-
ject with a .write() method. However, for new code, it is generally more natural
to use the string-like index and slice operations to write contents. For example:

>>> open(’test’,’w’).write(’X’*50)
>>> fp = open(’test’,’r+’)
>>> import mmap
>>> mm = mmap.mmap(fp.fileno(), 0)
>>> mm.write(’AAAAA’)
>>> mm.seek(10)
>>> mm.write(’BBBBB’)
>>> mm[30:35] = ’SSSSS’
>>> mm[:]
’AAAAAXXXXXBBBBBXXXXXXXXXXXXXXXSSSSSXXXXXXXXXXXXXXX’
>>> mm.tell()
15

See Also: FILE.write() 17; mmap.mmap.read() 150;

mmap.mmap.write byte(c)

Write a one-byte string to the current file position, and advance the current position
by one. Same as mmap.mmap.write(c) where c is a one-byte string.

See Also: mmap.mmap.write() 153;

StringIO � File-like objects that read from or write to a string buffer

cStringIO � Fast, but incomplete, StringIO replacement

The StringIO and cStringIO modules allow a programmer to create “memory files,” that
is, “string buffers.” These special StringIO objects enable most of the techniques you
might apply to “true” file objects, but without any connection to a filesystem.

The most common use of string buffer objects is when some existing techniques for
working with byte-streams in files are to be applied to strings that do not come from
files. A string buffer object behaves in a file-like manner and can “drop in” to most
functions that want file objects.

cStringIO is much faster than StringIO and should be used in most cases. Both
modules provide a StringIO class whose instances are the string buffer objects.

“TPiP” — 2006/1/30 — 15:07 — page 154 — #174i
i

i
i

i
i

i
i

154 BASIC STRING OPERATIONS

cStringIO.StringIO cannot be subclassed (and therefore cannot provide additional
methods), and it cannot handle Unicode strings. One rarely needs to subclass StringIO,
but the absence of Unicode support in cStringIO could be a problem for many devel-
opers. As well, cStringIO does not support write operations, which makes its string
buffers less general (the effect of a write against an in-memory file can be accomplished
by normal string operations).

A string buffer object may be initialized with a string (or Unicode for StringIO)
argument. If so, that is the initial content of the buffer. Below are examples of usage
(including Unicode handling):

>>> from cStringIO import StringIO as CSIO
>>> from StringIO import StringIO as SIO
>>> alef, omega = unichr(1488), unichr(969)
>>> sentence = "In set theory, the Greek "+omega+" represents the \n"+\
... "ordinal limit of the integers, while the Hebrew \n"+\
... alef+" represents their cardinality."
>>> sio = SIO(sentence)
>>> try:
... csio = CSIO(sentence)
... print "New string buffer from raw string"
... except TypeError:
... csio = CSIO(sentence.encode(’utf-8’))
... print "New string buffer from ENCODED string"
...
New string buffer from ENCODED string
>>> sio.getvalue() == unicode(csio.getvalue(),’utf-8’)
1
>>> try:
... sio.getvalue() == csio.getvalue()
... except UnicodeError:
... print "Cannot even compare Unicode with string, in general"
...
Cannot even compare Unicode with string, in general
>>> lines = csio.readlines()
>>> len(lines)
3
>>> sio.seek(0)
>>> print sio.readline().encode(’utf-8’),
In set theory, the Greek represents the ordinal
>>> sio.tell(), csio.tell()
(51, 124)

CONSTANTS

cStringIO.InputType

“TPiP” — 2006/1/30 — 15:07 — page 155 — #175i
i

i
i

i
i

i
i

2.2 Standard Modules 155

The type of a cStringIO.StringIO instance that has been opened in “read” mode.
All StringIO.StringIO instances are simply InstanceType.

See Also: cStringIO.StringIO 155;

cStringIO.OutputType

The type of cStringIO.StringIO instance that has been opened in “write” mode
(actually read/write). All StringIO.StringIO instances are simply InstanceType.

See Also: cStringIO.StringIO 155;

CLASSES

StringIO.StringIO([buf=. . .])
cStringIO.StringIO([buf])

Create a new string buffer. If the first argument buf is specified, the buffer is
initialized with a string content. If the cStringIO module is used, the presence
of the buf argument determines whether write access to the buffer is enabled. A
cStringIO.StringIO buffer with write access must be initialized with no argument,
otherwise it becomes read-only. A StringIO.StringIO buffer, however, is always
read/write.

METHODS

StringIO.StringIO.close()
cStringIO.StringIO.close()

Close the string buffer. No access is permitted after close.

See Also: FILE.close() 16;

StringIO.StringIO.flush()
cStringIO.StringIO.flush()

Compatibility method for file-like behavior. Data in a string buffer is already in
memory, so there is no need to finalize a write to disk.

See Also: FILE.close() 16;

StringIO.StringIO.getvalue()
cStringIO.StringIO.getvalue()

Return the entire string held by the string buffer. Does not affect the current file
position. Basically, this is the way you convert back from a string buffer to a string.

StringIO.StringIO.isatty()
cStringIO.StringIO.isatty()

Return 0. Compatibility method for file-like behavior.

“TPiP” — 2006/1/30 — 15:07 — page 156 — #176i
i

i
i

i
i

i
i

156 BASIC STRING OPERATIONS

See Also: FILE.isatty() 16;

StringIO.StringIO.read([num])
cStringIO.StringIO.read([num])

If the first argument num is specified, return a string containing the next num char-
acters. If num characters are not available, return as many as possible. If num is not
specified, return all the characters from current file position to end of string buffer.
Advance the current file position by the amount read.

See Also: FILE.read() 17; mmap.mmap.read() 150; StringIO.StringIO.readline()
156;

StringIO.StringIO.readline([length=. . .])
cStringIO.StringIO.readline([length])

Return a string from the string buffer, starting from the current file position and
going to the next newline character. Advance the current file position by the amount
read.

See Also: mmap.mmap.readline() 151; StringIO.StringIO.read() 156;
StringIO.StringIO.readlines() 156; FILE.readline() 17;

StringIO.StringIO.readlines([sizehint=. . .])
cStringIO.StringIO.readlines([sizehint]

Return a list of strings from the string buffer. Each list element consists of a sin-
gle line, including the trailing newline character(s). If an argument sizehint is
specified, only read approximately sizehint characters worth of lines (full lines will
always be read).

See Also: StringIO.StringIO.readline() 156; FILE.readlines() 17;

cStringIO.StringIO.reset()

Sets the current file position to the beginning of the string buffer. Same as
cStringIO.StringIO.seek(0).

See Also: StringIO.StringIO.seek() 156;

StringIO.StringIO.seek(offset [,mode=0])
cStringIO.StringIO.seek(offset [,mode])

Change the current file position. If the second argument mode is given, a different
seek mode can be selected. The default is 0, absolute file positioning. Mode 1 seeks
relative to the current file position. Mode 2 is relative to the end of the string
buffer. The first argument offset specifies the distance to move the current file
position—in mode 0 it should be positive, in mode 2 it should be negative, in mode
1 the current position can be moved either forward or backward.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 157 --- #177i
i

i
i

i
i

i
i

2.2 Standard Modules 157

See Also: FILE.seek() 17; mmap.mmap.seek() 152;

StringIO.StringIO.tell()
cStringIO.StringIO.tell()

Return the current file position in the string buffer.

See Also: StringIO.StringIO.seek() 156;

StringIO.StringIO.truncate([len=0])
cStringIO.StringIO.truncate([len])

Reduce the length of the string buffer to the first argument len characters. Trun-
cation can only reduce characters later than the current file position (an initial
cStringIO.StringIO.reset() can be used to assure truncation from the begin-
ning).

See Also: StringIO.StringIO.seek() 156; cStringIO.StringIO.reset() 156;
StringIO.StringIO.close() 155;

StringIO.StringIO.write(s=. . .)
cStringIO.StringIO.write(s)

Write the first argument s into the string buffer at the current file position. The
current file position is updated to the position following the write.

See Also: StringIO.StringIO.writelines() 157; mmap.mmap.write() 153;
StringIO.StringIO.read() 156; FILE.write() 17;

StringIO.StringIO.writelines(list=. . .)
cStringIO.StringIO.writelines(list)

Write each element of list into the string buffer at the current file position. The
current file position is updated to the position following the write. For the cStringIO
method, list must be an actual list. For the StringIO method, other sequence types
are allowed. To be safe, it is best to coerce an argument into an actual list first. In
either case, list must contain only strings, or a TypeError will occur.

Contrary to what might be expected from the method name,
StringIO.StringIO.writelines() never inserts newline characters. For the
list elements actually to occupy separate lines in the string buffer, each element
string must already have a newline terminator. Consider the following variants on
writing a list to a string buffer:

>>> from StringIO import StringIO
>>> sio = StringIO()
>>> lst = [c*5 for c in ’ABC’]
>>> sio.writelines(lst)
>>> sio.write(’’.join(lst))

“TPiP” — 2006/1/30 — 15:07 — page 158 — #178i
i

i
i

i
i

i
i

158 BASIC STRING OPERATIONS

>>> sio.write(’\n’.join(lst))
>>> print sio.getvalue()
AAAAABBBBBCCCCCAAAAABBBBBCCCCCAAAAA
BBBBB
CCCCC

See Also: FILE.writelines() 17; StringIO.StringIO.write() 157;

2.2.3 Converting Between Binary and ASCII

The Python standard library provides several modules for converting between binary
data and 7-bit ASCII. At the low level, binascii is a C extension to produce fast string
conversions. At a high level, base64 , binhex , quopri , and uu provide file-oriented wrap-
pers to the facilities in binascii .

base64 � Convert to/from base64 encoding (RFC1521)

The base64 module is a wrapper around the functions binascii.a2b base64() and
binascii.b2a base64() . As well as providing a file-based interface on top of the
underlying string conversions, base64 handles the chunking of binary files into base64
line blocks and provides for the direct encoding of arbitrary input strings. Unlike uu,
base64 adds no content headers to encoded data; MIME standards for headers and
message-wrapping are handled by other modules that utilize base64 . Base64 encoding
is specified in RFC1521.

FUNCTIONS

base64.encode(input=. . . , output=. . .)

Encode the contents of the first argument input to the second argument output.
Arguments input and output should be file-like objects; input must be readable
and output must be writable.

base64.encodestring(s=. . .)

Return the base64 encoding of the string passed in the first argument s.

base64.decode(input=. . . , output=. . .)

Decode the contents of the first argument input to the second argument output.
Arguments input and output should be file-like objects; input must be readable
and output must be writable.

base64.decodestring(s=. . .)

Return the decoding of the base64-encoded string passed in the first argument s.

“TPiP” — 2006/1/30 — 15:07 — page 159 — #179i
i

i
i

i
i

i
i

2.2 Standard Modules 159

See Also: email 345; rfc822 397; mimetools 396; mimetypes 374; MimeWriter 396;
mimify 396; binascii 159; quopri 162;

binascii � Convert between binary data and ASCII

The binascii module is a C implementation of a number of styles of ASCII encoding of
binary data. Each function in the binascii module takes either encoded ASCII or raw
binary strings as an argument, and returns the string result of converting back or forth.
Some restrictions apply to the length of strings passed to some functions in the module
(for encodings that operate on specific block sizes).

FUNCTIONS

binascii.a2b base64(s)

Return the decoded version of a base64-encoded string. A string consisting of one
or more encoding blocks should be passed as the argument s.

binascii.a2b hex(s)

Return the decoded version of a hexadecimal-encoded string. A string consisting of
an even number of hexadecimals digits should be passed as the argument s.

binascii.a2b hqx(s)

Return the decoded version of a binhex-encoded string. A string containing a com-
plete number of encoded binary bytes should be passed as the argument s.

binascii.a2b qp(s [,header=0])

Return the decoded version of a quoted printable string. A string containing a
complete number of encoded binary bytes should be passed as the argument s. If
the optional argument header is specified, underscores will be decoded as spaces.
New to Python 2.2.

binascii.a2b uu(s)

Return the decoded version of a UUencoded string. A string consisting of exactly
one encoding block should be passed as the argument s (for a full block, 62 bytes
input, 45 bytes returned).

binascii.b2a base64(s)

Return the based64 encoding of a binary string (including the newline after block).
A binary string no longer than 57 bytes should be passed as the argument s.

binascii.b2a hex(s)

Return the hexadecimal encoding of a binary string. A binary string of any length
should be passed as the argument s.

“TPiP” — 2006/1/30 — 15:07 — page 160 — #180i
i

i
i

i
i

i
i

160 BASIC STRING OPERATIONS

binascii.b2a hqx(s)

Return the binhex4 encoding of a binary string. A binary string of any length should
be passed as the argument s. Run-length compression of s is not performed by this
function (use binascii.rlecode hqx() first, if needed).

binascii.b2a qp(s [,quotetabs=0 [,istext=1 [header=0]]])

Return the quoted printable encoding of a binary string. A binary string of any
length should be passed as the argument s. The optional argument quotetabs
specified whether to escape spaces and tabs; istext specifies not to newlines; header
specifies whether to encode spaces as underscores (and escape underscores). New to
Python 2.2.

binascii.b2a uu(s)

Return the UUencoding of a binary string (including the initial block specifier—
“M” for full blocks—and newline after block). A binary string no longer than 45
bytes should be passed as the argument s.

binascii.crc32(s [,crc])

Return the CRC32 checksum of the first argument s. If the second argument crc
is specified, it will be used as an initial checksum. This allows partial computation
of a checksum and continuation. For example:

>>> import binascii
>>> crc = binascii.crc32(’spam’)
>>> binascii.crc32(’ and eggs’, crc)
739139840
>>> binascii.crc32(’spam and eggs’)
739139840

binascii.crc hqx(s, crc)

Return the binhex4 checksum of the first argument s, using initial checksum value in
second argument. This allows partial computation of a checksum and continuation.
For example:

>>> import binascii
>>> binascii.crc_hqx(’spam and eggs’, 0)
17918
>>> crc = binascii.crc_hqx(’spam’, 0)
>>> binascii.crc_hqx(’ and eggs’, crc)
17918

See Also: binascii.crc32 160;

binascii.hexlify(s)

Identical to binascii.b2a hex() .

“TPiP” — 2006/1/30 — 15:07 — page 161 — #181i
i

i
i

i
i

i
i

2.2 Standard Modules 161

binascii.rlecode hqx(s)

Return the binhex4 run-length encoding (RLE) of first argument s. Under this RLE
technique, 0x90 is used as an indicator byte. Independent of the binhex4 standard,
this is a poor choice of precompression for encoded strings.

See Also: zlib.compress() 182;

binascii.rledecode hqx(s)

Return the expansion of a binhex4 run-length encoded string.

binascii.unhexlify(s)

Identical to binascii.a2b hex()

EXCEPTIONS

binascii.Error

Generic exception that should only result from programming errors.

binascii.Incomplete

Exception raised when a data block is incomplete. Usually this results from pro-
gramming errors in reading blocks, but it could indicate data or channel corruption.

See Also: base64 158; binhex 161; uu 163;

binhex � Encode and decode binhex4 files

The binhex module is a wrapper around the functions binascii.a2b hqx() ,
binascii.b2a hqx() , binascii.rlecode hqx() , binascii.rledecode hqx() , and
binascii.crc hqx() . As well as providing a file-based interface on top of the un-
derlying string conversions, binhex handles run-length encoding of encoded files and
attaches the needed header and footer information. Under MacOS, the resource fork of
a file is encoded along with the data fork (not applicable under other platforms).

FUNCTIONS

binhex.binhex(inp=. . . , out=. . .)

Encode the contents of the first argument inp to the second argument out. Argu-
ment inp is a filename; out may be either a filename or a file-like object. However, a
cStringIO.StringIO object is not “file-like” enough since it will be closed after the
conversion—and therefore, its value lost. You could override the .close() method
in a subclass of StringIO.StringIO to solve this limitation.

binhex.hexbin(inp=. . . [,out=. . .])

Decode the contents of the first argument to an output file. If the second argument
out is specified, it will be used as the output filename, otherwise the filename will
be taken from the binhex header. The argument inp may be either a filename or a
file-like object.

“TPiP” — 2006/1/30 — 15:07 — page 162 — #182i
i

i
i

i
i

i
i

162 BASIC STRING OPERATIONS

CLASSES

A number of internal classes are used by binhex . They are not documented here, but
can be examined in $PYTHONHOME/lib/binhex.py if desired (it is unlikely readers will
need to do this).

See Also: binascii 159;

quopri � Convert to/from quoted printable encoding (RFC1521)

The quopri module is a wrapper around the functions binascii.a2b qp() and
binascii.b2a qp() . The module quopri has the same methods as base64 . Unlike
uu, quopri adds no content headers to encoded data; MIME standards for headers and
message wrapping are handled by other modules that utilize quopri . Quoted printable
encoding is specified in RFC1521.

FUNCTIONS

quopri.encode(input, output, quotetabs)

Encode the contents of the first argument input to the second argument output.
Arguments input and output should be file-like objects; input must be readable
and output must be writable. If quotetabs is a true value, escape tabs and spaces.

quopri.encodestring(s [,quotetabs=0])

Return the quoted printable encoding of the string passed in the first argument s.
If quotetabs is a true value, escape tabs and spaces.

quopri.decode(input=. . . , output=. . . [,header=0])

Decode the contents of the first argument input to the second argument output.
Arguments input and output should be file-like objects; input must be readable
and output must be writable. If header is a true value, encode spaces as underscores
and escape underscores.

quopri.decodestring(s [,header=0])

Return the decoding of the quoted printable string passed in the first argument s.
If header is a true value, decode underscores as spaces.

See Also: email 345; rfc822 397; mimetools 396; mimetypes 374; MimeWriter 396;
mimify 396; binascii 159; base64 158;

“TPiP” — 2006/1/30 — 15:07 — page 163 — #183i
i

i
i

i
i

i
i

2.2 Standard Modules 163

uu � UUencode and UUdecode files

The uu module is a wrapper around the functions binascii.a2b uu() and
binascii.b2a uu() . As well as providing a file-based interface on top of the underlying
string conversions, uu handles the chunking of binary files into UUencoded line blocks
and attaches the needed header and footer.

FUNCTIONS

uu.encode(in, out, [name=. . . [,mode=0666]])

Encode the contents of the first argument in to the second argument out. Argu-
ments in and out should be file objects, but filenames are also accepted (the latter
is deprecated). The special filename “-” can be used to specify STDIN or STDOUT,
as appropriate. When file objects are passed as arguments, in must be readable and
out must be writable. The third argument name can be used to specify the filename
that appears in the UUencoding header; by default it is the name of in. The fourth
argument mode is the octal filemode to store in the UUencoding header.

uu.decode(in, [,out file=. . . [, mode=. . .])

Decode the contents of the first argument in to an output file. If the second argu-
ment out file is specified, it will be used as the output file; otherwise, the filename
will be taken from the UUencoding header. Arguments in and out file should be
file objects, but filenames are also accepted (the latter is deprecated). If the third
argument mode is specified (and if out file is either unspecified or is a filename),
open the created file in mode mode.

See Also: binascii 159;

2.2.4 Cryptography

Python does not come with any standard and general cryptography modules. The few
included capabilities are fairly narrow in purpose and limited in scope. The capabilities
in the standard library consist of several cryptographic hashes and one weak symmet-
rical encryption algorithm. A quick survey of cryptographic techniques shows what
capabilities are absent from the standard library:

Symmetrical Encryption: Any technique by which a plaintext message M is “en-
crypted” with a key K to produce a cyphertext C. Application of K—or some K′ easily
derivable from K—to C is called “decryption” and produces as output M. The standard
module rotor provides a form of symmetrical encryption.

Cryptographic Hash: Any technique by which a short “hash” H is produced from
a plaintext message M that has several additional properties: (1) Given only H, it is
difficult to obtain any M′ such that the cryptographic hash of M′ is H; (2) Given two
plaintext messages M and M′, there is a very low probability that the cryptographic
hashes of M and M′ are the same. Sometimes a third property is included: (3) Given
M, its cryptographic hash H, and another hash H′, examining the relationship between

“TPiP” — 2006/1/30 — 15:07 — page 164 — #184i
i

i
i

i
i

i
i

164 BASIC STRING OPERATIONS

H and H′ does not make it easier to find an M′ whose hash is H′. The standard modules
crypt, md5 , and sha provide forms of cryptographic hashes.

Asymmetrical Encryption: Also called “public-key cryptography.” Any technique
by which a pair of keys Kpub and Kpriv can be generated that have several properties.
The algorithm for an asymmetrical encryption technique will be called “P(M,K)” in
the following. (1) For any plaintext message M, M equals P(Kpriv,P(M,Kpub)). (2)
Given only a public-key Kpub, it is difficult to obtain a private-key Kpriv that assures
the equality in (1). (3) Given only P(M,Kpub), it is difficult to obtain M. In general,
in an asymmetrical encryption system, a user generates Kpub and Kpriv, then releases
Kpub to other users but retains Kpriv as a secret. There is no support for asymmetrical
encryption in the standard library.

Digital Signatures: Digital signatures are really just “public-keys in reverse.” In
many cases, the same underlying algorithm is used for each. A digital signature is any
technique by which a pair of keys Kver and Ksig can be generated that have several
properties. The algorithm for a digital signature will be called S(M,K) in the following.
(1) For any message M, M equals P(Kver,P(M,Ksig)). (2) Given only a verification key
Kver, it is difficult to obtain a signature key Ksig that assures the equality in (1). (3)
Given only P(M,Ksig), it is difficult to find any C′ such that P(Kver,C) is a plausible
message (in other words, the signature shows it is not a forgery). In general, in a digital
signature system, a user generates Kver and Ksig, then releases Kver to other users
but retains Ksig as a secret. There is no support for digital signatures in the standard
library.

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
Those outlined are the most important cryptographic techniques. More detailed gen-

eral introductions to cryptology and cryptography can be found at the author’s Web
site. A first tutorial is Introduction to Cryptology Concepts I :

<http://gnosis.cx/publish/programming/cryptology1.pdf>

Further material is in Introduction to Cryptology Concepts II :

<http://gnosis.cx/publish/programming/cryptology2.pdf>

And more advanced material is in Intermediate Cryptology: Specialized Protocols:

<http://gnosis.cx/publish/programming/cryptology3.pdf>

A number of third-party modules have been created to handle cryptographic tasks; a
good guide to these third-party tools is the Vaults of Parnassus Encryption/Encoding
index at <http://www.vex.net/parnassus/apyllo.py?i=94738404>. Only the tools
in the standard library will be covered here specifically, since all the third-party tools
are somewhat far afield of the topic of text processing as such. Moreover, third-party
tools often rely on additional non-Python libraries, which will not be present on most
platforms, and these tools will not necessarily be maintained as new Python versions
introduce changes.

“TPiP” — 2006/1/30 — 15:07 — page 165 — #185i
i

i
i

i
i

i
i

2.2 Standard Modules 165

The most important third-party modules are listed below. These are modules that
the author believes are likely to be maintained and that provide access to a wide range
of cryptographic algorithms.

mxCrypto
amkCrypto

Marc-Andre Lemburg and Andrew Kuchling—both valuable contributors of many
Python modules—have played a game of leapfrog with each other by releasing mx-
Crypto and amkCrypto, respectively. Each release of either module builds on the
work of the other, providing compatible interfaces and overlapping source code.
Whatever is newest at the time you read this is the best bet. Current information
on both should be obtainable from:

<http://www.amk.ca/python/code/crypto.html>

Python Cryptography

Andrew Kuchling, who has provided a great deal of excellent Python documentation,
documents these cryptography modules at:

<http://www.amk.ca/python/writing/pycrypt/>

M2Crypto

The mxCrypto and amkCrypto modules are most readily available for Unix-like plat-
forms. A similar range of cryptographic capabilities for a Windows platform is
available in Ng Pheng Siong’s M2Crypto. Information and documentation can be
found at:

<http://www.post1.com/home/ngps/m2/>

fcrypt

Carey Evans has created fcrypt, which is a pure-Python, single-module replacement
for the standard library’s crypt module. While probably orders-of-magnitude slower
than a C implementation, fcrypt will run anywhere that Python does (and speed is
rarely an issue for this functionality). fcrypt may be obtained at:

<http://home.clear.net.nz/pages/c.evans/sw/>

“TPiP” — 2006/1/30 — 15:07 — page 166 — #186i
i

i
i

i
i

i
i

166 BASIC STRING OPERATIONS

crypt � Create and verify Unix-style passwords

The crypt() function is a frequently used, but somewhat antiquated, password cre-
ation/verification tool. Under Unix-like systems, crypt() is contained in system li-
braries and may be called from wrapper functions in languages like Python. crypt()
is a form of cryptographic hash based on the Data Encryption Standard (DES). The
hash produced by crypt() is based on an 8-byte key and a 2-byte “salt.” The output
of crypt() is produced by repeated encryption of a constant string, using the user key
as a DES key and the salt to perturb the encryption in one of 4,096 ways. Both the key
and the salt are restricted to alphanumerics plus dot and slash.

By using a cryptographic hash, passwords may be stored in a relatively insecure
location. An imposter cannot easily produce a false password that will hash to the
same value as the one stored in the password file, even given access to the password
file. The salt is used to make “dictionary attacks” more difficult. If an imposter has
access to the password file, she might try applying crypt() to a candidate password and
compare the result to every entry in the password file. Without a salt, the chances of
matching some encrypted password would be higher. The salt (a random value should
be used) decreases the chance of such a random guess by 4,096 times.

The crypt module is only installed on some Python systems (even only some Unix
systems). Moreover, the module, if installed, relies on an underlying system library.
For a portable approach to password creation, the third-party fcrypt module provides a
portable, pure-Python reimplementation.

FUNCTIONS

crypt.crypt(passwd, salt)

Return an ASCII 13-byte encrypted password. The first argument passwd must be
a string up to eight characters in length (extra characters are truncated and do not
affect the result). The second argument salt must be a string up to two characters
in length (extra characters are truncated). The value of salt forms the first two
characters of the result.

>>> from crypt import crypt
>>> crypt(’mypassword’,’XY’)
’XY5XuULXk4pcs’
>>> crypt(’mypasswo’,’XY’)
’XY5XuULXk4pcs’
>>> crypt(’mypassword...more.characters’,’XY’)
’XY5XuULXk4pcs’
>>> crypt(’mypasswo’,’AB’)
’AB06lnfYxWIKg’
>>> crypt(’diffpass’,’AB’)
’ABlO5BopaFYNs’

See Also: fcrypt 165; md5 167; sha 170;

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 167 --- #187i
i

i
i

i
i

i
i

2.2 Standard Modules 167

md5 � Create MD5 message digests

RSA Data Security, Inc.’s MD5 cryptographic hash is a popular algorithm that is codi-
fied by RFC1321. Like sha, and unlike crypt, md5 allows one to find the cryptographic
hash of arbitrary strings (Unicode strings may not be hashed, however). Absent any
other considerations—such as compatibility with other programs—Secure Hash Algo-
rithm (SHA) is currently considered a better algorithm than MD5, and the sha module
should be used for cryptographic hashes. The operation of md5 objects is similar to
binascii.crc32() hashes in that the final hash value may be built progressively from
partial concatenated strings. The MD5 algorithm produces a 128-bit hash.

CONSTANTS

md5.MD5Type

The type of an md5.new instance.

CLASSES

md5.new([s])

Create an md5 object. If the first argument s is specified, initialize the MD5 digest
buffer with the initial string s. An MD5 hash can be computed in a single line with:

>>> import md5
>>> md5.new(’Mary had a little lamb’).hexdigest()
’e946adb45d4299def2071880d30136d4’

md5.md5([s])

Identical to md5.new .

METHODS

md5.copy()

Return a new md5 object that is identical to the current state of the current object.
Different terminal strings can be concatenated to the clone objects after they are
copied. For example:

>>> import md5
>>> m = md5.new(’spam and eggs’)
>>> m.digest()
’\xb5\x81f\x0c\xff\x17\xe7\x8c\x84\xc3\xa8J\xd0.g\x85’
>>> m2 = m.copy()
>>> m2.digest()
’\xb5\x81f\x0c\xff\x17\xe7\x8c\x84\xc3\xa8J\xd0.g\x85’
>>> m.update(’ are tasty’)

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 168 --- #188i
i

i
i

i
i

i
i

168 BASIC STRING OPERATIONS

>>> m2.update(’ are wretched’)
>>> m.digest()
’*\x94\xa2\xc5\xceq\x96\xef&\x1a\xc9#\xac98\x16’
>>> m2.digest()
’h\x8c\xfam\xe3\xb0\x90\xe8\x0e\xcb\xbf\xb3\xa7N\xe6\xbc’

md5.digest()

Return the 128-bit digest of the current state of the md5 object as a 16-byte string.
Each byte will contain a full 8-bit range of possible values.

>>> import md5 # Python 2.1+
>>> m = md5.new(’spam and eggs’)
>>> m.digest()
’\xb5\x81f\x0c\xff\x17\xe7\x8c\x84\xc3\xa8J\xd0.g\x85’

>>> import md5 # Python <= 2.0
>>> m = md5.new(’spam and eggs’)
>>> m.digest()
’\265\201f\014\377\027\347\214\204\303\250J\320.g\205’

md5.hexdigest()

Return the 128-bit digest of the current state of the md5 object as a 32-
byte hexadecimal-encoded string. Each byte will contain only values in
string.hexdigits . Each pair of bytes represents 8-bits of hash, and this format
may be transmitted over 7-bit ASCII channels like email.

>>> import md5
>>> m = md5.new(’spam and eggs’)
>>> m.hexdigest()
’b581660cff17e78c84c3a84ad02e6785’

md5.update(s)

Concatenate additional strings to the md5 object. Current hash state is adjusted
accordingly. The number of concatenation steps that go into an MD5 hash does not
affect the final hash, only the actual string that would result from concatenating each
part in a single string. However, for large strings that are determined incrementally,
it may be more practical to call md5.update() numerous times. For example:

>>> import md5
>>> m1 = md5.new(’spam and eggs’)
>>> m2 = md5.new(’spam’)
>>> m2.update(’ and eggs’)
>>> m3 = md5.new(’spam’)
>>> m3.update(’ and ’)

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 169 --- #189i
i

i
i

i
i

i
i

2.2 Standard Modules 169

>>> m3.update(’eggs’)
>>> m1.hexdigest()
’b581660cff17e78c84c3a84ad02e6785’
>>> m2.hexdigest()
’b581660cff17e78c84c3a84ad02e6785’
>>> m3.hexdigest()
’b581660cff17e78c84c3a84ad02e6785’

See Also: sha 170; crypt 166; binascii.crc32() 160;

rotor � Perform Enigma-like encryption and decryption

The rotor module is a bit of a curiosity in the Python standard library. The symmetric
encryption performed by rotor is similar to that performed by the extremely historically
interesting and important Enigma algorithm. Given Alan Turing’s famous role not just
in inventing the theory of computability, but also in cracking German encryption during
WWII, there is a nice literary quality to the inclusion of rotor in Python. However, rotor
should not be mistaken for a robust modern encryption algorithm. Bruce Schneier has
commented that there are two types of encryption algorithms: those that will stop your
little sister from reading your messages, and those that will stop major governments and
powerful organization from reading your messages. rotor is in the first category—albeit
allowing for rather bright little sisters. But rotor will not help much against TLAs
(three letter agencies). On the other hand, there is nothing else in the Python standard
library that performs actual military-grade encryption, either.

CLASSES

rotor.newrotor(key [,numrotors])

Return a rotor object with rotor permutations and positions based on the first
argument key. If the second argument numrotors is specified, a number of rotors
other than the default of 6 can be used (more is stronger). A rotor encryption can
be computed in a single line with:

>>> rotor.newrotor(’mypassword’).encrypt(’Mary had a lamb’)
’\x10\xef\xf1\x1e\xeaor\xe9\xf7\xe5\xad,r\xc6\x9f’

Object style encryption and decryption is performed like the following:

>>> import rotor
>>> C = rotor.newrotor(’pass2’).encrypt(’Mary had a little lamb’)
>>> r1 = rotor.newrotor(’mypassword’)
>>> C2 = r1.encrypt(’Mary had a little lamb’)
>>> r1.decrypt(C2)

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 170 --- #190i
i

i
i

i
i

i
i

170 BASIC STRING OPERATIONS

’Mary had a little lamb’
>>> r1.decrypt(C) # Let’s try it
’\217R$\217/sE\311\330~#\310\342\200\025F\221\245\263\036\220O’
>>> r1.setkey(’pass2’)
>>> r1.decrypt(C) # Let’s try it
’Mary had a little lamb’

METHODS

rotor.decrypt(s)

Return a decrypted version of cyphertext string s. Prior to decryption, rotors are
set to their initial positions.

rotor.decryptmore(s)

Return a decrypted version of cyphertext string s. Prior to decryption, rotors are
left in their current positions.

rotor.encrypt(s)

Return an encrypted version of plaintext string s. Prior to encryption, rotors are
set to their initial positions.

rotor.encryptmore(s)

Return an encrypted version of plaintext string s. Prior to encryption, rotors are
left in their current positions.

rotor.setkey(key)

Set a new key for a rotor object.

sha � Create SHA message digests

The National Institute of Standards and Technology’s (NIST’s) Secure Hash Algorithm
is the best well-known cryptographic hash for most purposes. Like md5 , and unlike
crypt, sha allows one to find the cryptographic hash of arbitrary strings (Unicode strings
may not be hashed, however). Absent any other considerations—such as compatibility
with other programs—SHA is currently considered a better algorithm than MD5, and
the sha module should be used for cryptographic hashes. The operation of sha objects
is similar to binascii.crc32() hashes in that the final hash value may be built pro-
gressively from partial concatenated strings. The SHA algorithm produces a 160-bit
hash.

CLASSES

sha.new([s])

Create an sha object. If the first argument s is specified, initialize the SHA digest
buffer with the initial string s. An SHA hash can be computed in a single line with:

“TPiP” — 2006/1/30 — 15:07 — page 171 — #191i
i

i
i

i
i

i
i

2.2 Standard Modules 171

>>> import sha
>>> sha.new(’Mary had a little lamb’).hexdigest()
’bac9388d0498fb378e528d35abd05792291af182’

sha.sha([s])

Identical to sha.new .

METHODS

sha.copy()

Return a new sha object that is identical to the current state of the current object.
Different terminal strings can be concatenated to the clone objects after they are
copied. For example:

>>> import sha
>>> s = sha.new(’spam and eggs’)
>>> s.digest()
’\276\207\224\213\255\375x\024\245b\036C\322\017\2528 @\017\246’
>>> s2 = s.copy()
>>> s2.digest()
’\276\207\224\213\255\375x\024\245b\036C\322\017\2528 @\017\246’
>>> s.update(’ are tasty’)
>>> s2.update(’ are wretched’)
>>> s.digest()
’\013^C\366\253?I\323\206nt\2443\251\227\204-kr6’
>>> s2.digest()
’\013\210\237\216\014\3337X\333\221h&+c\345\007\367\326\274\321’

sha.digest()

Return the 160-bit digest of the current state of the sha object as a 20-byte string.
Each byte will contain a full 8-bit range of possible values.

>>> import sha # Python 2.1+
>>> s = sha.new(’spam and eggs’)
>>> s.digest()
’\xbe\x87\x94\x8b\xad\xfdx\x14\xa5b\x1eC\xd2\x0f\xaa8 @\x0f\xa6’

>>> import sha # Python <= 2.0
>>> s = sha.new(’spam and eggs’)
>>> s.digest()
’\276\207\224\213\255\375x\024\245b\036C\322\017\2528 @\017\246’

“TPiP” — 2006/1/30 — 15:07 — page 172 — #192i
i

i
i

i
i

i
i

172 BASIC STRING OPERATIONS

sha.hexdigest()

Return the 160-bit digest of the current state of the sha object as a 40-
byte hexadecimal-encoded string. Each byte will contain only values in
string.hexdigits . Each pair of bytes represents 8-bits of hash, and this format
may be transmitted over 7-bit ASCII channels like email.

>>> import sha
>>> s = sha.new(’spam and eggs’)
>>> s.hexdigest()
’be87948badfd7814a5621e43d20faa3820400fa6’

sha.update(s)

Concatenate additional strings to the sha object. Current hash state is adjusted
accordingly. The number of concatenation steps that go into an SHA hash does not
affect the final hash, only the actual string that would result from concatenating each
part in a single string. However, for large strings that are determined incrementally,
it may be more practical to call sha.update() numerous times. For example:

>>> import sha
>>> s1 = sha.sha(’spam and eggs’)
>>> s2 = sha.sha(’spam’)
>>> s2.update(’ and eggs’)
>>> s3 = sha.sha(’spam’)
>>> s3.update(’ and ’)
>>> s3.update(’eggs’)
>>> s1.hexdigest()
’be87948badfd7814a5621e43d20faa3820400fa6’
>>> s2.hexdigest()
’be87948badfd7814a5621e43d20faa3820400fa6’
>>> s3.hexdigest()
’be87948badfd7814a5621e43d20faa3820400fa6’

See Also: md5 167; crypt 166; binascii.crc32() 160;

2.2.5 Compression

Over the history of computers, a large number of data compression formats have been
invented, mostly as variants on Lempel-Ziv and Huffman techniques. Compression is
useful for all sorts of data streams, but file-level archive formats have been the most
widely used and known application. Under MS-DOS and Windows we have seen ARC,
PAK, ZOO, LHA, ARJ, CAB, RAR, and other formats—but the ZIP format has become
the most widespread variant. Under Unix-like systems, compress (.Z) mostly gave way
to gzip (GZ); gzip is still the most popular format on these systems, but bzip (BZ2)
generally obtains better compression rates. Under MacOS, the most popular format is

“TPiP” — 2006/1/30 — 15:07 — page 173 — #193i
i

i
i

i
i

i
i

2.2 Standard Modules 173

SIT. Other platforms have additional variants on archive formats, but ZIP—and to a
lesser extent GZ—are widely supported on a number of platforms.

The Python standard library includes support for several styles of compression. The
zlib module performs low-level compression of raw string data and has no concept of a
file. zlib is itself called by the high-level modules below for its compression services.

The modules gzip and zipfile provide file-level interfaces to compressed archives. How-
ever, a notable difference in the operation of gzip and zipfile arises out of a difference
in the underlying GZ and ZIP formats. gzip (GZ) operates exclusively on single files—
leaving the work of concatenating collections of files to tools like tar. One frequently
encounters (especially on Unix-like systems) files like foo.tar.gz or foo.tgz that are
produced by first applying tar to a collection of files, then applying gzip to the result.
ZIP, however, handles both the compression and archiving aspects in a single tool and
format. As a consequence, gzip is able to create file-like objects based directly on the
compressed contents of a GZ file. ziplib needs to provide more specialized methods
for navigating archive contents and for working with individual compressed file images
therein.

Also see Appendix B (A Data Compression Primer).

gzip � Functions that read and write gzipped files

The gzip module allows the treatment of the compressed data inside gzip compressed
files directly in a file-like manner. Uncompressed data can be read out, and compressed
data written back in, all without a caller knowing or caring that the file is a GZ-
compressed file. A simple example illustrates this:

gzip file.py

Treat a GZ as "just another file"
import gzip, glob
print "Size of data in files:"
for fname in glob.glob(’*’):

try:
if fname[-3:] == ’.gz’:

s = gzip.open(fname).read()
else:

s = open(fname).read()
print ’ ’,fname,’-’,len(s),’bytes’

except IOError:
print ’Skipping’,file

The module gzip is a wrapper around zlib, with the latter performing the actual
compression and decompression tasks. In many respects, gzip is similar to mmap and
StringIO in emulating and/or wrapping a file object.

See Also: mmap 147; StringIO 153; cStringIO 153;

“TPiP” — 2006/1/30 — 15:07 — page 174 — #194i
i

i
i

i
i

i
i

174 BASIC STRING OPERATIONS

CLASSES

gzip.GzipFile([filename=. . . [,mode=”rb” [,compresslevel=9 [,fileobj=. . .]]]])

Create a gzip file-like object. Such an object supports most file object operations,
with the exception of .seek() and .tell(). Either the first argument filename
or the fourth argument fileobj should be specified (likely by argument name,
especially if fourth argument fileobj).

The second argument mode takes the mode of fileobj if specified, otherwise it
defaults to rb (r, rb, a, ab, w, or wb may be specified with the same meaning as
with FILE.open() objects). The third argument compresslevel specifies the level
of compression. The default is the highest level, 9; an integer down to 1 may be
selected for less compression but faster operation (compression level of a read file
comes from the file itself, however).

gzip.open(filename=. . . [mode=’rb [,compresslevel=9]])

Same as gzip.GzipFile but with extra arguments omitted. A GZ file object opened
with gzip.open is always opened by name, not by underlying file object.

METHODS AND ATTRIBUTES

gzip.close()

Close the gzip object. No access is permitted after close. If the object was opened
by file object, the underlying file object is not closed, only the gzip interface to the
file.

See Also: FILE.close() 16;

gzip.flush()

Write outstanding data from memory to disk.

See Also: FILE.close() 16;

gzip.isatty()

Return 0. Compatibility method for file-like behavior.

See Also: FILE.isatty() 16;

gzip.myfileobj

Attribute holding the underlying file object.

gzip.read([num])

If the first argument num is specified, return a string containing the next num char-
acters. If num characters are not available, return as many as possible. If num is not
specified, return all the characters from current file position to end of string buffer.
Advance the current file position by the amount read.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 175 --- #195i
i

i
i

i
i

i
i

2.2 Standard Modules 175

See Also: FILE.read() 17;

gzip.readline([length])

Return a string from the gzip object, starting from the current file position and going
to the next newline character. The argument length limits the read if specified.
Advance the current file position by the amount read.

See Also: FILE.readline() 17;

gzip.readlines([sizehint=. . .])

Return a list of strings from the gzip object. Each list element consists of a single line,
including the trailing newline character(s). If an argument sizehint is specified,
read only approximately sizehint characters worth of lines (full lines will always
be read).

See Also: FILE.readlines() 17;

gzip.write(s)

Write the first argument s into the gzip object at the current file position. The
current file position is updated to the position following the write.

See Also: FILE.write() 17;

gzip.writelines(list)

Write each element of list into the gzip object at the current file position. The
current file position is updated to the position following the write. Most sequence
types are allowed, but list must contain only strings, or a TypeError will occur.

Contrary to what might be expected from the method name, gzip.writelines()
never inserts newline characters. For the list elements actually to occupy separate
lines in the string buffer, each element string must already have a newline terminator.
See StringIO.StringIO.writelines() for an example.

See Also: FILE.writelines() 17; StringIO.StringIO.writelines() 157;

See Also: zlib 181; zipfile 176;

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 176 --- #196i
i

i
i

i
i

i
i

176 BASIC STRING OPERATIONS

zipfile � Read and write ZIP files

The zipfile module enables a variety of operations on ZIP files and is compatible with
archives created by applications such as PKZip, Info-Zip, and WinZip. Since the ZIP
format allows inclusion of multiple file images within a single archive, the zipfile does
not behave in a directly file-like manner as gzip does. Nonetheless, it is possible to view
the contents of an archive, add new file images to one, create a new ZIP archive, or
manipulate the contents and directory information of a ZIP file.

An initial example of working with the zipfile module gives a feel for its usage.

>>> for name in ’ABC’:
... open(name,’w’).write(name*1000)
...
>>> import zipfile
>>> z = zipfile.ZipFile(’new.zip’,’w’,zipfile.ZIP_DEFLATED) # new archv
>>> z.write(’A’) # write files to archive
>>> z.write(’B’,’B.newname’,zipfile.ZIP_STORED)
>>> z.write(’C’,’C.newname’)
>>> z.close() # close the written archive
>>> z = zipfile.ZipFile(’new.zip’) # reopen archive in read mode
>>> z.testzip() # ’None’ returned means OK
>>> z.namelist() # What’s in it?
[’A’, ’B.newname’, ’C.newname’]
>>> z.printdir() # details
File Name Modified Size
A 2001-07-18 21:39:36 1000
B.newname 2001-07-18 21:39:36 1000
C.newname 2001-07-18 21:39:36 1000
>>> A = z.getinfo(’A’) # bind ZipInfo object
>>> B = z.getinfo(’B.newname’) # bind ZipInfo object
>>> A.compress_size
11
>>> B.compress_size
1000
>>> z.read(A.filename)[:40] # Check what’s in A
’AA’
>>> z.read(B.filename)[:40] # Check what’s in B
’BB’
>>> # For comparison, see what Info-Zip reports on created archive
>>> import os
>>> print os.popen(’unzip -v new.zip’).read()
Archive: new.zip
Length Method Size Ratio Date Time CRC-32 Name
------ ------ ---- ----- ---- ---- ------ ----

1000 Defl:N 11 99% 07-18-01 21:39 51a02e01 A

“TPiP” — 2006/1/30 — 15:07 — page 177 — #197i
i

i
i

i
i

i
i

2.2 Standard Modules 177

1000 Stored 1000 0% 07-18-01 21:39 7d9c564d B.newname
1000 Defl:N 11 99% 07-18-01 21:39 66778189 C.newname

------ ------ --- -------
3000 1022 66% 3 files

The module gzip is a wrapper around zlib, with the latter performing the actual
compression and decompression tasks.

CONSTANTS

Several string constants (struct formats) are used to recognize signature identifiers in
the ZIP format. These constants are not normally used directly by end-users of zipfile.

zipfile.stringCentralDir = ’PK\x01\x02’
zipfile.stringEndArchive = ’PK\x05\x06’
zipfile.stringFileHeader = ’PK\x03\x04’
zipfile.structCentralDir = ’<4s4B4H3l5H2l’
zipfile.structEndArchive = ’<4s4H2lH’
zipfile.structFileHeader = ’<4s2B4H3l2H’

Symbolic names for the two supported compression methods are also defined.

zipfile.ZIP_STORED = 0
zipfile.ZIP_DEFLATED = 8

FUNCTIONS

zipfile.is zipfile(filename=. . .)

Check if the argument filename is a valid ZIP archive. Archives with appended
comments are not recognized as valid archives. Return 1 if valid, None otherwise.
This function does not guarantee archive is fully intact, but it does provide a sanity
check on the file type.

CLASSES

zipfile.PyZipFile(pathname)

Create a zipfile.ZipFile object that has the extra method
zipfile.ZipFile.writepy() . This extra method allows you to recursively
add all *.py[oc] files to an archive. This class is not general purpose, but a special
feature to aid distutils.

zipfile.ZipFile(file=. . . [,mode=’r’ [,compression=ZIP STORED]])

Create a new zipfile.ZipFile object. This object is used for management of a
ZIP archive. The first argument file must be specified and is simply the filename
of the archive to be manipulated. The second argument mode may have one of
three string values: r to open the archive in read-only mode; w to truncate the
filename and create a new archive; a to read an existing archive and add to it. The

“TPiP” — 2006/1/30 — 15:07 — page 178 — #198i
i

i
i

i
i

i
i

178 BASIC STRING OPERATIONS

third argument compression indicates the compression method—ZIP DEFLATED
requires that zlib and the zlib system library be present.

zipfile.ZipInfo()

Create a new zipfile.ZipInfo object. This object contains information about
an individual archived filename and its file image. Normally, one will not
directly instantiate zipfile.ZipInfo but only look at the zipfile.ZipInfo

objects that are returned by methods like zipfile.ZipFile.infolist() ,
zipfile.ZipFile.getinfo() , and zipfile.ZipFile.NameToInfo . However,
in special cases like zipfile.ZipFile.writestr() , it is useful to create a
zipfile.ZipInfo directly.

METHODS AND ATTRIBUTES

zipfile.ZipFile.close()

Close the zipfile.ZipFile object, and flush any changes made to it. An object
must be explicitly closed to perform updates.

zipfile.ZipFile.getinfo(name=. . .)

Return the zipfile.ZipInfo object corresponding to the filename name. If name
is not in the ZIP archive, a KeyError is raised.

zipfile.ZipFile.infolist()

Return a list of zipfile.ZipInfo objects contained in the zipfile.ZipFile

object. The return value is simply a list of instances of the same type.
If the filename within the archive is known, zipfile.ZipFile.getinfo() is
a better method to use. For enumerating over all archived files, however,
zipfile.ZipFile.infolist() provides a nice sequence.

zipfile.ZipFile.namelist()

Return a list of the filenames of all the archived files (including nested relative
directories).

zipfile.ZipFile.printdir()

Print to STDOUT a pretty summary of archived files and information about them.
The results are similar to running Info-Zip’s unzip with the -l option.

zipfile.ZipFile.read(name=. . .)

Return the contents of the archived file with filename name.

zipfile.ZipFile.testzip()

Test the integrity of the current archive. Return the filename of the first
zipfile.ZipInfo object with corruption. If everything is valid, return None.

“TPiP” — 2006/1/30 — 15:07 — page 179 — #199i
i

i
i

i
i

i
i

2.2 Standard Modules 179

zipfile.ZipFile.write(filename=. . . [,arcname=. . . [,compress type=. . .]])

Add the file filename to the zipfile.ZipFile object. If the second argument
arcname is specified, use arcname as the stored filename (otherwise, use filename
itself). If the third argument compress type is specified, use the indicated com-
pression method. The current archive must be opened in w or a mode.

zipfile.ZipFile.writestr(zinfo=. . . , bytes=. . .)

Write the data contained in the second argument bytes to the zipfile.ZipFile

object. Directory meta-information must be contained in attributes of the first
argument zinfo (a filename, data, and time should be included; other information
is optional). The current archive must be opened in w or a mode.

zipfile.ZipFile.NameToInfo

Dictionary that maps filenames in archive to corresponding zipfile.ZipInfo ob-
jects. The method zipfile.ZipFile.getinfo() is simply a wrapper for a dictio-
nary lookup in this attribute.

zipfile.ZipFile.compression

Compression type currently in effect for new zipfile.ZipFile.write() opera-
tions. Modify with due caution (most likely not at all after initialization).

zipfile.ZipFile.debug = 0

Attribute for level of debugging information sent to STDOUT. Values range from
the default 0 (no output) to 3 (verbose). May be modified.

zipfile.ZipFile.filelist

List of zipfile.ZipInfo objects contained in the zipfile.ZipFile object. The
method zipfile.ZipFile.infolist() is simply a wrapper to retrieve this at-
tribute. Modify with due caution (most likely not at all).

zipfile.ZipFile.filename

Filename of the zipfile.ZipFile object. DO NOT modify!

zipfile.ZipFile.fp

Underlying file object for the zipfile.ZipFile object. DO NOT modify!

zipfile.ZipFile.mode

Access mode of current zipfile.ZipFile object. DO NOT modify!

zipfile.ZipFile.start dir

Position of start of central directory. DO NOT modify!

zipfile.ZipInfo.CRC

Hash value of this archived file. DO NOT modify!

“TPiP” — 2006/1/30 — 15:07 — page 180 — #200i
i

i
i

i
i

i
i

180 BASIC STRING OPERATIONS

zipfile.ZipInfo.comment

Comment attached to this archived file. Modify with due caution (e.g., for use with
zipfile.ZipFile.writestr()).

zipfile.ZipInfo.compress size

Size of the compressed data of this archived file. DO NOT modify!

zipfile.ZipInfo.compress type

Compression type used with this archived file. Modify with due caution (e.g., for
use with zipfile.ZipFile.writestr()).

zipfile.ZipInfo.create system

System that created this archived file. Modify with due caution (e.g., for use with
zipfile.ZipFile.writestr()).

zipfile.ZipInfo.create version

PKZip version that created the archive. Modify with due caution (e.g., for use with
zipfile.ZipFile.writestr()).

zipfile.ZipInfo.date time

Timestamp of this archived file. Modify with due caution (e.g., for use with
zipfile.ZipFile.writestr()).

zipfile.ZipInfo.external attr

File attribute of archived file when extracted.

zipfile.ZipInfo.extract version

PKZip version needed to extract the archive. Modify with due caution (e.g., for use
with zipfile.ZipFile.writestr()).

zipfile.ZipInfo.file offset

Byte offset to start of file data. DO NOT modify!

zipfile.ZipInfo.file size

Size of the uncompressed data in the archived file. DO NOT modify!

zipfile.ZipInfo.filename

Filename of archived file. Modify with due caution (e.g., for use with
zipfile.ZipFile.writestr()).

zipfile.ZipInfo.header offset

Byte offset to file header of the archived file. DO NOT modify!

zipfile.ZipInfo.volume

Volume number of the archived file. DO NOT modify!

“TPiP” — 2006/1/30 — 15:07 — page 181 — #201i
i

i
i

i
i

i
i

2.2 Standard Modules 181

EXCEPTIONS

zipfile.error

Exception that is raised when corrupt ZIP file is processed.

zipfile.BadZipFile

Alias for zipfile.error .

See Also: zlib 181; gzip 173;

zlib � Compress and decompress with zlib library

zlib is the underlying compression engine for all Python standard library compression
modules. Moreover, zlib is extremely useful in itself for compression and decompression
of data that does not necessarily live in files (or where data does not map directly to
files, even if it winds up in them indirectly). The Python zlib module relies on the
availability of the zlib system library.

There are two basic modes of operation for zlib. In the simplest mode, one can simply
pass an uncompressed string to zlib.compress() and have the compressed version
returned. Using zlib.decompress() is symmetrical. In a more complicated mode, one
can create compression or decompression objects that are able to receive incremental
raw or compressed byte-streams, and return partial results based on what they have
seen so far. This mode of operation is similar to the way one uses sha.sha.update() ,
md5.md5.update() , rotor.encryptmore() , or binascii.crc32() (albeit for a differ-
ent purpose from each of those). For large byte-streams that are determined, it may be
more practical to utilize compression/decompression objects than it would be to com-
press/decompress an entire string at once (for example, if the input or result is bound
to a slow channel).

CONSTANTS

zlib.ZLIB VERSION

The installed zlib system library version.

zlib.Z BEST COMPRESSION = 9

Highest compression level.

zlib.Z BEST SPEED = 1

Fastest compression level.

zlib.Z HUFFMAN ONLY = 2

Intermediate compression level that uses Huffman codes, but not Lempel-Ziv.

“TPiP” — 2006/1/30 — 15:07 — page 182 — #202i
i

i
i

i
i

i
i

182 BASIC STRING OPERATIONS

FUNCTIONS

zlib.adler32(s [,crc])

Return the Adler-32 checksum of the first argument s. If the second argument crc is
specified, it will be used as an initial checksum. This allows partial computation of
a checksum and continuation. An Adler-32 checksum can be computed much more
quickly than a CRC32 checksum. Unlike md5 or sha, an Adler-32 checksum is not
sufficient for cryptographic hashes, but merely for detection of accidental corruption
of data.

See Also: zlib.crc32() 182; md5 167; sha 170;

zlib.compress(s [,level])

Return the zlib compressed version of the string in the first argument s. If the sec-
ond argument level is specified, the compression technique can be fine-tuned. The
compression level ranges from 1 to 9 and may also be specified using symbolic con-
stants such as Z BEST COMPRESSION and Z BEST SPEED. The default value
for level is 6 and is usually the desired compression level (usually within a few
percent of the speed of Z BEST SPEED and within a few percent of the size of
Z BEST COMPRESSION).

See Also: zlib.decompress() 182; zlib.compressobj 183;

zlib.crc32(s [,crc])

Return the CRC32 checksum of the first argument s. If the second argument crc is
specified, it will be used as an initial checksum. This allows partial computation of a
checksum and continuation. Unlike md5 or sha, a CRC32 checksum is not sufficient
for cryptographic hashes, but merely for detection of accidental corruption of data.

Identical to binascii.crc32() (example appears there).

See Also: binascii.crc32() 160; zlib.adler32() 182; md5 167; sha 170;

zlib.decompress(s [,winsize [,buffsize]])

Return the decompressed version of the zlib compressed string in the first argument
s. If the second argument winsize is specified, it determines the base 2 logarithm of
the history buffer size. The default winsize is 15. If the third argument buffsize is
specified, it determines the size of the decompression buffer. The default buffsize
is 16384, but more is dynamically allocated if needed. One rarely needs to use
winsize and buffsize values other than the defaults.

See Also: zlib.compress() 182; zlib.decompressobj 183;

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 183 --- #203i
i

i
i

i
i

i
i

2.2 Standard Modules 183

CLASS FACTORIES

zlib does not define true classes that can be specialized. zlib.compressobj() and
zlib.decompressobj() are actually factory-functions rather than classes. That is,
they return instance objects, just as classes do, but they do not have unbound data and
methods. For most users, the difference is not important: To get a zlib.compressobj

or zlib.decompressobj object, you just call that factory-function in the same manner
you would a class object.

zlib.compressobj([level])

Create a compression object. A compression object is able to incrementally com-
press new strings that are fed to it while maintaining the seeded symbol table from
previously compressed byte-streams. If argument level is specified, the compres-
sion technique can be fine-tuned. The compression level ranges from 1 to 9. The
default value for level is 6 and is usually the desired compression level.

See Also: zlib.compress() 182; zlib.decompressobj() 183;

zlib.decompressobj([winsize])

Create a decompression object. A decompression object is able to incrementally
decompress new strings that are fed to it while maintaining the seeded symbol table
from previously decompressed byte-streams. If the argument winsize is specified,
it determines the base 2 logarithm of the history buffer size. The default winsize
is 15.

See Also: zlib.decompress() 182; zlib.compressobj() 183;

METHODS AND ATTRIBUTES

zlib.compressobj.compress(s)

Add more data to the compression object. If the symbol table becomes full, com-
pressed data is returned, otherwise an empty string. All returned output from each
repeated call to zlib.compressobj.compress() should be concatenated to a de-
compression byte-stream (either a string or a decompression object). The example
below, if run in a directory with some files, lets one examine the buffering behavior
of compression objects:

“TPiP” — 2006/1/30 — 15:07 — page 184 — #204i
i

i
i

i
i

i
i

184 BASIC STRING OPERATIONS

zlib objs.py

Demonstrate compression object streams
import zlib, glob
decom = zlib.decompressobj()
com = zlib.compressobj()
for file in glob.glob(’*’):

s = open(file).read()
c = com.compress(s)
print ’COMPRESSED:’, len(c), ’bytes out’
d = decom.decompress(c)
print ’DECOMPRESS:’, len(d), ’bytes out’
print ’UNUSED DATA:’, len(decom.unused_data), ’bytes’
raw_input(’-- %s (%s bytes) --’ % (file, ‘len(s)‘))

f = com.flush()
m = decom.decompress(f)
print ’DECOMPRESS:’, len(m), ’bytes out’
print ’UNUSED DATA:’, len(decom.unused_data), ’byte’

See Also: zlib.compressobj.flush() 184; zlib.decompressobj.decompress() 185;
zlib.compress() 182;

zlib.compressobj.flush([mode])

Flush any buffered data from the compression object. As in the example in
zlib.compressobj.compress() , the output of a zlib.compressobj.flush()

should be concatenated to the same decompression byte-stream as
zlib.compressobj.compress() calls are. If the first argument mode is left
empty, or the default Z FINISH is specified, the compression object cannot
be used further, and one should delete it. Otherwise, if Z SYNC FLUSH or
Z FULL FLUSH are specified, the compression object can still be used, but some
uncompressed data may not be recovered by the decompression object.

See Also: zlib.compress() 182; zlib.compressobj.compress() 183;

zlib.decompressobj.unused data

As indicated, zlib.decompressobj.unused data is an instance attribute rather
than a method. If any partial compressed stream cannot be decompressed immedi-
ately based on the byte-stream received, the remainder is buffered in this instance
attribute. Normally, any output of a compression object forms a complete decom-
pression block, and nothing is left in this instance attribute. However, if data is
received in bits over a channel, only partial decompression may be possible on a
particular zlib.decompressobj.decompress() call.

See Also: zlib.decompress() 182; zlib.decompressobj.decompress() 185;

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 185 --- #205i
i

i
i

i
i

i
i

2.2 Standard Modules 185

zlib.decompressobj.decompress(s)

Return the decompressed data that may be derived from the current decompression
object state and the argument s data passed in. If all of s cannot be decompressed
in this pass, the remainder is left in zlib.decompressobj.unused data .

zlib.decompressobj.flush()

Return the decompressed data from any bytes buffered by the decompression object.
After this call, the decompression object cannot be used further, and you should del

it.

EXCEPTIONS

zlib.error

Exception that is raised by compression or decompression errors.

See Also: gzip 173; zipfile 176;

2.2.6 Unicode

Note that Appendix C (Understanding Unicode) also discusses Unicode issues.
Unicode is an enhanced set of character entities, well beyond the basic 128 characters

defined in ASCII encoding and the codepage-specific national language sets that contain
128 characters each. The full Unicode character set—evolving continuously, but with
a large number of codepoints already fixed—can contain literally millions of distinct
characters. This allows the representation of a large number of national character sets
within a unified encoding space, even the large character sets of Chinese-Japanese-
Korean (CJK) alphabets.

Although Unicode defines a unique codepoint for each distinct character in its range,
there are numerous encodings that correspond to each character. The encoding called
UTF-8 defines ASCII characters as single bytes with standard ASCII values. However,
for non-ASCII characters, a variable number of bytes (up to 6) are used to encode
characters, with the “escape” to Unicode being indicated by high-bit values in initial
bytes of multibyte sequences. UTF-16 is similar, but uses either 2 or 4 bytes to encode
each character (but never just 1). UTF-32 is a format that uses a fixed 4-byte value for
each Unicode character. UTF-32, however, is not currently supported by Python.

Native Unicode support was added to Python 2.0. On the face of it, it is a happy
situation that Python supports Unicode—it brings the world closer to multinational
language support in computer applications. But in practice, you have to be careful
when working with Unicode, because it is all too easy to encounter glitches like the one
below:

>>> alef, omega = unichr(1488), unichr(969)
>>> unicodedata.name(alef)
>>> print alef
Traceback (most recent call last):

File "<stdin>", line 1, in ?

“TPiP” — 2006/1/30 — 15:07 — page 186 — #206i
i

i
i

i
i

i
i

186 BASIC STRING OPERATIONS

UnicodeError: ASCII encoding error: ordinal not in range(128)
>>> print chr(170)

>>> if alef == chr(170): print "Hebrew is Roman diacritic"
...
Traceback (most recent call last):

File "<stdin>", line 1, in ?
UnicodeError: ASCII decoding error: ordinal not in range(128)

A Unicode string that is composed of only ASCII characters, however, is considered
equal (but not identical) to a Python string of the same characters.

>>> u"spam" == "spam"
1
>>> u"spam" is "spam"
0
>>> "spam" is "spam" # string interning is not guaranteed
1
>>> u"spam" is u"spam" # unicode interning not guaranteed
1

Still, the care you take should not discourage you from working with multilanguage
strings, as Unicode enables. It is really amazingly powerful to be able to do so. As one
says of a talking dog: It is not that he speaks so well, but that he speaks at all.

Built-In Unicode Functions/Methods

The Unicode string method u"".encode() and the built-in function unicode() are
inverse operations. The Unicode string method returns a plain string with the 8-bit bytes
needed to represent it (using the specified or default encoding). The built-in unicode()

takes one of these encoded strings and produces the Unicode object represented by the
encoding. Specifically, suppose we define the function:

>>> chk_eq = lambda u,enc: u == unicode(u.encode(enc),enc)

The call chk eq(u,enc) should return 1 for every value of u and enc—as long as enc
is a valid encoding name and u is capable of being represented in that encoding.

The set of encodings supported for both built-ins are listed below. Additional en-
codings may be registered using the codecs module. Each encoding is indicated by
the string that names it, and the case of the string is normalized before comparison
(case-insensitive naming of encodings):

ascii, us-ascii

Encode using 7-bit ASCII.

“TPiP” — 2006/1/30 — 15:07 — page 187 — #207i
i

i
i

i
i

i
i

2.2 Standard Modules 187

base64

Encode Unicode strings using the base64 4-to-3 encoding format.

latin-1, iso-8859-1

Encode using common European accent characters in high-bit values of 8-bit bytes.
Latin-1 character’s ord() values are identical to their Unicode codepoints.

quopri

Encode in quoted printable format.

rot13

Not really a Unicode encoding, but “rotate 13 chars” is included with Python 2.2+
as an example and convenience.

utf-7

Encode using variable byte-length encoding that is restricted to 7-bit ASCII octets.
As with utf-8, ASCII characters encode themselves.

utf-8

Encode using variable byte-length encoding that preserves ASCII value bytes.

utf-16

Encoding using 2/4 byte encoding. Include “endian” lead bytes (platform-specific
selection).

utf-16-le

Encoding using 2/4 byte encoding. Assume “little endian,” and do not prepend
“endian” indicator bytes.

utf-16-be

Encoding using 2/4 byte encoding. Assume “big endian,” and do not prepend
“endian” indicator bytes.

unicode-escape

Encode using Python-style Unicode string constants (u"\uXXXX").

raw-unicode-escape

Encode using Python-style Unicode raw string constants (ur"\uXXXX").

The error modes for both built-ins are listed below. Errors in encoding transformations
may be handled in any of several ways:

strict

Raise UnicodeError for all decoding errors. Default handling.

“TPiP” — 2006/1/30 — 15:07 — page 188 — #208i
i

i
i

i
i

i
i

188 BASIC STRING OPERATIONS

ignore

Skip all invalid characters.

replace

Replace invalid characters with ? (string target) or u"\xfffd" (Unicode target).

u””.encode([enc [,errmode]])
””.encode([enc [,errmode]])

Return an encoded string representation of a Unicode string (or of a plain string).
The representation is in the style of encoding enc (or system default). This string is
suitable for writing to a file or stream that other applications will treat as Unicode
data. Examples show several encodings:

>>> alef = unichr(1488)
>>> s = ’A’+alef
>>> s
u’A\u05d0’
>>> s.encode(’unicode-escape’)
’A\\u05d0’
>>> s.encode(’utf-8’)
’A\xd7\x90’
>>> s.encode(’utf-16’)
’\xff\xfeA\x00\xd0\x05’
>>> s.encode(’utf-16-le’)
’A\x00\xd0\x05’
>>> s.encode(’ascii’)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
UnicodeError: ASCII encoding error: ordinal not in range(128)
>>> s.encode(’ascii’,’ignore’)
’A’

unicode(s [,enc [,errmode]])

Return a Unicode string object corresponding to the encoded string passed in the
first argument s. The string s might be a string that is read from another Unicode-
aware application. The representation is treated as conforming to the style of the
encoding enc if the second argument is specified, or system default otherwise (usually
utf-8). Errors can be handled in the default strict style or in a style specified in
the third argument errmode.

unichr(cp)

Return a Unicode string object containing the single Unicode character whose integer
codepoint is passed in the argument cp.

“TPiP” — 2006/1/30 — 15:07 — page 189 — #209i
i

i
i

i
i

i
i

2.2 Standard Modules 189

codecs � Python Codec Registry, API, and helpers

The codecs module contains a lot of sophisticated functionality to get at the internals
of Python’s Unicode handling. Most of those capabilities are at a lower level than
programmers who are just interested in text processing need to worry about. The
documentation of this module, therefore, will break slightly with the style of most of
the documentation and present only two very useful wrapper functions within the codecs
module.

codecs.open(filename=. . . [,mode=’rb’ [,encoding=. . . [,errors=’strict’
[,buffering=1]]]])

This wrapper function provides a simple and direct means of opening a Uni-
code file, and treating its contents directly as Unicode. In contrast, the con-
tents of a file opened with the built-in open() function are written and read as
strings; to read/write Unicode data to such a file involves multiple passes through
u"".encode() and unicode() .

The first argument filename specifies the name of the file to access. If the second
argument mode is specified, the read/write mode can be selected. These arguments
work identically to those used by open() . If the third argument encoding is speci-
fied, this encoding will be used to interpret the file (an incorrect encoding will prob-
ably result in a UnicodeError). Error handling may be modified by specifying the
fourth argument errors (the options are the same as with the built-in unicode()

function). A fifth argument buffering may be specified to use a specific buffer size
(on platforms that support this).

An example of usage clarifies the difference between codecs.open() and the built-in
open() :

>>> import codecs
>>> alef = unichr(1488)
>>> open(’unicode_test’,’wb’).write((’A’+alef).encode(’utf-8’))
>>> open(’unicode_test’).read() # Read as plain string
’A\xd7\x90’
>>> # Now read directly as Unicode
>>> codecs.open(’unicode_test’, encoding=’utf-8’).read()
u’A\u05d0’

Data written back to a file opened with codecs.open() should likewise be Unicode
data.

See Also: open() 15;

“TPiP” — 2006/1/30 — 15:07 — page 190 — #210i
i

i
i

i
i

i
i

190 BASIC STRING OPERATIONS

codecs.EncodedFile(file=. . . , data encoding=. . . [,file encoding=. . .
[,errors=’strict’]])

This function allows an already opened file to be wrapped inside an “encoding trans-
lation” layer. The mode and buffering are taken from the underlying file. By speci-
fying a second argument data encoding and a third argument file encoding, it is
possible to generate strings in one encoding within an application, then write them
directly into the appropriate file encoding. As with codecs.open() and unicode() ,
an error handling style may be specified with the fourth argument errors.

The most likely purpose for codecs.EncodedFile() is where an application is likely
to receive byte-streams from multiple sources, encoded according to multiple Uni-
code encodings. By wrapping file objects (or file-like objects) in an encoding trans-
lation layer, the strings coming in one encoding can be transparently written to an
output in the format the output expects. An example clarifies:

>>> import codecs
>>> alef = unichr(1488)
>>> open(’unicode_test’,’wb’).write((’A’+alef).encode(’utf-8’))
>>> fp = open(’unicode_test’,’rb+’)
>>> fp.read() # Plain string w/ two-byte UTF-8 char in it
’A\xd7\x90’
>>> utf16_writer = codecs.EncodedFile(fp,’utf-16’,’utf-8’)
>>> ascii_writer = codecs.EncodedFile(fp,’ascii’,’utf-8’)
>>> utf16_writer.tell() # Wrapper keeps same current position
3
>>> s = alef.encode(’utf-16’)
>>> s # Plain string as UTF-16 encoding
’\xff\xfe\xd0\x05’
>>> utf16_writer.write(s)
>>> ascii_writer.write(’XYZ’)
>>> fp.close() # File should be UTF-8 encoded
>>> open(’unicode_test’).read()
’A\xd7\x90\xd7\x90XYZ’

See Also: codecs.open() 189;

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 191 --- #211i
i

i
i

i
i

i
i

2.2 Standard Modules 191

unicodedata � Database of Unicode characters

The module unicodedata is a database of Unicode character entities. Most of the func-
tions in unicodedata take as an argument one Unicode character and return some in-
formation about the character contained in a plain (non-Unicode) string. The function
of unicodedata is essentially informational, rather than transformational. Of course, an
application might make decisions about the transformations performed based on the in-
formation returned by unicodedata. The short utility below provides all the information
available for any Unicode codepoint:

unichr info.py

Return all the information [unicodedata] has
about the single unicode character whose codepoint
is specified as a command-line argument.
Arg may be any expression evaluating to an integer
from unicodedata import *
import sys
char = unichr(eval(sys.argv[1]))
print ’bidirectional’, bidirectional(char)
print ’category ’, category(char)
print ’combining ’, combining(char)
print ’decimal ’, decimal(char,0)
print ’decomposition’, decomposition(char)
print ’digit ’, digit(char,0)
print ’mirrored ’, mirrored(char)
print ’name ’, name(char,’NOT DEFINED’)
print ’numeric ’, numeric(char,0)
try: print ’lookup ’, ‘lookup(name(char))‘
except: print "Cannot lookup"

The usage of unichr info.py is illustrated below by the runs with two possible
arguments:

% python unichr_info.py 1488
bidirectional R
category Lo
combining 0
decimal 0
decomposition
digit 0
mirrored 0
name HEBREW LETTER ALEF
numeric 0
lookup u’\u05d0’

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 192 --- #212i
i

i
i

i
i

i
i

192 BASIC STRING OPERATIONS

% python unichr_info.py ord(’1’)
bidirectional EN
category Nd
combining 0
decimal 1
decomposition
digit 1
mirrored 0
name DIGIT ONE
numeric 1.0
lookup u’1’

For additional information on current Unicode character codepoints and attributes,
consult:

<http://www.unicode.org/Public/UNIDATA/UnicodeData.html>

FUNCTIONS

unicodedata.bidirectional(unichr)

Return the bidirectional characteristic of the character specified in the argument
unichr. Possible values are AL, AN, B, BN, CS, EN, ES, ET, L, LRE, LRO,
NSM, ON, PDF, R, RLE, RLO, S, and WS. Consult the URL above for details on
these. Particularly notable values are L (left-to-right), R (right-to-left), and WS
(whitespace).

unicodedata.category(unichr)

Return the category of the character specified in the argument unichr. Possible
values are Cc, Cf, Cn, Ll, Lm, Lo, Lt, Lu, Mc, Me, Mn, Nd, Nl, No, Pc, Pd, Pe,
Pf, Pi, Po, Ps, Sc, Sk , Sm, So, Zl, Zp, and Zs. The first (capital) letter indicates L
(letter), M (mark), N (number), P (punctuation), S (symbol), Z (separator), or C
(other). The second letter is generally mnemonic within the major category of the
first letter. Consult the URL above for details.

unicodedata.combining(unichr)

Return the numeric combining class of the character specified in the argument
unichr. These include values such as 218 (below left) or 210 (right attached).
Consult the URL above for details.

unicodedata.decimal(unichr [,default])

Return the numeric decimal value assigned to the character specified in the argument
unichr. If the second argument default is specified, return that if no value is
assigned (otherwise raise ValueError).

unicodedata.decomposition(unichr)

Return the decomposition mapping of the character specified in the argument
unichr, or empty string if none exists. Consult the URL above for details. An
example shows that some characters may be broken into component characters:

“TPiP” — 2006/1/30 — 15:07 — page 193 — #213i
i

i
i

i
i

i
i

2.2 Standard Modules 193

>>> from unicodedata import *
>>> name(unichr(190))
’VULGAR FRACTION THREE QUARTERS’
>>> decomposition(unichr(190))
’<fraction> 0033 2044 0034’
>>> name(unichr(0x33)), name(unichr(0x2044)), name(unichr(0x34))
(’DIGIT THREE’, ’FRACTION SLASH’, ’DIGIT FOUR’)

unicodedata.digit(unichr [,default])

Return the numeric digit value assigned to the character specified in the argument
unichr. If the second argument default is specified, return that if no value is
assigned (otherwise raise ValueError).

unicodedata.lookup(name)

Return the Unicode character with the name specified in the first argument name.
Matches must be exact, and ValueError is raised if no match is found. For example:

>>> from unicodedata import *
>>> lookup(’GREEK SMALL LETTER ETA’)
u’\u03b7’
>>> lookup(’ETA’)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
KeyError: undefined character name

See Also: unicodedata.name() 193;

unicodedata.mirrored(unichr)

Return 1 if the character specified in the argument unichr is a mirrored character
in bidirection text. Return 0 otherwise.

unicodedata.name(unichr)

Return the name of the character specified in the argument unichr. Names are in
all caps and have a regular form by descending category importance. Consult the
URL above for details.

See Also: unicodedata.lookup() 193;

unicodedata.numeric(unichr [,default])

Return the floating point numeric value assigned to the character specified in the
argument unichr. If the second argument default is specified, return that if no
value is assigned (otherwise raise ValueError).

“TPiP” — 2006/1/30 — 15:07 — page 194 — #214i
i

i
i

i
i

i
i

194 BASIC STRING OPERATIONS

2.3 Solving Problems

2.3.1 Exercise: Many ways to take out the garbage

DISCUSSION

Recall, if you will, the dictum in “The Zen of Python” that “There should be one—
and preferably only one—obvious way to do it.” As with most dictums, the real world
sometimes fails our ideals. Also as with most dictums, this is not necessarily such a bad
thing.

A discussion on the newsgroup <comp.lang.python> in 2001 posed an apparently
rather simple problem. The immediate problem was that one might encounter telephone
numbers with a variety of dividers and delimiters inside them. For example, (123)
456-7890, 123-456-7890, or 123/456-7890 might all represent the same telephone
number, and all forms might be encountered in textual data sources (such as ones
entered by users of a free-form entry field. For purposes of this problem, the canonical
form of this number should be 1234567890.

The problem mentioned here can be generalized in some natural ways: Maybe we
are interested in only some of the characters within a longer text field (in this case,
the digits), and the rest is simply filler. So the general problem is how to extract the
content out from the filler.

The first and “obvious” approach might be a procedural loop through the initial
string. One version of this approach might look like:

>>> s = ’(123)/456-7890’
>>> result = ’’
>>> for c in s:
... if c in ’0123456789’:
... result = result + c
...
>>> result
’1234567890’

This first approach works fine, but it might seem a bit bulky for what is, after all,
basically a single action. And it might also seem odd that you need to loop though
character-by-character rather than just transform the whole string.

One possibly simpler approach is to use a regular expression. For readers who have
skipped to the next chapter, or who know regular expressions already, this approach
seems obvious:

>>> import re
>>> s = ’(123)/456-7890’
>>> re.sub(r’\D’, ’’, s)
’1234567890’

The actual work done (excluding defining the initial string and importing the re mod-
ule) is just one short expression. Good enough, but one catch with regular expressions

“TPiP” — 2006/1/30 — 15:07 — page 195 — #215i
i

i
i

i
i

i
i

2.3 Solving Problems 195

is that they are frequently far slower than basic string operations. This makes no dif-
ference for the tiny example presented, but for processing megabytes, it could start to
matter.

Using a functional style of programming is one way to express the “filter” in question
rather tersely, and perhaps more efficiently. For example:

>>> s = ’(123)/456-7890’
>>> filter(lambda c:c.isdigit(), s)
’1234567890’

We also get something short, without needing to use regular expressions. Here is
another technique that utilizes string object methods and list comprehensions, and also
pins some hopes on the great efficiency of Python dictionaries:

>>> isdigit = {’0’:1,’1’:1,’2’:1,’3’:1,’4’:1,
... ’5’:1,’6’:1,’7’:1,’8’:1,’9’:1}.has_key
>>> ’’.join([x for x in s if isdigit(x)])
’1234567890’

QUESTIONS

1. Which content extraction technique seems most natural to you? Which would you
prefer to use? Explain why.

2. What intuitions do you have about the performance of these different techniques,
if applied to large data sets? Are there differences in comparative efficiency of
techniques between operating on one single large string input and operating on a
large number of small string inputs?

3. Construct a program to verify or refute your intuitions about performance of the
constructs.

4. Can you think of ways of combining these techniques to maximize efficiency? Are
there any other techniques available that might be even better (hint: think about
what string.translate() does)? Construct a faster technique, and demonstrate
its efficiency.

5. Are there reasons other than raw processing speed to prefer some of these tech-
niques over others? Explain these reasons, if they exist.

2.3.2 Exercise: Making sure things are what they should be

DISCUSSION

The concept of a “digital signature” was introduced in Section 2.2.4. As was men-
tioned, the Python standard library does not include (directly) any support for digital
signatures. One way to characterize a digital signature is as some information that
proves or verifies that some other information really is what it purports to be. But

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 196 --- #216i
i

i
i

i
i

i
i

196 BASIC STRING OPERATIONS

this characterization actually applies to a broader set of things than just digital signa-
tures. In cryptology literature one is accustomed to talk about the “threat model” a
crypto-system defends against. Let us look at a few.

Data may be altered by malicious tampering, but it may also be altered by packet
loss, storage-media errors, or by program errors. The threat of accidental damage to
data is the easiest threat to defend against. The standard technique is to use a hash
of the correct data and send that also. The receiver of the data can simply calculate
the hash of the data herself—using the same algorithm—and compare it with the hash
sent. A very simple utility like the one below does this:

crc32.py

Calculate CRC32 hash of input files or STDIN
Incremental read for large input sources
Usage: python crc32.py [file1 [file2 [...]]]
or: python crc32.py < STDIN

import binascii
import fileinput
filelist = []
crc = binascii.crc32(’’)
for line in fileinput.input():

if fileinput.isfirstline():
if fileinput.isstdin():

filelist.append(’STDIN’)
else:

filelist.append(fileinput.filename())
crc = binascii.crc32(line,crc)

print ’Files:’, ’ ’.join(filelist)
print ’CRC32:’, crc

A slightly faster version could use zlib.adler32() instead of binascii.crc32 . The
chance that a randomly corrupted file would have the right CRC32 hash is approximately
(2**-32)—unlikely enough not to worry about most times.

A CRC32 hash, however, is far too weak to be used cryptographically. While random
data error will almost surely not create a chance hash collision, a malicious tamperer—
Mallory, in crypto-parlance—can find one relatively easily. Specifically, suppose the
true message is M, Mallory can find an M′ such that CRC32(M) equals CRC32(M′).
Moreover, even imposing the condition that M′ appears plausible as a message to the
receiver does not make Mallory’s tasks particularly difficult.

To thwart fraudulent messages, it is necessary to use a cryptographically strong hash,
such as SHA or MD5 . Doing so is almost the same utility as above:

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 197 --- #217i
i

i
i

i
i

i
i

2.3 Solving Problems 197

sha.py

Calculate SHA hash of input files or STDIN
Usage: python sha.py [file1 [file2 [...]]]
or: python sha.py < STDIN

import sha, fileinput, os, sys
filelist = []
sha = sha.sha()
for line in fileinput.input():

if fileinput.isfirstline():
if fileinput.isstdin():

filelist.append(’STDIN’)
else:

filelist.append(fileinput.filename())
sha.update(line[:-1]+os.linesep) # same as binary read

sys.stderr.write(’Files: ’+’ ’.join(filelist)+’\nSHA: ’)
print sha.hexdigest()

An SHA or MD5 hash cannot be forged practically, but if our threat model includes
a malicious tamperer, we need to worry about whether the hash itself is authentic.
Mallory, our tamperer, can produce a false SHA hash that matches her false message.
With CRC32 hashes, a very common procedure is to attach the hash to the data message
itself—for example, as the first or last line of the data file, or within some wrapper
lines. This is called an “in band” or “in channel” transmission. One alternative is “out
of band” or “off channel” transmission of cryptographic hashes. For example, a set
of cryptographic hashes matching data files could be placed on a Web page. Merely
transmitting the hash off channel does not guarantee security, but it does require Mallory
to attack both channels effectively.

By using encryption, it is possible to transmit a secured hash in channel. The key
here is to encrypt the hash and attach that encrypted version. If the hash is appended
with some identifying information before the encryption, that can be recovered to prove
identity. Otherwise, one could simply include both the hash and its encrypted version.
For the encryption of the hash, an asymmetrical encryption algorithm is ideal; however,
with the Python standard library, the best we can do is to use the (weak) symmetrical
encryption in rotor . For example, we could use the utility below:

hash rotor.py

#!/usr/bin/env python
Encrypt hash on STDIN using sys.argv[1] as password
import rotor, sys, binascii
cipher = rotor.newrotor(sys.argv[1])
hexhash = sys.stdin.read()[:-1] # no newline
print hexhash
hash = binascii.unhexlify(hexhash)

“TPiP” — 2006/1/30 — 15:07 — page 198 — #218i
i

i
i

i
i

i
i

198 BASIC STRING OPERATIONS

sys.stderr.write(’Encryption: ’)
print binascii.hexlify(cipher.encrypt(hash))

The utilities could then be used like:

% cat mary.txt
Mary had a little lamb
% python sha.py mary.txt | hash_rotor.py mypassword >> mary.txt
Files: mary.txt
SHA: Encryption:
% cat mary.txt
Mary had a little lamb
c49bf9a7840f6c07ab00b164413d7958e0945941
63a9d3a2f4493d957397178354f21915cb36f8f8

The penultimate line of the file now has its SHA hash, and the last line has an
encryption of the hash. The password used will somehow need to be transmitted securely
for the receiver to validate the appended document (obviously, the whole system make
more sense with longer and more proprietary documents than in the example).

QUESTIONS

1. How would you wrap up the suggestions in the small utilities above into a more
robust and complete “digital signatures.py” utility or module? What concerns
would come into a completed utility?

2. Why is CRC32 not suitable for cryptographic purposes? What sets SHA and MD5
apart (you should not need to know the details of the algorithm for this answer)?
Why is uniformity of coverage of hash results important for any hash algorithm?

3. Explain in your own words why hashes serve to verify documents. If you were
actually the malicious attacker in the scenarios above, how would you go about
interfering with the crypto-systems outlined here? What lines of attack are left
open by the system you sketched out or programmed in (1)?

4. If messages are subject to corruptions, including accidental corruption, so are
hashes. The short length of hashes may make problems in them less likely, but
not impossible. How might you enhance the document verification systems above
to detect corruption within a hash itself? How might you allow more accurate
targeting of corrupt versus intact portions of a large document (it may be desirable
to recover as much as possible from a corrupt document)?

5. Advanced: The RSA public-key algorithm is actually quite simple; it just involves
some modulo exponentiation operations and some large primes. An explanation
can be found, among other places, at the author’s Introduction to Cryptology
Concepts II : <http://gnosis.cx/publish/programming/cryptology2.pdf>.

Try implementing an RSA public-key algorithm in Python, and use this to enrich
the digital signature system you developed above.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 199 --- #219i
i

i
i

i
i

i
i

2.3 Solving Problems 199

2.3.3 Exercise: Finding needles in haystacks (full-text indexing)

DISCUSSION

Many texts you deal with are loosely structured and prose-like, rather than composed
of well-ordered records. For documents of that sort, a very frequent question you want
answered is, “What is (or isn’t) in the documents?”—at a more general level than the
semantic richness you might obtain by actually reading the documents. In particular,
you often want to check a large collection of documents to determine the (comparatively)
small subset of them that are relevant to a given area of interest.

A certain category of questions about document collections has nothing much to do
with text processing. For example, to locate all the files modified within a certain time
period, and having a certain file size, some basic use of the os.path module suffices.
Below is a sample utility to do such a search, which includes some typical argument
parsing and help screens. The search itself is only a few lines of code:

findfile1.py

Find files matching date and size
_usage = """
Usage:

python findfile1.py [-start=days_ago] [-end=days_ago]
[-small=min_size] [-large=max_size] [pattern]

Example:
python findfile1.py -start=10 -end=5 -small=1000 -large=5000 *.txt

"""
import os.path
import time
import glob
import sys

def parseargs(args):
"""Somewhat flexible argument parser for multiple platforms.

Switches can start with - or /, keywords can end with = or :.
No error checking for bad arguments is performed, however.
"""
now = time.time()
secs_in_day = 60*60*24
start = 0 # start of epoch
end = time.time() # right now
small = 0 # empty files
large = sys.maxint # max file size
pat = ’*’ # match all
for arg in args:

if arg[0] in ’-/’:
if arg[1:6]==’start’: start = now-(secs_in_day*int(arg[7:]))

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 200 --- #220i
i

i
i

i
i

i
i

200 BASIC STRING OPERATIONS

elif arg[1:4]==’end’: end = now-(secs_in_day*int(arg[5:]))
elif arg[1:6]==’small’: small = int(arg[7:])
elif arg[1:6]==’large’: large = int(arg[7:])
elif arg[1] in ’h?’: print _usage

else:
pat = arg

return (start,end,small,large,pat)

if __name__ == ’__main__’:
if len(sys.argv) > 1:

(start,end,small,large,pat) = parseargs(sys.argv[1:])
for fname in glob.glob(pat):

if not os.path.isfile(fname):
continue # don’t check directories

modtime = os.path.getmtime(fname)
size = os.path.getsize(fname)
if small <= size <= large and start <= modtime <= end:

print time.ctime(modtime),’%8d ’%size,fname
else: print _usage

What about searching for text inside files? The string.find() function is good for
locating contents quickly and could be used to search files for contents. But for large
document collections, hits may be common. To make sense of search results, ranking
the results by number of hits can help. The utility below performs a match-accuracy
ranking (for brevity, without the argument parsing of findfile1.py):

findfile2.py

Find files that contain a word
_usage = "Usage: python findfile.py word"
import os.path
import glob
import sys

if len(sys.argv) == 2:
search_word = sys.argv[1]
results = []
for fname in glob.glob(’*’):

if os.path.isfile(fname): # don’t check directories
text = open(fname).read()
fsize = len(text)
hits = text.count(search_word)
density = (fsize > 0) and float(hits)/(fsize)
if density > 0: # consider when density==0

results.append((density,fname))
results.sort()

“TPiP” — 2006/1/30 — 15:07 — page 201 — #221i
i

i
i

i
i

i
i

2.3 Solving Problems 201

results.reverse()
print ’RANKING FILENAME’
print ’------- --------------------------’
for match in results:

print ’%6d ’%int(match[0]*1000000), match[1]
else:

print _usage

Variations on these are, of course, possible. But generally you could build pretty
sophisticated searches and rankings by adding new search options incrementally to
findfile2.py. For example, adding some regular expression options could give the
utility capabilities similar to the grep utility.

The place where a word search program like the one above falls terribly short is in
speed of locating documents in very large document collections. Even something as
fast, and well optimized, as grep simply takes a while to search a lot of source text.
Fortunately, it is possible to shortcut this search time, as well as add some additional
capabilities.

A technique for rapid searching is to perform a generic search just once (or periodi-
cally) and create an index—i.e., database—of those generic search results. Performing
a later search need not really search contents, but only check the abstracted and struc-
tured index of possible searches. The utility indexer.py is a functional example of
such a computed search index. The most current version may be downloaded from the
book’s Web site <http://gnosis.cx/TPiP/>.

The utility indexer.py allows very rapid searching for the simultaneous occurrence
of multiple words within a file. For example, one might want to locate all the docu-
ment files (or other text sources, such as VARCHAR database fields) that contain the
words Python, index, and search. Supposing there are many thousands of candidate
documents, searching them on an ad hoc basis could be slow. But indexer.py creates
a comparatively compact collection of persistent dictionaries that provide answers to
such inquiries.

The full source code to indexer.py is worth reading, but most of it deals with a
variety of persistence mechanisms and with an object-oriented programming (OOP)
framework for reuse. The underlying idea is simple, however. Create three dictionaries
based on scanning a collection of documents:

*Indexer.fileids: fileid --> filename
*Indexer.files: filename --> (fileid, wordcount)
*Indexer.words: word --> {fileid1:occurs, fileid2:occurs, ...}

The essential mapping is *Indexer.words. For each word, what files does it occur in
and how often? The mappings *Indexer.fileids and *Indexer.files are ancillary.
The first just allows shorter numeric aliases to be used instead of long filenames in
the *Indexer.words mapping (a performance boost and storage saver). The second,
*Indexer.files, also holds a total wordcount for each file. This allows a ranking of
the importance of different matches. The thought is that a megabyte file with ten
occurrences of Python is less focused on the topic of Python than is a kilobyte file with
the same ten occurrences.

“TPiP” — 2006/1/30 — 15:07 — page 202 — #222i
i

i
i

i
i

i
i

202 BASIC STRING OPERATIONS

Both generating and utilizing the mappings above is straightforward. To search mul-
tiple words, one basically simply needs the intersection of the results of several values of
the *Indexer.words dictionary, one value for each word key. Generating the mappings
involves incrementing counts in the nested dictionary of *Indexer.words, but is not
complicated.

QUESTIONS

1. One of the most significant—and surprisingly subtle—concerns in generating use-
ful word indexes is figuring out just what a “word” is. What considerations would
you bring to determine word identities? How might you handle capitalization?
Punctuation? Whitespace? How might you disallow binary strings that are not
“real” words. Try performing word-identification tests against real-world docu-
ments. How successful were you?

2. Could other data structures be used to store word index information than those
proposed above? If other data structures are used, what efficiency (speed) ad-
vantages or disadvantages do you expect to encounter? Are there other data
structures that would allow for additional search capabilities than the multiword
search of indexer.py? If so, what other indexed search capabilities would have
the most practical benefit?

3. Consider adding integrity guarantees to index results. What if an index falls out
of synchronization with the underlying documents? How might you address ref-
erential integrity? Hint: consider binascii.crc32 , sha, and md5 . What changes
to the data structures would be needed for integrity checks? Implement such an
improvement.

4. The utility indexer.py has some ad hoc exclusions of nontextual files from inclu-
sion in an index, based simply on some file extensions. How might one perform
accurate exclusion of nontextual data? What does it mean for a document to con-
tain text? Try writing a utility istextual.py that will identify text and nontext
real-world documents. Does it work to your satisfaction?

5. Advanced: indexer.py implements several different persistence mechanisms.
What other mechanisms might you use from those implemented? Benchmark
your mechanism. Does it do better than SlicedZPickleIndexer (the best vari-
ant included in both speed and space)?

“TPiP” — 2006/1/30 — 15:07 — page 203 — #223i
i

i
i

i
i

i
i

203

Chapter 3

REGULAR EXPRESSIONS

Regular expressions allow extremely valuable text processing techniques, but ones
that warrant careful explanation. Python’s re module, in particular, allows numerous
enhancements to basic regular expressions (such as named backreferences, lookahead
assertions, backreference skipping, non-greedy quantifiers, and others). A solid intro-
duction to the subtleties of regular expressions is valuable to programmers engaged in
text processing tasks.

The prequel of this chapter contains a tutorial on regular expressions that allows
a reader unfamiliar with regular expressions to move quickly from simple to complex
elements of regular expression syntax. This tutorial is aimed primarily at beginners, but
programmers familiar with regular expressions in other programming tools can benefit
from a quick read of the tutorial, which explicates the particular regular expression
dialect in Python.

It is important to note up-front that regular expressions, while very powerful, also have
limitations. In brief, regular expressions cannot match patterns that nest to arbitrary
depths. If that statement does not make sense, read Chapter 4, which discusses parsers—
to a large extent, parsing exists to address the limitations of regular expressions. In
general, if you have doubts about whether a regular expression is sufficient for your
task, try to understand the examples in Chapter 4, particularly the discussion of how
you might spell a floating point number.

Section 3.1 examines a number of text processing problems that are solved most
naturally using regular expressions. As in other chapters, the solutions presented to
problems can generally be adopted directly as little utilities for performing tasks. How-
ever, as elsewhere, the larger goal in presenting problems and solutions is to address a
style of thinking about a wider class of problems than those whose solutions are pre-
sented directly in this book. Readers who are interested in a range of ready utilities
and modules will probably want to check additional resources on the Web, such as the
Vaults of Parnassus <http://www.vex.net/parnassus/> and the Python Cookbook
<http://aspn.activestate.com/ASPN/Python/Cookbook/>.

Section 3.2 is a “reference with commentary” on the Python standard library modules
for doing regular expression tasks. Several utility modules and backward-compatibility

“TPiP” — 2006/1/30 — 15:07 — page 204 — #224i
i

i
i

i
i

i
i

204 REGULAR EXPRESSIONS

regular expression engines are available, but for most readers, the only important mod-
ule will be re itself. The discussions interspersed with each module try to give some
guidance on why you would want to use a given module or function, and the reference
documentation tries to contain more examples of actual typical usage than does a plain
reference. In many cases, the examples and discussion of individual functions address
common and productive design patterns in Python. The cross-references are intended
to contextualize a given function (or other thing) in terms of related ones (and to help a
reader decide which is right for her). The actual listing of functions, constants, classes,
and the like are in alphabetical order within each category.

3.1 A Regular Expression Tutorial

Some people, when confronted with a problem, think “I know,
I’ll use regular expressions.” Now they have two problems.
—Jamie Zawinski, <alt.religion.emacs> (08/12/1997)

3.1.1 Just What Is a Regular Expression, Anyway?

Many readers will have some background with regular expressions, but some will not
have any. Those with experience using regular expressions in other languages (or in
Python) can probably skip this tutorial section. But readers new to regular expres-
sions (affectionately called regexes by users) should read this section; even some with
experience can benefit from a refresher.

A regular expression is a compact way of describing complex patterns in texts. You
can use them to search for patterns and, once found, to modify the patterns in complex
ways. They can also be used to launch programmatic actions that depend on patterns.

Jamie Zawinski’s tongue-in-cheek comment in the epigram is worth thinking about.
Regular expressions are amazingly powerful and deeply expressive. That is the very rea-
son that writing them is just as error-prone as writing any other complex programming
code. It is always better to solve a genuinely simple problem in a simple way; when you
go beyond simple, think about regular expressions.

A large number of tools other than Python incorporate regular expressions as part of
their functionality. Unix-oriented command-line tools like grep, sed, and awk are mostly
wrappers for regular expression processing. Many text editors allow search and/or
replacement based on regular expressions. Many programming languages, especially
other scripting languages such as Perl and TCL, build regular expressions into the heart
of the language. Even most command-line shells, such as Bash or the Windows-console,
allow restricted regular expressions as part of their command syntax.

There are some variations in regular expression syntax between different tools that
use them, but for the most part regular expressions are a “little language” that gets
embedded inside bigger languages like Python. The examples in this tutorial section
(and the documentation in the rest of the chapter) will focus on Python syntax, but
most of this chapter transfers easily to working with other programming languages and
tools.

“TPiP” — 2006/1/30 — 15:07 — page 205 — #225i
i

i
i

i
i

i
i

3.1 A Regular Expression Tutorial 205

As with most of this book, examples will be illustrated by use of Python interactive
shell sessions that readers can type themselves, so that they can play with variations
on the examples. However, the re module has little reason to include a function that
simply illustrates matches in the shell. Therefore, the availability of the small wrapper
program below is implied in the examples:

re show.py

import re
def re_show(pat, s):

print re.compile(pat, re.M).sub("{\g<0>}", s.rstrip()),’\n’

s = ’’’Mary had a little lamb
And everywhere that Mary
went, the lamb was sure
to go’’’

Place the code in an external module and import it. Those new to regular expressions
need not worry about what the above function does for now. It is enough to know that
the first argument to re show() will be a regular expression pattern, and the second
argument will be a string to be matched against. The matches will treat each line of
the string as a separate pattern for purposes of matching beginnings and ends of lines.
The illustrated matches will be whatever is contained between curly braces.

3.1.2 Matching Patterns in Text: The Basics

The very simplest pattern matched by a regular expression is a literal character or a
sequence of literal characters. Anything in the target text that consists of exactly those
characters in exactly the order listed will match. A lowercase character is not identical
with its uppercase version, and vice versa. A space in a regular expression, by the way,
matches a literal space in the target (this is unlike most programming languages or
command-line tools, where a variable number of spaces separate keywords).

>>> from re_show import re_show, s
>>> re_show(’a’, s)
M{a}ry h{a}d {a} little l{a}mb.
And everywhere th{a}t M{a}ry
went, the l{a}mb w{a}s sure
to go.

>>> re_show(’Mary’, s)
{Mary} had a little lamb.
And everywhere that {Mary}
went, the lamb was sure
to go.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 206 --- #226i
i

i
i

i
i

i
i

206 REGULAR EXPRESSIONS

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
A number of characters have special meanings to regular expressions. A symbol with

a special meaning can be matched, but to do so it must be prefixed with the backslash
character (this includes the backslash character itself: To match one backslash in the
target, the regular expression should include \\). In Python, a special way of quoting a
string is available that will not perform string interpolation. Since regular expressions
use many of the same backslash-prefixed codes as do Python strings, it is usually easier
to compose regular expression strings by quoting them as “raw strings” with an initial
“r”.

>>> from re_show import re_show
>>> s = ’’’Special characters must be escaped.*’’’
>>> re_show(r’.*’, s)
{Special characters must be escaped.*}

>>> re_show(r’\.*’, s)
Special characters must be escaped{.*}

>>> re_show(’\\\\’, r’Python \ escaped \ pattern’)
Python {\} escaped {\} pattern

>>> re_show(r’\\’, r’Regex \ escaped \ pattern’)
Regex {\} escaped {\} pattern

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
Two special characters are used to mark the beginning and end of a line: caret (“ˆ”)

and dollar sign (“$”). To match a caret or dollar sign as a literal character, it must be
escaped (i.e., precede it by a backslash “\”).

An interesting thing about the caret and dollar sign is that they match zero-width
patterns. That is, the length of the string matched by a caret or dollar sign by itself is
zero (but the rest of the regular expression can still depend on the zero-width match).
Many regular expression tools provide another zero-width pattern for word-boundary
(“\b”). Words might be divided by whitespace like spaces, tabs, newlines, or other
characters like nulls; the word-boundary pattern matches the actual point where a word
starts or ends, not the particular whitespace characters.

>>> from re_show import re_show, s
>>> re_show(r’^Mary’, s)
{Mary} had a little lamb
And everywhere that Mary
went, the lamb was sure
to go

>>> re_show(r’Mary$’, s)
Mary had a little lamb
And everywhere that {Mary}
went, the lamb was sure
to go

“TPiP” — 2006/1/30 — 15:07 — page 207 — #227i
i

i
i

i
i

i
i

3.1 A Regular Expression Tutorial 207

>>> re_show(r’$’,’Mary had a little lamb’)
Mary had a little lamb{}

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
In regular expressions, a period can stand for any character. Normally, the newline

character is not included, but optional switches can force inclusion of the newline char-
acter also (see later documentation of re module functions). Using a period in a pattern
is a way of requiring that “something” occurs here, without having to decide what.

Readers who are familiar with DOS command-line wildcards will know the question
mark as filling the role of “some character” in command masks. But in regular expres-
sions, the question mark has a different meaning, and the period is used as a wildcard.

>>> from re_show import re_show, s
>>> re_show(r’.a’, s)
{Ma}ry {ha}d{ a} little {la}mb
And everywhere t{ha}t {Ma}ry
went, the {la}mb {wa}s sure
to go

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
A regular expression can have literal characters in it and also zero-width positional

patterns. Each literal character or positional pattern is an atom in a regular expression.
One may also group several atoms together into a small regular expression that is part of
a larger regular expression. One might be inclined to call such a grouping a “molecule,”
but normally it is also called an atom.

In older Unix-oriented tools like grep, subexpressions must be grouped with escaped
parentheses; for example, \(Mary\). In Python (as with most more recent tools), group-
ing is done with bare parentheses, but matching a literal parenthesis requires escaping
it in the pattern.

>>> from re_show import re_show, s
>>> re_show(r’(Mary)()(had)’, s)
{Mary had} a little lamb
And everywhere that Mary
went, the lamb was sure
to go

>>> re_show(r’\(.*\)’, ’spam (and eggs)’)
spam {(and eggs)}

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
Rather than name only a single character, a pattern in a regular expression can match

any of a set of characters.
A set of characters can be given as a simple list inside square brackets; for example,

[aeiou] will match any single lowercase vowel. For letter or number ranges it may

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 208 --- #228i
i

i
i

i
i

i
i

208 REGULAR EXPRESSIONS

also have the first and last letter of a range, with a dash in the middle; for example,
[A-Ma-m] will match any lowercase or uppercase letter in the first half of the alphabet.

Python (as with many tools) provides escape-style shortcuts to the most commonly
used character class, such as \s for a whitespace character and \d for a digit. One could
always define these character classes with square brackets, but the shortcuts can make
regular expressions more compact and more readable.

>>> from re_show import re_show, s
>>> re_show(r’[a-z]a’, s)
Mary {ha}d a little {la}mb
And everywhere t{ha}t Mary
went, the {la}mb {wa}s sure
to go

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
The caret symbol can actually have two different meanings in regular expressions.

Most of the time, it means to match the zero-length pattern for line beginnings. But if
it is used at the beginning of a character class, it reverses the meaning of the character
class. Everything not included in the listed character set is matched.

>>> from re_show import re_show, s
>>> re_show(r’[^a-z]a’, s)
{Ma}ry had{ a} little lamb
And everywhere that {Ma}ry
went, the lamb was sure
to go

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
Using character classes is a way of indicating that either one thing or another thing

can occur in a particular spot. But what if you want to specify that either of two
whole subexpressions occur in a position in the regular expression? For that, you use
the alternation operator, the vertical bar (“|”). This is the symbol that is also used to
indicate a pipe in Unix/DOS shells and is sometimes called the pipe character.

The pipe character in a regular expression indicates an alternation between everything
in the group enclosing it. What this means is that even if there are several groups to the
left and right of a pipe character, the alternation greedily asks for everything on both
sides. To select the scope of the alternation, you must define a group that encompasses
the patterns that may match. The example illustrates this:

>>> from re_show import re_show
>>> s2 = ’The pet store sold cats, dogs, and birds.’
>>> re_show(r’cat|dog|bird’, s2)
The pet store sold {cat}s, {dog}s, and {bird}s.

>>> s3 = ’=first first= # =second second= # =first= # =second=’
>>> re_show(r’=first|second=’, s3)
{=first} first= # =second {second=} # {=first}= # ={second=}

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 209 --- #229i
i

i
i

i
i

i
i

3.1 A Regular Expression Tutorial 209

>>> re_show(r’(=)(first)|(second)(=)’, s3)
{=first} first= # =second {second=} # {=first}= # ={second=}

>>> re_show(r’=(first|second)=’, s3)
=first first= # =second second= # {=first=} # {=second=}

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
One of the most powerful and common things you can do with regular expressions is

to specify how many times an atom occurs in a complete regular expression. Sometimes
you want to specify something about the occurrence of a single character, but very
often you are interested in specifying the occurrence of a character class or a grouped
subexpression.

There is only one quantifier included with “basic” regular expression syntax, the
asterisk (“*”); in English this has the meaning “some or none” or “zero or more.” If
you want to specify that any number of an atom may occur as part of a pattern, follow
the atom by an asterisk.

Without quantifiers, grouping expressions doesn’t really serve as much purpose, but
once we can add a quantifier to a subexpression we can say something about the occur-
rence of the subexpression as a whole. Take a look at the example:

>>> from re_show import re_show
>>> s = ’’’Match with zero in the middle: @@
... Subexpression occurs, but...: @=!=ABC@
... Lots of occurrences: @=!==!==!==!==!=@
... Must repeat entire pattern: @=!==!=!==!=@’’’
>>> re_show(r’@(=!=)*@’, s)
Match with zero in the middle: {@@}
Subexpression occurs, but...: @=!=ABC@
Lots of occurrences: {@=!==!==!==!==!=@}
Must repeat entire pattern: @=!==!=!==!=@

3.1.3 Matching Patterns in Text: Intermediate

In a certain way, the lack of any quantifier symbol after an atom quantifies the atom
anyway: It says the atom occurs exactly once. Extended regular expressions add a few
other useful numbers to “once exactly” and “zero or more times.” The plus sign (“+”)
means “one or more times” and the question mark (“?”) means “zero or one times.”
These quantifiers are by far the most common enumerations you wind up using.

If you think about it, you can see that the extended regular expressions do not actually
let you “say” anything the basic ones do not. They just let you say it in a shorter and
more readable way. For example, (ABC)+ is equivalent to (ABC)(ABC)*, and X(ABC)?Y
is equivalent to XABCY|XY. If the atoms being quantified are themselves complicated
grouped subexpressions, the question mark and plus sign can make things a lot shorter.

>>> from re_show import re_show
>>> s = ’’’AAAD

“TPiP” — 2006/1/30 — 15:07 — page 210 — #230i
i

i
i

i
i

i
i

210 REGULAR EXPRESSIONS

... ABBBBCD

... BBBCD

... ABCCD

... AAABBBC’’’
>>> re_show(r’A+B*C?D’, s)
{AAAD}
{ABBBBCD}
BBBCD
ABCCD
AAABBBC

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
Using extended regular expressions, you can specify arbitrary pattern occurrence

counts using a more verbose syntax than the question mark, plus sign, and asterisk
quantifiers. The curly braces (“{” and “}”) can surround a precise count of how many
occurrences you are looking for.

The most general form of the curly-brace quantification uses two range arguments
(the first must be no larger than the second, and both must be non-negative integers).
The occurrence count is specified this way to fall between the minimum and maximum
indicated (inclusive). As shorthand, either argument may be left empty: If so, the
minimum/maximum is specified as zero/infinity, respectively. If only one argument is
used (with no comma in there), exactly that number of occurrences are matched.

>>> from re_show import re_show
>>> s2 = ’’’aaaaa bbbbb ccccc
... aaa bbb ccc
... aaaaa bbbbbbbbbbbbbb ccccc’’’
>>> re_show(r’a{5} b{,6} c{4,8}’, s2)
{aaaaa bbbbb ccccc}
aaa bbb ccc
aaaaa bbbbbbbbbbbbbb ccccc

>>> re_show(r’a+ b{3,} c?’, s2)
{aaaaa bbbbb c}cccc
{aaa bbb c}cc
{aaaaa bbbbbbbbbbbbbb c}cccc

>>> re_show(r’a{5} b{6,} c{4,8}’, s2)
aaaaa bbbbb ccccc
aaa bbb ccc
{aaaaa bbbbbbbbbbbbbb ccccc}

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
One powerful option in creating search patterns is specifying that a subexpression that

was matched earlier in a regular expression is matched again later in the expression. We

“TPiP” — 2006/1/30 — 15:07 — page 211 — #231i
i

i
i

i
i

i
i

3.1 A Regular Expression Tutorial 211

do this using backreferences. Backreferences are named by the numbers 1 through 99,
preceded by the backslash/escape character when used in this manner. These backref-
erences refer to each successive group in the match pattern, as in (one)(two)(three)
\1\2\3. Each numbered backreference refers to the group that, in this example, has the
word corresponding to the number.

It is important to note something the example illustrates. What gets matched by
a backreference is the same literal string matched the first time, even if the pattern
that matched the string could have matched other strings. Simply repeating the same
grouped subexpression later in the regular expression does not match the same targets
as using a backreference (but you have to decide what it is you actually want to match
in either case).

Backreferences refer back to whatever occurred in the previous grouped expressions,
in the order those grouped expressions occurred. Up to 99 numbered backreferences
may be used. However, Python also allows naming backreferences, which can make it
much clearer what the backreferences are pointing to. The initial pattern group must
begin with ?P<name>, and the corresponding backreference must contain (?P=name).

>>> from re_show import re_show
>>> s2 = ’’’jkl abc xyz
... jkl xyz abc
... jkl abc abc
... jkl xyz xyz
... ’’’
>>> re_show(r’(abc|xyz) \1’, s2)
jkl abc xyz
jkl xyz abc
jkl {abc abc}
jkl {xyz xyz}

>>> re_show(r’(abc|xyz) (abc|xyz)’, s2)
jkl {abc xyz}
jkl {xyz abc}
jkl {abc abc}
jkl {xyz xyz}

>>> re_show(r’(?P<let3>abc|xyz) (?P=let3)’, s2)
jkl abc xyz
jkl xyz abc
jkl {abc abc}
jkl {xyz xyz}

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
Quantifiers in regular expressions are greedy. That is, they match as much as they

possibly can.
Probably the easiest mistake to make in composing regular expressions is to match

too much. When you use a quantifier, you want it to match everything (of the right

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 212 --- #232i
i

i
i

i
i

i
i

212 REGULAR EXPRESSIONS

sort) up to the point where you want to finish your match. But when using the *, +, or
numeric quantifiers, it is easy to forget that the last bit you are looking for might occur
later in a line than the one you are interested in.

>>> from re_show import re_show
>>> s2 = ’’’-- I want to match the words that start
... -- with ’th’ and end with ’s’.
... this
... thus
... thistle
... this line matches too much
... ’’’
>>> re_show(r’th.*s’, s2)
-- I want to match {the words that s}tart
-- wi{th ’th’ and end with ’s}’.
{this}
{thus}
{this}tle
{this line matches} too much

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
Often if you find that regular expressions are matching too much, a useful procedure

is to reformulate the problem in your mind. Rather than thinking about, “What am
I trying to match later in the expression?” ask yourself, “What do I need to avoid
matching in the next part?” This often leads to more parsimonious pattern matches.
Often the way to avoid a pattern is to use the complement operator and a character
class. Look at the example, and think about how it works.

The trick here is that there are two different ways of formulating almost the same
sequence. Either you can think you want to keep matching until you get to XYZ, or you
can think you want to keep matching unless you get to XYZ. These are subtly different.

For people who have thought about basic probability, the same pattern occurs. The
chance of rolling a 6 on a die in one roll is 1/6. What is the chance of rolling a 6
in six rolls? A naive calculation puts the odds at 1/6+ 1/6+ 1/6+ 1/6+ 1/6+ 1/6, or 100
percent. This is wrong, of course (after all, the chance after twelve rolls isn’t 200
percent). The correct calculation is, “How do I avoid rolling a 6 for six rolls?” (i.e.,
5/6 × 5/6 × 5/6 × 5/6 × 5/6 × 5/6, or about 33 percent). The chance of getting a 6
is the same chance as not avoiding it (or about 66 percent). In fact, if you imagine
transcribing a series of die rolls, you could apply a regular expression to the written
record, and similar thinking applies.

>>> from re_show import re_show
>>> s2 = ’’’-- I want to match the words that start
... -- with ’th’ and end with ’s’.
... this
... thus
... thistle

“TPiP” — 2006/1/30 — 15:07 — page 213 — #233i
i

i
i

i
i

i
i

3.1 A Regular Expression Tutorial 213

... this line matches too much

... ’’’
>>> re_show(r’th[^s]*s’, s2)
-- I want to match {the words} {that s}tart
-- wi{th ’th’ and end with ’s}’.
{this}
{thus}
{this}tle
{this} line matches too much

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
Not all tools that use regular expressions allow you to modify target strings. Some

simply locate the matched pattern; the mostly widely used regular expression tool is
probably grep, which is a tool for searching only. Text editors, for example, may or may
not allow replacement in their regular expression search facility.

Python, being a general programming language, allows sophisticated replacement
patterns to accompany matches. Since Python strings are immutable, re functions do
not modify string objects in place, but instead return the modified versions. But as
with functions in the string module, one can always rebind a particular variable to the
new string object that results from re modification.

Replacement examples in this tutorial will call a function re new() that is a wrapper
for the module function re.sub() . Original strings will be defined above the call, and
the modified results will appear below the call and with the same style of additional
markup of changed areas as re show() used. Be careful to notice that the curly braces
in the results displayed will not be returned by standard re functions, but are only
added here for emphasis. Simply import the following function in the examples below:

re new.py

import re
def re_new(pat, rep, s):

print re.sub(pat, ’{’+rep+’}’, s)

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
Let us take a look at a couple of modification examples that build on what we have

already covered. This one simply substitutes some literal text for some other literal
text. Notice that string.replace() can achieve the same result and will be faster in
doing so.

>>> from re_new import re_new
>>> s = ’The zoo had wild dogs, bobcats, lions, and other wild cats.’
>>> re_new(’cat’,’dog’,s)
The zoo had wild dogs, bob{dog}s, lions, and other wild {dog}s.

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦

“TPiP” — 2006/1/30 — 15:07 — page 214 — #234i
i

i
i

i
i

i
i

214 REGULAR EXPRESSIONS

Most of the time, if you are using regular expressions to modify a target text, you will
want to match more general patterns than just literal strings. Whatever is matched is
what gets replaced (even if it is several different strings in the target):

>>> from re_new import re_new
>>> s = ’The zoo had wild dogs, bobcats, lions, and other wild cats.’
>>> re_new(’cat|dog’,’snake’,s)
The zoo had wild {snake}s, bob{snake}s, lions, and other wild {snake}s.
>>> re_new(r’[a-z]+i[a-z]*’,’nice’,s)
The zoo had {nice} dogs, bobcats, {nice}, and other {nice} cats.

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
It is nice to be able to insert a fixed string everywhere a pattern occurs in a target

text. But frankly, doing that is not very context sensitive. A lot of times, we do not
want just to insert fixed strings, but rather to insert something that bears much more
relation to the matched patterns. Fortunately, backreferences come to our rescue here.
One can use backreferences in the pattern matches themselves, but it is even more useful
to be able to use them in replacement patterns. By using replacement backreferences,
one can pick and choose from the matched patterns to use just the parts of interest.

As well as backreferencing, the examples below illustrate the importance of whitespace
in regular expressions. In most programming code, whitespace is merely aesthetic. But
the examples differ solely in an extra space within the arguments to the second call—and
the return value is importantly different.

>>> from re_new import re_new
>>> s = ’A37 B4 C107 D54112 E1103 XXX’
>>> re_new(r’([A-Z])([0-9]{2,4})’,r’\2:\1’,s)
{37:A} B4 {107:C} {5411:D}2 {1103:E} XXX
>>> re_new(r’([A-Z])([0-9]{2,4}) ’,r’\2:\1 ’,s)
{37:A }B4 {107:C }D54112 {1103:E }XXX

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
This tutorial has already warned about the danger of matching too much with regular

expression patterns. But the danger is so much more serious when one does modifica-
tions, that it is worth repeating. If you replace a pattern that matches a larger string
than you thought of when you composed the pattern, you have potentially deleted some
important data from your target.

It is always a good idea to try out regular expressions on diverse target data that is
representative of production usage. Make sure you are matching what you think you
are matching. A stray quantifier or wildcard can make a surprisingly wide variety of
texts match what you thought was a specific pattern. And sometimes you just have to
stare at your pattern for a while, or find another set of eyes, to figure out what is really
going on even after you see what matches. Familiarity might breed contempt, but it
also instills competence.

“TPiP” — 2006/1/30 — 15:07 — page 215 — #235i
i

i
i

i
i

i
i

3.1 A Regular Expression Tutorial 215

3.1.4 Advanced Regular Expression Extensions

Some very useful enhancements to basic regular expressions are included with Python
(and with many other tools). Many of these do not strictly increase the power of
Python’s regular expressions, but they do manage to make expressing them far more
concise and clear.

Earlier in the tutorial, the problems of matching too much were discussed, and some
workarounds were suggested. Python is nice enough to make this easier by providing
optional “non-greedy” quantifiers. These quantifiers grab as little as possible while still
matching whatever comes next in the pattern (instead of as much as possible).

Non-greedy quantifiers have the same syntax as regular greedy ones, except with the
quantifier followed by a question mark. For example, a non-greedy pattern might look
like: A[A-Z]*?B. In English, this means “match an A, followed by only as many capital
letters as are needed to find a B.”

One little thing to look out for is the fact that the pattern [A-Z]*?. will always
match zero capital letters. No longer matches are ever needed to find the following “any
character” pattern. If you use non-greedy quantifiers, watch out for matching too little,
which is a symmetric danger.

>>> from re_show import re_show
>>> s = ’’’-- I want to match the words that start
... -- with ’th’ and end with ’s’.
... this line matches just right
... this # thus # thistle’’’
>>> re_show(r’th.*s’,s)
-- I want to match {the words that s}tart
-- wi{th ’th’ and end with ’s}’.
{this line matches jus}t right
{this # thus # this}tle

>>> re_show(r’th.*?s’,s)
-- I want to match {the words} {that s}tart
-- wi{th ’th’ and end with ’s}’.
{this} line matches just right
{this} # {thus} # {this}tle

>>> re_show(r’th.*?s ’,s)
-- I want to match {the words }that start
-- with ’th’ and end with ’s’.
{this }line matches just right
{this }# {thus }# thistle

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
Modifiers can be used in regular expressions or as arguments to many of the functions

in re. A modifier affects, in one way or another, the interpretation of a regular expression
pattern. A modifier, unlike an atom, is global to the particular match—in itself, a
modifier doesn’t match anything, it instead constrains or directs what the atoms match.

“TPiP” — 2006/1/30 — 15:07 — page 216 — #236i
i

i
i

i
i

i
i

216 REGULAR EXPRESSIONS

When used directly within a regular expression pattern, one or more modifiers begin
the whole pattern, as in (?Limsux). For example, to match the word cat without
regard to the case of the letters, one could use (?i)cat. The same modifiers may be
passed in as the last argument as bitmasks (i.e., with a | between each modifier), but
only to some functions in the re module, not to all. For example, the two calls below
are equivalent:

>>> import re
>>> re.search(r’(?Li)cat’,’The Cat in the Hat’).start()
4
>>> re.search(r’cat’,’The Cat in the Hat’,re.L|re.I).start()
4

However, some function calls in re have no argument for modifiers. In such cases, you
should either use the modifier prefix pseudo-group or precompile the regular expression
rather than use it in string form. For example:

>>> import re
>>> re.split(r’(?i)th’,’Brillig and The Slithy Toves’)
[’Brillig and ’, ’e Sli’, ’y Toves’]
>>> re.split(re.compile(’th’,re.I),’Brillig and the Slithy Toves’)
[’Brillig and ’, ’e Sli’, ’y Toves’]

See the re module documentation for details on which functions take which arguments.

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
The modifiers listed below are used in re expressions. Users of other regular expression

tools may be accustomed to a g option for “global” matching. These other tools take a
line of text as their default unit, and “global” means to match multiple lines. Python
takes the actual passed string as its unit, so “global” is simply the default. To operate
on a single line, either the regular expressions have to be tailored to look for appropriate
begin-line and end-line characters, or the strings being operated on should be split first
using string.split() or other means.

* L (re.L) - Locale customization of \w, \W, \b, \B
* i (re.I) - Case-insensitive match
* m (re.M) - Treat string as multiple lines
* s (re.S) - Treat string as single line
* u (re.U) - Unicode customization of \w, \W, \b, \B
* x (re.X) - Enable verbose regular expressions

The single-line option (“s”) allows the wildcard to match a newline character (it won’t
otherwise). The multiple-line option (“m”) causes “ˆ” and “$” to match the beginning
and end of each line in the target, not just the begin/end of the target as a whole (the
default). The insensitive option (“i”) ignores differences between the case of letters.
The Locale and Unicode options (“L” and “u”) give different interpretations to the
word-boundary (“\b”) and alphanumeric (“\w”) escaped patterns—and their inverse
forms (“\B” and “\W”).

“TPiP” — 2006/1/30 — 15:07 — page 217 — #237i
i

i
i

i
i

i
i

3.1 A Regular Expression Tutorial 217

The verbose option (“x”) is somewhat different from the others. Verbose regular
expressions may contain nonsignificant whitespace and inline comments. In a sense,
this is also just a different interpretation of regular expression patterns, but it allows
you to produce far more easily readable complex patterns. Some examples follow in the
sections below.

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
Let’s take a look first at how case-insensitive and single-line options change the match

behavior.

>>> from re_show import re_show
>>> s = ’’’MAINE # Massachusetts # Colorado #
... mississippi # Missouri # Minnesota #’’’
>>> re_show(r’M.*[ise] ’, s)
{MAINE # Massachusetts }# Colorado #
mississippi # {Missouri }# Minnesota #

>>> re_show(r’(?i)M.*[ise] ’, s)
{MAINE # Massachusetts }# Colorado #
{mississippi # Missouri }# Minnesota #

>>> re_show(r’(?si)M.*[ise] ’, s)
{MAINE # Massachusetts # Colorado #
mississippi # Missouri }# Minnesota #

Looking back to the definition of re show(), we can see it was defined to explicitly
use the multiline option. So patterns displayed with re show() will always be multiline.
Let us look at a couple of examples that use re.findall() instead.

>>> from re_show import re_show
>>> s = ’’’MAINE # Massachusetts # Colorado #
... mississippi # Missouri # Minnesota #’’’
>>> re_show(r’(?im)^M.*[ise] ’, s)
{MAINE # Massachusetts }# Colorado #
{mississippi # Missouri }# Minnesota #

>>> import re
>>> re.findall(r’(?i)^M.*[ise] ’, s)
[’MAINE # Massachusetts ’]
>>> re.findall(r’(?im)^M.*[ise] ’, s)
[’MAINE # Massachusetts ’, ’mississippi # Missouri ’]

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
Matching word characters and word boundaries depends on exactly what gets counted

as being alphanumeric. Character codepages for letters outside the (US-English) ASCII
range differ among national alphabets. Python versions are configured to a particular
locale, and regular expressions can optionally use the current one to match words.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 218 --- #238i
i

i
i

i
i

i
i

218 REGULAR EXPRESSIONS

Of greater long-term significance is the re module’s ability (after Python 2.0) to look
at the Unicode categories of characters, and decide whether a character is alphabetic
based on that category. Locale settings work OK for European diacritics, but for non-
Roman sets, Unicode is clearer and less error prone. The “u” modifier controls whether
Unicode alphabetic characters are recognized or merely ASCII ones:

>>> import re
>>> alef, omega = unichr(1488), unichr(969)
>>> u = alef +’ A b C d ’+omega+’ X y Z’
>>> u, len(u.split()), len(u)
(u’\u05d0 A b C d \u03c9 X y Z’, 9, 17)
>>> ’:’.join(re.findall(ur’\b\w\b’, u))
u’A:b:C:d:X:y:Z’
>>> ’:’.join(re.findall(ur’(?u)\b\w\b’, u))
u’\u05d0:A:b:C:d:\u03c9:X:y:Z’

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
Backreferencing in replacement patterns is very powerful, but it is easy to use many

groups in a complex regular expression, which can be confusing to identify. It is often
more legible to refer to the parts of a replacement pattern in sequential order. To handle
this issue, Python’s re patterns allow “grouping without backreferencing.”

A group that should not also be treated as a backreference has a question mark colon
at the beginning of the group, as in (?:pattern). In fact, you can use this syntax even
when your backreferences are in the search pattern itself:

>>> from re_new import re_new
>>> s = ’A-xyz-37 # B:abcd:142 # C-wxy-66 # D-qrs-93’
>>> re_new(r’([A-Z])(?:-[a-z]{3}-)([0-9]*)’, r’\1\2’, s)
{A37} # B:abcd:142 # {C66} # {D93}
>>> # Groups that are not of interest excluded from backref
...
>>> re_new(r’([A-Z])(-[a-z]{3}-)([0-9]*)’, r’\1\2’, s)
{A-xyz-} # B:abcd:142 # {C-wxy-} # {D-qrs-}
>>> # One could lose track of groups in a complex pattern
...

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
Python offers a particularly handy syntax for really complex pattern backreferences.

Rather than just play with the numbering of matched groups, you can give them a
name. Above we pointed out the syntax for named backreferences in the pattern space;
for example, (?P=name). However, a bit different syntax is necessary in replacement
patterns. For that, we use the \g operator along with angle brackets and a name. For
example:

>>> from re_new import re_new

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 219 --- #239i
i

i
i

i
i

i
i

3.1 A Regular Expression Tutorial 219

>>> s = "A-xyz-37 # B:abcd:142 # C-wxy-66 # D-qrs-93"
>>> re_new(r’(?P<prefix>[A-Z])(-[a-z]{3}-)(?P<id>[0-9]*)’,
... r’\g<prefix>\g<id>’,s)
{A37} # B:abcd:142 # {C66} # {D93}

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
Another trick of advanced regular expression tools is “lookahead assertions.” These

are similar to regular grouped subexpressions, except they do not actually grab what
they match. There are two advantages to using lookahead assertions. On the one hand,
a lookahead assertion can function in a similar way to a group that is not backrefer-
enced; that is, you can match something without counting it in backreferences. More
significantly, however, a lookahead assertion can specify that the next chunk of a pat-
tern has a certain form, but let a different (more general) subexpression actually grab
it (usually for purposes of backreferencing that other subexpression).

There are two kinds of lookahead assertions: positive and negative. As you would
expect, a positive assertion specifies that something does come next, and a negative
one specifies that something does not come next. Emphasizing their connection with
non-backreferenced groups, the syntax for lookahead assertions is similar: (?=pattern)
for positive assertions, and (?!pattern) for negative assertions.

>>> from re_new import re_new
>>> s = ’A-xyz37 # B-ab6142 # C-Wxy66 # D-qrs93’
>>> # Assert that three lowercase letters occur after CAP-DASH
...
>>> re_new(r’([A-Z]-)(?=[a-z]{3})([\w\d]*)’, r’\2\1’, s)
{xyz37A-} # B-ab6142 # C-Wxy66 # {qrs93D-}
>>> # Assert three lowercase letts do NOT occur after CAP-DASH
...
>>> re_new(r’([A-Z]-)(?![a-z]{3})([\w\d]*)’, r’\2\1’, s)
A-xyz37 # {ab6142B-} # {Wxy66C-} # D-qrs93

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
Along with lookahead assertions, Python 2.0+ adds “lookbehind assertions.” The

idea is similar—a pattern is of interest only if it is (or is not) preceded by some other
pattern. Lookbehind assertions are somewhat more restricted than lookahead assertions
because they may only look backwards by a fixed number of character positions. In other
words, no general quantifiers are allowed in lookbehind assertions. Still, some patterns
are most easily expressed using lookbehind assertions.

As with lookahead assertions, lookbehind assertions come in a negative and a positive
flavor. The former assures that a certain pattern does not precede the match, the latter
assures that the pattern does precede the match.

>>> from re_new import re_new
>>> re_show(’Man’, ’Manhandled by The Man’)
{Man}handled by The {Man}

“TPiP” — 2006/1/30 — 15:07 — page 220 — #240i
i

i
i

i
i

i
i

220 REGULAR EXPRESSIONS

>>> re_show(’(?<=The)Man’, ’Manhandled by The Man’)
Manhandled by The {Man}

>>> re_show(’(?<!The)Man’, ’Manhandled by The Man’)
{Man}handled by The Man

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦
In the later examples we have started to see just how complicated regular expressions

can get. These examples are not the half of it. It is possible to do some almost absurdly
difficult-to-understand things with regular expression (but ones that are nonetheless
useful).

There are two basic facilities that Python’s “verbose” modifier (“x”) uses in clarifying
expressions. One is allowing regular expressions to continue over multiple lines (by
ignoring whitespace like trailing spaces and newlines). The second is allowing comments
within regular expressions. When patterns get complicated, do both!

The example given is a fairly typical example of a complicated, but well-structured
and well-commented, regular expression:

>>> from re_show import re_show
>>> s = ’’’The URL for my site is: http://mysite.com/mydoc.html. You
... might also enjoy ftp://yoursite.com/index.html for a good
... place to download files.’’’
>>> pat = r’’’ (?x)(# verbose identify URLs within text
... (http|ftp|gopher) # make sure we find a resource type
... :// # ...needs to be followed by colon-slash-slash
... [^ \n\r]+ # some stuff then space, newline, tab is URL
... \w # URL always ends in alphanumeric char
... (?=[\s\.,]) # assert: followed by whitespace/period/comma
...) # end of match group’’’
>>> re_show(pat, s)
The URL for my site is: {http://mysite.com/mydoc.html}. You
might also enjoy {ftp://yoursite.com/index.html} for a good
place to download files.

3.2 Some Common Tasks

3.2.1 Problem: Making a text block flush left

For visual clarity or to identify the role of text, blocks of text are often indented—
especially in prose-oriented documents (but log files, configuration files, and the like
might also have unused initial fields). For downstream purposes, indentation is often
irrelevant, or even outright incorrect, since the indentation is not part of the text itself
but only a decoration of the text. However, it often makes matters even worse to perform
the very most naive transformation of indented text—simply remove leading whitespace
from every line. While block indentation may be decoration, the relative indentations of

“TPiP” — 2006/1/30 — 15:07 — page 221 — #241i
i

i
i

i
i

i
i

3.2 Some Common Tasks 221

lines within blocks may serve important or essential functions (for example, the blocks
of text might be Python source code).

The general procedure you need to take in maximally unindenting a block of text
is fairly simple. But it is easy to throw more code at it than is needed, and arrive
at some inelegant and slow nested loops of string.find() and string.replace()

operations. A bit of cleverness in the use of regular expressions—combined with the
conciseness of a functional programming (FP) style—can give you a quick, short, and
direct transformation.

flush left.py

Remove as many leading spaces as possible from whole block
from re import findall,sub
What is the minimum line indentation of a block?
indent = lambda s: reduce(min,map(len,findall(’(?m)^ *(?=\S)’,s)))
Remove the block-minimum indentation from each line?
flush_left = lambda s: sub(’(?m)^ {%d}’ % indent(s),’’,s)

if __name__ == ’__main__’:
import sys
print flush_left(sys.stdin.read())

The flush left() function assumes that blocks are indented with spaces. If tabs are
used—or used combined with spaces—an initial pass through the utility untabify.py
(which can be found at $PYTHONPATH/tools/scripts/) can convert blocks to space-
only indentation.

A helpful adjunct to flush left() is likely to be the reformat para() function that
was presented in Chapter 2, Problem 2. Between the two of these, you could get a good
part of the way towards a “batch-oriented word processor.” (What other capabilities
would be most useful?)

3.2.2 Problem: Summarizing command-line option
documentation

Documentation of command-line options to programs is usually in semi-standard for-
mats in places like manpages, docstrings, READMEs and the like. In general, within
documentation you expect to see command-line options indented a bit, followed by a bit
more indentation, followed by one or more lines of description, and usually ended by a
blank line. This style is readable for users browsing documentation, but is of sufficiently
complexity and variability that regular expressions are well suited to finding the right
descriptions (simple string methods fall short).

A specific scenario where you might want a summary of command-line options is as
an aid to understanding configuration files that call multiple child commands. The file
/etc/inetd.conf on Unix-like systems is a good example of such a configuration file.
Moreover, configuration files themselves often have enough complexity and variability
within them that simple string methods have difficulty parsing them.

“TPiP” — 2006/1/30 — 15:07 — page 222 — #242i
i

i
i

i
i

i
i

222 REGULAR EXPRESSIONS

The utility below will look for every service launched by /etc/inetd.conf and present
to STDOUT summary documentation of all the options used when the services are
started.

show services.py

import re, os, string, sys

def show_opts(cmdline):
args = string.split(cmdline)
cmd = args[0]
if len(args) > 1:

opts = args[1:]
might want to check error output, so use popen3()
(in_, out_, err) = os.popen3(’man %s | col -b’ % cmd)
manpage = out_.read()
if len(manpage) > 2: # found actual documentation

print ’\n%s’ % cmd
for opt in opts:

pat_opt = r’(?sm)^\s*’+opt+r’.*?(?=\n\n)’
opt_doc = re.search(pat_opt, manpage)
if opt_doc is not None:

print opt_doc.group()
else: # try harder for something relevant

mentions = []
for para in string.split(manpage,’\n\n’):

if re.search(opt, para):
mentions.append(’\n%s’ % para)

if not mentions:
print ’\n ’,opt,’ ’*9,’Option docs not found’

else:
print ’\n ’,opt,’ ’*9,’Mentioned in below para:’
print ’\n’.join(mentions)

else: # no manpage available
print cmdline
print ’ No documentation available’

def services(fname):
conf = open(fname).read()
pat_srv = r’’’(?xm)(?=^[^#]) # lns that are not commented out

(?:(?:[\w/]+\s+){6}) # first six fields ignored
(.*$) # to end of ln is servc launch’’’

return re.findall(pat_srv, conf)

if __name__ == ’__main__’:
for service in services(sys.argv[1]):

show_opts(service)

“TPiP” — 2006/1/30 — 15:07 — page 223 — #243i
i

i
i

i
i

i
i

3.2 Some Common Tasks 223

The particular tasks performed by show opts() and services() are somewhat spe-
cific to Unix-like systems, but the general techniques are more broadly applicable. For
example, the particular comment character and number of fields in /etc/inetd.conf
might be different for other launch scripts, but the use of regular expressions to find
the launch commands would apply elsewhere. If the man and col utilities are not on
the relevant system, you might do something equivalent, such as reading in the doc-
strings from Python modules with similar option descriptions (most of the samples in
$PYTHONPATH/tools/ use compatible documentation, for example).

Another thing worth noting is that even where regular expressions are used in pars-
ing some data, you need not do everything with regular expressions. The simple
string.split() operation to identify paragraphs in show opts() is still the quick-
est and easiest technique, even though re.split() could do the same thing.

Note: Along the lines of paragraph splitting, here is a thought problem. What is a
regular expression that matches every whole paragraph that contains within it some
smaller pattern pat? For purposes of the puzzle, assume that a paragraph is some text
that both starts and ends with doubled newlines (“\n\n”).

3.2.3 Problem: Detecting duplicate words

A common typo in prose texts is doubled words (hopefully they have been edited out
of this book except in those few cases where they are intended). The same error occurs
to a lesser extent in programming language code, configuration files, or data feeds.
Regular expressions are well-suited to detecting this occurrence, which just amounts to
a backreference to a word pattern. It’s easy to wrap the regex in a small utility with a
few extra features:

dupwords.py

Detect doubled words and display with context
Include words doubled across lines but within paras

import sys, re, glob
for pat in sys.argv[1:]:

for file in glob.glob(pat):
newfile = 1
for para in open(file).read().split(’\n\n’):

dups = re.findall(r’(?m)(^.*(\b\w+\b)\s*\b\2\b.*$)’, para)
if dups:

if newfile:
print ’%s\n%s\n’ % (’-’*70,file)
newfile = 0

for dup in dups:
print ’[%s] -->’ % dup[1], dup[0]

This particular version grabs the line or lines on which duplicates occur and prints
them for context (along with a prompt for the duplicate itself). Variations are straight-
forward. The assumption made by dupwords.py is that a doubled word that spans a

“TPiP” — 2006/1/30 — 15:07 — page 224 — #244i
i

i
i

i
i

i
i

224 REGULAR EXPRESSIONS

line (from the end of one to the beginning of another, ignoring whitespace) is a real
doubling; but a duplicate that spans paragraphs is not likewise noteworthy.

3.2.4 Problem: Checking for server errors

Web servers are a ubiquitous source of information nowadays. But finding URLs that
lead to real documents is largely hit-or-miss. Every Web maintainer seems to reorganize
her site every month or two, thereby breaking bookmarks and hyperlinks. As bad
as the chaos is for plain Web surfers, it is worse for robots faced with the difficult
task of recognizing the difference between content and errors. By-the-by, it is easy to
accumulate downloaded Web pages that consist of error messages rather than desired
content.

In principle, Web servers can and should return error codes indicating server errors.
But in practice, Web servers almost always return dynamically generated results pages
for erroneous requests. Such pages are basically perfectly normal HTML pages that just
happen to contain text like “Error 404: File not found!” Most of the time these pages are
a bit fancier than this, containing custom graphics and layout, links to site homepages,
JavaScript code, cookies, meta tags, and all sorts of other stuff. It is actually quite
amazing just how much many Web servers send in response to requests for nonexistent
URLs.

Below is a very simple Python script to examine just what Web servers return on
valid or invalid requests. Getting an error page is usually as simple as asking for a page
called http://somewebsite.com/phony-url or the like (anything that doesn’t really
exist). urllib is discussed in Chapter 5, but its details are not important here.

url examine.py

import sys
from urllib import urlopen

if len(sys.argv) > 1:
fpin = urlopen(sys.argv[1])
print fpin.geturl()
print fpin.info()
print fpin.read()

else:
print "No specified URL"

Given the diversity of error pages you might receive, it is difficult or impossible to
create a regular expression (or any program) that determines with certainty whether a
given HTML document is an error page. Furthermore, some sites choose to generate
pages that are not really quite errors, but not really quite content either (e.g, generic
directories of site information with suggestions on how to get to content). But some
heuristics come quite close to separating content from errors. One noteworthy heuristic
is that the interesting errors are almost always 404 or 403 (not a sure thing, but good

“TPiP” — 2006/1/30 — 15:07 — page 225 — #245i
i

i
i

i
i

i
i

3.2 Some Common Tasks 225

enough to make smart guesses). Below is a utility to rate the “error probability” of
HTML documents:

error page.py

import re, sys
page = sys.stdin.read()

Mapping from patterns to probability contribution of pattern
err_pats = {r’(?is)<TITLE>.*?(404|403).*?ERROR.*?</TITLE>’: 0.95,

r’(?is)<TITLE>.*?ERROR.*?(404|403).*?</TITLE>’: 0.95,
r’(?is)<TITLE>ERROR</TITLE>’: 0.30,
r’(?is)<TITLE>.*?ERROR.*?</TITLE>’: 0.10,
r’(?is)<META .*?(404|403).*?ERROR.*?>’: 0.80,
r’(?is)<META .*?ERROR.*?(404|403).*?>’: 0.80,
r’(?is)<TITLE>.*?File Not Found.*?</TITLE>’: 0.80,
r’(?is)<TITLE>.*?Not Found.*?</TITLE>’: 0.40,
r’(?is)<BODY.*(404|403).*</BODY>’: 0.10,
r’(?is)<H1>.*?(404|403).*?</H1>’: 0.15,
r’(?is)<BODY.*not found.*</BODY>’: 0.10,
r’(?is)<H1>.*?not found.*?</H1>’: 0.15,
r’(?is)<BODY.*the requested URL.*</BODY>’: 0.10,
r’(?is)<BODY.*the page you requested.*</BODY>’: 0.10,
r’(?is)<BODY.*page.{1,50}unavailable.*</BODY>’: 0.10,
r’(?is)<BODY.*request.{1,50}unavailable.*</BODY>’: 0.10,
r’(?i)does not exist’: 0.10,

}
err_score = 0
for pat, prob in err_pats.items():

if err_score > 0.9: break
if re.search(pat, page):

print pat, prob
err_score += prob

if err_score > 0.90: print ’Page is almost surely an error report’
elif err_score > 0.75: print ’It is highly likely page is an error report’
elif err_score > 0.50: print ’Better-than-even odds page is error report’
elif err_score > 0.25: print ’Fair indication page is an error report’
else: print ’Page is probably real content’

Tested against a fair number of sites, a collection like this of regular expression searches
and threshold confidences works quite well. Within the author’s own judgment of just
what is really an error page, erro page.py has gotten no false positives and always
arrived at at least the lowest warning level for every true error page.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 226 --- #246i
i

i
i

i
i

i
i

226 REGULAR EXPRESSIONS

The patterns chosen are all fairly simple, and both the patterns and their weightings
were determined entirely subjectively by the author. But something like this weighted
hit-or-miss technique can be used to solve many “fuzzy logic” matching problems (most
having nothing to do with Web server errors).

Code like that above can form a general approach to more complete applications.
But for what it is worth, the scripts url examine.py and error page.py may be used
directly together by piping from the first to the second. For example:

% python urlopen.py http://gnosis.cx/nonesuch | python ex_error_page.py
Page is almost surely an error report

3.2.5 Problem: Reading lines with continuation characters

Many configuration files and other types of computer code are line oriented, but also
have a facility to treat multiple lines as if they were a single logical line. In processing
such a file it is usually desirable as a first step to turn all these logical lines into actual
newline-delimited lines (or more likely, to transform both single and continued lines
as homogeneous list elements to iterate through later). A continuation character is
generally required to be the last thing on a line before a newline, or possibly the last
thing other than some whitespace. A small (and very partial) table of continuation
characters used by some common and uncommon formats is listed below:

\ Python, JavaScript, C/C++, Bash, TCL, Unix config
_ Visual Basic, PAW
& Lyris, COBOL, IBIS
; Clipper, TOP
- XSPEC, NetREXX
= Oracle Express

Most of the formats listed are programming languages, and parsing them takes quite
a bit more than just identifying the lines. More often, it is configuration files of various
sorts that are of interest in simple parsing, and most of the time these files use a common
Unix-style convention of using trailing backslashes for continuation lines.

One could manage to parse logical lines with a string module approach that looped
through lines and performed concatenations when needed. But a greater elegance is
served by reducing the problem to a single regular expression. The module below
provides this:

“TPiP” — 2006/1/30 — 15:07 — page 227 — #247i
i

i
i

i
i

i
i

3.2 Some Common Tasks 227

logical lines.py

Determine the logical lines in a file that might have
continuation characters. ’logical_lines()’ returns a
list. The self-test prints the logical lines as
physical lines (for all specified files and options).

import re

def logical_lines(s, continuation=’\\’, strip_trailing_space=0):
c = continuation
if strip_trailing_space:

s = re.sub(r’(?m)(%s)(\s+)$’%[c], r’\1’, s)
pat_log = r’(?sm)^.*?$(?<!%s)’%[c] # e.g. (?sm)^.*?$(?<!\\)
return [t.replace(c+’\n’,’’) for t in re.findall(pat_log, s)]

if __name__ == ’__main__’:
import sys
files, strip, contin = ([], 0, ’\\’)
for arg in sys.argv[1:]:

if arg[:-1] == ’--continue=’: contin = arg[-1]
elif arg[:-1] == ’-c’: contin = arg[-1]
elif arg in (’--string’,’-s’): strip = 1
else: files.append(arg)

if not files: files.append(sys.stdin)
for file in files:

s = open(sys.argv[1]).read()
print ’\n’.join(logical_lines(s, contin, strip))

The comment in the pat log definition shows a bit just how cryptic regular expres-
sions can be at times. The comment is the pattern that is used for the default value of
continuation. But as dense as it is with symbols, you can still read it by proceeding
slowly, left to right. Let us try a version of the same line with the verbose modifier and
comments:

>>> pat = r’’’
... (?x) # This is the verbose version
... (?s) # In the pattern, let "." match newlines, if needed
... (?m) # Allow ^ and $ to match every begin- and end-of-line
... ^ # Start the match at the beginning of a line
... .*? # Non-greedily grab everything until the first place
... # where the rest of the pattern matches (if possible)
... $ # End the match at an end-of-line
... (?<! # Only count as a match if the enclosed pattern was not
... # the immediately last thing seen (negative lookbehind)
... \\) # It wasn’t an (escaped) backslash’’’

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 228 --- #248i
i

i
i

i
i

i
i

228 REGULAR EXPRESSIONS

3.2.6 Problem: Identifying URLs and email addresses in texts

A neat feature of many Internet and news clients is their automatic identification of
resources that the applications can act upon. For URL resources, this usually means
making the links “clickable”; for an email address it usually means launching a new let-
ter to the person at the address. Depending on the nature of an application, you could
perform other sorts of actions for each identified resource. For a text processing appli-
cation, the use of a resource is likely to be something more batch-oriented: extraction,
transformation, indexing, or the like.

Fully and precisely implementing RFC1822 (for email addresses) or RFC1738 (for
URLs) is possible within regular expressions. But doing so is probably even more work
than is really needed to identify 99% of resources. Moreover, a significant number of
resources in the “real world” are not strictly compliant with the relevant RFCs—most
applications give a certain leeway to “almost correct” resource identifiers. The utility
below tries to strike approximately the same balance of other well-implemented and
practical applications: get almost everything that was intended to look like a resource,
and almost nothing that was intended not to:

find urls.py

Functions to identify and extract URLs and email addresses

import re, fileinput

pat_url = re.compile(r’’’
(?x)(# verbose identify URLs within text

(http|ftp|gopher) # make sure we find a resource type
:// # ...needs to be followed by colon-slash-slash

(\w+[:.]?){2,} # at least two domain groups, e.g. (gnosis.)(cx)
(/?| # could be just the domain name (maybe w/ slash)

[^ \n\r"]+ # or stuff then space, newline, tab, quote
[\w/]) # resource name ends in alphanumeric or slash

(?=[\s\.,>)’"\]]) # assert: followed by white or clause ending
) # end of match group

’’’)
pat_email = re.compile(r’’’

(?xm) # verbose identify URLs in text (and multiline)
(?=^.{11} # Mail header matcher

(?<!Message-ID:| # rule out Message-ID’s as best possible
In-Reply-To)) # ...and also In-Reply-To

(.*?)(# must grab to email to allow prior lookbehind
([A-Za-z0-9-]+\.)? # maybe an initial part: DAVID.mertz@gnosis.cx

[A-Za-z0-9-]+ # definitely some local user: MERTZ@gnosis.cx
@ # ...needs an at sign in the middle

(\w+\.?){2,} # at least two domain groups, e.g. (gnosis.)(cx)
(?=[\s\.,>)’"\]]) # assert: followed by white or clause ending

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 229 --- #249i
i

i
i

i
i

i
i

3.2 Some Common Tasks 229

) # end of match group
’’’)

extract_urls = lambda s: [u[0] for u in re.findall(pat_url, s)]
extract_email = lambda s: [(e[1]) for e in re.findall(pat_email, s)]

if __name__ == ’__main__’:
for line in fileinput.input():

urls = extract_urls(line)
if urls:

for url in urls:
print fileinput.filename(),’=>’,url

emails = extract_email(line)
if emails:

for email in emails:
print fileinput.filename(),’->’,email

A number of features are notable in the utility above. One point is that everything
interesting is done within the regular expressions themselves. The actual functions
extract urls() and extract email() are each a single line, using the conciseness of
functional-style programming, especially list comprehensions (four or five lines of more
procedural code could be used, but this style helps emphasize where the work is done).
The utility itself prints located resources to STDOUT, but you could do something else
with them just as easily.

A bit of testing of preliminary versions of the regular expressions led me to add a few
complications to them. In part this lets readers see some more exotic features in action;
but in greater part, this helps weed out what I would consider “false positives.” For
URLs we demand at least two domain groups—this rules out LOCALHOST addresses,
if present. However, by allowing a colon to end a domain group, we allow for specified
ports such as http://gnosis.cx:8080/resource/.

Email addresses have one particular special consideration. If the files you are scan-
ning for email addresses happen to be actual mail archives, you will also find Message-
ID strings. The form of these headers is very similar to that of email addresses
(In-Reply-To: headers also contain Message-IDs). By combining a negative look-
behind assertion with some throwaway groups, we can make sure that everything that
gets extracted is not a Message-ID: header line. It gets a little complicated to combine
these things correctly, but the power of it is quite remarkable.

3.2.7 Problem: Pretty-printing numbers

In producing human-readable documents, Python’s default string representation of num-
bers leaves something to be desired. Specifically, the delimiters that normally occur
between powers of 1,000 in written large numerals are not produced by the str() or
repr() functions—which makes reading large numbers difficult. For example:

>>> budget = 12345678.90
>>> print ’The company budget is $%s’ % str(budget)

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 230 --- #250i
i

i
i

i
i

i
i

230 REGULAR EXPRESSIONS

The company budget is $12345678.9
>>> print ’The company budget is %10.2f’ % budget
The company budget is 12345678.90

Regular expressions can be used to transform numbers that are already “stringified”
(an alternative would be to process numeric values by repeated division/remainder
operations, stringifying the chunks). A few basic utility functions are contained in the
module below.

pretty nums.py

Create/manipulate grouped string versions of numbers

import re

def commify(f, digits=2, maxgroups=5, european=0):
template = ’%%1.%df’ % digits
s = template % f
pat = re.compile(r’(\d+)(\d{3})([.,]|$)([.,\d]*)’)
if european:

repl = r’\1.\2\3\4’
else: # could also use locale.localeconv()[’decimal_point’]

repl = r’\1,\2\3\4’
for i in range(maxgroups):

s = re.sub(pat,repl,s)
return s

def uncommify(s):
return s.replace(’,’,’’)

def eurify(s):
s = s.replace(’.’,’\000’) # place holder
s = s.replace(’,’,’.’) # change group delimiter
s = s.replace(’\000’,’,’) # decimal delimiter
return s

def anglofy(s):
s = s.replace(’,’,’\000’) # place holder
s = s.replace(’.’,’,’) # change group delimiter
s = s.replace(’\000’,’.’) # decimal delimiter
return s

vals = (12345678.90, 23456789.01, 34567890.12)
sample = ’’’The company budget is $%s.
Its debt is $%s, against assets
of $%s’’’

“TPiP” — 2006/1/30 — 15:07 — page 231 — #251i
i

i
i

i
i

i
i

3.3 Standard Modules 231

if __name__ == ’__main__’:
print sample % vals, ’\n-----’
print sample % tuple(map(commify, vals)), ’\n-----’
print eurify(sample % tuple(map(commify, vals))), ’\n-----’

The technique used in commify() has virtues and vices. It is quick, simple, and it
works. It is also slightly kludgey inasmuch as it loops through the substitution (and with
the default maxgroups argument, it is no good for numbers bigger than a quintillion;
most numbers you encounter are smaller than this). If purity is a goal—and it probably
should not be—you could probably come up with a single regular expression to do the
whole job. Another quick and convenient technique is the “place holder” idea that was
mentioned in the introductory discussion of the string module.

3.3 Standard Modules

3.3.1 Versions and Optimizations

Rules of Optimization:
Rule 1: Don’t do it.
Rule 2 (for experts only): Don’t do it yet.
—M.A. Jackson

Python has undergone several changes in its regular expression support. regex was
superceded by pre in Python 1.5; pre, in turn, by sre in Python 2.0. Although Python
has continued to include the older modules in its standard library for backwards com-
patibility, the older ones are deprecated when the newer versions are included. From
Python 1.5 forward, the module re has served as a wrapper to the underlying regular
expression engine (sre or pre). But even though Python 2.0+ has used re to wrap sre,
pre is still available (the latter along with its own underlying pcre C extension module
that can technically be used directly).

Each version has generally improved upon its predecessor, but with something as
complicated as regular expressions there are always a few losses with each gain. For
example, sre adds Unicode support and is faster for most operations—but pre has better
optimization of case-insensitive searches. Subtle details of regular expression patterns
might even let the quite-old regex module perform faster than the newer ones. More-
over, optimizing regular expressions can be extremely complicated and dependent upon
specific small version differences.

Readers might start to feel their heads swim with these version details. Don’t panic.
Other than out of historic interest, you really do not need to worry about what im-
plementations underlie regular expression support. The simple rule is just to use the
module re and not think about what it wraps—the interface is compatible between
versions.

The real virtue of regular expressions is that they allow a concise and precise (albeit
somewhat cryptic) description of complex patterns in text. Most of the time, regular
expression operations are fast enough; there is rarely any point in optimizing an appli-
cation past the point where it does what it needs to do fast enough that speed is not a

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 232 --- #252i
i

i
i

i
i

i
i

232 REGULAR EXPRESSIONS

problem. As Knuth famously remarks, “We should forget about small efficiencies, say
about 97% of the time: Premature optimization is the root of all evil.” (“Computer
Programming as an Art” in Literate Programming, CSLI Lecture Notes Number 27,
Stanford University Center for the Study of Languages and Information, 1992).

In case regular expression operations prove to be a genuinely problematic performance
bottleneck in an application, there are four steps you should take in speeding things up.
Try these in order:

1. Think about whether there is a way to simplify the regular expressions involved.
Most especially, is it possible to reduce the likelihood of backtracking during pat-
tern matching? You should always test your beliefs about such simplification,
however; performance characteristics rarely turn out exactly as you expect.

2. Consider whether regular expressions are really needed for the problem at hand.
With surprising frequency, faster and simpler operations in the string module (or,
occasionally, in other modules) do what needs to be done. Actually, this step can
often come earlier than the first one.

3. Write the search or transformation in a faster and lower-level engine, especially
mx.TextTools. Low-level modules will inevitably involve more work and consid-
erably more intense thinking about the problem. But order-of-magnitude speed
gains are often possible for the work.

4. Code the application (or the relevant parts of it) in a different programming
language. If speed is the absolutely first consideration in an application, Assembly,
C, or C++ are going to win. Tools like swig—while outside the scope of this book—
can help you create custom extension modules to perform bottleneck operations.
There is a chance also that if the problem really must be solved with regular
expressions that Perl’s engine will be faster (but not always, by any means).

3.3.2 Simple Pattern Matching

fnmatch � Glob-style pattern matching

The real purpose of the fnmatch module is to match filenames against a pattern. Most
typically, fnmatch is used indirectly through the glob module, where the latter returns
lists of matching files (for example to process each matching file). But fnmatch does not
itself know anything about filesystems, it simply provides a way of checking patterns
against strings. The pattern language used by fnmatch is much simpler than that used by
re, which can be either good or bad, depending on your needs. As a plus, most everyone
who has used a DOS, Windows, OS/2, or Unix command line is already familiar with
the fnmatch pattern language, which is simply shell-style expansions.

Four subpatterns are available in fnmatch patterns. In contrast to re patterns, there
is no grouping and no quantifiers. Obviously, the discernment of matches is much less
with fnmatch than with re. The subpatterns are as follows:

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 233 --- #253i
i

i
i

i
i

i
i

3.3 Standard Modules 233

Glob-style subpatterns

* Match everything that follows (non-greedy).
? Match any single character.
[set] Match one character from a set. A set generally

follows the same rules as a regular expression
character class. It may include zero or more ranges
and zero or more enumerated characters.

[!set] Match any one character that is not in the set.

A pattern is simply the concatenation of one or more subpatterns.

FUNCTIONS

fnmatch.fnmatch(s, pat)

Test whether the pattern pat matches the string s. On case-insensitive filesys-
tems, the match is case-insensitive. A cross-platform script should avoid
fnmatch.fnmatch() except when used to match actual filenames.

>>> from fnmatch import fnmatch
>>> fnmatch(’this’, ’[T]?i*’) # On Unix-like system
0

>>> fnmatch(’this’, ’[T]?i*’) # On Win-like system
1

See Also: fnmatch.fnmatchcase() 233;

fnmatch.fnmatchcase(s, pat)

Test whether the pattern pat matches the string s. The match is case-sensitive
regardless of platform.

>>> from fnmatch import fnmatchcase
>>> fnmatchcase(’this’, ’[T]?i*’)
0
>>> from string import upper
>>> fnmatchcase(upper(’this’), upper(’[T]?i*’))
1

See Also: fnmatch.fnmatch() 233;

fnmatch.filter(lst, pat)

Return a new list containing those elements of lst that match pat. The match-
ing behaves like fnmatch.fnmatch() rather than like fnmatch.fnmatchcase() , so
the results can be OS-dependent. The example below shows a (slower) means of
performing a case-sensitive match on all platforms.

“TPiP” — 2006/1/30 — 15:07 — page 234 — #254i
i

i
i

i
i

i
i

234 REGULAR EXPRESSIONS

>>> import fnmatch # Assuming Unix-like system
>>> fnmatch.filter([’This’,’that’,’other’,’thing’], ’[Tt]?i*’)
[’This’, ’thing’]
>>> fnmatch.filter([’This’,’that’,’other’,’thing’], ’[a-z]*’)
[’that’, ’other’, ’thing’]
>>> from fnmatch import fnmatchcase # For all platforms
>>> mymatch = lambda s: fnmatchcase(s, ’[a-z]*’)
>>> filter(mymatch, [’This’,’that’,’other’,’thing’])
[’that’, ’other’, ’thing’]

For an explanation of the built-in function filter() function, see Appendix A.

See Also: fnmatch.fnmatch() 233; fnmatch.fnmatchcase() 233;

See Also: glob 64; re 236;

3.3.3 Regular Expression Modules

pre � Pre-sre module

pcre � Underlying C module for pre

The Python-written module pre, and the C-written pcre module that implements the
actual regular expression engine, are the regular expression modules for Python 1.5–1.6.
For complete backwards compatibility, they continue to be included in Python 2.0+.
Importing the symbol space of pre is intended to be equivalent to importing re (i.e.,
sre at one level of indirection) in Python 2.0+, with the exception of the handling of
Unicode strings, which pre cannot do. That is, the lines below are almost equivalent,
other than potential performance differences in specific operations:

>>> import pre as re
>>> import re

However, there is very rarely any reason to use pre in Python 2.0+. Anyone deciding
to import pre should know far more about the internals of regular expression engines
than is contained in this book. Of course, prior to Python 2.0, importing re simply
imports pcre itself (and the Python wrappers later renamed pre).

See Also: re 236;

“TPiP” — 2006/1/30 — 15:07 — page 235 — #255i
i

i
i

i
i

i
i

3.3 Standard Modules 235

reconvert � Convert [regex] patterns to [re] patterns

This module exists solely for conversion of old regular expressions from scripts written
for pre-1.5 versions of Python, or possibly from regular expression patterns used with
tools such as sed, awk, or grep. Conversions are not guaranteed to be entirely correct,
but reconvert provides a starting point for a code update.

FUNCTIONS

reconvert.convert(s)

Return as a string the modern re-style pattern that corresponds to the regex-style
pattern passed in argument s. For example:

>>> import reconvert
>>> reconvert.convert(r’\<\(cat\|dog\)\>’)
’\\b(cat|dog)\\b’
>>> import re
>>> re.findall(r’\b(cat|dog)\b’, "The dog chased a bobcat")
[’dog’]

See Also: regex 235;

regex � Deprecated regular expression module

The regex module is distributed with recent Python versions only to ensure strict back-
wards compatibility of scripts. Starting with Python 2.1, importing regex will produce
a DeprecationWarning:

% python -c "import regex"
-c:1: DeprecationWarning: the regex module is deprecated;
please use the re module

For all users of Python 1.5+, regex should not be used in new code, and efforts should
be made to convert its usage to re calls.

See Also: reconvert 235;

“TPiP” — 2006/1/30 — 15:07 — page 236 — #256i
i

i
i

i
i

i
i

236 REGULAR EXPRESSIONS

sre � Secret Labs Regular Expression Engine

Support for regular expressions in Python 2.0+ is provided by the module sre. The
module re simply wraps sre in order to have a backwards- and forwards-compatible
name. There will almost never be any reason to import sre itself; some later version
of Python might eventually deprecate sre also. As with pre, anyone deciding to import
sre itself should know far more about the internals of regular expression engines than is
contained in this book.

See Also: re 236;

re � Regular expression operations

PATTERN SUMMARY

Figure 3.1 lists regular expression patterns; following that are explanations of each
pattern. For more detailed explanation of patterns in action, consult the tutorial and/or
problems contained in this chapter. The utility function re show() defined in the
tutorial is used in some descriptions.

ATOMIC OPERATORS

Plain symbol

Any character not described below as having a special meaning simply represents
itself in the target string. An “A” matches exactly one “A” in the target, for
example.

Escape: ”\”
The escape character starts a special sequence. The special characters listed in this
pattern summary must be escaped to be treated as literal character values (including
the escape character itself). The letters “A”, “b”, “B”, “d”, “D”, “s”, “S”, “w”,
“W”, and “Z” specify special patterns if preceded by an escape. The escape character
may also introduce a backreference group with up to two decimal digits. The escape
is ignored if it precedes a character with no special escaped meaning.

Since Python string escapes overlap regular expression escapes, it is usually better to
use raw strings for regular expressions that potentially include escapes. For example:

>>> from re_show import re_show
>>> re_show(r’\$ \\ \^’, r’\$ \\ \^ $ \ ^’)
\$ \\ \^ {$ \ ^}

>>> re_show(r’\d \w’, ’7 a 6 # ! C’)
{7 a} 6 # ! C

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 237 --- #257i
i

i
i

i
i

i
i

3.3 Standard Modules 237

Summary of Regular Expression Patterns
Atoms Quantifiers

Plain symbol: ... Universal quantif ier: *
Escape: \ Non−greedy universal quantifier: *?

Grouping operators: Existential quantif ier: +
Backreference: Non−greedy existential quantif ier: +?

Character class: [] Potentiality quantif ier: ?
Digit character class: \d Non−greedy potentiality quantif ier: ??

Non−digit character class: \D Exact numeric quantif ier:
Alphanumeric char class: \w Lower−bound quantif ier:

Non−alphanum char class: \W Bounded numeric quantif ier:
Whitespace char class: \s Non−greedy bounded quantif ier:

Non−whitespace char class: \S
Wildcard character: . Group−Like Patterns

Beginning of line: ^ Pattern modifiers: (?Limsux)
Beginning of string: \A Comments: (?#...)

End of line: $ Non−backreferenced atom: (?:...)
End of string: \Z Positive Lookahead assertion: (?=...)

Word boundary: \b Negative Lookahead assertion: (?!...)
Non−word boundary: \B Positive Lookbehind assertion: (?<=...)
Alternation operator: | Negative Lookbehind assertion: (?<!...)

Named group identif ier:
Constants Named group backreference:

re.IGNORECASE re.I
re.LOCALE re.L

re.MULTILINE re.M
re.DOTALL re.S
re.UNICODE re.U
re.VERBOSE re.X

()
\#,\##

{num}
{min,}

{min,max}
{min,max}?

(?P<name>)
(?P=name)

Figure 3.1: Regular expression patterns

Grouping operators: ”(”, ”)”

Parentheses surrounding any pattern turn that pattern into a group (possibly within
a larger pattern). Quantifiers refer to the immediately preceding group, if one is
defined, otherwise to the preceding character or character class. For example:

>>> from re_show import re_show
>>> re_show(r’abc+’, ’abcabc abc abccc’)
{abc}{abc} {abc} {abccc}

>>> re_show(r’(abc)+’, ’abcabc abc abccc’)

“TPiP” — 2006/1/30 — 15:07 — page 238 — #258i
i

i
i

i
i

i
i

238 REGULAR EXPRESSIONS

{abcabc} {abc} {abc}cc

Backreference: ”\d”, ”\dd”

A backreference consists of the escape character followed by one or two decimal
digits. The first digit in a back reference may not be a zero. A backreference refers
to the same string matched by an earlier group, where the enumeration of previous
groups starts with 1. For example:

>>> from re_show import re_show
>>> re_show(r’([abc])(.*)\1’, ’all the boys are coy’)
{all the boys a}re coy

An attempt to reference an undefined group will raise an error.

Character classes: ”[”, ”]”

Specify a set of characters that may occur at a position. The list of allowable
characters may be enumerated with no delimiter. Predefined character classes, such
as “\d”, are allowed within custom character classes. A range of characters may
be indicated with a dash. Multiple ranges are allowed within a class. If a dash is
meant to be included in the character class itself, it should occur as the first listed
character. A character class may be complemented by beginning it with a caret
(“ˆ”). If a caret is meant to be included in the character class itself, it should occur
in a noninitial position. Most special characters, such as “$”, “.”, and “(”, lose their
special meaning inside a character class and are merely treated as class members.
The characters “]”, “\”, and “-” should be escaped with a backslash, however. For
example:

>>> from re_show import re_show
>>> re_show(r’[a-fA-F]’, ’A X c G’)
{A} X {c} G

>>> re_show(r’[-A$BC\]]’, r’A X - \] [$’)
{A} X {-} \ {]} [{$}

>>> re_show(r’[^A-Fa-f]’, r’A X c G’)
A{ }{X}{ }c{ }{G}

Digit character class: ”\d”

The set of decimal digits. Same as “0-9”.

Non-digit character class: ”\D”

The set of all characters except decimal digits. Same as “ˆ0-9”.

“TPiP” — 2006/1/30 — 15:07 — page 239 — #259i
i

i
i

i
i

i
i

3.3 Standard Modules 239

Alphanumeric character class: ”\w”

The set of alphanumeric characters. If re.LOCALE and re.UNICODE modifiers are
not set, this is the same as [a-zA-Z0-9]. Otherwise, the set includes any other
alphanumeric characters appropriate to the locale or with an indicated Unicode
character property of alphanumeric.

Non-alphanumeric character class: ”\W”

The set of nonalphanumeric characters. If re.LOCALE and re.UNICODE modi-
fiers are not set, this is the same as [^a-zA-Z0-9]. Otherwise, the set includes
any other characters not indicated by the locale or Unicode character properties as
alphanumeric.

Whitespace character class: ”\s”

The set of whitespace characters. Same as [\t\n\r\f\v].

Non-whitespace character class: ”\S”

The set of nonwhitespace characters. Same as [^ \t\n\r\f\v].

Wildcard character: ”.”

The period matches any single character at a position. If the re.DOTALL modifier
is specified, “.” will match a newline. Otherwise, it will match anything other than
a newline.

Beginning of line: ”ˆ”

The caret will match the beginning of the target string. If the re.MULTILINE
modifier is specified, “ˆ” will match the beginning of each line within the target
string.

Beginning of string: ”\A”

The “\A” will match the beginning of the target string. If the re.MULTILINE
modifier is not specified, “\A” behaves the same as “ˆ”. But even if the modifier is
used, “\A” will match only the beginning of the entire target.

End of line: ”$”

The dollar sign will match the end of the target string. If the re.MULTILINE
modifier is specified, “$” will match the end of each line within the target string.

End of string: ”\Z”

The “\Z” will match the end of the target string. If the re.MULTILINE modifier is
not specified, “\Z” behaves the same as “$”. But even if the modifier is used, “\Z”
will match only the end of the entire target.

Word boundary: ”\b”

The “\b” will match the beginning or end of a word (where a word is defined as a
sequence of alphanumeric characters according to the current modifiers). Like “ˆ”
and “$”, “\b” is a zero-width match.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 240 --- #260i
i

i
i

i
i

i
i

240 REGULAR EXPRESSIONS

Non-word boundary: ”\B”

The “\B” will match any position that is not the beginning or end of a word (where
a word is defined as a sequence of alphanumeric characters according to the current
modifiers). Like “ˆ” and “$”, “\B” is a zero-width match.

Alternation operator: ”|”
The pipe symbol indicates a choice of multiple atoms in a position. Any of the
atoms (including groups) separated by a pipe will match. For example:

>>> from re_show import re_show
>>> re_show(r’A|c|G’, r’A X c G’)
{A} X {c} {G}

>>> re_show(r’(abc)|(xyz)’, ’abc efg xyz lmn’)
{abc} efg {xyz} lmn

QUANTIFIERS

Universal quantifier: ”*”

Match zero or more occurrences of the preceding atom. The “*” quantifier is happy
to match an empty string. For example:

>>> from re_show import re_show
>>> re_show(’a* ’, ’ a aa aaa aaaa b’)
{ }{a }{aa }{aaa }{aaaa }b

Non-greedy universal quantifier: ”*?”

Match zero or more occurrences of the preceding atom, but try to match as few
occurrences as allowable. For example:

>>> from re_show import re_show
>>> re_show(’<.*>’, ’<> <tag>Text</tag>’)
{<> <tag>Text</tag>}

>>> re_show(’<.*?>’, ’<> <tag>Text</tag>’)
{<>} {<tag>}Text{</tag>}

Existential quantifier: ”+”

Match one or more occurrences of the preceding atom. A pattern must actually
occur in the target string to satisfy the “+” quantifier. For example:

>>> from re_show import re_show
>>> re_show(’a+ ’, ’ a aa aaa aaaa b’)
{a }{aa }{aaa }{aaaa }b

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 241 --- #261i
i

i
i

i
i

i
i

3.3 Standard Modules 241

Non-greedy existential quantifier: ”+?”

Match one or more occurrences of the preceding atom, but try to match as few
occurrences as allowable. For example:

>>> from re_show import re_show
>>> re_show(’<.+>’, ’<> <tag>Text</tag>’)
{<> <tag>Text</tag>}

>>> re_show(’<.+?>’, ’<> <tag>Text</tag>’)
{<> <tag>}Text{</tag>}

Potentiality quantifier: ”?”

Match zero or one occurrence of the preceding atom. The “?” quantifier is happy
to match an empty string. For example:

>>> from re_show import re_show
>>> re_show(’a? ’, ’ a aa aaa aaaa b’)
{ }{a }a{a }aa{a }aaa{a }b

Non-greedy potentiality quantifier: ”??”

Match zero or one occurrence of the preceding atom, but match zero if possible. For
example:

>>> from re_show import re_show
>>> re_show(’ a?’, ’ a aa aaa aaaa b’)
{ a}{ a}a{ a}aa{ a}aaa{ }b

>>> re_show(’ a??’, ’ a aa aaa aaaa b’)
{ }a{ }aa{ }aaa{ }aaaa{ }b

Exact numeric quantifier: ”{num}”
Match exactly num occurrences of the preceding atom. For example:

>>> from re_show import re_show
>>> re_show(’a{3} ’, ’ a aa aaa aaaa b’)
a aa {aaa }a{aaa }b

Lower-bound quantifier: ”{min,}”
Match at least min occurrences of the preceding atom. For example:

>>> from re_show import re_show
>>> re_show(’a{3,} ’, ’ a aa aaa aaaa b’)
a aa {aaa }{aaaa }b

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 242 --- #262i
i

i
i

i
i

i
i

242 REGULAR EXPRESSIONS

Bounded numeric quantifier: ”{min,max}”
Match at least min and no more than max occurrences of the preceding atom. For
example:

>>> from re_show import re_show
>>> re_show(’a{2,3} ’, ’ a aa aaa aaaa b’)
a {aa }{aaa }a{aaa }

Non-greedy bounded quantifier: ”{min,max}?”

Match at least min and no more than max occurrences of the preceding atom, but try
to match as few occurrences as allowable. Scanning is from the left, so a nonminimal
match may be produced in terms of right-side groupings. For example:

>>> from re_show import re_show
>>> re_show(’ a{2,4}?’, ’ a aa aaa aaaa b’)
a{ aa}{ aa}a{ aa}aa b

>>> re_show(’a{2,4}? ’, ’ a aa aaa aaaa b’)
a {aa }{aaa }{aaaa }b

GROUP-LIKE PATTERNS

Python regular expressions may contain a number of pseudo-group elements that con-
dition matches in some manner. With the exception of named groups, pseudo-groups
are not counted in backreferencing. All pseudo-group patterns have the form “(?. . .)”.

Pattern modifiers: ”(?Limsux)”

The pattern modifiers should occur at the very beginning of a regular expression
pattern. One or more letters in the set “Limsux” may be included. If pattern
modifiers are given, the interpretation of the pattern is changed globally. See the
discussion of modifier constants below or the tutorial for details.

Comments: ”(?#. . .)”

Create a comment inside a pattern. The comment is not enumerated in backrefer-
ences and has no effect on what is matched. In most cases, use of the “(?x)” modifier
allows for more clearly formatted comments than does “(?#. . .)”.

>>> from re_show import re_show
>>> re_show(r’The(?#words in caps) Cat’, ’The Cat in the Hat’)
{The Cat} in the Hat

Non-backreferenced atom: ”(?:. . .)”

Match the pattern “. . . ”, but do not include the matched string as a backreferencable
group. Moreover, methods like re.match.group() will not see the pattern inside a
non-backreferenced atom.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 243 --- #263i
i

i
i

i
i

i
i

3.3 Standard Modules 243

>>> from re_show import re_show
>>> re_show(r’(?:\w+) (\w+).* \1’, ’abc xyz xyz abc’)
{abc xyz xyz} abc

>>> re_show(r’(\w+) (\w+).* \1’, ’abc xyz xyz abc’)
{abc xyz xyz abc}

Positive Lookahead assertion: ”(?=. . .)”

Match the entire pattern only if the subpattern “. . . ” occurs next. But do not
include the target substring matched by “. . . ” as part of the match (however, some
other subpattern may claim the same characters, or some of them).

>>> from re_show import re_show
>>> re_show(r’\w+ (?=xyz)’, ’abc xyz xyz abc’)
{abc }{xyz }xyz abc

Negative Lookahead assertion: ”(?!. . .)”

Match the entire pattern only if the subpattern “. . . ” does not occur next.

>>> from re_show import re_show
>>> re_show(r’\w+ (?!xyz)’, ’abc xyz xyz abc’)
abc xyz {xyz }abc

Positive Lookbehind assertion: ”(?<=. . .)”

Match the rest of the entire pattern only if the subpattern “. . . ” occurs immediately
prior to the current match point. But do not include the target substring matched
by “. . . ” as part of the match (the same characters may or may not be claimed by
some prior group(s) in the entire pattern). The pattern “. . . ” must match a fixed
number of characters and therefore not contain general quantifiers.

>>> from re_show import re_show
>>> re_show(r’\w+(?<=[A-Z]) ’, ’Words THAT end in capS X’)
Words {THAT }end in {capS }X

Negative Lookbehind assertion: ”(?<!. . .)”

Match the rest of the entire pattern only if the subpattern “. . . ” does not occur
immediately prior to the current match point. The same characters may or may not
be claimed by some prior group(s) in the entire pattern. The pattern “. . . ” must
match a fixed number of characters and therefore not contain general quantifiers.

>>> from re_show import re_show
>>> re_show(r’\w+(?<![A-Z]) ’, ’Words THAT end in capS X’)
{Words }THAT {end }{in }capS X

“TPiP” — 2006/1/30 — 15:07 — page 244 — #264i
i

i
i

i
i

i
i

244 REGULAR EXPRESSIONS

Named group identifier: ”(?P<name>)”

Create a group that can be referred to by the name name as well as in enumerated
backreferences. The forms below are equivalent.

>>> from re_show import re_show
>>> re_show(r’(\w+) (\w+).* \1’, ’abc xyz xyz abc’)
{abc xyz xyz abc}

>>> re_show(r’(?P<first>\w+) (\w+).* (?P=first)’, ’abc xyz xyz abc’)
{abc xyz xyz abc}

>>> re_show(r’(?P<first>\w+) (\w+).* \1’, ’abc xyz xyz abc’)
{abc xyz xyz abc}

Named group backreference: ”(?P=name)”

Backreference a group by the name name rather than by escaped group number. The
group name must have been defined earlier by (?P<name>), or an error is raised.

CONSTANTS

A number of constants are defined in the re modules that act as modifiers to many re
functions. These constants are independent bit-values, so that multiple modifiers may
be selected by bitwise disjunction of modifiers. For example:

>>> import re
>>> c = re.compile(’cat|dog’, re.IGNORECASE | re.UNICODE)

re.I, re.IGNORECASE

Modifier for case-insensitive matching. Lowercase and uppercase letters are inter-
changeable in patterns modified with this modifier. The prefix (?i) may also be
used inside the pattern to achieve the same effect.

re.L, re.LOCALE

Modifier for locale-specific matching of \w, \W, \b, and \B. The prefix (?L) may also
be used inside the pattern to achieve the same effect.

re.M, re.MULTILINE

Modifier to make ^ and $ match the beginning and end, respectively, of each line in
the target string rather than the beginning and end of the entire target string. The
prefix (?m) may also be used inside the pattern to achieve the same effect.

re.S, re.DOTALL

Modifier to allow . to match a newline character. Otherwise, . matches every
character except newline characters. The prefix (?s) may also be used inside the
pattern to achieve the same effect.

“TPiP” — 2006/1/30 — 15:07 — page 245 — #265i
i

i
i

i
i

i
i

3.3 Standard Modules 245

re.U, re.UNICODE

Modifier for Unicode-property matching of \w, \W, \b, and \B. Only relevant for
Unicode targets. The prefix (?u) may also be used inside the pattern to achieve the
same effect.

re.X, re.VERBOSE

Modifier to allow patterns to contain insignificant whitespace and end-of-line com-
ments. Can significantly improve readability of patterns. The prefix (?x) may also
be used inside the pattern to achieve the same effect.

re.engine

The regular expression engine currently in use. Only supported in Python 2.0+,
where it normally is set to the string sre. The presence and value of this constant
can be checked to make sure which underlying implementation is running, but this
check is rarely necessary.

FUNCTIONS

For all re functions, where a regular expression pattern pattern is an argument, pattern
may be either a compiled regular expression or a string.

re.escape(s)

Return a string with all nonalphanumeric characters escaped. This (slightly scatter-
shot) conversion makes an arbitrary string suitable for use in a regular expression
pattern (matching all literals in original string).

>>> import re
>>> print re.escape("(*@&^$@|")
\(*\@\&\^\$\@\|

re.findall(pattern=. . . , string=. . .)

Return a list of all nonoverlapping occurrences of pattern in string. If pattern
consists of several groups, return a list of tuples where each tuple contains a match
for each group. Length-zero matches are included in the returned list, if they occur.

>>> import re
>>> re.findall(r’\b[a-z]+\d+\b’, ’abc123 xyz666 lmn-11 def77’)
[’abc123’, ’xyz666’, ’def77’]
>>> re.findall(r’\b([a-z]+)(\d+)\b’, ’abc123 xyz666 lmn-11 def77’)
[(’abc’, ’123’), (’xyz’, ’666’), (’def’, ’77’)]

See Also: re.search() 249; mx.TextTools.findall() 312;

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 246 --- #266i
i

i
i

i
i

i
i

246 REGULAR EXPRESSIONS

re.purge()

Clear the regular expression cache. The re module keeps a cache of implicitly
compiled regular expression patterns. The number of patterns cached differs be-
tween Python versions, with more recent versions generally keeping 100 items in the
cache. When the cache space becomes full, it is flushed automatically. You could
use re.purge() to tune the timing of cache flushes. However, such tuning is ap-
proximate at best: Patterns that are used repeatedly are much better off explicitly
compiled with re.compile() and then used explicitly as named objects.

re.split(pattern=. . . , string=. . . [,maxsplit=0])

Return a list of substrings of the second argument string. The first argument
pattern is a regular expression that delimits the substrings. If pattern contains
groups, the groups are included in the resultant list. Otherwise, those substrings
that match pattern are dropped, and only the substrings between occurrences of
pattern are returned.

If the third argument maxsplit is specified as a positive integer, no more than
maxsplit items are parsed into the list, with any leftover contained in the final list
element.

>>> import re
>>> re.split(r’\s+’, ’The Cat in the Hat’)
[’The’, ’Cat’, ’in’, ’the’, ’Hat’]
>>> re.split(r’\s+’, ’The Cat in the Hat’, maxsplit=3)
[’The’, ’Cat’, ’in’, ’the Hat’]
>>> re.split(r’(\s+)’, ’The Cat in the Hat’)
[’The’, ’ ’, ’Cat’, ’ ’, ’in’, ’ ’, ’the’, ’ ’, ’Hat’]
>>> re.split(r’(a)(t)’, ’The Cat in the Hat’)
[’The C’, ’a’, ’t’, ’ in the H’, ’a’, ’t’, ’’]
>>> re.split(r’a(t)’, ’The Cat in the Hat’)
[’The C’, ’t’, ’ in the H’, ’t’, ’’]

See Also: string.split() 142;

re.sub(pattern=. . . , repl=. . . , string=. . . [,count=0])

Return the string produced by replacing every nonoverlapping occurrence of the first
argument pattern with the second argument repl in the third argument string.
If the fourth argument count is specified, no more than count replacements will be
made.

The second argument repl is most often a regular expression pattern as a string.
Backreferences to groups matched by pattern may be referred to by enumerated
backreferences using the usual escaped numbers. If backreferences in pattern are
named, they may also be referred to using the form \g<name> (where name is the
name given the group in pat). As well, enumerated backreferences may optionally

“TPiP” — 2006/1/30 — 15:07 — page 247 — #267i
i

i
i

i
i

i
i

3.3 Standard Modules 247

be referred to using the form \g<num>, where num is an integer between 1 and 99.
Some examples:

>>> import re
>>> s = ’abc123 xyz666 lmn-11 def77’
>>> re.sub(r’\b([a-z]+)(\d+)’, r’\2\1 :’, s)
’123abc : 666xyz : lmn-11 77def :’
>>> re.sub(r’\b(?P<lets>[a-z]+)(?P<nums>\d+)’, r’\g<nums>\g<1> :’, s)
’123abc : 666xyz : lmn-11 77def :’
>>> re.sub(’A’, ’X’, ’AAAAAAAAAA’, count=4)
’XXXXAAAAAA’

A variant manner of calling re.sub() uses a function object as the second argument
repl. Such a callback function should take a MatchObject as an argument and
return a string. The repl function is invoked for each match of pattern, and the
string it returns is substituted in the result for whatever pattern matched. For
example:

>>> import re
>>> sub_cb = lambda pat: ’(’+‘len(pat.group())‘+’)’+pat.group()
>>> re.sub(r’\w+’, sub_cb, ’The length of each word’)
’(3)The (6)length (2)of (4)each (4)word’

Of course, if repl is a function object, you can take advantage of side effects rather
than (or instead of) simply returning modified strings. For example:

>>> import re
>>> def side_effects(match):
... # Arbitrarily complicated behavior could go here...
... print len(match.group()), match.group()
... return match.group() # unchanged match
...
>>> new = re.sub(r’\w+’, side_effects, ’The length of each word’)
3 The
6 length
2 of
4 each
4 word
>>> new
’The length of each word’

Variants on callbacks with side effects could be turned into complete string-driven
programs (in principle, a parser and execution environment for a whole programming
language could be contained in the callback function, for example).

“TPiP” — 2006/1/30 — 15:07 — page 248 — #268i
i

i
i

i
i

i
i

248 REGULAR EXPRESSIONS

See Also: string.replace() 139;

re.subn(pattern=. . . , repl=. . . , string=. . . [,count=0])

Identical to re.sub() , except return a 2-tuple with the new string and the number
of replacements made.

>>> import re
>>> s = ’abc123 xyz666 lmn-11 def77’
>>> re.subn(r’\b([a-z]+)(\d+)’, r’\2\1 :’, s)
(’123abc : 666xyz : lmn-11 77def :’, 3)

See Also: re.sub() 246;

CLASS FACTORIES

As with some other Python modules, primarily ones written in C, re does not contain
true classes that can be specialized. Instead, re has several factory-functions that return
instance objects. The practical difference is small for most users, who will simply use
the methods and attributes of returned instances in the same manner as those produced
by true classes.

re.compile(pattern=. . . [,flags=. . .])

Return a PatternObject based on pattern string pattern. If the second argument
flags is specified, use the modifiers indicated by flags. A PatternObject is inter-
changeable with a pattern string as an argument to re functions. However, a pattern
that will be used frequently within an application should be compiled in advance to
assure that it will not need recompilation during execution. Moreover, a compiled
PatternObject has a number of methods and attributes that achieve effects equiva-
lent to re functions, but which are somewhat more readable in some contexts. For
example:

>>> import re
>>> word = re.compile(’[A-Za-z]+’)

>>> word.findall(’The Cat in the Hat’)
[’The’, ’Cat’, ’in’, ’the’, ’Hat’]
>>> re.findall(word, ’The Cat in the Hat’)
[’The’, ’Cat’, ’in’, ’the’, ’Hat’]

re.match(pattern=. . . , string=. . . [,flags=. . .])

Return a MatchObject if an initial substring of the second argument string matches
the pattern in the first argument pattern. Otherwise return None. A MatchObject,
if returned, has a variety of methods and attributes to manipulate the matched
pattern—but notably a MatchObject is not itself a string.

“TPiP” — 2006/1/30 — 15:07 — page 249 — #269i
i

i
i

i
i

i
i

3.3 Standard Modules 249

Since re.match() only matches initial substrings, re.search() is more general.
re.search() can be constrained to itself match only initial substrings by prepend-
ing “\A” to the pattern matched.

See Also: re.search() 249; re.compile.match() 250;

re.search(pattern=. . . , string=. . . [,flags=. . .])

Return a MatchObject corresponding to the leftmost substring of the second argu-
ment string that matches the pattern in the first argument pattern. If no match
is possible, return None. A matched string can be of zero length if the pattern al-
lows that (usually not what is actually desired). A MatchObject, if returned, has a
variety of methods and attributes to manipulate the matched pattern—but notably
a MatchObject is not itself a string.

See Also: re.match() 248; re.compile.search() 250;

METHODS AND ATTRIBUTES

re.compile.findall(s)

Return a list of nonoverlapping occurrences of the PatternObject in s. Same as
re.findall() called with the PatternObject.

SEE ALSO re.findall()

re.compile.flags

The numeric sum of the flags passed to re.compile() in creating the PatternObject.
No formal guarantee is given by Python as to the values assigned to modifier flags,
however. For example:

>>> import re
>>> re.I,re.L,re.M,re.S,re.X
(2, 4, 8, 16, 64)
>>> c = re.compile(’a’, re.I | re.M)
>>> c.flags
10

re.compile.groupindex

A dictionary mapping group names to group numbers. If no named groups are used
in the pattern, the dictionary is empty. For example:

>>> import re
>>> c = re.compile(r’(\d+)(\[A-Z]+)([a-z]+)’)
>>> c.groupindex
{}
>>> c=re.compile(r’(?P<nums>\d+)(?P<caps>\[A-Z]+)(?P<lwrs>[a-z]+)’)
>>> c.groupindex
{’nums’: 1, ’caps’: 2, ’lwrs’: 3}

“TPiP” — 2006/1/30 — 15:07 — page 250 — #270i
i

i
i

i
i

i
i

250 REGULAR EXPRESSIONS

re.compile.match(s [,start [,end]])

Return a MatchObject if an initial substring of the first argument s matches the
PatternObject. Otherwise, return None. A MatchObject, if returned, has a vari-
ety of methods and attributes to manipulate the matched pattern—but notably a
MatchObject is not itself a string.

In contrast to the similar function re.match() , this method accepts optional second
and third arguments start and end that limit the match to substring within s. In
most respects specifying start and end is similar to taking a slice of s as the first
argument. But when start and end are used, “ˆ” will only match the true start of
s. For example:

>>> import re
>>> s = ’abcdefg’
>>> c = re.compile(’^b’)
>>> print c.match(s, 1)
None
>>> c.match(s[1:])
<SRE_Match object at 0x10c440>
>>> c = re.compile(’.*f$’)
>>> c.match(s[:-1])
<SRE_Match object at 0x116d80>
>>> c.match(s,1,6)
<SRE_Match object at 0x10c440>

See Also: re.match() 248; re.compile.search() 250;

re.compile.pattern

The pattern string underlying the compiled MatchObject.

>>> import re
>>> c = re.compile(’^abc$’)
>>> c.pattern
’^abc$’

re.compile.search(s [,start [,end]])

Return a MatchObject corresponding to the leftmost substring of the first argument
string that matches the PatternObject. If no match is possible, return None. A
matched string can be of zero length if the pattern allows that (usually not what
is actually desired). A MatchObject, if returned, has a variety of methods and
attributes to manipulate the matched pattern—but notably a MatchObject is not
itself a string.

“TPiP” — 2006/1/30 — 15:07 — page 251 — #271i
i

i
i

i
i

i
i

3.3 Standard Modules 251

In contrast to the similar function re.search() , this method accepts optional sec-
ond and third arguments start and end that limit the match to a substring within
s. In most respects specifying start and end is similar to taking a slice of s as the
first argument. But when start and end are used, “ˆ” will only match the true
start of s. For example:

>>> import re
>>> s = ’abcdefg’
>>> c = re.compile(’^b’)
>>> c = re.compile(’^b’)
>>> print c.search(s, 1),c.search(s[1:])
None <SRE_Match object at 0x117980>
>>> c = re.compile(’.*f$’)
>>> print c.search(s[:-1]),c.search(s,1,6)
<SRE_Match object at 0x51040> <SRE_Match object at 0x51040>

See Also: re.search() 249; re.compile.match() 250;

re.compile.split(s [,maxsplit])

Return a list of substrings of the first argument s. If thePatternObject contains
groups, the groups are included in the resultant list. Otherwise, those substrings
that match PatternObject are dropped, and only the substrings between occurrences
of pattern are returned.

If the second argument maxsplit is specified as a positive integer, no more than
maxsplit items are parsed into the list, with any leftover contained in the final list
element.

re.compile.split() is identical in behavior to re.split() , simply spelled slightly
differently. See the documentation of the latter for examples of usage.

See Also: re.split() 246;

re.compile.sub(repl, s [,count=0])

Return the string produced by replacing every nonoverlapping occurrence of the
PatternObject with the first argument repl in the second argument string. If the
third argument count is specified, no more than count replacements will be made.

The first argument repl may be either a regular expression pattern as a string or a
callback function. Backreferences may be named or enumerated.

re.compile.sub() is identical in behavior to re.sub() , simply spelled slightly
differently. See the documentation of the latter for a number of examples of usage.

See Also: re.sub() 246; re.compile.subn() 252;

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 252 --- #272i
i

i
i

i
i

i
i

252 REGULAR EXPRESSIONS

re.compile.subn()

Identical to re.compile.sub() , except return a 2-tuple with the new string and
the number of replacements made.

re.compile.subn() is identical in behavior to re.subn() , simply spelled slightly
differently. See the documentation of the latter for examples of usage.

See Also: re.subn() 248; re.compile.sub() 251;

Note: The arguments to each “MatchObject” method are listed on the re.match()

line, with ellipses given on the re.search() line. All arguments are identical since
re.match() and re.search() return the very same type of object.

re.match.end([group])
re.search.end([group])

The index of the end of the target substring matched by the MatchObject. If the
argument group is specified, return the ending index of that specific enumerated
group. Otherwise, return the ending index of group 0 (i.e., the whole match). If
group exists but is the part of an alternation operator that is not used in the
current match, return -1. If re.search.end() returns the same non-negative value
as re.search.start() , then group is a zero-width substring.

>>> import re
>>> m = re.search(’(\w+)((\d*)|)(\w+)’,’The Cat in the Hat’)
>>> m.groups()
(’The’, ’ ’, None, ’Cat’)
>>> m.end(0), m.end(1), m.end(2), m.end(3), m.end(4)
(7, 3, 4, -1, 7)

re.match.endpos, re.search.endpos

The end position of the search. If re.compile.search() specified an end argument,
this is the value, otherwise it is the length of the target string. If re.search() or
re.match() are used for the search, the value is always the length of the target
string.

See Also: re.compile.search() 250; re.search() 249; re.match() 248;

re.match.expand(template)
re.search.expand(template)

Expand backreferences and escapes in the argument template based on the patterns
matched by the MatchObject. The expansion rules are the same as for the repl
argument to re.sub() . Any nonescaped characters may also be included as part of
the resultant string. For example:

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 253 --- #273i
i

i
i

i
i

i
i

3.3 Standard Modules 253

>>> import re
>>> m = re.search(’(\w+) (\w+)’,’The Cat in the Hat’)
>>> m.expand(r’\g<2> : \1’)
’Cat : The’

re.match.group([group [,. . .]])
re.search.group([group [,. . .]])

Return a group or groups from the MatchObject. If no arguments are specified,
return the entire matched substring. If one argument group is specified, return
the corresponding substring of the target string. If multiple arguments group1,
group2, ... are specified, return a tuple of corresponding substrings of the target.

>>> import re
>>> m = re.search(r’(\w+)(/)(\d+)’,’abc/123’)
>>> m.group()
’abc/123’
>>> m.group(1)
’abc’
>>> m.group(1,3)
(’abc’, ’123’)

See Also: re.search.groups() 253; re.search.groupdict() 253;

re.match.groupdict([defval])
re.search.groupdict([defval])

Return a dictionary whose keys are the named groups in the pattern used for the
match. Enumerated but unnamed groups are not included in the returned dictio-
nary. The values of the dictionary are the substrings matched by each group in the
MatchObject. If a named group is part of an alternation operator that is not used
in the current match, the value corresponding to that key is None, or defval if an
argument is specified.

>>> import re
>>> m = re.search(r’(?P<one>\w+)((?P<tab>\t)|())(?P<two>\d+)’,’abc 123’)
>>> m.groupdict()
{’one’: ’abc’, ’tab’: None, ’two’: ’123’}
>>> m.groupdict(’---’)
{’one’: ’abc’, ’tab’: ’---’, ’two’: ’123’}

See Also: re.search.groups() 253;

re.match.groups([defval])
re.search.groups([defval])

Return a tuple of the substrings matched by groups in the MatchObject. If a group
is part of an alternation operator that is not used in the current match, the tuple
element at that index is None, or defval if an argument is specified.

“TPiP” — 2006/1/30 — 15:07 — page 254 — #274i
i

i
i

i
i

i
i

254 REGULAR EXPRESSIONS

>>> import re
>>> m = re.search(r’(\w+)((\t)|(/))(\d+)’,’abc/123’)
>>> m.groups()
(’abc’, ’/’, None, ’/’, ’123’)
>>> m.groups(’---’)
(’abc’, ’/’, ’---’, ’/’, ’123’)

See Also: re.search.group() 253; re.search.groupdict() 253;

re.match.lastgroup, re.search.lastgroup

The name of the last matching group, or None if the last group is not named or if
no groups compose the match.

re.match.lastindex, re.search.lastindex

The index of the last matching group, or None if no groups compose the match.

re.match.pos, re.search.pos

The start position of the search. If re.compile.search() specified a start argu-
ment, this is the value, otherwise it is 0. If re.search() or re.match() are used
for the search, the value is always 0.

See Also: re.compile.search() 250; re.search() 249; re.match() 248;

re.match.re, re.search.re

The PatternObject used to produce the match. The actual regular expression pat-
tern string must be retrieved from the PatternObject’s pattern method:

>>> import re
>>> m = re.search(’a’,’The Cat in the Hat’)
>>> m.re.pattern
’a’

re.match.span([group])
re.search.span([group])

Return the tuple composed of the return values of re.search.start(group) and
re.search.end(group). If the argument group is not specified, it defaults to 0.

>>> import re
>>> m = re.search(’(\w+)((\d*)|)(\w+)’,’The Cat in the Hat’)
>>> m.groups()
(’The’, ’ ’, None, ’Cat’)
>>> m.span(0), m.span(1), m.span(2), m.span(3), m.span(4)
((0, 7), (0, 3), (3, 4), (-1, -1), (4, 7))

“TPiP” — 2006/1/30 — 15:07 — page 255 — #275i
i

i
i

i
i

i
i

3.3 Standard Modules 255

re.match.start([group])
re.search.start([group])

The index of the end of the target substring matched by the MatchObject. If the
argument group is specified, return the ending index of that specific enumerated
group. Otherwise, return the ending index of group 0 (i.e., the whole match). If
group exists but is the part of an alternation operator that is not used in the
current match, return -1. If re.search.end() returns the same non-negative value
as re.search.start() , then group is a zero-width substring.

>>> import re
>>> m = re.search(’(\w+)((\d*)|)(\w+)’,’The Cat in the Hat’)
>>> m.groups()
(’The’, ’ ’, None, ’Cat’)
>>> m.start(0), m.start(1), m.start(2), m.start(3), m.start(4)
(0, 0, 3, -1, 4)

re.match.string, re.search.string

The target string in which the match occurs.

>>> import re
>>> m = re.search(’a’,’The Cat in the Hat’)
>>> m.string
’The Cat in the Hat’

EXCEPTIONS

re.error

Exception raised when an invalid regular expression string is passed to a function
that would produce a compiled regular expression (including implicitly).

“TPiP” — 2006/1/30 — 15:07 — page 256 — #276i
i

i
i

i
i

i
i

“TPiP” — 2006/1/30 — 15:07 — page 257 — #277i
i

i
i

i
i

i
i

257

Chapter 4

PARSERS AND STATE
MACHINES

All the techniques presented in the prior chapters of this book have something in
common, but something that is easy to overlook. In a sense, every basic string and
regular expression operation treats strings as homogeneous. Put another way: String
and regex techniques operate on flat texts. While said techniques are largely in keeping
with the “Zen of Python” maxim that “Flat is better than nested,” sometimes the
maxim (and homogeneous operations) cannot solve a problem. Sometimes the data in
a text has a deeper structure than the linear sequence of bytes that make up strings.

It is not entirely true that the prior chapters have eschewed data structures. From
time to time, the examples presented broke flat texts into lists of lines, or of fields, or
of segments matched by patterns. But the structures used have been quite simple and
quite regular. Perhaps a text was treated as a list of substrings, with each substring
manipulated in some manner—or maybe even a list of lists of such substrings, or a list
of tuples of data fields. But overall, the data structures have had limited (and mostly
fixed) nesting depth and have consisted of sequences of items that are themselves treated
similarly. What this chapter introduces is the notion of thinking about texts as trees of
nodes, or even still more generally as graphs.

Before jumping too far into the world of nonflat texts, I should repeat a warning this
book has issued from time to time. If you do not need to use the techniques in this
chapter, you are better off sticking with the simpler and more maintainable techniques
discussed in the prior chapters. Solving too general a problem too soon is a pitfall for
application development—it is almost always better to do less than to do more. Full-
scale parsers and state machines fall to the “more” side of such a choice. As we have
seen already, the class of problems you can solve using regular expressions—or even only
string operations—is quite broad.

There is another warning that can be mentioned at this point. This book does not
attempt to explain parsing theory or the design of parseable languages. There are a lot
of intricacies to these matters, about which a reader can consult a specialized text like
the so-called “Dragon Book”—Aho, Sethi, and Ullman’s Compilers: Principle, Tech-
niques and Tools (Addison-Wesley, 1986; ISBN: 0201100886)—or Levine, Mason, and

“TPiP” — 2006/1/30 — 15:07 — page 258 — #278i
i

i
i

i
i

i
i

258 PARSERS AND STATE MACHINES

Brown’s Lex & Yacc (Second Edition, O’Reilly, 1992; ISBN: 1-56592-000-7). When
Extended Backus-Naur Form (EBNF) grammars or other parsing descriptions are dis-
cussed below, it is in a general fashion that does not delve into algorithmic resolution
of ambiguities or big-O efficiencies (at least not in much detail). In practice, everyday
Python programmers who are processing texts—but who are not designing new pro-
gramming languages—need not worry about those parsing subtleties omitted from this
book.

4.1 An Introduction to Parsers

4.1.1 When Data Becomes Deep and Texts Become Stateful

Regular expressions can match quite complicated patterns, but they fall short when
it comes to matching arbitrarily nested subpatterns. Such nested subpatterns occur
quite often in programming languages and textual markup languages (and other places
sometimes). For example, in HTML documents, you can find lists or tables nested inside
each other. For that matter, character-level markup is also allowed to nest arbitrarily—
the following defines a valid HTML fragment:

>>> s = ’’’<p>Plain text, <i>italicized phrase,
<i>italicized subphrase</i>, bold
subphrase</i>, <i>other italic
phrase</i></p>’’’

The problem with this fragment is that most any regular expression will match either
less or more than a desired <i> element body. For example:

>>> ital = r’’’(?sx)<i>.+</i>’’’
>>> for phrs in re.findall(ital, s):
... print phrs, ’\n-----’
...
<i>italicized phrase,

<i>italicized subphrase</i>, bold
subphrase</i>, <i>other italic
phrase</i>

>>> ital2 = r’’’(?sx)<i>.+?</i>’’’
>>> for phrs in re.findall(ital2, s):
... print phrs, ’\n-----’
...
<i>italicized phrase,

<i>italicized subphrase</i>

<i>other italic

phrase</i>

“TPiP” — 2006/1/30 — 15:07 — page 259 — #279i
i

i
i

i
i

i
i

4.1 An Introduction to Parsers 259

What is missing in the proposed regular expressions is a concept of state. If you
imagine reading through a string character-by-character (which a regular expression
match must do within the underlying regex engine), it would be useful to keep track of
“How many layers of italics tags am I in?” With such a count of nesting depth, it would
be possible to figure out which opening tag <i> a given closing tag </i> was meant to
match. But regular expressions are not stateful in the right way to do this.

You encounter a similar nesting in most programming languages. For example, sup-
pose we have a hypothetical (somewhat BASIC-like) language with an IF/THEN/END
structure. To simplify, suppose that every condition is spelled to match the regex
cond\d+, and every action matches act\d+. But the wrinkle is that IF/THEN/END
structures can nest within each other also. So for example, let us define the following
three top-level structures:

>>> s = ’’’
IF cond1 THEN act1 END

IF cond2 THEN

IF cond3 THEN act3 END
END

IF cond4 THEN

act4
END
’’’

As with the markup example, you might first try to identify the three structures using
a regular expression like:

>>> pat = r’’’(?sx)
IF \s+
cond\d+ \s+
THEN \s+
act\d+ \s+
END’’’
>>> for stmt in re.findall(pat, s):
... print stmt, ’\n-----’
...
IF cond1 THEN act1 END

IF cond3 THEN act3 END

IF cond4 THEN

act4
END

“TPiP” — 2006/1/30 — 15:07 — page 260 — #280i
i

i
i

i
i

i
i

260 PARSERS AND STATE MACHINES

This indeed finds three structures, but the wrong three. The second top-level structure
should be the compound statement that used cond2, not its child using cond3. It is not
too difficult to allow a nested IF/THEN/END structure to optionally substitute for a
simple action; for example:

>>> pat2 = ’’’(?sx)(
IF \s+
cond\d+ \s+
THEN \s+
((IF \s+ cond\d+ \s+ THEN \s+ act\d+ \s+ END)
| (act\d+)

) \s+
END
)’’’
>>> for stmt in re.findall(pat2, s):
... print stmt[0], ’\n-----’
...
IF cond1 THEN act1 END

IF cond2 THEN

IF cond3 THEN act3 END
END

IF cond4 THEN

act4
END

By manually nesting a “first order” IF/THEN/END structure as an alternative to a
simple action, we can indeed match the example in the desired fashion. But we have
assumed that nesting of IF/THEN/END structures goes only one level deep. What if
a “second order” structure is nested inside a “third order” structure—and so on, ad
infinitum? What we would like is a means of describing arbitrarily nested structures
in a text, in a manner similar to, but more general than, what regular expressions can
describe.

4.1.2 What Is a Grammar?

In order to parse nested structures in a text, you usually use something called a “gram-
mar.” A grammar is a specification of a set of “nodes” (also called “productions”)
arranged into a strictly hierarchical “tree” data structure. A node can have a name—
and perhaps some other properties—and it can also have an ordered collection of child
nodes. When a document is parsed under a grammar, no resultant node can ever be a
descendent of itself; this is another way of saying that a grammar produces a tree rather
than a graph.

“TPiP” — 2006/1/30 — 15:07 — page 261 — #281i
i

i
i

i
i

i
i

4.1 An Introduction to Parsers 261

In many actual implementations, such as the famous C-based tools lex and yacc,
a grammar is expressed at two layers. At the first layer, a “lexer” (or “tokenizer”)
produces a stream of “tokens” for a “parser” to operate on. Such tokens are frequently
what you might think of as words or fields, but in principle they can split the text
differently than does our normal idea of a “word.” In any case tokens are nonoverlapping
subsequences of the original text. Depending on the specific tool and specification used,
some subsequences may be dropped from the token stream. A “zero-case” lexer is one
that simply treats the actual input bytes as the tokens a parser operates on (some
modules discussed do this, without losing generality).

The second layer of a grammar is the actual parser. A parser reads a stream or
sequence of tokens and generates a “parse tree” out of it. Or rather, a tree is gener-
ated under the assumption that the underlying input text is “well-formed” according
to the grammar—that is, there is a way to consume the tokens within the grammar
specification. With most parser tools, a grammar is specified using a variant on EBNF.

An EBNF grammar consists of a set of rule declarations, where each rule allows similar
quantification and alternation as that in regular expressions. Different tools use slightly
different syntax for specifying grammars, and different tools also differ in expressivity
and available quantifiers. But almost all tools have a fairly similar feel in their grammar
specifications. Even the DTDs used in XML dialect specifications (see Chapter 5) have
a very similar syntax to other grammar languages—which makes sense since an XML
dialect is a particular grammar. A DTD entry looks like:

<!ELEMENT body ((example-column | image-column)?, text-column) >

In brief, under the sample DTD, a <body> element may contain either one or zero
occurrences of a “first thing”—that first thing being either an <example-column> or an
<image-column>. Following the optional first component, exactly one <text-column>
must occur. Of course, we would need to see the rest of the DTD to see what can go
in a <text-column>, or to see what other element(s) a <body> might be contained in.
But each such rule is similar in form.

A familiar EBNF grammar to Python programmers is the grammar for Python it-
self. On many Python installations, this grammar as a single file can be found at a
disk location like [...]/Python22/Doc/ref/grammar.txt. The online and download-
able Python Language Reference excerpts from the grammar at various points. As an
example, a floating point number in Python is identified by the specification:

EBNF-style description of Python floating point

floatnumber ::= pointfloat | exponentfloat
pointfloat ::= [intpart] fraction | intpart "."
exponentfloat ::= (intpart | pointfloat) exponent
intpart ::= digit+
fraction ::= "." digit+
exponent ::= ("e" | "E") ["+" | "-"] digit+
digit ::= "0"..."9"

“TPiP” — 2006/1/30 — 15:07 — page 262 — #282i
i

i
i

i
i

i
i

262 PARSERS AND STATE MACHINES

The Python grammar is given in an EBNF variant that allows considerable expres-
sivity. Most of the tools this chapter discusses are comparatively limited (but are still
ultimately capable of expressing just as general grammars, albeit more verbosely). Both
literal strings and character ranges may be specified as part of a production. Alternation
is expressed with “|”. Quantifications with both “+” and “*” are used. These features
are very similar to those in regular expression syntax. Additionally, optional groups are
indicated with square brackets (“[” and “]”), and mandatory groups with parentheses.
Conceptually the former is the same as the regex “?” quantifier.

Where an EBNF grammar goes beyond a regular expression pattern is in its use of
named terms as parts of patterns. At first glance, it might appear possible simply to
substitute regular expression patterns for named subexpressions. In fact, in the floating
point pattern presented, we could simply do this as:

Regular expression to identify a floating point

pat = r’’’(?x)
(# exponentfloat

(# intpart or pointfloat
(# pointfloat

(\d+)?[.]\d+ # optional intpart with fraction
|
\d+[.] # intpart with period

) # end pointfloat
|
\d+ # intpart

) # end intpart or pointfloat
[eE][+-]?\d+ # exponent

) # end exponentfloat
|
(# pointfloat

(\d+)?[.]\d+ # optional intpart with fraction
|
\d+[.] # intpart with period

) # end pointfloat
’’’

As a regular expression, the description is harder to read, even with the documenta-
tion added to a verbose regex. The EBNF grammar is more or less self-documenting.
Moreover, some care had to be taken about the order of the regular expression—the
exponentfloat alternative is required to be listed before the pointfloat alternative
since the latter can form a subsequence of the former. But aside from the need for a little
tweaking and documentation, the regular expression above is exactly as general—and
exactly equivalent—to the Python grammar for a floating point number.

You might wonder, therefore, what the point of a grammar is. It turns out that a
floating point number is an unusually simple structure in one very specific respect. A
floatnumber requires no recursion or self-reference in its definition. Everything that

“TPiP” — 2006/1/30 — 15:07 — page 263 — #283i
i

i
i

i
i

i
i

4.1 An Introduction to Parsers 263

makes up a floatnumber is something simpler, and everything that makes up one of
those simpler components is itself made up of still simpler ones. You reach a bottom in
defining a Python floating point number.

In the general case, structures can recursively contain themselves, either directly or
by containing other structures that in turn contain the first structures. It is not even
entirely absurd to imagine floating point numbers with such a grammar (whatever lan-
guage had them would not be Python, however). For example, the famous number a
“googol” was defined in 1938 by Edward Kasner as 10 to the 100th power (otherwise
called “10 dotrigintillion”). As a Python floating point, you could write this as 1e100.
Kasner also defined a “googolplex” as 10 to the googol power (a number much larger
than anyone needs for any practical reason). While you can create a Python expression
to name a googolplex—for example, 10**1e100—it is not difficult to conceive a pro-
gramming language that allowed the term 1e1e100 as a name for a googolplex. By the
way: If you try to actually compute a googolplex in Python (or any other programming
language), you will be in for disappointment; expect a frozen computer and/or some
sort of crash or overflow. The numbers you can express in most language grammars are
quite a bit more numerous than those your computer can actually do anything with.

Suppose that you wanted to allow these new “extended” floating point terms in a lan-
guage. In terms of the grammar, you could just change a line of the EBNF description:

exponent ::= ("e" | "E") ["+" | "-"] floatnumber

In the regular expression, the change is a problem. A portion of the regular expression
identifies the (optional) exponent:

[eE][+-]?\d+ # exponent

In this case, an exponent is just a series of digit characters. But for “extended” float-
ing point terms, the regular expression would need to substitute the entire pat regular
expression in place of \d+. Unfortunately, this is impossible, since each replacement
would still contain the insufficient \d+ description, which would again require substitu-
tion. The sequence of substitutions continues ad infinitum, until the regular expression
is infinitely long.

4.1.3 An EBNF Grammar for IF/THEN/END Structures

The IF/THEN/END language structure presented above is a more typical and realistic
example of nestable grammatical structures than are our “extended” floating point
numbers. In fact, Python—along with almost every other programming language—
allows precisely such if statements inside other if statements. It is worthwhile to look
at how we might describe our hypothetical simplified IF/THEN/END structure in the
same EBNF variant used for Python’s grammar.

Recall first our simplified rules for allowable structures: The keywords are IF, THEN,
and END, and they always occur in that order within a completed structure. Keywords
in this language are always in all capitals. Any whitespace in a source text is insignif-
icant, except that each term is separated from others by at least some whitespace.

“TPiP” — 2006/1/30 — 15:07 — page 264 — #284i
i

i
i

i
i

i
i

264 PARSERS AND STATE MACHINES

Every condition is spelled to match the regular expression cond\d+. Every IF “body”
either contains an action that matches the regular expression act\d+, or it contains
another IF/THEN/END structure. In our example, we created three IF/THEN/END
structures, one of which contained a nested structure:

IF cond1 THEN act1 END

IF cond2 THEN

IF cond3 THEN act3 END
END

IF cond4 THEN

act4
END

Let us try a grammar:

EBNF grammar for IF/THEN/END structures

if_expr ::= "IF" ws cond ws "THEN" ws action ws "END"
whitechar ::= " " | "\t" | "\n" | "\r" | "\f" | "\v"
ws ::= whitechar+
digit ::= "0"..."9"
number ::= digit+
cond ::= "cond" number
action ::= simpleact | if_expr
simpleact ::= "act" number

This grammar is fairly easy to follow. It defines a few “convenience” productions
like ws and number that consist of repetitions of simpler productions. whitechar is
defined as an explicit alternation of individual characters, as is digit for a continuous
range. Taken to the extreme, every production could actually be included in a much
more verbose if expr production—you would just substitute all the right-hand sides
of nested productions for the names in the if expr production. But as given, the
grammar is much easier to read. The most notable aspect of this grammar is the
action production, since an action can itself recursively contain an if expr.

For this problem, the reader is encouraged to develop grammars for some more robust
variations on the very simple IF/THEN/END language we have looked at. As is evident,
it is difficult to actually do much with this language by itself, even if its actions and
conditions are given semantic meaning outside the structure. Readers can invent their
own variations, but a few are proposed below.

4.1.4 Pencil-and-Paper Parsing

To test a grammar at this point, just try to expand each successive character into
some production that is allowed at that point in the parent production, using pencil

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 265 --- #285i
i

i
i

i
i

i
i

4.1 An Introduction to Parsers 265

and paper. Think of the text of test cases as a tape: Each symbol either completes
a production (if so, write the satisfied production down next to the subsequence), or
the symbol is added to the “unsatisfied register.” There is one more rule to follow with
pencil and paper, however: It is better to satisfy a production with a longer subsequence
than a shorter one. If a parent production consists of child productions, the children
must be satisfied in the specified order (and in the quantity required). For now, assume
only one character of lookahead in trying to follow this rule. For example, suppose you
find the following sequence in a test case:

"IF cond1..."

Your steps with the pencil would be something like this:

1. Read the “I”—no production is satisfied.

2. Read the “F”, unsatisfied becomes “I”-”F”. Note that “I”-”F” matches the literal
term in if expr (a literal is considered a production). Since the literal term
contains no quantifiers or alternates, write down the “IF” production. Unsatisfied
becomes empty.

3. Read the space, Unsatisfied becomes simply a space. Space satisfies the production
ws, but hold off for a character since ws contains a quantifier that allows a longer
substring to satisfy it.

4. Read the second space, unsatisfied becomes space-space. Space-space satisfies the
production ws. But again hold off for a character.

5. Read the third space, unsatisfied becomes space-space-space. This again satisfies
the production ws. But keep holding off for the next character.

6. Read the “c”, unsatisfied becomes “space-space-space-c”. This does not satisfy
any production, so revert to the production in 5. Unsatisfied becomes “c”.

7. Et cetera.

If you get to the last character, and everything fits into some production, the test case
is valid under the grammar. Otherwise, the test case is nongrammatical. Try a few
IF/THEN/END structures that you think are and are not valid against the provided
grammar.

4.1.5 Exercise: Some variations on the language

1. Create and test an IF/THEN/END grammar that allows multiple actions to occur
between the THEN and the END. For example, the following structures are valid
under this variation:

IF cond1 THEN act1 act2 act3 END

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 266 --- #286i
i

i
i

i
i

i
i

266 PARSERS AND STATE MACHINES

IF cond2 THEN
IF cond3 THEN act3 END
IF cond4 THEN act4 END

END

IF cond5 THEN IF cond6 THEN act6 act7 END act8 END

2. Create and test an IF/THEN/END grammar that allows for arithmetic compar-
isons of numbers as conditions (as an enhancement of variation 1, if you wish).
Specifically, a comparison consists of two numbers with one of “<”, “>”, or “=”
between them. There might or might not be any whitespace between a compari-
son symbol and surrounding numbers. Use your judgment about what a number
consists of (the Python floating point grammar might provide an example, but
yours could be simpler).

3. Create and test an IF/THEN/END grammar that includes a loop expression as a
valid action. A loop consists of the keyword LOOP, followed by a positive integer,
followed by action(s), and terminated by the END keyword. Loops should be
considered actions, and therefore ifs and loops can be contained inside one another;
for example:

IF cond1 THEN
LOOP 100

IF cond2 THEN
act2

END
END

END

You can make this LOOP-enhanced grammar an enhancement of whichever vari-
ant you wish.

4. Create and test an IF/THEN/END grammar that includes an optional ELSE key-
word. If an ELSE occurs, it is within an IF body, but ELSE might not occur. An
ELSE has its own body that can contain action(s). For example (assuming variant
1):

IF cond1 THEN
act1
act2

ELSE
act3
act4

END

“TPiP” — 2006/1/30 — 15:07 — page 267 — #287i
i

i
i

i
i

i
i

4.2 An Introduction to State Machines 267

5. Create and test an IF/THEN/END grammar that may include zero actions inside
an IF, ELSE, or LOOP body. For example, the following structures are valid under
this variant:

IF cond1 THEN
ELSE act2
END
-*-
IF cond1 THEN

LOOP 100 END
ELSE
END

4.2 An Introduction to State Machines

State machines, in a theoretical sense, underlay almost everything computer- and
programming-related. But a Python programmer does not necessarily need to con-
sider highly theoretical matters in writing programs. Nonetheless, there is a large class
of ordinary programming problems where the best and most natural approach is to
explicitly code a state machine as the solution. At heart, a state machine is just a way
of thinking about the flow control in an application.

A parser is a specialized type of state machine that analyzes the components and
meaning of structured texts. Generally a parser is accompanied by its own high-level
description language that describes the states and transitions used by the implied state
machine. The state machine is in turn applied to text obeying a “grammar.”

In some text processing problems, the processing must be stateful : How we handle
the next bit of text depends upon what we have done so far with the prior text. In
some cases, statefulness can be naturally expressed using a parser grammar, but in other
cases the state has more to do with the semantics of the prior text than with its syntax.
That is, the issue of what grammatical properties a portion of a text has is generally
orthogonal to the issue of what predicates it fulfills. Concretely, we might calculate
some arithmetic result on numeric fields, or we might look up a name encountered in a
text file in a database, before deciding how to proceed with the text processing. Where
the parsing of a text depends on semantic features, a state machine is often a useful
approach.

Implementing an elementary and generic state machine in Python is simple to do,
and may be used for a variety of purposes. The third-party C-extension module
mx.TextTools, which is discussed later in this chapter, can also be used to create far
faster state machine text processors.

4.2.1 Understanding State Machines

A much too accurate description of a state machine is that it is a directed graph,
consisting of a set of nodes and a set of transition functions. Such a machine “runs” by
responding to a series of events; each event is in the domain of the transition function of

“TPiP” — 2006/1/30 — 15:07 — page 268 — #288i
i

i
i

i
i

i
i

268 PARSERS AND STATE MACHINES

the “current” node, where the range is a subset of the nodes. The function return is a
“next” (maybe self-identical) node. A subset of the nodes are end-states; if an end-state
is reached, the machine stops.

An abstract mathematical description—like the one above—is of little use for most
practical programming problems. Equally picayune is the observation that every pro-
gram in an imperative programming language like Python is a state machine whose
nodes are its source lines (but not really in a declarative—functional or constraint-
based—language such as Haskell, Scheme, or Prolog). Furthermore, every regular ex-
pression is logically equivalent to a state machine, and every parser implements an
abstract state machine. Most programmers write lots of state machines without re-
ally thinking about it, but that fact provides little guidance to specific programming
techniques.

An informal, heuristic definition is more useful than an abstract one. Often we en-
counter a program requirement that includes a handful of distinct ways of treating
clusters of events. Furthermore, it is sometimes the case that individual events need to
be put in a context to determine which type of treatment is appropriate (as opposed to
each event being “self-identifying”). The state machines discussed in this introduction
are high-level machines that are intended to express clearly the programming require-
ments of a class of problems. If it makes sense to talk about your programming problem
in terms of categories of behavior in response to events, it is likely to be a good idea to
program the solution in terms of explicit state machines.

4.2.2 Text Processing State Machines

One of the programming problems most likely to call for an explicit state machine is
processing text files. Processing a text file very often consists of sequential reading of
each chunk of a text file (typically either a character or a line), and doing something
in response to each chunk read. In some cases, this processing is “stateless”—that
is, each chunk has enough information internally to determine exactly what to do in
response to that chunk of text. And in other cases, even though the text file is not 100
percent stateless, there is a very limited context to each chunk (for example, the line
number might matter for the action taken, but not much else besides the line number).
But in other common text processing problems, the text files we deal with are highly
“stateful”—the meaning of a chunk depends on what types of chunks preceded it (and
maybe even on what chunks come next). Files like report files, mainframe data-feeds,
human-readable texts, programming source files, and other sorts of text files are stateful.
A very simple example of a stateful chunk is a line that might occur in a Python source
file:*

myObject = SomeClass(this, that, other)

That line means something very different if it happens to be surrounded by these
lines:

"""How to use SomeClass:
myObject = SomeClass(this, that, other)
"""

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 269 --- #289i
i

i
i

i
i

i
i

4.2 An Introduction to State Machines 269

That is, we needed to know that we were in a “blockquote” state to determine that
the line was a comment rather than an action. Of course, a program that deals with
Python programs in a more general way will usually use a parser and grammar.

4.2.3 When Not to Use a State Machine

When we begin the task of writing a processor for any stateful text file, the first question
we should ask ourselves is “What types of things do we expect to find in the file?” Each
type of thing is a candidate for a state. These types should be several in number, but if
the number is huge or indefinite, a state machine is probably not the right approach—
maybe some sort of database solution is appropriate. Or maybe the problem has not
been formulated right if there appear to be that many types of things.

Moreover, we are not quite ready for a state machine yet; there may yet be a simpler
approach. It might turn out that even though our text file is stateful there is an easy
way to read in chunks where each chunk is a single type of thing. A state machine is
really only worth implementing if the transitions between types of text require some
calculation based on the content within a single state-block.

An example of a somewhat stateful text file that is nonetheless probably not best
handled with a state machine is a Windows-style .ini file (generally replaced nowadays
by use of the binary-data-with-API Windows registry). Those files consist of some
section headers, some comments, and a number of value assignments. For example:

File: hypothetical.ini

; set the colorscheme and userlevel
[colorscheme]
background=red
foreground=blue
title=green

[userlevel]
login=2
; admin=0
title=1

This example has no real-life meaning, but it was constructed to indicate some fea-
tures of the .ini format. (1) In one sense, the type of each line is determined by its first
character (either semicolon, left brace, or alphabetic). (2) In another sense, the format
is “stateful” insofar as the keyword “title” presumably means something independent
when it occurs in each section. You could program a text processor that had a COL-
ORSCHEME state and a USERLEVEL state, and processed the value assignments of
each state. But that does not seem like the right way to handle this problem.

On the one hand, we could simply create the natural chunks in this text file with
some Python code like:

“TPiP” — 2006/1/30 — 15:07 — page 270 — #290i
i

i
i

i
i

i
i

270 PARSERS AND STATE MACHINES

Chunking Python code to process .ini file

txt = open(’hypothetical.ini’).read()
from string import strip, split
nocomm = lambda s: s[0] != ’;’ # "no comment" util
eq2pair = lambda s: split(s,’=’) # assignmet -> pair
def assignments(sect):

name, body = split(sect,’]’) # identify name, body
assigns = split(body,’\n’) # find assign lines
assigns = filter(strip, assigns) # remove outside space
assigns = filter(None, assigns) # remove empty lines
assigns = filter(nocomm, assigns) # remove comment lines
assigns = map(eq2pair, assigns) # make name/val pairs
assigns = map(tuple, assigns) # prefer tuple pairs
return (name, assigns)

sects = split(txt,’[’) # divide named sects
sects = map(strip, sects) # remove outside newlines
sects = filter(nocomm, sects) # remove comment sects
config = map(assignments, sects) # find assigns by sect
pprint.pprint(config)

Applied to the hypothetical.ini file above, this code produces output similar to:

[(’colorscheme’,
[(’background’, ’red’),
(’foreground’, ’blue’),
(’title’, ’green’)]),

(’userlevel’,
[(’login’, ’2’),
(’title’, ’1’)])]

This particular list-oriented data structure may or may not be what you want, but it is
simple enough to transform this into dictionary entries, instance attributes, or whatever
is desired. Or slightly modified code could generate other data representations in the
first place.

An alternative approach is to use a single current section variable to keep track of
relevant state and process lines accordingly:

for line in open(’hypothetical.ini’).readlines():
if line[0] == ’[’:

current_section = line[1:-2]
elif line[0] == ’;’:

pass # ignore comments
else:

apply_value(current_section, line)

“TPiP” — 2006/1/30 — 15:07 — page 271 — #291i
i

i
i

i
i

i
i

4.2 An Introduction to State Machines 271

Sidebar: A digression on functional programming

Readers will have noticed that the .ini chunking code given in the example above has
more of a functional programming (FP) style to it than does most Python code (in
this book or elsewhere). I wrote the presented code this way for two reasons. The more
superficial reason is just to emphasize the contrast with a state machine approach. Much
of the special quality of FP lies in its eschewal of state (see the discussion of functional
programming in Chapter 1); so the example is, in a sense, even farther from a state
machine technique than would be a coding style that used a few nested loops in place
of the map() and filter() calls.

The more substantial reason I adopted a functional programming style is because I
feel that this type of problem is precisely the sort that can often be expressed more
compactly and more clearly using FP constructs. Basically, our source text document
expresses a data structure that is homogeneous at each level. Each section is similar to
other sections; and within a section, each assignment is similar to others. A clear—and
stateless—way to manipulate these sorts of implicit structures is applying an operation
uniformly to each thing at a given level. In the example, we do a given set of operations
to find the assignments contained within a section, so we might as well just map() that
set of operations to the collection of (massaged, noncomment) sections. This approach
is more terse than a bunch of nested for loops, while simultaneously (in my opinion)
better expressing the underlying intention of the textual analysis.

Use of a functional programming style, however, can easily be taken too far. Deeply
nested calls to map(), reduce(), and filter() can quickly become difficult to read,
especially if whitespace and function/variable names are not chosen carefully. Inasmuch
as it is possible to write “obfuscated Python” code (a popular competition for other
languages), it is almost always done using FP constructs. Warnings in mind, it is
possible to create an even terser and more functional variant of the .ini chunking code
(that produces identical results). I believe that the following falls considerably short of
obfuscated, but will still be somewhat more difficult to read for most programmers. On
the plus side, it is half the length of the prior code and is entirely free of accidental side
effects:

Strongly functional code to process .ini file

from string import strip, split
eq2tup = lambda s: tuple(split(s,’=’))
splitnames = lambda s: split(s,’]’)
parts = lambda s, delim: map(strip, split(s, delim))
useful = lambda ss: filter(lambda s: s and s[0]!=’;’, ss)
config = map(lambda _:(_[0], map(eq2tup, useful(parts(_[1],’\n’)))),

map(splitnames, useful(parts(txt,’\n[’))))
pprint.pprint(config)

In brief, this functional code says that a configuration consists of a list of pairs of
(1) names plus (2) a list of key/value pairs. Using list comprehensions might make this
expression clearer, but the example code is compatible back to Python 1.5. Moreover,
the utility function names useful() and parts() go a long way towards keeping the

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 272 --- #292i
i

i
i

i
i

i
i

272 PARSERS AND STATE MACHINES

example readable. Utility functions of this sort are, furthermore, potentially worth
saving in a separate module for other use (which, in a sense, makes the relevant .ini
chunking code even shorter).

A reader exercise is to consider how the higher-order functions proposed in Chapter
1’s section on functional programming could further improve the sort of “stateless” text
processing presented in this subsection.

4.2.4 When to Use a State Machine

Now that we have established not to use a state machine if the text file is “too simple,”
we should look at a case where a state machine is worthwhile. The utility Txt2Html is
listed in Appendix D. Txt2Html converts “smart ASCII” files to HTML.

In very brief recap, smart ASCII format is a text format that uses a few spacing
conventions to distinguish different types of text blocks, such as headers, regular text,
quotations, and code samples. While it is easy for a human reader or writer to visually
parse the transitions between these text block types, there is no simple way to chunk a
whole text file into its text blocks. Unlike in the .ini file example, text block types can
occur in any pattern of alternation. There is no single delimiter that separates blocks
in all cases (a blank line usually separates blocks, but a blank line within a code sample
does not necessarily end the code sample, and blocks need not be separated by blank
lines). But we do need to perform somewhat different formatting behavior on each text
block type for the correct final XML output. A state machine suggests itself as a natural
solution here.

The general behavior of the Txt2Html reader is as follows: (1) Start in a particular
state. (2) Read a line of the text file and go to current state context. (3) Decide if
conditions have been met to leave the current state and enter another. (4) Failing (3),
process the line in a manner appropriate for the current state. This example is about
the simplest case you would encounter, but it expresses the pattern described:

A simple state machine input loop in Python

global state, blocks, newblock
for line in fpin.readlines():

if state == "HEADER": # blank line means new block of ?
if blankln.match(line): newblock = 1
elif textln.match(line): startText(line)
elif codeln.match(line): startCode(line)
else:

if newblock: startHead(line)
else: blocks[-1] += line

elif state == "TEXT": # blank line means new block of ?
if blankln.match(line): newblock = 1
elif headln.match(line): startHead(line)
elif codeln.match(line): startCode(line)
else:

if newblock: startText(line)

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 273 --- #293i
i

i
i

i
i

i
i

4.2 An Introduction to State Machines 273

else: blocks[-1] += line
elif state == "CODE": # blank line does not change state

if blankln.match(line): blocks[-1] += line
elif headln.match(line): startHead(line)
elif textln.match(line): startText(line)
else: blocks[-1] += line

else:
raise ValueError, "unexpected input block state: "+state

The only real thing to notice is that the variable state is declared global, and
its value is changed in functions like startText(). The transition conditions—such
as textln.match()—are regular expression patterns, but they could just as well be
custom functions. The formatting itself is actually done later in the program; the state
machine just parses the text file into labeled blocks in the blocks list. In a sense, the
state machine here is acting as a tokenizer for the later block processor.

4.2.5 An Abstract State Machine Class

It is easy in Python to abstract the form of a state machine. Coding in this manner
makes the state machine model of the program stand out more clearly than does the
simple conditional block in the previous example (which doesn’t right away look all that
much different from any other conditional). Furthermore, the class presented—and the
associated handlers—does a very good job of isolating in-state behavior. This improves
both encapsulation and readability in many cases.

File: statemachine.py

class InitializationError(Exception): pass

class StateMachine:
def __init__(self):

self.handlers = []
self.startState = None
self.endStates = []

def add_state(self, handler, end_state=0):
self.handlers.append(handler)
if end_state:

self.endStates.append(handler)

def set_start(self, handler):
self.startState = handler

def run(self, cargo=None):
if not self.startState:

raise InitializationError,\
"must call .set_start() before .run()"

“TPiP” — 2006/1/30 — 15:07 — page 274 — #294i
i

i
i

i
i

i
i

274 PARSERS AND STATE MACHINES

if not self.endStates:
raise InitializationError, \

"at least one state must be an end_state"
handler = self.startState
while 1:

(newState, cargo) = handler(cargo)
if newState in self.endStates:

newState(cargo)
break

elif newState not in self.handlers:
raise RuntimeError, "Invalid target %s" % newState

else:
handler = newState

The StateMachine class is really all you need for the form of a state machine. It is a
whole lot fewer lines than something similar would require in most languages—mostly
because of the ease of passing function objects in Python. You could even save a few
lines by removing the target state check and the self.handlers list, but the extra
formality helps enforce and document programmer intention.

To actually use the StateMachine class, you need to create some handlers for each
state you want to use. A handler must follow a particular pattern. Generally, it should
loop indefinitely; but in any case it must have some breakout condition(s). Each pass
through the state handler’s loop should process another event of the state’s type. But
probably even before handling events, the handler should check for breakout conditions
and determine what state is appropriate to transition to. At the end, a handler should
pass back a tuple consisting of the target state’s name and any cargo the new state
handler will need.

An encapsulation device is the use of cargo as a variable in the StateMachine class
(not necessarily called cargo by the handlers). This is used to pass around “whatever
is needed” by one state handler to take over where the last state handler left off. Most
typically, cargo will consist of a file handle, which would allow the next handler to read
some more data after the point where the last state handler stopped. But a database
connection might get passed, or a complex class instance, or a tuple with several things
in it.

4.2.6 Processing a Report with a Concrete State Machine

A moderately complicated report format provides a good example of some process-
ing amenable to a state machine programming style—and specifically, to use of the
StateMachine class above. The hypothetical report below has a number of state-
sensitive features. Sometimes lines belong to buyer orders, but at other times the
identical lines could be part of comments or the heading. Blank lines, for example, are
processed differently from different states. Buyers, who are each processed according to
different rules, each get their own machine state. Moreover, within each order, a degree
of stateful processing is performed, dependent on locally accumulated calculations:

“TPiP” — 2006/1/30 — 15:07 — page 275 — #295i
i

i
i

i
i

i
i

4.2 An Introduction to State Machines 275

Sample Buyer/Order Report

MONTHLY REPORT -- April 2002
===

Rules:
- Each buyer has price schedule for each item (func of quantity).
- Each buyer has a discount schedule based on dollar totals.
- Discounts are per-order (i.e., contiguous block)
- Buyer listing starts with line containing ">>", then buyer name.
- Item quantities have name-whitespace-number, one per line.
- Comment sections begin with line starting with an asterisk,

and ends with first line that ends with an asterisk.

>> Acme Purchasing

widgets 100
whatzits 1000
doodads 5000
dingdongs 20

* Note to Donald: The best contact for Acme is Debbie Franlin, at
* 413-555-0001. Fallback is Sue Fong (call switchboard). *

>> Megamart

doodads 10k
whatzits 5k

>> Fly-by-Night Sellers
widgets 500
whatzits 4
flazs 1000

* Note to Harry: Have Sales contact FbN for negotiations *

*
Known buyers:
>> Acme
>> Megamart
>> Standard (default discounts)
*

*** LATE ADDITIONS ***

>> Acme Purchasing
widgets 500 (rush shipment)**

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 276 --- #296i
i

i
i

i
i

i
i

276 PARSERS AND STATE MACHINES

The code to processes this report below is a bit simplistic. Within each state, almost
all the code is devoted merely to deciding when to leave the state and where to go next.
In the sample, each of the “buyer states” is sufficiently similar that they could well be
generalized to one parameterized state; but in a real-world application, each state is
likely to contain much more detailed custom programming for both in-state behavior
and out-from-state transition conditions. For example, a report might allow different
formatting and fields within different buyer blocks.

buyer invoices.py

from statemachine import StateMachine
from buyers import STANDARD, ACME, MEGAMART
from pricing import discount_schedules, item_prices
import sys, string

#-- Machine States
def error(cargo):

Don’t want to get here! Unidentifiable line
sys.stderr.write(’Unidentifiable line:\n’+ line)

def eof(cargo):
Normal termination -- Cleanup code might go here.
sys.stdout.write(’Processing Successful\n’)

def read_through(cargo):
Skip through headers until buyer records are found
fp, last = cargo
while 1:

line = fp.readline()
if not line: return eof, (fp, line)
elif line[:2] == ’>>’: return whichbuyer(line), (fp, line)
elif line[0] == ’*’: return comment, (fp, line)
else: continue

def comment(cargo):
Skip comments
fp, last = cargo
if len(last) > 2 and string.rstrip(last)[-1:] == ’*’:

return read_through, (fp, ’’)
while 1:

could save or process comments here, if desired
line = fp.readline()
lastchar = string.rstrip(line)[-1:]
if not line: return eof, (fp, line)
elif lastchar == ’*’: return read_through, (fp, line)

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 277 --- #297i
i

i
i

i
i

i
i

4.2 An Introduction to State Machines 277

def STANDARD(cargo, discounts=discount_schedules[STANDARD],
prices=item_prices[STANDARD]):

fp, company = cargo
invoice = 0
while 1:

line = fp.readline()
nextstate = buyerbranch(line)
if nextstate == 0: continue # blank line
elif nextstate == 1: # order item

invoice = invoice + calc_price(line, prices)
else: # create invoice

pr_invoice(company, ’standard’, discount(invoice,discounts))
return nextstate, (fp, line)

def ACME(cargo, discounts=discount_schedules[ACME],
prices=item_prices[ACME]):

fp, company = cargo
invoice = 0
while 1:

line = fp.readline()
nextstate = buyerbranch(line)
if nextstate == 0: continue # blank line
elif nextstate == 1: # order item

invoice = invoice + calc_price(line, prices)
else: # create invoice

pr_invoice(company, ’negotiated’, discount(invoice,discounts))
return nextstate, (fp, line)

def MEGAMART(cargo, discounts=discount_schedules[MEGAMART],
prices=item_prices[MEGAMART]):

fp, company = cargo
invoice = 0
while 1:

line = fp.readline()
nextstate = buyerbranch(line)
if nextstate == 0: continue # blank line
elif nextstate == 1: # order item

invoice = invoice + calc_price(line, prices)
else: # create invoice

pr_invoice(company, ’negotiated’, discount(invoice,discounts))
return nextstate, (fp, line)

#-- Support function for buyer/state switch
def whichbuyer(line):

What state/buyer does this line identify?
line = string.upper(string.replace(line, ’-’, ’’))

“TPiP” — 2006/1/30 — 15:07 — page 278 — #298i
i

i
i

i
i

i
i

278 PARSERS AND STATE MACHINES

find = string.find
if find(line,’ACME’) >= 0: return ACME
elif find(line,’MEGAMART’)>= 0: return MEGAMART
else: return STANDARD

def buyerbranch(line):
if not line: return eof
elif not string.strip(line): return 0
elif line[0] == ’*’: return comment
elif line[:2] == ’>>’: return whichbuyer(line)
else: return 1

#-- General support functions
def calc_price(line, prices):

product, quant = string.split(line)[:2]
quant = string.replace(string.upper(quant),’K’,’000’)
quant = int(quant)
return quant*prices[product]

def discount(invoice, discounts):
multiplier = 1.0
for threshhold, percent in discounts:

if invoice >= threshhold: multiplier = 1 - float(percent)/100
return invoice*multiplier

def pr_invoice(company, disctype, amount):
print "Company name:", company[3:-1], "(%s discounts)" % disctype
print "Invoice total: $", amount, ’\n’

if __name__== "__main__":
m = StateMachine()
m.add_state(read_through)
m.add_state(comment)
m.add_state(STANDARD)
m.add_state(ACME)
m.add_state(MEGAMART)
m.add_state(error, end_state=1)
m.add_state(eof, end_state=1)
m.set_start(read_through)
m.run((sys.stdin, ’’))

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 279 --- #299i
i

i
i

i
i

i
i

4.2 An Introduction to State Machines 279

The body of each state function consists mostly of a while 1: loop that sometimes
breaks out by returning a new target state, along with a cargo tuple. In our particular
machine, cargo consists of a file handle and the last line read. In some cases, the line
that signals a state transition is also needed for use by the subsequent state. The cargo
could contain whatever we wanted. A flow diagram lets you see the set of transitions
easily:

comment

 STANDARD

ACME

MEGAMART

 eof

error

read_through

Figure 4.1: Buyer state machine diagram

All of the buyer states are “initialized” using default argument values that are never
changed during calls by a normal state machine .run() cycle. You could also perhaps
design state handlers as classes instead of as functions, but that feels like extra concep-
tual overhead to me. The specific initializer values are contained in a support module
that looks like:

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 280 --- #300i
i

i
i

i
i

i
i

280 PARSERS AND STATE MACHINES

pricing.py support data

from buyers import STANDARD, ACME, MEGAMART, BAGOBOLTS

Discount consists of dollar requirement and a percentage reduction
Each buyer can have an ascending series of discounts, the highest
one applicable to a month is used.
discount_schedules = {

STANDARD : [(5000,10),(10000,20),(15000,30),(20000,40)],
ACME : [(1000,10),(5000,15),(10000,30),(20000,40)],
MEGAMART : [(2000,10),(5000,20),(10000,25),(30000,50)],
BAGOBOLTS : [(2500,10),(5000,15),(10000,25),(30000,50)],

}
item_prices = {

STANDARD : {’widgets’:1.0, ’whatzits’:0.9, ’doodads’:1.1,
’dingdongs’:1.3, ’flazs’:0.7},

ACME : {’widgets’:0.9, ’whatzits’:0.9, ’doodads’:1.0,
’dingdongs’:0.9, ’flazs’:0.6},

MEGAMART : {’widgets’:1.0, ’whatzits’:0.8, ’doodads’:1.0,
’dingdongs’:1.2, ’flazs’:0.7},

BAGOBOLTS : {’widgets’:0.8, ’whatzits’:0.9, ’doodads’:1.1,
’dingdongs’:1.3, ’flazs’:0.5},

}

In place of reading in such a data structure, a full application might calculate some
values or read them from a database of some sort. Nonetheless, the division of data,
state logic, and abstract flow into separate modules makes for a good design.

4.2.7 Subgraphs and State Reuse

Another benefit of the state machine design approach is that you can use different start
and end states without touching the state handlers at all. Obviously, you do not have
complete freedom in doing so—if a state branches to another state, the branch target
needs to be included in the list of “registered” states. You can, however, add homonymic
handlers in place of target processing states. For example:

Creating end states for subgraphs

from statemachine import StateMachine
from BigGraph import *

def subgraph_end(cargo): print "Leaving subgraph..."
foo = subgraph_end
bar = subgraph_end

def spam_return(cargo): return spam, None
baz = spam_return

“TPiP” — 2006/1/30 — 15:07 — page 281 — #301i
i

i
i

i
i

i
i

4.2 An Introduction to State Machines 281

if __name__==’__main__’:
m = StateMachine()
m.add_state(foo, end_state=1)
m.add_state(bar, end_state=1)
m.add_state(baz)
map(m.add_state, [spam, eggs, bacon])
m.set_start(spam)
m.run(None)

In a complex state machine graph, you often encounter relatively isolated subgraphs.
That is, a particular collection of states—i.e., nodes—might have many connections
between them, but only a few connections out to the rest of the graph. Usually this
occurs because a subgraph concerns a related set of functionality.

For processing the buyer report discussed earlier, only seven states were involved, so
no meaningful subgraphs really exist. But in the subgraph example above, you can
imagine that the BigGraph module contains hundreds or thousands of state handlers,
whose targets define a very complex complete graph. Supposing that the states spam,
eggs, and bacon define a useful subgraph, and all branches out of the subgraph lead to
foo, bar, or baz, the code above could be an entire new application.

The example redefined foo and bar as end states, so processing (at least in that par-
ticular StateMachine object) ends when they are reached. However, baz is redefined
to transition back into the spam-eggs-bacon subgraph. A subgraph exit need not repre-
sent a termination of the state machine. It is actually the end state flag that controls
termination—but if foo was not marked as an end state, it would raise a RuntimeError
when it failed to return a valid state target.

If you create large graphs—especially with the intention of utilizing subgraphs as state
machines—it is often useful to create a state diagram. Pencil and paper are perfectly
adequate tools for doing this; a variety of flow-chart software also exists to do it on a
computer. The goal of a diagram is to allow you to identify clustered subgraphs and
most especially to help identify paths in and out of a functional subgraph. A state
diagram from our buyer report example is given as illustration. A quick look at Figure
4.1, for example, allows the discovery that the error end state is isolated, which might
not have been evident in the code itself. This is not a problem, necessarily; a future
enhancement to the diagram and handlers might utilize this state, and whatever logic
was written into it.

4.2.8 Exercise: Finding other solutions

1. On the face of it, a lot of “machinery” went into processing what is not really that
complicated a report above. The goal of the state machine formality was both to
be robust and to allow for expansion to larger problems. Putting aside the state
machine approach in your mind, how else might you go about processing reports
of the presented type (assume that “reasonable” variations occur between reports
of the same type).

Try writing a fresh report processing application that produces the same results as

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 282 --- #302i
i

i
i

i
i

i
i

282 PARSERS AND STATE MACHINES

the presented application (or at least something close to it). Test your application
against the sample report and against a few variants you create yourself.

What errors did you encounter running your application? Why? Is your applica-
tion more concise than the presented one? Which modules do you count as part
of the presented application? Is your application’s code clearer or less clear to
follow for another programmer? Which approach would be easier to expand to
encompass other report formats? In what respect is your application better/worse
than the state machine example?

2. The error state is never actually reached in the buyer invoices.py application.
What other transition conditions into the error state would be reasonable to
add to the application? What types of corruption or mistakes in reports do you
expect most typically to encounter? Sometimes reports, or other documents, are
flawed, but it is still desirable to utilize as much of them as possible. What are
good approaches to recover from error conditions? How could you express those
approaches in state machine terms, using the presented StateMachine class and
framework?

4.3 Parser Libraries for Python

4.3.1 Specialized Parsers in the Standard Library

Python comes standard with a number of modules that perform specialized parsing
tasks. A variety of custom formats are in sufficiently widespread use that it is convenient
to have standard library support for them. Aside from those listed in this chapter,
Chapter 5 discusses the email and xml packages, and the modules mailbox , HTMLParser ,
and urlparse, each of which performs parsing of sorts. A number of additional modules
listed in Chapter 1, which handle and process audio and image formats, in a broad sense
could be considered parsing tools. However, these media formats are better considered
as byte streams and structures than as token streams of the sort parsers handle (the
distinction is fine, though).

The specialized tools discussed under this section are presented only in summary.
Consult the Python Library Reference for detailed documentation of their various APIs
and features. It is worth knowing what is available, but for space reasons, this book
does not document usage specifics of these few modules.

ConfigParser

Parse and modify Windows-style configuration files.

>>> import ConfigParser
>>> config = ConfigParser.ConfigParser()
>>> config.read([’test.ini’,’nonesuch.ini’])
>>> config.sections()
[’userlevel’, ’colorscheme’]
>>> config.get(’userlevel’,’login’)

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 283 --- #303i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 283

’2’
>>> config.set(’userlevel’,’login’,5)
>>> config.write(sys.stdout)
[userlevel]
login = 5
title = 1

[colorscheme]
background = red
foreground = blue

difflib
. . . /Tools/scripts/ndiff.py

The module difflib, introduced in Python 2.1, contains a variety of functions and
classes to help you determine the difference and similarity of pairs of sequences.
The API of difflib is flexible enough to work with sequences of all kinds, but the
typical usage is in comparing sequences of lines or sequences of characters.

Word similarity is useful for determining likely misspellings and typos and/or edit
changes required between strings. The function difflib.get close matches() is
a useful way to perform “fuzzy matching” of a string against patterns. The required
similarity is configurable.

>>> users = [’j.smith’, ’t.smith’, ’p.smyth’, ’a.simpson’]
>>> maxhits = 10
>>> login = ’a.smith’
>>> difflib.get_close_matches(login, users, maxhits)
[’t.smith’, ’j.smith’, ’p.smyth’]
>>> difflib.get_close_matches(login, users, maxhits, cutoff=.75)
[’t.smith’, ’j.smith’]
>>> difflib.get_close_matches(login, users, maxhits, cutoff=.4)
[’t.smith’, ’j.smith’, ’p.smyth’, ’a.simpson’]

Line matching is similar to the behavior of the Unix diff (or ndiff) and patch
utilities. The latter utility is able to take a source and a difference, and pro-
duce the second compared line-list (file). The functions difflib.ndiff() and
difflib.restore() implement these capabilities. Much of the time, however, the
bundled ndiff.py tool performs the comparisons you are interested in (and the
“patches” with an -r# option).

% ./ndiff.py chap4.txt chap4.txt~ | grep ’^[+-]’
-: chap4.txt
+: chap4.txt~
+ against patterns.

“TPiP” — 2006/1/30 — 15:07 — page 284 — #304i
i

i
i

i
i

i
i

284 PARSERS AND STATE MACHINES

- against patterns. The required similarity is configurable.
-
- >>> users = [’j.smith’, ’t.smith’, ’p.smyth’, ’a.simpson’]
- >>> maxhits = 10
- >>> login = ’a.smith’

There are a few more capabilities in the difflib module, and considerable customiza-
tion is possible.

formatter

Transform an abstract sequence of formatting events into a sequence of callbacks to
“writer” objects. Writer objects, in turn, produce concrete outputs based on these
callbacks. Several parent formatter and writer classes are contained in the module.

In a way, formatter is an “anti-parser”—that is, while a parser transforms a series
of tokens into program events, formatter transforms a series of program events into
output tokens.

The purpose of the formatter module is to structure creation of streams such as
word processor file formats. The module htmllib utilizes the formatter module.
The particular API details provide calls related to features like fonts, margins, and
so on.

For highly structured output of prose-oriented documents, the formatter module is
useful, albeit requiring learning a fairly complicated API. At the minimal level, you
may use the classes included to create simple tools. For example, the following
utility is approximately equivalent to lynx -dump:

urldump.py

#!/usr/bin/env python
import sys
from urllib import urlopen
from htmllib import HTMLParser
from formatter import AbstractFormatter, DumbWriter
if len(sys.argv) > 1:

fpin = urlopen(sys.argv[1])
parser = HTMLParser(AbstractFormatter(DumbWriter()))
parser.feed(fpin.read())
print ’--’
print fpin.geturl()
print fpin.info()

else:
print "No specified URL"

“TPiP” — 2006/1/30 — 15:07 — page 285 — #305i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 285

See Also: htmllib 285; urllib 388;

htmllib

Parse and process HTML files, using the services of sgmllib. In contrast to the
HTMLParser module, htmllib relies on the user constructing a suitable “formatter”
object to accept callbacks from HTML events, usually utilizing the formatter module.
A formatter, in turn, uses a “writer” (also usually based on the formatter module).
In my opinion, there are enough layers of indirection in the htmllib API to make
HTMLParser preferable for almost all tasks.

See Also: HTMLParser 384; formatter 284; sgmllib 285;

multifile

The class multifile.MultiFile allows you to treat a text file composed of mul-
tiple delimited parts as if it were several files, each with their own FILE meth-
ods: .read(), .readline(), .readlines(), .seek(), and .tell() methods. In
iterator fashion, advancing to the next virtual file is performed with the method
multifile.MultiFile.next() .

See Also: fileinput 61; mailbox 372; email.Parser 363; string.split() 142; file 15;

parser
symbol
token
tokenize

Interface to Python’s internal parser and tokenizer. Although parsing Python source
code is arguably a text processing task, the complexities of parsing Python are too
specialized for this book.

robotparser

Examine a robots.txt access control file. This file is used by Web servers to indicate
the desired behavior of automatic indexers and Web crawlers—all the popular search
engines honor these requests.

sgmllib

A partial parser for SGML. Standard Generalized Markup Language (SGML) is
an enormously complex document standard; in its full generality, SGML cannot be
considered a format, but rather a grammar for describing concrete formats. HTML
is one particular SGML dialect, and XML is (almost) a simplified subset of SGML.

Although it might be nice to have a Python library that handled generic SGML,
sgmllib is not such a thing. Instead, sgmllib implements just enough SGML parsing
to support HTML parsing with htmllib. You might be able to coax parsing an XML
library out of sgmllib, with some work, but Python’s standard XML tools are far
more refined for this purpose.

“TPiP” — 2006/1/30 — 15:07 — page 286 — #306i
i

i
i

i
i

i
i

286 PARSERS AND STATE MACHINES

See Also: htmllib 285; xml.sax 405;

shlex

A lexical analyzer class for simple Unix shell-like syntaxes. This capability is pri-
marily useful to implement small command language within Python applications.

tabnanny

This module is generally used as a command-line script rather than imported into
other applications. The module/script tabnanny checks Python source code files for
mixed use of tabs and spaces within the same block. Behind the scenes, the Python
source is fully tokenized, but normal usage consists of something like:

% /sw/lib/python2.2/tabnanny.py SCRIPTS/
SCRIPTS/cmdline.py 165 ’\treturn 1\r\n’
’SCRIPTS/HTMLParser_stack.py’: Token Error: (’EOF in

multi-line string’, (3, 7))
SCRIPTS/outputters.py 18 ’\tself.writer=writer\r\n’
SCRIPTS/txt2bookU.py 148 ’\ttry:\n’

The tool is single purpose, but that purpose addresses a common pitfall in Python
programming.

See Also: tokenize 285;

4.3.2 Low-Level State Machine Parsing

mx.TextTools � Fast Text Manipulation Tools

Marc-Andre Lemburg’s mx.TextTools is a remarkable tool that is a bit difficult to grasp
the gestalt of. mx.TextTools can be blazingly fast and extremely powerful. But at the
same time, as difficult as it might be to “get” the mindset of mx.TextTools, it is still more
difficult to get an application written with it working just right. Once it is working, an
application that utilizes mx.TextTools can process a larger class of text structures than
can regular expressions, while simultaneously operating much faster. But debugging
an mx.TextTools “tag table” can make you wish you were merely debugging a cryptic
regular expression!

In recent versions, mx.TextTools has come in a larger package with eGenix.com’s
several other “mx Extensions for Python.” Most of the other subpackages add highly
efficient C implementations of datatypes not found in a base Python system.

mx.TextTools stands somewhere between a state machine and a full-fledged parser. In
fact, the module SimpleParse, discussed below, is an EBNF parser library that is built
on top of mx.TextTools. As a state machine, mx.TextTools feels like a lower-level tool
than the statemachine module presented in the prior section. And yet, mx.TextTools is
simultaneously very close to a high-level parser. This is how Lemburg characterizes it
in the documentation accompanying mx.TextTools:

“TPiP” — 2006/1/30 — 15:07 — page 287 — #307i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 287

mxTextTools is an extension package for Python that provides several useful
functions and types that implement high-performance text manipulation
and searching algorithms in addition to a very flexible and extendable state
machine, the Tagging Engine, that allows scanning and processing text based
on low-level byte-code “programs” written using Python tuples. It gives you
access to the speed of C without the need to do any compile and link steps
every time you change the parsing description.

Applications include parsing structured text, finding and extracting text
(either exact or using translation tables) and recombining strings to form
new text.

The Python standard library has a good set of text processing tools. The basic tools
are powerful, flexible, and easy to work with. But Python’s basic text processing is not
particularly fast. Mind you, for most problems, Python by itself is as fast as you need.
But for a certain class of problems, being able to choose mx.TextTools is invaluable.

The unusual structure of mx.TextTools applications warrants some discussion of con-
crete usage. After a few sample applications are presented, a listing of mx.TextTools
constants, commands, modifiers, and functions is given.

BENCHMARKS

A familiar computer-industry paraphrase of Mark Twain (who repeats Benjamin Dis-
raeli) dictates that there are “Lies, Damn Lies, and Benchmarks.” I will not argue
with that and certainly do not want readers to put too great an import on the timings
suggested. Nonetheless, in exploring mx.TextTools, I wanted to get some sense of just
how fast it is. So here is a rough idea.

The second example below presents part of a reworked version of the state machine-
based Txt2Html application reproduced in Appendix D. The most time-consuming as-
pect of Txt2Html is the regular expression replacements performed in the function
Typography() for smart ASCII inline markup of words and phrases.

In order to get a timeable test case, I concatenated 110 copies of an article I wrote
to get a file a bit over 2MB, and about 41k lines and 300k words. My test processes
an entire input as one text block, first using an mx.TextTools version of Typography(),
then using the re version.

Processing time of the same test file went from about 34 seconds to about 12 seconds on
one slowish Linux test machine (running Python 1.5.2). In other words, mx.TextTools
gave me about a 3x speedup over what I get with the re module. This speedup is
probably typical, but particular applications might gain significantly more or less from
use of mx.TextTools. Moreover, 34 seconds is a long time in an interactive application,
but is not very long at all for a batch process done once a day, or once a week.

Example: Buyer/Order Report Parsing

Recall (or refer to) the sample report presented in the previous section “An Introduction
to State Machines.” A report contained a mixture of header material, buyer orders,

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 288 --- #308i
i

i
i

i
i

i
i

288 PARSERS AND STATE MACHINES

and comments. The state machine we used looked at each successive line of the file
and decided based on context whether the new line indicated a new state should start.
It would be possible to write almost the same algorithm utilizing mx.TextTools only to
speed up the decisions, but that is not what we will do.

A more representative use of mx.TextTools is to produce a concrete parse tree of
the interesting components of the report document. In principle, you should be able to
create a “grammar” that describes every valid “buyer report” document, but in practice
using a mixed procedural/grammar approach is much easier, and more maintainable—at
least for the test report.

An mx.TextTools tag table is a miniature state machine that either matches or fails
to match a portion of a string. Matching, in this context, means that a “success” end
state is reached, while nonmatching means that a “failure” end state is reached. Falling
off the end of the tag table is a success state. Each individual state in a tag table
tries to match some smaller construct by reading from the “read-head” and moving
the read-head correspondingly. On either success or failure, program flow jumps to an
indicated target state (which might be a success or failure state for the tag table as a
whole). Of course, the jump target for success is often different from the jump target
for failure—but there are only these two possible choices for jump targets, unlike the
statemachine module’s indefinite number.

Notably, one of the types of states you can include in a tag table is another tag
table. That one state can “externally” look like a simple match attempt, but internally
it might involve complex subpatterns and machine flow in order to determine if the
state is a match or nonmatch. Much as in an EBNF grammar, you can build nested
constructs for recognition of complex patterns. States can also have special behavior,
such as function callbacks—but in general, an mx.TextTools tag table state is simply a
binary match/nonmatch switch.

Let us look at an mx.TextTools parsing application for “buyer reports” and then
examine how it works:

buyer report.py

from mx.TextTools import *

word_set = set(alphanumeric+white+’-’)
quant_set = set(number+’kKmM’)

item = ((None, AllInSet, newline_set, +1), # 1
(None, AllInSet, white_set, +1), # 2
(’Prod’, AllInSet, a2z_set, Fail), # 3
(None, AllInSet, white_set, Fail), # 4
(’Quant’, AllInSet, quant_set, Fail), # 5
(None, WordEnd, ’\n’, -5)) # 6

buyers = ((’Order’, Table, # 1
((None, WordEnd, ’\n>> ’, Fail), # 1.1

(’Buyer’, AllInSet, word_set, Fail), # 1.2

“TPiP” — 2006/1/30 — 15:07 — page 289 — #309i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 289

(’Item’, Table, item, MatchOk, +0)), # 1.3
Fail, +0),)

comments = ((’Comment’, Table, # 1
((None, Word, ’\n*’, Fail), # 1.1

(None, WordEnd, ’*\n’, Fail), # 1.2
(None, Skip, -1)), # 1.3

+1, +2),
(None, Skip, +1), # 2
(None, EOF, Here, -2)) # 3

def unclaimed_ranges(tagtuple):
starts = [0] + [tup[2] for tup in tagtuple[1]]
stops = [tup[1] for tup in tagtuple[1]] + [tagtuple[2]]
return zip(starts, stops)

def report2data(s):
comtuple = tag(s, comments)
taglist = comtuple[1]
for beg,end in unclaimed_ranges(comtuple):

taglist.extend(tag(s, buyers, beg, end)[1])
taglist.sort(cmp)
return taglist

if __name__==’__main__’:
import sys, pprint
pprint.pprint(report2data(sys.stdin.read()))

Several tag tables are defined in buyer report: item, buyers, and comments. State
machines such as those in each tag table are general matching engines that can be used
to identify patterns; after working with mx.TextTools for a while, you might accumulate
a library of useful tag tables. As mentioned above, states in tag tables can reference
other tag tables, either by name or inline. For example, buyers contains an inline tag
table, while this inline tag table utilizes the tag table named item.

Let us take a look, step by step, at what the buyers tag table does. In order to do
anything, a tag table needs to be passed as an argument to the mx.TextTools.tag()
function, along with a string to match against. That is done in the report2data()
function in the example. But in general, buyers—or any tag table—contains a list of
states, each containing branch offsets. In the example, all such states are numbered in
comments. buyers in particular contains just one state, which contains a subtable with
three states.

Tag table state in buyers

1. Try to match the subtable. If the match succeeds, add the name Order to the
taglist of matches. If the match fails, do not add anything. If the match succeeds,
jump back into the one state (i.e., +0). In effect, buyers loops as long as it
succeeds, advancing the read-head on each such match.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 290 --- #310i
i

i
i

i
i

i
i

290 PARSERS AND STATE MACHINES

Subtable states in buyers

1. Try to find the end of the “word” \n>> in the string. That is, look for two greater-
than symbols at the beginning of a line. If successful, move the read-head just
past the point that first matched. If this state match fails, jump to Fail—that is,
the (sub)table as a whole fails to match. No jump target is given for a successful
match, so the default jump of +1 is taken. Since None is the tag object, do not
add anything to the taglist upon a state match.

2. Try to find some word set characters. This set of characters is defined in
buyer report; various other sets are defined in mx.TextTools itself. If the match
succeeds, add the name Buyer to the taglist of matches. As many contiguous
characters in the set as possible are matched. The match is considered a failure
if there is not at least one such character. If this state match fails, jump to Fail,
as in state (1).

3. Try to match the item tag table. If the match succeeds, add the name Item to the
taglist of matches. What gets added, moreover, includes anything added within
the item tag table. If the match fails, jump to MatchOk—that is, the (sub)table
as a whole matches. If the match succeeds, jump +0—that is, keep looking for
another Item to add to the taglist.

What buyer report actually does is to first identify any comments, then to scan what is
left in between comments for buyer orders. This approach proved easier to understand.
Moreover, the design of mx.TextTools allows us to do this with no real inefficiency.
Tagging a string does not involve actually pulling out the slices that match patterns,
but simply identifying numerically the offset ranges where they occur. This approach
is much “cheaper” than performing repeated slices, or otherwise creating new strings.

The following is important to notice: As of version 2.1.0, the documentation of the
mx.TextTools.tag() function that accompanies mx.TextTools does not match its be-
havior! If the optional third and fourth arguments are passed to tag() they must
indicate the start and end offsets within a larger string to scan, not the starting offset
and length. Hopefully, later versions will fix the discrepancy (either approach would be
fine, but could cause some breakage in existing code).

What buyer report produces is a data structure, not final output. This data structure
looks something like:

“TPiP” — 2006/1/30 — 15:07 — page 291 — #311i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 291

buyer report.py data structure

$ python ex_mx.py < recs.tmp
[(’Order’, 0, 638,

[(’Buyer’, 547, 562, None),
(’Item’, 562, 583,
[(’Prod’, 566, 573, None), (’Quant’, 579, 582, None)]),

(’Item’, 583, 602,
[(’Prod’, 585, 593, None), (’Quant’, 597, 601, None)]),

(’Item’, 602, 621,
[(’Prod’, 604, 611, None), (’Quant’, 616, 620, None)]),

(’Item’, 621, 638,
[(’Prod’, 623, 632, None), (’Quant’, 635, 637, None)])]),

(’Comment’, 638, 763, []),
(’Order’, 763, 805,
[(’Buyer’, 768, 776, None),
(’Item’, 776, 792,
[(’Prod’, 778, 785, None), (’Quant’, 788, 791, None)]),

(’Item’, 792, 805,
[(’Prod’, 792, 800, None), (’Quant’, 802, 804, None)])]),

(’Order’, 805, 893,
[(’Buyer’, 809, 829, None),
(’Item’, 829, 852,
[(’Prod’, 833, 840, None), (’Quant’, 848, 851, None)]),

(’Item’, 852, 871,
[(’Prod’, 855, 863, None), (’Quant’, 869, 870, None)]),

(’Item’, 871, 893,
[(’Prod’, 874, 879, None), (’Quant’, 888, 892, None)])]),

(’Comment’, 893, 952, []),
(’Comment’, 952, 1025, []),
(’Comment’, 1026, 1049, []),
(’Order’, 1049, 1109,
[(’Buyer’, 1054, 1069, None),
(’Item’,1069, 1109,
[(’Prod’, 1070, 1077, None), (’Quant’, 1083, 1086, None)])])]

While this is “just” a new data structure, it is quite easy to deal with compared to
raw textual reports. For example, here is a brief function that will create well-formed
XML out of any taglist. You could even arrange for it to be valid XML by designing
tag tables to match DTDs (see Chapter 5 for details about XML, DTDs, etc.):

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 292 --- #312i
i

i
i

i
i

i
i

292 PARSERS AND STATE MACHINES

def taglist2xml(s, taglist, root):
print ’<%s>’ % root
for tt in taglist:

if tt[3]:
taglist2xml(s, tt[3], tt[0])

else:
print ’<%s>%s</%s>’ % (tt[0], s[tt[1]:tt[2]], tt[0])

print ’</%s>’ % root

Example: Marking up smart ASCII

The “smart ASCII” format uses email-like conventions to lightly mark features like word
emphasis, source code, and URL links. This format—with LATEX as an intermediate
format—was used to produce the book you hold (which was written using a variety of
plaintext editors). By obeying just a few conventions (that are almost the same as you
would use on Usenet or in email), a writer can write without much clutter, but still
convert to production-ready markup.

The Txt2Html utility uses a block-level state machine, combined with a collection
of inline-level regular expressions, to identify and modify markup patterns in smart
ASCII texts. Even though Python’s regular expression engine is moderately slow, con-
verting a five-page article takes only a couple seconds. In practice, Txt2Html is more
than adequate for my own 20 kilobyte documents. However, it is easy to imagine a
not-so-different situation where you were converting multimegabyte documents and/or
delivering such dynamically converted content on a high-volume Web site. In such a
case, Python’s string operations, and especially regular expressions, would simply be
too slow.

mx.TextTools can do everything regular expressions can, plus some things regular ex-
pressions cannot. In particular, a taglist can contain recursive references to matched
patterns, which regular expressions cannot. The utility mxTypography.py utilizes sev-
eral mx.TextTools capabilities the prior example did not use. Rather than create a
nested data structure, mxTypography.py utilizes a number of callback functions, each
responding to a particular match event. As well, mxTypography.py adds some impor-
tant debugging techniques. Something similar to these techniques is almost required
for tag tables that are likely to be updated over time (or simply to aid the initial
development). Overall, this looks like a robust application should.

mx.TextTools version of Typography()

from mx.TextTools import *
import string, sys

#-- List of all words with markup, head position, loop count
ws, head_pos, loops = [], None, 0

#-- Define "emitter" callbacks for each output format
def emit_misc(tl,txt,l,r,s):

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 293 --- #313i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 293

ws.append(txt[l:r])
def emit_func(tl,txt,l,r,s):

ws.append(’<code>’+txt[l+1:r-1]+’</code>’)
def emit_modl(tl,txt,l,r,s):

ws.append(’<code>’+txt[l+1:r-1]+’</code>’)
def emit_emph(tl,txt,l,r,s):

ws.append(’’+txt[l+1:r-1]+’’)
def emit_strg(tl,txt,l,r,s):

ws.append(’’+txt[l+1:r-1]+’’)
def emit_titl(tl,txt,l,r,s):

ws.append(’<cite>’+txt[l+1:r-1]+’</cite>’)
def jump_count(tl,txt,l,r,s):

global head_pos, loops
loops = loops+1
if head_pos is None: head_pos = r
elif head_pos == r:

raise "InfiniteLoopError", \
txt[l-20:l]+’{’+txt[l]+’}’+txt[l+1:r+15]

else: head_pos = r

#-- What can appear inside, and what can be, markups?
punct_set = set("‘!@#$%^&*()_-+=|\{}[]:;’<>,.?/"+’"’)
markable = alphanumeric+whitespace+"‘!@#$%^&()+=|\{}:;<>,.?/"+’"’
markable_func = set(markable+"*-_[]")
markable_modl = set(markable+"*-_’")
markable_emph = set(markable+"*_’[]")
markable_strg = set(markable+"-_’[]")
markable_titl = set(markable+"*-’[]")
markup_set = set("-*’[]_")

#-- What can precede and follow markup phrases?
darkins = ’(/"’
leadins = whitespace+darkins # might add from "-*’[]_"
darkouts = ’/.),:;?!"’
darkout_set = set(darkouts)
leadouts = whitespace+darkouts # for non-conflicting markup
leadout_set = set(leadouts)

#-- What can appear inside plain words?
word_set = set(alphanumeric+’{}/@#$%^&-_+=|\><’+darkouts)
wordinit_set = set(alphanumeric+"$#+\<.&{"+darkins)

#-- Define the word patterns (global so as to do it only at import)
Special markup
def markup_struct(lmark, rmark, callback, markables, x_post="-"):

struct = \

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 294 --- #314i
i

i
i

i
i

i
i

294 PARSERS AND STATE MACHINES

(callback, Table+CallTag,
((None, Is, lmark), # Starts with left marker

(None, AllInSet, markables), # Stuff marked
(None, Is, rmark), # Ends with right marker
(None, IsInSet, leadout_set,+2,+1),# EITHR: postfix w/ leadout
(None, Skip, -1,+1, MatchOk), # ..give back trailng ldout
(None, IsIn, x_post, MatchFail), # OR: special case postfix
(None, Skip, -1,+1, MatchOk) # ..give back trailing char

)
)

return struct
funcs = markup_struct("’", "’", emit_func, markable_func)
modules = markup_struct("[", "]", emit_modl, markable_modl)
emphs = markup_struct("-", "-", emit_emph, markable_emph, x_post="")
strongs = markup_struct("*", "*", emit_strg, markable_strg)
titles = markup_struct("_", "_", emit_titl, markable_titl)

All the stuff not specially marked
plain_words = \
(ws, Table+AppendMatch, # AppendMatch only -slightly-

((None, IsInSet, # faster than emit_misc callback
wordinit_set, MatchFail), # Must start with word-initial

(None, Is, "’",+1), # May have apostrophe next
(None, AllInSet, word_set,+1), # May have more word-internal
(None, Is, "’", +2), # May have trailing apostrophe
(None, IsIn, "st",+1), # May have [ts] after apostrophe
(None, IsInSet,

darkout_set,+1, MatchOk), # Postfixed with dark lead-out
(None, IsInSet,

whitespace_set, MatchFail), # Give back trailing whitespace
(None, Skip, -1)

))
Catch some special cases
bullet_point = \
(ws, Table+AppendMatch,

((None, Word+CallTag, "* "), # Asterisk bullet is a word
))

horiz_rule = \
(None, Table,

((None, Word, "-"*50), # 50 dashes in a row
(None, AllIn, "-"), # More dashes

))
into_mark = \
(ws, Table+AppendMatch, # Special case where dark leadin

((None, IsInSet, set(darkins)), # is followed by markup char
(None, IsInSet, markup_set),

“TPiP” — 2006/1/30 — 15:07 — page 295 — #315i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 295

(None, Skip, -1) # Give back the markup char
))

stray_punct = \
(ws, Table+AppendMatch, # Pickup any cases where multiple

((None, IsInSet, punct_set), # punctuation character occur
(None, AllInSet, punct_set), # alone (followed by whitespace)
(None, IsInSet, whitespace_set),
(None, Skip, -1) # Give back the whitespace

))
leadout_eater = (ws, AllInSet+AppendMatch, leadout_set)

#-- Tag all the (possibly marked-up) words
tag_words = \
(bullet_point+(+1,),

horiz_rule + (+1,),
into_mark + (+1,),
stray_punct+ (+1,),
emphs + (+1,),
funcs + (+1,),
strongs + (+1,),
modules + (+1,),
titles + (+1,),
into_mark+(+1,),
plain_words +(+1,), # Since file is mstly plain wrds, can
leadout_eater+(+1,-1), # shortcut by tight looping (w/ esc)
(jump_count, Skip+CallTag, 0), # Check for infinite loop
(None, EOF, Here, -13) # Check for EOF

)
def Typography(txt):

global ws
ws = [] # clear the list before we proceed
tag(txt, tag_words, 0, len(txt), ws)
return string.join(ws, ’’)

if __name__ == ’__main__’:
print Typography(open(sys.argv[1]).read())

mxTypographify.py reads through a string and determines if the next bit of text
matches one of the markup patterns in tag words. Or rather, it better match some
pattern or the application just will not know what action to take for the next bit of
text. Whenever a named subtable matches, a callback function is called, which leads to
a properly annotated string being appended to the global list ws. In the end, all such
appended strings are concatenated.

Several of the patterns given are mostly fallback conditions. For example, the
stray punct tag table detects the condition where the next bit of text is some punc-
tuation symbols standing alone without abutting any words. In most cases, you don’t

“TPiP” — 2006/1/30 — 15:07 — page 296 — #316i
i

i
i

i
i

i
i

296 PARSERS AND STATE MACHINES

want smart ASCII to contain such a pattern, but mxTypographify has to do something
with them if they are encountered.

Making sure that every subsequence is matched by some subtable or another is tricky.
Here are a few examples of matches and failures for the stray punct subtable. Every-
thing that does not match this subtable needs to match some other subtable instead:

-- spam # matches "--"
& spam # fails at "AllInSet" since ’&’ advanced head
#@$ %% spam # matches "#@$"
**spam # fails (whitespace isn’t encountered before ’s’)

After each success, the read-head is at the space right before the next word “spam”
or “%%”. After a failure, the read-head remains where it started out (at the beginning
of the line).

Like stray punct, emphs, funcs, strongs, plain words, et cetera contain tag tables.
Each entry in tag words has its appropriate callback functions (all “emitters” of various
names, because they “emit” the match, along with surrounding markup if needed). Most
lines each have a “+1” appended to their tuple; what this does is specify where to jump
in case of a match failure. That is, even if these patterns fail to match, we continue on—
with the read-head in the same position—to try matching against the other patterns.

After the basic word patterns each attempt a match, we get to the “leadout eater”
line. For mxTypography.py, a “leadout” is the opposite of a “leadin.” That is, the
latter are things that might precede a word pattern, and the former are things that
might follow a word pattern. The leadout set includes whitespace characters, but it
also includes things like a comma, period, and question mark, which might end a word.
The “leadout eater” uses a callback function, too. As designed, it preserves exactly the
whitespace the input has. However, it would be easy to normalize whitespace here by
emitting something other than the actual match (e.g., a single space always).

The jump count is extremely important; we will come back to it momentarily. For
now, it is enough to say that we hope the line never does anything.

The EOF line is our flow control, in a way. The call made by this line is to None,
which is to say that nothing is actually done with any match. The command EOF is
the important thing (Here is just a filler value that occupies the tuple position). It
succeeds if the read-head is past the end of the read buffer. On success, the whole tag
table tag words succeeds, and having succeeded, processing stops. EOF failure is more
interesting. Assuming we haven’t reached the end of our string, we jump -13 states
(to bullet point). From there, the whole process starts over, hopefully with the read-
head advanced to the next word. By looping back to the start of the list of tuples,
we continue eating successive word patterns until the read buffer is exhausted (calling
callbacks along the way).

The tag() call simply launches processing of the tag table we pass to it (against the
read buffer contained in txt). In our case, we do not care about the return value of
tag() since everything is handled in callbacks. However, in cases where the tag table
does not loop itself, the returned tuple can be used to determine if there is reason to
call tag() again with a tail of the read buffer.

“TPiP” — 2006/1/30 — 15:07 — page 297 — #317i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 297

DEBUGGING A TAG TABLE

Describing it is easy, but I spent a large number of hours finding the exact collection
of tag tables that would match every pattern I was interested in without mismatching
any pattern as something it wasn’t. While smart ASCII markup seems pretty simple,
there are actually quite a few complications (e.g., markup characters being used in
nonmarkup contexts, or markup characters and other punctuation appearing in various
sequences). Any structured document format that is complicated enough to warrant
using mx.TextTools instead of string is likely to have similar complications.

Without question, the worst thing that can go wrong in a looping state pattern
like the one above is that none of the listed states match from the current read-head
position. If that happens, your program winds up in a tight infinite loop (entirely inside
the extension module, so you cannot get at it with Python code directly). I wound up
forcing a manual kill of the process countless times during my first brush at mx.TextTools
development.

Fortunately, there is a solution to the infinite loop problem. This is to use a callback
like jump count.

mxTypography.py infinite loop catcher

def jump_count(taglist,txt,l,r,subtag):
global head_pos
if head_pos is None: head_pos = r
elif head_pos == r:

raise "InfiniteLoopError", \
txt[l-20:l]+’{’+txt[l]+’}’+txt[l+1:r+15]

else: head_pos = r

The basic purpose of jump count is simple: We want to catch the situation where
our tag table has been run through multiple times without matching anything. The
simplest way to do this is to check whether the last read-head position is the same as
the current. If it is, more loops cannot get anywhere, since we have reached the exact
same state twice, and the same thing is fated to happen forever. mxTypography.py
simply raises an error to stop the program (and reports a little bit of buffer context to
see what is going on).

It is also possible to move the read-head manually and try again from a different
starting position. To manipulate the read head in this fashion, you could use the Call
command in tag table items. But a better approach is to create a nonlooping tag table
that is called repeatedly from a Python loop. This Python loop can look at a returned
tuple and use adjusted offsets in the next call if no match occurred. Either way, since
much more time is spent in Python this way than with the loop tag table approach, less
speed would be gained from mx.TextTools.

Not as bad as an infinite loop, but still undesirable, is having patterns within a tag
table match when they are not supposed to or not match when they are suppose to (but
something else has to match, or we would have an infinite loop issue). Using callbacks
everywhere makes examining this situation much easier. During development, I fre-
quently create temporary changes to my emit * callbacks to print or log when certain

“TPiP” — 2006/1/30 — 15:07 — page 298 — #318i
i

i
i

i
i

i
i

298 PARSERS AND STATE MACHINES

emitters get called. By looking at output from these temporary print statements, most
times you can tell where the problem lies.

CONSTANTS

The mx.TextTools module contains constants for a number of frequently used collections
of characters. Many of these character classes are the same as ones in the string module.
Each of these constants also has a set version predefined; a set is an efficient repre-
sentation of a character class that may be used in tag tables and other mx.TextTools
functions. You may also obtain a character set from a (custom) character class using
the mx.TextTools.set() function:

>>> from mx.TextTools import a2z, set
>>> varname_chars = a2z + ’_’
>>> varname_set = set(varname_chars)

mx.TextTools.a2z
mx.TextTools.a2z set

English lowercase letters (“abcdefghijklmnopqrstuvwxyz”).

mx.TextTools.A2Z
mx.TextTools.A2Z set

English uppercase letters (“ABCDEFGHIJKLMNOPQRSTUVWXYZ”).

mx.TextTools.umlaute
mx.TextTools.umlaute set

Extra German lowercase hi-bit characters.

mx.TextTools.Umlaute
mx.TextTools.Umlaute set

Extra German uppercase hi-bit characters.

mx.TextTools.alpha
mx.TextTools.alpha set

English letters (A2Z + a2z).

mx.TextTools.german alpha
mx.TextTools.german alpha set

German letters (A2Z + a2z + umlaute + Umlaute).

mx.TextTools.number
mx.TextTools.number set

The decimal numerals (“0123456789”).

mx.TextTools.alphanumeric
mx.TextTools.alphanumeric set

English numbers and letters (alpha + number).

“TPiP” — 2006/1/30 — 15:07 — page 299 — #319i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 299

mx.TextTools.white
mx.TextTools.white set

Spaces and tabs (“ \t\v”). This is more restricted than string.whitespace .

mx.TextTools.newline
mx.TextTools.newline set

Line break characters for various platforms (“\n\r”).

mx.TextTools.formfeed
mx.TextTools.formfeed set

Formfeed character (“\f”).

mx.TextTools.whitespace
mx.TextTools.whitespace set

Same as string.whitespace (white+newline+formfeed).

mx.TextTools.any
mx.TextTools.any set

All characters (0x00-0xFF).

See Also: string.digits 130; string.hexdigits 130; string.octdigits 130; string.lowercase
131; string.uppercase 131; string.letters 131; string.punctuation 131; string.whitespace
131; string.printable 132;

COMMANDS

Programming in mx.TextTools amounts mostly to correctly configuring tag tables. Uti-
lizing a tag table requires just one call to the mx.TextTools.tag() , but inside a tag
table is a kind of mini-language—something close to a specialized Assembly language,
in many ways.

Each tuple within a tag table contains several elements, of the form:

(tagobj, command[+modifiers], argument
[,jump_no_match=MatchFail [,jump_match=+1]])

The “tag object” may be None, a callable object, or a string. If tagobj is None, the
indicated pattern may match, but nothing is added to a taglist data structure if so,
nor is a callback invoked. If a callable object (usually a function) is given, it acts as a
callback for a match. If a string is used, it is used to name a part of the taglist data
structure returned by a call to mx.TextTools.tag() .

A command indicates a type of pattern to match, and a modifier can change the
behavior that occurs in case of such a match. Some commands succeed or fail uncondi-
tionally, but allow you to specify behaviors to take if they are reached. An argument is
required, but the specific values that are allowed and how they are interpreted depends
on the command used.

Two jump conditions may optionally be specified. If no values are given,
jump no match defaults to MatchFail—that is, unless otherwise specified, failing to

“TPiP” — 2006/1/30 — 15:07 — page 300 — #320i
i

i
i

i
i

i
i

300 PARSERS AND STATE MACHINES

match a tuple in a tag table causes the tag table as a whole to fail. If a value is given,
jump no match branches to a tuple the specified number of states forward or backward.
For clarity, an explicit leading “+” is used in forward branches. Branches backward will
begin with a minus sign. For example:

Branch forward one state if next character -is not- an X
... branch backward three states if it is an X
tupX = (None, Is, ’X’, +1, -3)
assume all the tups are defined somewhere...
tagtable = (tupA, tupB, tupV, tupW, tupX, tupY, tupZ)

If no value is given for jump match, branching is one state forward in the case of a
match.

Version 2.1.0 of mx.TextTools adds named jump targets, which are often easier to
read (and maintain) than numeric offsets. An example is given in the mx.TextTools
documentation:

tag_table = (’start’,
(’lowercase’,AllIn,a2z,+1,’skip’),
(’upper’,AllIn,A2Z,’skip’),
’skip’,
(None,AllIn,white+newline,+1),
(None,AllNotIn,alpha+white+newline,+1),
(None,EOF,Here,’start’))

It is easy to see that if you were to add or remove a tuple, it is less error prone to
retain a jump to, for example, skip than to change every necessary +2 to a +3 or the
like.

UNCONDITIONAL COMMANDS

mx.TextTools.Fail
mx.TextTools.Jump

Nonmatch at this tuple. Used mostly for documentary purposes in a tag table,
usually with the Here or To placeholder. The tag tables below are equivalent:

table1 = ((’foo’, Is, ’X’, MatchFail, MatchOk),)
table2 = ((’foo’, Is, ’X’, +1, +2),

(’Not_X’, Fail, Here))

The Fail command may be preferred if several other states branch to the same
failure, or if the condition needs to be documented explicitly.

Jump is equivalent to Fail, but it is often better self-documenting to use one rather
than the other; for example:

“TPiP” — 2006/1/30 — 15:07 — page 301 — #321i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 301

tup1 = (None, Fail, Here, +3)
tup2 = (None, Jump, To, +3)

mx.TextTools.Skip
mx.TextTools.Move

Match at this tuple, and change the read-head position. Skip moves the read-head
by a relative amount, Move to an absolute offset (within the slice the tag table is
operating on). For example:

read-head forward 20 chars, jump to next state
tup1 = (None, Skip, 20)
read-head to position 10, and jump back 4 states
tup2 = (None, Move, 10, 0, -4)

Negative offsets are allowed, as in Python list indexing.

MATCHING PARTICULAR CHARACTERS

mx.TextTools.AllIn
mx.TextTools.AllInSet
mx.TextTools.AllInCharSet

Match all characters up to the first that is not included in argument. AllIn uses a
character string while AllInSet uses a set as argument. For version 2.1.0, you may
also use AllInCharSet to match CharSet objects. In general, the set or CharSet
form will be faster and is preferable. The following are functionally the same:

tup1 = (’xyz’, AllIn, ’XYZxyz’)
tup2 = (’xyz’, AllInSet, set(’XYZxyz’)
tup3 = (’xyz’, AllInSet, CharSet(’XYZxyz’))

At least one character must match for the tuple to match.

mx.TextTools.AllNotIn

Match all characters up to the first that is included in argument. As of version 2.1.0,
mx.TextTools does not include an AllNotInSet command. However, the following
tuples are functionally the same (the second usually faster):

from mx.TextTools import AllNotIn, AllInSet, invset
tup1 = (’xyz’, AllNotIn, ’XYZxyz’)
tup2 = (’xyz’, AllInSet, invset(’xyzXYZ’))

At least one character must match for the tuple to match.

“TPiP” — 2006/1/30 — 15:07 — page 302 — #322i
i

i
i

i
i

i
i

302 PARSERS AND STATE MACHINES

mx.TextTools.Is

Match specified character. For example:

tup = (’X’, Is, ’X’)

mx.TextTools.IsNot

Match any one character except the specified character.

tup = (’X’, IsNot, ’X’)

mx.TextTools.IsIn
mx.TextTools.IsInSet
mx.TextTools.IsInCharSet

Match exactly one character if it is in argument. IsIn uses a character string while
IsInSet use a set as argument. For version 2.1.0, you may also use IsInCharSet
to match CharSet objects. In general, the set or CharSet form will be faster and is
preferable. The following are functionally the same:

tup1 = (’xyz’, IsIn, ’XYZxyz’)
tup2 = (’xyz’, IsInSet, set(’XYZxyz’)
tup3 = (’xyz’, IsInSet, CharSet(’XYZxyz’)

mx.TextTools.IsNotIn

Match exactly one character if it is not in argument. As of version 2.1.0,
mx.TextTools does not include an ’AllNotInSet command. However, the following
tuples are functionally the same (the second usually faster):

from mx.TextTools import IsNotIn, IsInSet, invset
tup1 = (’xyz’, IsNotIn, ’XYZxyz’)
tup2 = (’xyz’, IsInSet, invset(’xyzXYZ’))

MATCHING SEQUENCES

mx.TextTools.Word

Match a word at the current read-head position. For example:

tup = (’spam’, Word, ’spam’)

mx.TextTools.WordStart
mx.TextTools.sWordStart
mx.TextTools.WordEnd
mx.TextTools.sWordEnd

Search for a word, and match up to the point of the match. Searches performed in
this manner are extremely fast, and this is one of the most powerful elements of tag
tables. The commands sWordStart and sWordEnd use “search objects” rather than
plaintexts (and are significantly faster).

“TPiP” — 2006/1/30 — 15:07 — page 303 — #323i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 303

WordStart and sWordStart leave the read-head immediately prior to the matched
word, if a match succeeds. WordEnd and sWordEnd leave the read-head immediately
after the matched word. On failure, the read-head is not moved for any of these
commands.

>>> from mx.TextTools import *
>>> s = ’spam and eggs taste good’
>>> tab1 = ((’toeggs’, WordStart, ’eggs’),)
>>> tag(s, tab1)
(1, [(’toeggs’, 0, 9, None)], 9)
>>> s[0:9]
’spam and ’
>>> tab2 = ((’pasteggs’, sWordEnd, BMS(’eggs’)),)
>>> tag(s, tab2)
(1, [(’pasteggs’, 0, 13, None)], 13)
>>> s[0:13]
’spam and eggs’

See Also: mx.TextTools.BMS() 307; mx.TextTools.sFindWord 303;

mx.TextTools.sFindWord

Search for a word, and match only that word. Any characters leading up to the
match are ignored. This command accepts a search object as an argument. In case
of a match, the read-head is positioned immediately after the matched word.

>>> from mx.TextTools import *
>>> s = ’spam and eggs taste good’
>>> tab3 = ((’justeggs’, sFindWord, BMS(’eggs’)),)
>>> tag(s, tab3)
(1, [(’justeggs’, 9, 13, None)], 13)
>>> s[9:13]
’eggs’

See Also: mx.TextTools.sWordEnd 302;

mx.TextTools.EOF

Match if the read-head is past the end of the string slice. Normally used with
placeholder argument Here, for example:

tup = (None, EOF, Here)

“TPiP” — 2006/1/30 — 15:07 — page 304 — #324i
i

i
i

i
i

i
i

304 PARSERS AND STATE MACHINES

COMPOUND MATCHES

mx.TextTools.Table
mx.TextTools.SubTable

Match if the table given as argument matches at the current read-head position.
The difference between the Table and the SubTable commands is in where matches
get inserted. When the Table command is used, any matches in the indicated table
are nested in the data structure associated with the tuple. When SubTable is used,
matches are written into the current level taglist. For example:

>>> from mx.TextTools import *
>>> from pprint import pprint
>>> caps = (’Caps’, AllIn, A2Z)
>>> lower = (’Lower’, AllIn, a2z)
>>> words = ((’Word’, Table, (caps, lower)),
... (None, AllIn, whitespace, MatchFail, -1))
>>> from pprint import pprint
>>> pprint(tag(s, words))
(0,
[(’Word’, 0, 4, [(’Caps’, 0, 1, None), (’Lower’, 1, 4, None)]),
(’Word’, 5, 19, [(’Caps’, 5, 6, None), (’Lower’, 6, 19, None)]),
(’Word’, 20, 29, [(’Caps’, 20, 24, None), (’Lower’, 24, 29, None)]),
(’Word’, 30, 35, [(’Caps’, 30, 32, None), (’Lower’, 32, 35, None)])

],
35)

>>> flatwords = ((None, SubTable, (caps, lower)),
... (None, AllIn, whitespace, MatchFail, -1))
>>> pprint(tag(s, flatwords))
(0,
[(’Caps’, 0, 1, None),
(’Lower’, 1, 4, None),
(’Caps’, 5, 6, None),
(’Lower’, 6, 19, None),
(’Caps’, 20, 24, None),
(’Lower’, 24, 29, None),
(’Caps’, 30, 32, None),
(’Lower’, 32, 35, None)],

35)

For either command, if a match occurs, the read-head is moved to immediately after
the match.

The special constant ThisTable can be used instead of a tag table to call the current
table recursively.

“TPiP” — 2006/1/30 — 15:07 — page 305 — #325i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 305

mx.TextTools.TableInList
mx.TextTools.SubTableInList

Similar to Table and SubTable except that the argument is a tuple of the form
(list of tables,index). The advantage (and the danger) of this is that a list
is mutable and may have tables added after the tuple defined—in particular, the
containing tag table may be added to list of tables to allow recursion. Note,
however, that the special value ThisTable can be used with the Table or SubTable
commands and is usually more clear.

See Also: mx.TextTools.Table 304; mx.TextTools.SubTable 304;

mx.TextTools.Call

Match on any computable basis. Essentially, when the Call command is used,
control over parsing/matching is turned over to Python rather than staying in the
mx.TextTools engine. The function that is called must accept arguments s, pos,
and end—where s is the underlying string, pos is the current read-head position,
and end is ending of the slice being processed. The called function must return an
integer for the new read-head position; if the return is different from pos, the match
is a success.

As an example, suppose you want to match at a certain point only if the next N
characters make up a dictionary word. Perhaps an efficient stemmed data structure
is used to represent the dictionary word list. You might check dictionary membership
with a tuple like:

tup = (’DictWord’, Call, inDict)

Since the function inDict is written in Python, it will generally not operate as
quickly as does an mx.TextTools pattern tuple.

mx.TextTools.CallArg

Same as Call, except CallArg allows passing additional arguments. For example,
suppose the dictionary example given in the discussion of Call also allows you to
specify language and maximum word length for a match:

tup = (’DictWord’, Call, (inDict,[’English’,10]))

See Also: mx.TextTools.Call 305;

MODIFIERS

mx.TextTools.CallTag

Instead of appending (tagobj,l,r,subtags) to the taglist upon a successful match,
call the function indicated as the tag object (which must be a function rather than

“TPiP” — 2006/1/30 — 15:07 — page 306 — #326i
i

i
i

i
i

i
i

306 PARSERS AND STATE MACHINES

None or a string). The function called must accept the arguments taglist, s, start,
end, and subtags—where taglist is the present taglist, s is the underlying string,
start and end are the slice indices of the match, and subtags is the nested taglist.
The function called may, but need not, append to or modify taglist or subtags
as part of its action. For example, a code parsing application might include:

>>> def todo_flag(taglist, s, start, end, subtags):
... sys.stderr.write("Fix issue at offset %d\n" % start)
...
>>> tup = (todo_flag, Word+CallTag, ’XXX’)
>>> tag(’XXX more stuff’, (tup,))
Fix issue at offset 0
(1, [], 3)

mx.TextTools.AppendMatch

Instead of appending (tagobj,start,end,subtags) to the taglist upon successful
matching, append the match found as string. The produced taglist is “flattened”
and cannot be used in the same manner as “normal” taglist data structures. The
flat data structure is often useful for joining or for list processing styles.

>>> from mx.TextTools import *
>>> words = ((’Word’, AllIn+AppendMatch, alpha),
... (None, AllIn, whitespace, MatchFail, -1))
>>> tag(’this and that’, words)
(0, [’this’, ’and’, ’that’], 13)
>>> join(tag(’this and that’, words)[1], ’-’)
’this-and-that’

See Also: string.split() 142;

mx.TextTools.AppendToTagobj

Instead of appending (tagobj,start,end,subtags) to the taglist upon successful
matching, call the .append() method of the tag object. The tag object must be a
list (or a descendent of list in Python 2.2+).

>>> from mx.TextTools import *
>>> ws = []
>>> words = ((ws, AllIn+AppendToTagobj, alpha),
... (None, AllIn, whitespace, MatchFail, -1))
>>> tag(’this and that’, words)
(0, [], 13)
>>> ws
[(None, 0, 4, None), (None, 5, 8, None), (None, 9, 13, None)]

“TPiP” — 2006/1/30 — 15:07 — page 307 — #327i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 307

See Also: mx.TextTools.CallTag 305;

mx.TextTools.AppendTagobj

Instead of appending (tagobj,start,end,subtags) to the taglist upon successful
matching, append the tag object. The produced taglist is usually nonstandard and
cannot be used in the same manner as “normal” taglist data structures. A flat data
structure is often useful for joining or for list processing styles.

>>> from mx.TextTools import *
>>> words = ((’word’, AllIn+AppendTagobj, alpha),
... (None, AllIn, whitespace, MatchFail, -1))
>>> tag(’this and that’, words)
(0, [’word’, ’word’, ’word’], 13)

mx.TextTools.LookAhead

If this modifier is used, the read-head position is not changed when a match occurs.
As the name suggests, this modifier allows you to create patterns similar to regular
expression lookaheads.

>>> from mx.TextTools import *
>>> from pprint import pprint
>>> xwords = ((None, IsIn+LookAhead, ’Xx’, +2),
... (’xword’, AllIn, alpha, MatchFail, +2),
... (’other’, AllIn, alpha),
... (None, AllIn, whitespace, MatchFail, -3))
>>> pprint(tag(’Xylophone trumpet xray camera’, xwords))
(0,
[(’xword’, 0, 9, None),
(’other’, 10, 17, None),
(’xword’, 18, 22, None),
(’other’, 23, 29, None)],

29)

CLASSES

mx.TextTools.BMS(word [,translate])
mx.TextTools.FS(word [,translate])
mx.TextTools.TextSearch(word [,translate [,algorithm=BOYERMOORE]])

Create a search object for the string word. This is similar in concept to a com-
piled regular expression. A search object has several methods to locate its encoded
string within another string. The BMS name is short for “Boyer-Moore,” which is
a particular search algorithm. The name FS is reserved for accessing the “Fast
Search” algorithm in future versions, but currently both classes use Boyer-Moore.
For mx.TextTools 2.1.0+, you are urged to use the .TextSearch() constructor.

“TPiP” — 2006/1/30 — 15:07 — page 308 — #328i
i

i
i

i
i

i
i

308 PARSERS AND STATE MACHINES

If a translate argument is given, the searched string is translated during the search.
This is equivalent to transforming the string with string.translate() prior to
searching it.

See Also: string.translate() 145;

mx.TextTools.CharSet(definition)

Version 2.1.0 of mx.TextTools adds the Unicode-compatible CharSet object.
CharSet objects may be initialized to support character ranges, as in regular ex-
pressions; for example, definition="a-mXYZ". In most respects, CharSet objects
are similar to older sets.

METHODS AND ATTRIBUTES

mx.TextTools.BMS.search(s [,start [,end]])
mx.TextTools.FS.search(s [,start [,end]])
mx.TextTools.TextSearch.search(s [,start [,end]])

Locate as a slice the first match of the search object against s. If optional arguments
start and end are used, only the slice s[start:end] is considered. Note: As
of version 2.1.0, the documentation that accompanies mx.TextTools inaccurately
describes the end parameter of search object methods as indicating the length of
the slice rather than its ending offset.

mx.TextTools.BMS.find(s, [,start [,end]])
mx.TextTools.FS.find(s, [,start [,end]])
mx.TextTools.TextSearch.search(s [,start [,end]])

Similar to mx.TextTools.BMS.search() , except return only the starting position
of the match. The behavior is similar to that of string.find() .

See Also: string.find() 135; mx.TextTools.find() 312;

mx.TextTools.BMS.findall(s [,start [,end]])
mx.TextTools.FS.findall(s [,start [,end]])
mx.TextTools.TextSearch.search(s [,start [,end]])

Locate as slices every match of the search object against s. If the optional arguments
start and end are used, only the slice s[start:end] is considered.

>>> from mx.TextTools import BMS, any, upper
>>> foosrch = BMS(’FOO’, upper(any))
>>> foosrch.search(’foo and bar and FOO and BAR’)
(0, 3)
>>> foosrch.find(’foo and bar and FOO and BAR’)
0
>>> foosrch.findall(’foo and bar and FOO and BAR’)
[(0, 3), (16, 19)]
>>> foosrch.search(’foo and bar and FOO and BAR’, 10, 20)
(16, 19)

“TPiP” — 2006/1/30 — 15:07 — page 309 — #329i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 309

See Also: re.findall 245; mx.TextTools.findall() 312;

mx.TextTools.BMS.match
mx.TextTools.FS.match
mx.TextTools.TextSearch.match

The string that the search object will look for in the search text (read-only).

mx.TextTools.BMS.translate
mx.TextTools.FS.translate
mx.TextTools.TextSearch.match

The translation string used by the object, or None if no translate string was spec-
ified.

mx.TextTools.CharSet.contains(c)

Return a true value if character c is in the CharSet.

mx.TextTools.CharSet.search(s [,direction [,start=0 [,stop=len(s)]]])

Return the position of the first CharSet character that occurs in s[start:end].
Return None if there is no match. You may specify a negative direction to search
backwards.

See Also: re.search() 249;

mx.TextTools.CharSet.match(s [,direction [,start=0 [,stop=len(s)]]])

Return the length of the longest contiguous match of the CharSet object against
substrings of s[start:end].

mx.TextTools.CharSet.split(s [,start=0 [,stop=len(text)]])

Return a list of substrings of s[start:end] divided by occurrences of characters in
the CharSet.

See Also: re.search() 249;

mx.TextTools.CharSet.splitx(s [,start=0 [,stop=len(text)]])

Like mx.TextTools.CharSet.split() except retain characters from CharSet in
interspersed list elements.

mx.TextTools.CharSet.strip(s [,where=0 [,start=0 [,stop=len(s)]]])

Strip all characters in s[start:stop] appearing in the character set.

“TPiP” — 2006/1/30 — 15:07 — page 310 — #330i
i

i
i

i
i

i
i

310 PARSERS AND STATE MACHINES

FUNCTIONS

Many of the functions in mx.TextTools are used by the tagging engine. A number of
others are higher-level utility functions that do not require custom development of tag
tables. The latter are listed under a separate heading and generally resemble faster
versions of functions in the string module.

mx.TextTools.cmp(t1, t2)

Compare two valid taglist tuples on their slice positions. Taglists generated with
multiple passes of mx.TextTools.tag() , or combined by other means, may not
have tuples sorted in string order. This custom comparison function is coded in C
and is very fast.

>>> import mx.TextTools
>>> from pprint import pprint
>>> tl = [(’other’, 10, 17, None),
... (’other’, 23, 29, None),
... (’xword’, 0, 9, None),
... (’xword’, 18, 22, None)]
>>> tl.sort(mx.TextTools.cmp)
>>> pprint(tl)
[(’xword’, 0, 9, None),
(’other’, 10, 17, None),
(’xword’, 18, 22, None),
(’other’, 23, 29, None)]

mx.TextTools.invset(s)

Identical to mx.TextTools.set(s, 0).

See Also: mx.TextTools.set() 310;

mx.TextTools.set(s [,includechars=1])

Return a bit-position encoded character set. Bit-position encoding makes tag table
commands like InSet and AllInSet operate more quickly than their character-string
equivalents (e.g, In, AllIn).

If includechars is set to 0, invert the character set.

See Also: mx.TextTools.invset() 310;

mx.TextTools.tag(s, table [,start [,end [,taglist]]])

Apply a tag table to a string. The return value is a tuple of the form (success,
taglist, next). success is a binary value indicating whether the table matched.
next is the read-head position after the match attempt. Even on a nonmatch of
the table, the read-head might have been advanced to some degree by member

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 311 --- #331i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 311

tuples matching. The taglist return value contains the data structure generated by
application. Modifiers and commands within the tag table can alter the composition
of taglist; but in the normal case, taglist is composed of zero or more tuples of
the form (tagname, start, end, subtaglist).

Assuming a “normal” taglist is created, tagname is a string value that was given as
a tag object in a tuple within the tag table. start and end the slice ends of that
particular match. subtaglist is either None or a taglist for a subtable match.

If start or end are given as arguments to mx.TextTools.tag() , application is
restricted to the slice s[start:end] (or s[start:] if only start is used). If a
taglist argument is passed, that list object is used instead of a new list. This
allows extending a previously generated taglist, for example. If None is passed as
taglist, no taglist is generated.

See the application examples and command illustrations for a number of concrete
uses of mx.TextTools.tag() .

UTILITY FUNCTIONS

mx.TextTools.charsplit(s, char, [start [,end]])

Return a list split around each char. Similar to string.split() , but faster. If
the optional arguments start and end are used, only the slice s[start:end] is
operated on.

See Also: string.split() 142; mx.TextTools.setsplit() 314;

mx.TextTools.collapse(s, sep=’ ’)

Return a string with normalized whitespace. This is equivalent to string.join(
string.split(s),sep), but faster.

>>> from mx.TextTools import collapse
>>> collapse(’this and that’,’-’)
’this-and-that’

See Also: string.join() 137; string.split() 142;

mx.TextTools.countlines(s)

Returns the number of lines in s in a platform-portable way. Lines may end with CR
(Mac-style), LF (Unix-style), or CRLF (DOS-style), including a mixture of these.

See Also: FILE.readlines() 17; mx.TextTools.splitlines() 315;

“TPiP” — 2006/1/30 — 15:07 — page 312 — #332i
i

i
i

i
i

i
i

312 PARSERS AND STATE MACHINES

mx.TextTools.find(s, search obj, [start, [,end]])

Return the position of the first match of search obj against s. If the optional
arguments start and end are used, only the slice s[start:end] is considered. This
function is identical to the search object method of the same name; the syntax is
just slightly different. The following are synonyms:

from mx.TextTools import BMS, find
s = ’some string with a pattern in it’
pos1 = find(s, BMS(’pat’))
pos2 = BMS(’pat’).find(s)

See Also: string.find() 135; mx.TextTools.BMS.find() 308;

mx.TextTools.findall(s, search obj [,start [,end]])

Return as slices every match of search obj against s. If the optional arguments
start and end are used, only the slice s[start:end] is considered. This function is
identical to the search object method of the same name; the syntax is just slightly
different. The following are synonyms:

from mx.TextTools import BMS, findall
s = ’some string with a pattern in it’
pos1 = findall(s, BMS(’pat’))
pos2 = BMS(’pat’).findall(s)

See Also: mx.TextTools.find() 312; mx.TextTools.BMS.findall() 308;

mx.TextTools.hex2str(hexstr)

Returns a string based on the hex-encoded string hexstr.

>>> from mx.TextTools import hex2str, str2hex
>>> str2hex(’abc’)
’616263’
>>> hex2str(’616263’)
’abc’

See Also: mx.TextTools.str2hex() 315;

mx.TextTools.is whitespace(s [,start [,end]])

Returns a Boolean value indicating whether s[start:end] contains only white-
space characters. start and end are optional, and will default to 0 and len(s),
respectively.

mx.TextTools.isascii(s)

Returns a Boolean value indicating whether s contains only ASCII characters.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 313 --- #333i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 313

mx.TextTools.join(joinlist [,sep=”” [,start [,end]]])

Return a string composed of slices from other strings. joinlist is a sequence of
tuples of the form (s, start, end, ...) each indicating the source string and
offsets for the utilized slice. Negative offsets do not behave like Python slice offsets
and should not be used. If a joinlist item tuple contains extra entries, they are
ignored, but are permissible.

If the optional argument sep is specified, a delimiter between each joined slice is
added. If start and end are specified, only joinlist[start:end] is utilized in the
joining.

>>> from mx.TextTools import join
>>> s = ’Spam and eggs for breakfast’
>>> t = ’This and that for lunch’
>>> jl = [(s, 0, 4), (s, 9, 13), (t, 0, 4), (t, 9, 13)]
>>> join(jl, ’/’, 1, 4)
’/eggs/This/that’

See Also: string.join() 137;

mx.TextTools.lower(s)

Return a string with any uppercase letters converted to lowercase. Functionally
identical to string.lower() , but much faster.

See Also: string.lower() 138; mx.TextTools.upper() 316;

mx.TextTools.prefix(s, prefixes [,start [,stop [,translate]]])

Return the first prefix in the tuple prefixes that matches the start of s. If start
and end are specified, only operate on the slice s[start:end]. Return None if no
prefix matches.

If a translate argument is given, the searched string is translated during the search.
This is equivalent to transforming the string with string.translate() prior to
searching it.

>>> from mx.TextTools import prefix
>>> prefix(’spam and eggs’, (’spam’,’and’,’eggs’))
’spam’

See Also: mx.TextTools.suffix() 316;

mx.TextTools.multireplace(s ,replacements [,start [,stop]])

Replace multiple nonoverlapping slices in s with string values. replacements must
be list of tuples of the form (new, left, right). Indexing is always relative to s,
even if an earlier replacement changes the length of the result. If start and end are
specified, only operate on the slice s[start:end].

“TPiP” — 2006/1/30 — 15:07 — page 314 — #334i
i

i
i

i
i

i
i

314 PARSERS AND STATE MACHINES

>>> from mx.TextTools import findall, multireplace
>>> s = ’spam, bacon, sausage, and spam’
>>> repls = [(’X’,l,r) for l,r in findall(s, ’spam’)]
>>> multireplace(s, repls)
’X, bacon, sausage, and X’
>>> repls
[(’X’, 0, 4), (’X’, 26, 30)]

mx.TextTools.replace(s, old, new [,start [,stop]])

Return a string where the pattern matched by search object old is replaced by string
new. If start and end are specified, only operate on the slice s[start:end]. This
function is much faster than string.replace() , since a search object is used in the
search aspect.

>>> from mx.TextTools import replace, BMS
>>> s = ’spam, bacon, sausage, and spam’
>>> spam = BMS(’spam’)
>>> replace(s, spam, ’eggs’)
’eggs, bacon, sausage, and eggs’
>>> replace(s, spam, ’eggs’, 5)
’ bacon, sausage, and eggs’

See Also: string.replace() 139; mx.TextTools.BMS 307;

mx.TextTools.setfind(s, set [,start [,end]])

Find the first occurence of any character in set. If start is specified, look only in
s[start:]; if end is specified, look only in s[start:end]. The argument set must
be a set.

>>> from mx.TextTools import *
>>> s = ’spam and eggs’
>>> vowel = set(’aeiou’)
>>> setfind(s, vowel)
2
>>> setfind(s, vowel, 7, 10)
9

See Also: mx.TextTools.set() 310;

mx.TextTools.setsplit(s, set [,start [,stop]])

Split s into substrings divided at any characters in set. If start is specified, create a
list of substrings of s[start:]; if end is specified, use s[start:end]. The argument
set must be a set.

“TPiP” — 2006/1/30 — 15:07 — page 315 — #335i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 315

See Also: string.split() 142; mx.TextTools.set() 310; mx.TextTools.setsplitx() 315;

mx.TextTools.setsplitx(text,set[,start=0,stop=len(text)])

Split s into substrings divided at any characters in set. Include the split characters
in the returned list. Adjacent characters in set are returned in the same list element.
If start is specified, create a list of substrings of s[start:]; if end is specified, use
s[start:end]. The argument set must be a set.

>>> s = ’do you like spam’
>>> setsplit(s, vowel)
[’d’, ’ y’, ’ l’, ’k’, ’ sp’, ’m’]
>>> setsplitx(s, vowel)
[’d’, ’o’, ’ y’, ’ou’, ’ l’, ’i’, ’k’, ’e’, ’ sp’, ’a’, ’m’]

See Also: string.split() 142; mx.TextTools.set() 310; mx.TextTools.setsplit() 314;

mx.TextTools.splitat(s, char, [n=1 [,start [end]]])

Return a 2-element tuple that divides s around the n’th occurence of char. If start
and end are specified, only operate on the slice s[start:end].

>>> from mx.TextTools import splitat
>>> s = ’spam, bacon, sausage, and spam’
>>> splitat(s, ’a’, 3)
(’spam, bacon, s’, ’usage, and spam’)
>>> splitat(s, ’a’, 3, 5, 20)
(’ bacon, saus’, ’ge’)

mx.TextTools.splitlines(s)

Return a list of lines in s. Line-ending combinations for Mac, PC, and Unix plat-
forms are recognized in any combination, which makes this function more portable
than is string.split(s,"\n") or FILE.readlines() .

See Also: string.split() 142; FILE.readlines() 17; mx.TextTools.setsplit() 314;
mx.TextTools.countlines() 311;

mx.TextTools.splitwords(s)

Return a list of whitespace-separated words in s. Equivalent to string.split(s).

See Also: string.split() 142;

mx.TextTools.str2hex(s)

Returns a hexadecimal representation of a string. For Python 2.0+, this is equivalent
to s.encode("hex").

“TPiP” — 2006/1/30 — 15:07 — page 316 — #336i
i

i
i

i
i

i
i

316 PARSERS AND STATE MACHINES

See Also: "".encode() 188; mx.TextTools.hex2str() 312;

mx.TextTools.suffix(s, suffixes [,start [,stop [,translate]]])

Return the first suffix in the tuple suffixes that matches the end of s. If start
and end are specified, only operate on the slice s[start:end]. Return None if no
suffix matches.

If a translate argument is given, the searched string is translated during the search.
This is equivalent to transforming the string with string.translate() prior to
searching it.

>>> from mx.TextTools import suffix
>>> suffix(’spam and eggs’, (’spam’,’and’,’eggs’))
’eggs’

See Also: mx.TextTools.prefix() 313;

mx.TextTools.upper(s)

Return a string with any lowercase letters converted to uppercase. Functionally
identical to string.upper() , but much faster.

See Also: string.upper() 146; mx.TextTools.lower() 313;

4.3.3 High-Level EBNF Parsing

SimpleParse � A Parser Generator for mx.TextTools

SimpleParse is an interesting tool. To use this module, you need to have the mx.TextTools
module installed. While there is nothing you can do with SimpleParse that cannot be
done with mx.TextTools by itself, SimpleParse is often much easier to work with. There
exist other modules to provide higher-level APIs for mx.TextTools; I find SimpleParse to
be the most useful of these, and the only one that this book will present. The examples
in this section were written against SimpleParse version 1.0, but the documentation is
updated to include new features of 2.0. Version 2.0 is fully backward compatible with
existing SimpleParse code.

SimpleParse substitutes an EBNF-style grammar for the low-level state matching
language of mx.TextTools tag tables. Or more accurately, SimpleParse is a tool
for generating tag tables based on friendlier and higher-level EBNF grammars. In
principle, SimpleParse lets you access and modify tag tables before passing them
to mx.TextTools.tag() . But in practice, you usually want to stick wholly with
SimpleParse’s EBNF variant when your processing is amenable to a grammatical de-
scription of the text format.

An application based on SimpleParse has two main aspects. The first aspect is the
grammar that defines the structure of a processed text. The second aspect is the

“TPiP” — 2006/1/30 — 15:07 — page 317 — #337i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 317

traversal and use of a generated mx.TextTools taglist. SimpleParse 2.0 adds facilities
for the traversal aspect, but taglists present a data structure that is quite easy to work
with in any case. The tree-walking tools in SimpleParse 2.0 are not covered here, but
the examples given in the discussion of mx.TextTools illustrate such traversal.

Example: Marking up smart ASCII (Redux)

Elsewhere in this book, applications to process the smart ASCII format are also pre-
sented. Appendix D lists the Txt2Html utility, which uses a combination of a state
machine for parsing paragraphs and regular expressions for identifying inline markup.
A functionally similar example was given in the discussion of mx.TextTools, where a
complex and compound tag table was developed to recognize inline markup elements.
Using SimpleParse and an EBNF grammar is yet another way to perform the same sort
of processing. Comparing the several styles will highlight a number of advantages that
SimpleParse has—its grammars are clear and concise, and applications built around it
can be extremely fast.

The application simpleTypography.py is quite simple; most of the work of program-
ming it lies in creating a grammar to describe smart ASCII. EBNF grammars are almost
self-explanatory to read, but designing one does require a bit of thought and testing:

typography.def

para := (plain / markup)+
plain := (word / whitespace / punctuation)+
<whitespace> := [\t\r\n]+
<alphanums> := [a-zA-Z0-9]+
<word> := alphanums, (wordpunct, alphanums)*, contraction?
<wordpunct> := [-_]
<contraction> := "’", (’am’/’clock’/’d’/’ll’/’m’/’re’/’s’/’t’/’ve’)
markup := emph / strong / module / code / title
emph := ’-’, plain, ’-’
strong := ’*’, plain, ’*’
module := ’[’, plain, ’]’
code := "’", plain, "’"
title := ’_’, plain, ’_’
<punctuation> := (safepunct / mdash)
<mdash> := ’--’
<safepunct> := [!@#$%^&()+=|\{}:;<>,.?/"]

This grammar is almost exactly the way you would describe the smart ASCII language
verbally, which is a nice sort of clarity. A paragraph consist of some plaintext and
some marked-up text. Plaintext consists of some collection of words, whitespace, and
punctuation. Marked-up text might be emphasized, or strongly emphasized, or module
names, and so on. Strongly emphasized text is surrounded by asterisks. And so on. A
couple of features like just what a “word” really is, or just what a contraction can end
with, take a bit of thought, but the syntax of EBNF doesn’t get in the way.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 318 --- #338i
i

i
i

i
i

i
i

318 PARSERS AND STATE MACHINES

Notice that some declarations have their left side surrounded in angle brackets. Those
productions will not be written to the taglist—this is the same as using None as a tagobj
in an mx.Texttools tag table. Of course, if a production is not written to the taglist,
then its children cannot be, either. By omitting some productions from the resultant
taglist, a simpler data structure is produced (with only those elements that interest us).

In contrast to the grammar above, the same sort of rules can be described even more
tersely using regular expressions. This is what the Txt2Html version of the smart ASCII
markup program does. But this terseness is much harder to write and harder still to
tweak later. The re code below expresses largely (but not precisely) the same set of
rules:

Python regexes for smart ASCII markup

[module] names
re_mods = r"""([\(\s’/">]|^)\[(.*?)\]([<\s\.\),:;’"?!/-])"""
strongly emphasize words
re_strong = r"""([\(\s’/"]|^)*(.*?)*([\s\.\),:;’"?!/-])"""
-emphasize- words
re_emph = r"""([\(\s’/"]|^)-(.*?)-([\s\.\),:;’"?!/])"""
Book Title citations
re_title = r"""([\(\s’/"]|^)_(.*?)_([\s\.\),:;’"?!/-])"""
’Function()’ names
re_funcs = r"""([\(\s/"]|^)’(.*?)’([\s\.\),:;"?!/-])"""

If you discover or invent some slightly new variant of the language, it is a lot easier
to play with the EBNF grammar than with those regular expressions. Moreover, using
SimpleParse—and therefore mx.TextTools—will generally be even faster in performing
the manipulations of the patterns.

GENERATING AND USING A TAGLIST

For simpleTypography.py, I put the actual grammar in a separate file. For most
purposes, this is a good organization to use. Changing the grammar is usually a different
sort of task than changing the application logic, and the files reflect this. But the
grammar is just read as a string, so in principle you could include it in the main
application (or even dynamically generate it in some way).

Let us look at the entire—compact—tagging application:

“TPiP” — 2006/1/30 — 15:07 — page 319 — #339i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 319

simpleTypography.py

from sys import stdin, stdout, stderr
from simpleparse import generator
from mx.TextTools import TextTools
from typo_html import codes
from pprint import pprint

src = stdin.read()
decl = open(’typography.def’).read()
parser = generator.buildParser(decl).parserbyname(’para’)
taglist = TextTools.tag(src, parser)
pprint(taglist, stderr)

for tag, beg, end, parts in taglist[1]:
if tag == ’plain’:

stdout.write(src[beg:end])
elif tag == ’markup’:

markup = parts[0]
mtag, mbeg, mend = markup[:3]
start, stop = codes.get(mtag, (’<!-- unknown -->’,

’<!-- /unknown -->’))
stdout.write(start + src[mbeg+1:mend-1] + stop)

else:
raise TypeError, "Top level tagging should be plain/markup"

With version 2.0 of SimpleParse, you may use a somewhat more convenient API to
create a taglist:

from simpleparse.parser import Parser
parser = Parser(open(’typography.def’).read(), ’para’)
taglist = parser.parse(src)

Here is what it does. First read in the grammar and create an mx.TextTools parser
from the grammar. The generated parser is similar to the tag table that is found in
the hand-written mxTypography.py module discussed earlier (but without the human-
friendly comments and structure). Next, apply the tag table/parser to the input source
to create a taglist. Finally, loop through the taglist, and emit some new marked-up text.
The loop could, of course, do anything else desired with each production encountered.

For the particular grammar used for smart ASCII, everything in the source text is
expected to fall into either a “plain” production or a “markup” production. Therefore,
it suffices to loop across a single level in the taglist (except when we look exactly one
level lower for the specific markup production, such as “title”). But a more free-form
grammar—such as occurs for most programming languages—could easily recursively
descend into the taglist and look for production names at every level. For example, if
the grammar were to allow nested markup codes, this recursive style would probably

“TPiP” — 2006/1/30 — 15:07 — page 320 — #340i
i

i
i

i
i

i
i

320 PARSERS AND STATE MACHINES

be used. Readers might enjoy the exercise of figuring out how to adjust the grammar
(hint: Remember that productions are allowed to be mutually recursive).

The particular markup codes that go to the output live in yet another file for organiza-
tional, not essential, reasons. A little trick of using a dictionary as a switch statement is
used here (although the otherwise case remains too narrow in the example). The idea
behind this organization is that we might in the future want to create multiple “output
format” files for, say, HTML, DocBook, LATEX, or others. The particular markup file
used for the example just looks like:

typo html.py

codes = \
{ ’emph’ : (’’, ’’),

’strong’ : (’’, ’’),
’module’ : (’<code>’, ’</code>’),
’code’ : (’<code>’, ’</code>’),
’title’ : (’<cite>’, ’</cite>’),

}

Extending this to other output formats is straightforward.

THE TAGLIST AND THE OUTPUT

The tag table generated from the grammar in typography.def is surprisingly compli-
cated and includes numerous recursions. Only the exceptionally brave of heart will
want to attempt manual—let alone automated—modification of tag tables created by
SimpleParse. Fortunately, an average user need not even look at these tags, but simply
use them, as is done with parser in simpleTypography.py.

The taglist produced by applying a grammar, in contrast, can be remarkably simple.
Here is a run of simpleTypography.py against a small input file:

% python simpleTypography.py < p.txt > p.html
(1,
[(’plain’, 0, 15, []),
(’markup’, 15, 27, [(’emph’, 15, 27, [(’plain’, 16, 26, [])])]),
(’plain’, 27, 42, []),
(’markup’, 42, 51, [(’module’, 42, 51, [(’plain’, 43, 50, [])])]),
(’plain’, 51, 55, []),
(’markup’, 55, 70, [(’code’, 55, 70, [(’plain’, 56, 69, [])])]),
(’plain’, 70, 90, []),
(’markup’, 90, 96, [(’strong’, 90, 96, [(’plain’, 91, 95, [])])]),
(’plain’, 96, 132, []),
(’markup’, 132, 145, [(’title’, 132, 145, [(’plain’,133,144,[])])]),
(’plain’, 145, 174, [])],

174)

“TPiP” — 2006/1/30 — 15:07 — page 321 — #341i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 321

Most productions that were satisfied are not written into the taglist, because they
are not needed for the application. You can control this aspect simply by defining
productions with or without angle braces on the left side of their declaration. The
output looks like you would expect:

% cat p.txt
Some words are -in italics-, others
name [modules] or ’command lines’.
Still others are *bold* -- that’s how
it goes. Maybe some _book titles_.
And some in-fixed dashes.
% cat p.html
Some words are in italics, others
name <code>modules</code> or <code>command lines</code>.
Still others are bold -- that’s how
it goes. Maybe some <cite>book titles</cite>.
And some in-fixed dashes.

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦

GRAMMAR

The language of SimpleParse grammars is itself defined using a SimpleParse EBNF-style
grammar. In principle, you could refine the language SimpleParse uses by changing the
variable declaration in bootstrap.py, or simpleparsegrammar.py in recent versions.
For example, extended regular expressions, W3C XML Schemas, and some EBNF vari-
ants allow integer occurrence quantification. To specify that three to seven foo tokens
occur, you could use the following declaration in SimpleParse:

foos := foo, foo, foo, foo?, foo?, foo?, foo?

Hypothetically, it might be more elegant to write something like:

foos := foo{3,7}

In practice, only someone developing a custom/enhanced parsing module would
have any reason to fiddle quite so deeply; “normal” programmers should use
the particular EBNF variant defined by default. Nonetheless, taking a look at
simpleparse/bootstrap.py can be illustrative in understanding the module.

DECLARATION PATTERNS

A SimpleParse grammar consists of a set of one or more declarations. Each declaration
generally occurs on a line by itself; within a line, horizontal whitespace may be used
as desired to improve readability. A common strategy is to align the right sides of
declarations, but any other use of internal whitespace is acceptable. A declaration
contains a term, followed by the assignment symbol “:=”, followed by a definition. An

“TPiP” — 2006/1/30 — 15:07 — page 322 — #342i
i

i
i

i
i

i
i

322 PARSERS AND STATE MACHINES

end-of-line comment may be added to a declaration, following an unquoted “#” (just
as in Python).

In contrast to most imperative-style programming, the declarations within a grammar
may occur in any order. When a parser generator’s .parserbyname() method is called,
the “top level” of the grammar is given as an argument. The documented API for
SimpleParse uses a call of the form:

from simpleparse import generator
parser = generator.buildParser(decl).parserbyname(’toplevel’)
from mx.TextTools import TextTools
taglist = TextTools.tag(src, parser)

Under SimpleParse 2.0, you may simplify this to:

from simpleparse.parser import Parser
parser = Parser(decl,’toplevel’)
taglist = parser.parse(src)

A left side term may be surrounded by angle brackets (“<”, “>”) to prevent that
production from being written into a taglist produced by mx.TextTools.tag() . This
is called an “unreported” production. Other than in relation to the final taglist, an
unreported production acts just like a reported one. Either type of term may be used
on the right sides of other productions in the same manner (without angle brackets
when occurring on the right side).

In SimpleParse 2.0 you may also use reversed angle brackets to report the children of
a production, but not the production itself. As with the standard angle brackets, the
production functions normally in matching inputs; it differs only in produced taglist.
For example:

PRODUCTIONS TAGLIST
--
a := (b,c) (’a’, l, r, [
b := (d,e) (’b’, l, r, [...]),
c := (f,g) (’c’, l, r, [...])])
--
a := (b,c) (’a’, l, r, [
 := (d,e) # no b, and no children
c := (f,g) (’c’, l, r, [...])])
--
Only in 2.0+ (’a’, l, r, [
a := (b,c) # no b, but raise children
>b< := (d,e) (’d’, l, r, [...]),
c := (f,g) (’e’, l, r, [...]),

(’c’, l, r, [...])])
--

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 323 --- #343i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 323

The remainder of the documentation of the SimpleParse module covers elements that
may occur on the right sides of declarations. In addition to the elements listed, a term
from another production may occur anywhere any element may. Terms may thus stand
in mutually recursive relations to one another.

LITERALS

Literal string

A string enclosed in single quotes matches the exact string quoted. Python escaping
may be used for the characters \a, \b, \f, \n, \r, \t, and \v, and octal escapes of
one to three digits may used. To include a literal backslash, it should be escaped as
\\.

foo := "bar"

Character class: ”[”, ”]”

Specify a set of characters that may occur at a position. The list of allowable
characters may be enumerated with no delimiter. A range of characters may be
indicated with a dash (“-”). Multiple ranges are allowed within a class.

To include a “]” character in a character class, make it the first character. Similarly,
a literal “-” character must be either the first (after the optional “]” character) or
the last character.

varchar := [a-zA-Z_0-9]

QUANTIFIERS

Universal quantifier: ”*”

Match zero or more occurrences of the preceding expression. Quantification has a
higher precedence than alternation or sequencing; grouping may be used to clarify
quantification scope as well.

any_Xs := "X"*
any_digits := [0-9]*

Existential quantifier: ”+”

Match one or more occurrences of the preceding expression. Quantification has a
higher precedence than alternation or sequencing; grouping may be used to clarify
quantification scope as well.

some_Xs := "X"+
some_digits := [0-9]+

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 324 --- #344i
i

i
i

i
i

i
i

324 PARSERS AND STATE MACHINES

Potentiality quantifier: ”?”

Match at most one occurrence of the preceding expression. Quantification has a
higher precedence than alternation or sequencing; grouping may be used to clarify
quantification scope as well.

maybe_Xs := "X"?
maybe_digits := [0-9]?

Lookahead quantifier: ”?”

In SimpleParse 2.0+, you may place a question mark before a pattern to assert that
it occurs, but should not actually claim the pattern. As with regular expressions,
you can create either positive or negative lookahead assertions.

next_is_Xs := ?"X"
next_is_not_digits := ?-[0-9]

Error on Failure: ”!”

In SimpleParse 2.0+, you may cause a descriptive exception to be raised when a
production does not match, rather than merely stopping parsing at that point.

require_Xs := "X"!
require_code := ([A-Z]+, [0-9])!
contraction := "’", (’clock’/’d’/’ll’/’m’/’re’/’s’/’t’/’ve’)!

For example, modifying the contraction production from the prior discussion could
require that every apostrophe is followed by an ending. Since this doesn’t hold, you
might see an exception like:

% python typo2.py < p.txt
Traceback (most recent call last):
[...]
simpleparse.error.ParserSyntaxError: ParserSyntaxError:
Failed parsing production "contraction" @pos 84 (~line 1:29).
Expected syntax: (’clock’/’d’/’ll’/’m’/’re’/’s’/’t’/’ve’)
Got text: ’command lines’. Still others are *bold*

STRUCTURES

Alternation operator: ”/”

Match the first pattern possible from several alternatives. This operator allows any
of a list of patterns to match. Some EBNF-style parsers will match the longest
possible pattern, but SimpleParse more simply matches the first possible pattern.
For example:

“TPiP” — 2006/1/30 — 15:07 — page 325 — #345i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 325

>>> from mx.TextTools import tag
>>> from simpleparse import generator
>>> decl = ’’’
... short := "foo", " "*
... long := "foobar", " "*
... sl := (short / long)*
... ls := (long / short)*
... ’’’
>>> parser = generator.buildParser(decl).parserbyname(’sl’)
>>> tag(’foo foobar foo bar’, parser)[1]
[(’short’, 0, 4, []), (’short’, 4, 7, [])]
>>> parser = generator.buildParser(decl).parserbyname(’ls’)
>>> tag(’foo foobar foo bar’, parser)[1]
[(’short’, 0, 4, []), (’long’, 4, 11, []), (’short’, 11, 15, [])]

Sequence operator: ”,”

Match the first pattern followed by the second pattern (followed by the third pattern,
if present, . . .). Whenever a definition needs several elements in a specific order, the
comma sequence operator is used.

term := someterm, [0-9]*, "X"+, (otherterm, stillother)?

Negation operator: ”-”

Match anything that the next pattern does not match. The pattern negated can be
either a simple term or a compound expression.

nonletters := -[a-zA-Z]
nonfoo := -foo
notfoobarbaz := -(foo, bar, baz)

An expression modified by the negation operator is very similar conceptually to a
regular expression with a negative lookahead assertion. For example:

>>> from mx.TextTools import tag
>>> from simpleparse import generator
>>> decl = ’’’not_initfoo := [\t]*, -"foo", [a-zA-Z]+’’’
>>> p = generator.buildParser(decl).parserbyname(’not_initfoo’)
>>> tag(’ foobar and baz’, p) # no match
(0, [], 0)
>>> tag(’ bar, foo and baz’, p) # match on part
(1, [], 5)
>>> tag(’ bar foo and baz’, p) # match on all
(1, [], 17)

“TPiP” — 2006/1/30 — 15:07 — page 326 — #346i
i

i
i

i
i

i
i

326 PARSERS AND STATE MACHINES

Grouping operators: ”(”, ”)”

Parentheses surrounding any pattern turn that pattern into an expression (possibly
within a larger expression). Quantifiers and operators refer to the immediately ad-
jacent expression, if one is defined, otherwise to the adjacent literal string, character
class, or term.

>>> from mx.TextTools import tag
>>> from simpleparse import generator
>>> decl = ’’’
... foo := "foo"
... bar := "bar"
... foo_bars := foo, bar+
... foobars := (foo, bar)+
... ’’’
>>> p1 = generator.buildParser(decl).parserbyname(’foobars’)
>>> p2 = generator.buildParser(decl).parserbyname(’foo_bars’)
>>> tag(’foobarfoobar’, p1)
(1, [(’foo’, 0, 3, []), (’bar’, 3, 6, []),

(’foo’, 6, 9, []), (’bar’, 9, 12, [])], 12)
>>> tag(’foobarfoobar’, p2)
(1, [(’foo’, 0, 3, []), (’bar’, 3, 6, [])], 6)
>>> tag(’foobarbarbar’, p1)
(1, [(’foo’, 0, 3, []), (’bar’, 3, 6, [])], 6)
>>> tag(’foobarbarbar’, p2)
(1, [(’foo’, 0, 3, []), (’bar’, 3, 6, []),

(’bar’, 6, 9, []), (’bar’, 9, 12, [])], 12)

USEFUL PRODUCTIONS

In version 2.0+, SimpleParse includes a number of useful productions that may be
included in your grammars. See the examples and documentation that accompany
SimpleParse for details on the many included productions and their usage.

The included productions, at the time of this writing, fall into the categories below:

simpleparse.common.calendar names

Locale-specific names of months, and days of the week, including abbreviated forms.

simpleparse.common.chartypes

Locale-specific categories of characters, such as digits, uppercase, octdigits, punctu-
ation, locale decimal point, and so on.

simpleparse.common.comments

Productions to match comments in a variety of programming languages, such as
hash (#) end-of-line comments (Python, Bash, Perl, etc.); C paired comments
(/* comment */); and others.

“TPiP” — 2006/1/30 — 15:07 — page 327 — #347i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 327

simpleparse.common.iso date

Productions for strictly conformant ISO date and time formats.

simpleparse.common.iso date loose

Productions for ISO date and time formats with some leeway as to common variants
in formatting.

simpleparse.common.numbers

Productions for common numeric formats, such as integers, floats, hex numbers,
binary numbers, and so on.

simpleparse.common.phonetics

Productions to match phonetically spelled words. Currently, the US military style
of “alpha, bravo, charlie, . . . ” spelling is the only style supported (with some leeway
in word spellings).

simpleparse.common.strings

Productions to match quoted strings as used in various programming languages.

simpleparse.common.timezone names

Productions to match descriptions of timezones, as you might find in email headers
or other data/time fields.

GOTCHAS

There are a couple of problems that can easily arise in constructed SimpleParse gram-
mars. If you are having problems in your application, keep a careful eye out for these
issues:

1. Bad recursion. You might fairly naturally construct a pattern of the form:

a := b, a?

Unfortunately, if a long string of b rules are matched, the repeated recognition
can either exceed the C-stack’s recursion limit, or consume inordinate amounts of
memory to construct nested tuples. Use an alternate pattern like:

a := b+

This will grab all the b productions in one tuple instead (you could separately
parse out each b if necessary).

2. Quantified potentiality. That is a mouthful; consider patterns like:

a := (b? / c)*
x := (y?, z?)+

“TPiP” — 2006/1/30 — 15:07 — page 328 — #348i
i

i
i

i
i

i
i

328 PARSERS AND STATE MACHINES

The first alternate b? in the first—and both y? and z? in the second—are happy
to match zero characters (if a b or y or z do not occur at the current position).
When you match “as many as possible” zero-width patterns, you get into an
infinite loop. Unfortunately, the pattern is not always simple; it might not be b
that is qualified as potential, but rather b productions (or the productions in b
productions, etc.).

3. No backtracking. Based on working with regular expression, you might expect
SimpleParse productions to use backtracking. They do not. For example:

a := ((b/c)*, b)

If this were a regular expression, it would match a string of b productions, then
back up one to match the final b. As a SimpleParse production, this definition can
never match. If any b productions occur, they will be claimed by (b/c)*, leaving
nothing for the final b to grab.

4.3.4 High-Level Programmatic Parsing

PLY � Python Lex-Yacc

One module that I considered covering to round out this chapter is John Aycock’s Spark
module. This module is both widely used in the Python community and extremely
powerful. However, I believe that the audience of this book is better served by working
with David Beazley’s PLY module than with the older Spark module.

In the documentation accompanying PLY , Beazley consciously acknowledges the in-
fluence of Spark on his design and development. While the PLY module is far from being
a clone of Spark—the APIs are significantly different—there is a very similar feeling to
working with each module. Both modules require a very different style of programming
and style of thinking than do mx.TextTools, SimpleParse, or the state machines discussed
earlier in this chapter. In particular, both PLY and Spark make heavy use of Python
introspection to create underlying state machines out of specially named variables and
functions.

Within an overall similarity, PLY has two main advantages over Spark in a text
processing context. The first, and probably greatest, advantage PLY has is its far
greater speed. Although PLY has implemented some rather clever optimizations—such
as preconstruction of state tables for repeated runs—the main speed difference lies in
the fact that PLY uses a far faster, albeit slightly less powerful, parsing algorithm. For
text processing applications (as opposed to compiler development), PLY ’s LR parsing
is plenty powerful for almost any requirement.

A second advantage PLY has over every other Python parsing library that I am aware
of is a flexible and fine-grained error reporting and error correction facility. Again, in a
text processing context, this is particularly important.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 329 --- #349i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 329

For compiling a programming language, it is generally reasonable to allow compilation
to fail in the case of even small errors. But for processing a text file full of data fields
and structures, you usually want to be somewhat tolerant of minor formatting errors;
getting as much data as possible from a text automatically is frequently the preferred
approach. PLY does an excellent job of handling “allowable” error conditions gracefully.

PLY consists of two modules: a lexer/tokenizer named lex.py, and a parser named
yacc.py. The choice of names is taken from the popular C-oriented tools lex and yacc,
and the behavior is correspondingly similar. Parsing with PLY usually consists of the
two steps that were discussed at the beginning of this chapter: (1) Divide the input
string into a set of nonoverlapping tokens using lex.py. (2) Generate a parse tree from
the series of tokens using yacc.py.

When processing text with PLY , it is possible to attach “action code” to any lexing
or parsing event. Depending on application requirements, this is potentially much more
powerful than SimpleParse. For example, each time a specific token is encountered
during lexing, you can modify the stored token according to whatever rule you wish, or
even trigger an entirely different application action. Likewise, during parsing, each time
a node of a parse tree is constructed, the node can be modified and/or other actions
can be taken. In contrast, SimpleParse simply delivers a completed parse tree (called
a “taglist”) that must be traversed separately. However, while SimpleParse does not
provide the fine-tunable event control that PLY does, SimpleParse offers a higher-level
and cleaner grammar language—the choice between the two modules is full of pros and
cons.

Example: Marking up smart ASCII (yet again)

This chapter has returned several times to applications for processing smart ASCII: a
state machine in Appendix D; a functionally similar example using mx.TextTools; an
EBNF grammar with SimpleParse. This email-like markup format is not in itself all that
important, but it presents just enough complications to make for a good comparison
between programming techniques and libraries. In many ways, an application using PLY
is similar to the SimpleParse version above—both use grammars and parsing strategies.

GENERATING A TOKEN LIST

The first step in most PLY applications is the creation of a token stream. Tokens are
identified by a series of regular expressions attached to special pattern names of the form
t RULENAME. By convention, the PLY token types are in all caps. In the simple case, a
regular expression string is merely assigned to a variable. If action code is desired when
a token is recognized, the rule name is defined as a function, with the regular expression
string as its docstring; passed to the function is a LexToken object (with attributes
.value, .type, and .lineno), which may be modified and returned. The pattern is
clear in practice:

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 330 --- #350i
i

i
i

i
i

i
i

330 PARSERS AND STATE MACHINES

wordscanner.py

List of token names. This is always required.
tokens = [’ALPHANUMS’,’SAFEPUNCT’,’BRACKET’,’ASTERISK’,

’UNDERSCORE’,’APOSTROPHE’,’DASH’]

Regular expression rules for simple tokens
t_ALPHANUMS = r"[a-zA-Z0-9]+"
t_SAFEPUNCT = r’[!@#$%^&()+=|\{}:;<>,.?/"]+’
t_BRACKET = r’[][]’
t_ASTERISK = r’[*]’
t_UNDERSCORE = r’_’
t_APOSTROPHE = r"’"
t_DASH = r’-’

Regular expression rules with action code
def t_newline(t):

r"\n+"
t.lineno += len(t.value)

Special case (faster) ignored characters
t_ignore = " \t\r"

Error handling rule
def t_error(t):

sys.stderr.write("Illegal character ’%s’ (%s)\n"
% (t.value[0], t.lineno))

t.skip(1)

import lex, sys
def stdin2tokens():

lex.input(sys.stdin.read()) # Give the lexer some input
toklst = [] # Tokenize
while 1:

t = lex.token()
if not t: break # No more input
toklst.append(t)

return toklst

if __name__==’__main__’:
lex.lex() # Build the lexer
for t in stdin2tokens():

print ’%s<%s>’ % (t.value.ljust(15), t.type)

You are required to list the token types you wish to recognize, using the tokens
variable. Each such token, and any special patterns that are not returned as tokens, is
defined either as a variable or as a function. After that, you just initialize the lexer,
read a string, and pull tokens off sequentially. Let us look at some results:

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 331 --- #351i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 331

% cat p.txt
-Itals-, [modname]--let’s add ~ underscored var_name.
% python wordscanner.py < p.txt
Illegal character ’~’ (1)
- <DASH>
Itals <ALPHANUMS>
- <DASH>
, <SAFEPUNCT>
[<BRACKET>
modname <ALPHANUMS>
] <BRACKET>
- <DASH>
- <DASH>
let <ALPHANUMS>
’ <APOSTROPHE>
s <ALPHANUMS>
add <ALPHANUMS>
underscored <ALPHANUMS>
var <ALPHANUMS>
_ <UNDERSCORE>
name <ALPHANUMS>
. <SAFEPUNCT>

The output illustrates several features. For one thing, we have successfully tagged
each nondiscarded substring as constituting some token type. Notice also that the
unrecognized tilde character is handled gracefully by being omitted from the token
list—you could do something different if desired, of course. Whitespace is discarded as
insignificant by this tokenizer—the special t ignore variable quickly ignores a set of
characters, and the t newline() function contains some extra code to maintain the line
number during processing.

The simple tokenizer above has some problems, however. Dashes can be used either in
an m-dash or to mark italicized phrases; apostrophes can be either part of a contraction
or a marker for a function name; underscores can occur both to mark titles and within
variable names. Readers who have used Spark will know of its capability to enhance a
lexer or parser by inheritance; PLY cannot do that, but it can utilize Python namespaces
to achieve almost exactly the same effect:

wordplusscanner.py

"Enhanced word/markup tokenization"
from wordscanner import *
tokens.extend([’CONTRACTION’,’MDASH’,’WORDPUNCT’])
t_CONTRACTION = r"(?<=[a-zA-Z])’(am|clock|d|ll|m|re|s|t|ve)"
t_WORDPUNCT = r’(?<=[a-zA-Z0-9])[-_](?=[a-zA-Z0-9])’
def t_MDASH(t): # Use HTML style mdash

r’--’

“TPiP” — 2006/1/30 — 15:07 — page 332 — #352i
i

i
i

i
i

i
i

332 PARSERS AND STATE MACHINES

t.value = ’—’
return t

if __name__==’__main__’:
lex.lex() # Build the lexer
for t in stdin2tokens():

print ’%s<%s>’ % (t.value.ljust(15), t.type)

Although the tokenization produced by wordscanner.py would work with the right
choice of grammar rules, producing more specific tokens allows us to simplify the gram-
mar accordingly. In the case of t MDASH(), wordplusscanner.py also modifies the
token itself as part of recognition:

% python wordplusscanner.py < p.txt
Illegal character ’~’ (1)
- <DASH>
Itals <ALPHANUMS>
- <DASH>
, <SAFEPUNCT>
[<BRACKET>
modname <ALPHANUMS>
] <BRACKET>
— <MDASH>
let <ALPHANUMS>
’s <CONTRACTION>
add <ALPHANUMS>
underscored <ALPHANUMS>
var <ALPHANUMS>
_ <WORDPUNCT>
name <ALPHANUMS>
. <SAFEPUNCT>

Parsing a token list
A parser in PLY is defined in almost the same manner as a tokenizer. A collection

of specially named functions of the form p rulename() are defined, each containing
an EBNF-style pattern to match (or a disjunction of several such patterns). These
functions receive as argument a YaccSlice object, which is list-like in assigning each
component of the EBNF declaration to an indexed position.

The code within each function should assign a useful value to t[0], derived in some
way from t[1:]. If you would like to create a parse tree out of the input source, you
can define a Node class of some sort and assign each right-hand rule or token as a
subnode/leaf of that node; for example:

def p_rulename(t):
’rulename : somerule SOMETOKEN otherrule’
^ ^ ^ ^
t[0] t[1] t[2] t[3]
t[0] = Node(’rulename’, t[1:])

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 333 --- #353i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 333

Defining an appropriate Node class is left as an exercise. With this approach, the final
result would be a traversable tree structure.

It is fairly simple to create a set of rules to combine the fairly smart token stream
produced by wordplusscanner.py. In the sample application, a simpler structure than
a parse tree is built. markupbuilder.py simply creates a list of matched patterns,
interspersed with added markup codes. Other data structures are possible too, and/or
you could simply take some action each time a rule is matched (e.g., write to STDOUT).

markupbuilder.py

import yacc
from wordplusscanner import *

def p_para(t):
’’’para : para plain

| para emph
| para strong
| para module
| para code
| para title
| plain
| emph
| strong
| module
| code
| title ’’’

try: t[0] = t[1] + t[2]
except: t[0] = t[1]

def p_plain(t):
’’’plain : ALPHANUMS

| CONTRACTION
| SAFEPUNCT
| MDASH
| WORDPUNCT
| plain plain ’’’

try: t[0] = t[1] + t[2]
except: t[0] = [t[1]]

def p_emph(t):
’’’emph : DASH plain DASH’’’
t[0] = [’<i>’] + t[2] + [’</i>’]

def p_strong(t):
’’’strong : ASTERISK plain ASTERISK’’’
t[0] = [’’] + t[2] + [’’]

“TPiP” — 2006/1/30 — 15:07 — page 334 — #354i
i

i
i

i
i

i
i

334 PARSERS AND STATE MACHINES

def p_module(t):
’’’module : BRACKET plain BRACKET’’’
t[0] = [’<tt>’] + t[2] + [’</tt>’]

def p_code(t):
’’’code : APOSTROPHE plain APOSTROPHE’’’
t[0] = [’<code>’] + t[2] + [’</code>’]

def p_title(t):
’’’title : UNDERSCORE plain UNDERSCORE’’’
t[0] = [’<cite>’] + t[2] + [’</cite>’]

def p_error(t):
sys.stderr.write(’Syntax error at "%s" (%s)\n’

% (t.value,t.lineno))

if __name__==’__main__’:
lex.lex() # Build the lexer
yacc.yacc() # Build the parser
result = yacc.parse(sys.stdin.read())
print result

The output of this script, using the same input as above, is:

% python markupbuilder.py < p.txt
Illegal character ’~’ (1)
[’<i>’, ’Itals’, ’</i>’, ’,’, ’<tt>’, ’modname’,
’</tt>’, ’—’, ’let’, "’s", ’add’, ’underscored’,
’var’, ’_’, ’name’, ’.’]

One thing that is less than ideal in the PLY grammar is that it has no quantifiers. In
SimpleParse or another EBNF library, we might give, for example, a plain declaration
as:

plain := (ALPHANUMS | CONTRACTION | SAFEPUNCT | MDASH | WORDPUNCT)+

Quantification can make declarations more direct. But you can achieve the same
effect by using self-referential rules whose left-hand terms also occur on the right-hand
side. This style is similar to recursive definitions, for example:

plain : plain plain
| OTHERSTUFF

For example, markupbuilder.py, above, uses this technique.
If a tree structure were generated in this parser, a plain node might wind up being a

subtree containing lower plain nodes (and terminal leaves of ALPHANUMS, CONTRACTION,
etc.). Traversal would need to account for this possibility. The flat list structure used
simplifies the issue, in this case. A particular plain object might result from the
concatenation of several smaller lists, but either way it is a list by the time another rule
includes the object.

“TPiP” — 2006/1/30 — 15:07 — page 335 — #355i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 335

LEX

A PLY lexing module that is intended as support for a parsing application must do
four things. A lexing module that constitutes a stand-alone application must do two
additional things:

1. Import the lex module:

import lex

2. Define a list or tuple variable tokens that contains the name of every token type
the lexer is allowed to produce. A list may be modified in-place should you wish
to specialize the lexer in an importing module; for example:

tokens = [’FOO’, ’BAR’, ’BAZ’, ’FLAM’]

3. Define one or more regular expression patterns matching tokens. Each token type
listed in tokens should have a corresponding pattern; other patterns may be
defined also, but the corresponding substrings will not be included in the token
stream.

Token patterns may be defined in one of two ways: (1) By assigning a regular
expression string to a specially named variable. (2) By defining a specially named
function whose docstring is a regular expression string. In the latter case, “action
code” is run when the token is matched. In both styles, the token name is preceded
by the prefix t . If a function is used, it should return the LexToken object passed
to it, possibly after some modification, unless you do not wish to include the token
in the token stream. For example:

t_FOO = r"[Ff][Oo]{1,2}"
t_BAR = r"[Bb][Aa][Rr]"
def t_BAZ(t):

r"([Bb][Aa][Zz])+"
t.value = ’BAZ’ # canonical caps BAZ
return t

def t_FLAM(t):
r"(FLAM|flam)*"
flam’s are discarded (no return)

Tokens passed into a pattern function have three attributes: .type, .value, and
.lineno. .lineno contains the current line number within the string being pro-
cessed and may be modified to change the reported position, even if the token is
not returned. The attribute .value is normally the string matched by the regular
expression, but a new string, or a compound value like a tuple or instance, may
be assigned instead. The .type of a LexToken, by default, is a string naming the
token (the same as the part of the function name after the t prefix).

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 336 --- #356i
i

i
i

i
i

i
i

336 PARSERS AND STATE MACHINES

There is a special order in which various token patterns will be considered. De-
pending on the patterns used, several patterns could grab the same substring—so
it is important to allow the desired pattern first claim on a substring. Each pat-
tern defined with a function is considered in the order it is defined in the lexer
file; all patterns defined by assignment to a variable are considered after every
function-defined pattern. Patterns defined by variable assignment, however, are
not considered in the order they are defined, but rather by decreasing length.
The purpose of this ordering is to let longer patterns match before their subse-
quences (e.g., “==” would be claimed before “=”, allowing the former comparison
operator to match correctly, rather than as sequential assignments).

The special variable t ignore may contain a string of characters to skip during
pattern matching. These characters are skipped more efficiently than is a token
function that has no return value. The token name ignore is, therefore, reserved
and may not be used as a regular token (if the all-cap token name convention is
followed, it assures no such conflict).

The special function t error() may be used to process illegal characters. The
.value attribute of the passed-in LexToken will contain the remainder of the
string being processed (after the last match). If you want to skip past a problem
area (perhaps after taking some corrective action in the body of t error()), use
the .skip() method of the passed-in LexToken.

4. Build the lexer. The lex module performs a bit of namespace magic so that you
normally do not need to name the built lexer. Most applications can use just one
default lexer. However, if you wish to—or if you need multiple lexers in the same
application—you may bind a built lexer to a name. For example:

mylexer = lex.lex() # named lexer
lex.lex() # default lexer
mylexer.input(mytext) # set input for named lexer
lex.input(othertext) # set input for default lexer

5. Give the lexer a string to process. This step is handled by the parser when yacc
is used in conjunction with lex , and nothing need be done explicitly. For stand-
alone tokenizers, set the input string using lex.input() (or similarly with the
.input() method of named lexers).

6. Read the token stream (for stand-alone tokenizers) using repeated invocation of
the default lex.token() function or the .token() method of a named lexer.
Unfortunately, as of version 1.1, PLY does not treat the token stream as a Python
2.2 iterator/generator. You can create an iterator wrapper with:

from __future__ import generators
...define the lexer rules, etc...
def tokeniterator(lexer=lex):

while 1:

“TPiP” — 2006/1/30 — 15:07 — page 337 — #357i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 337

t = lexer.token()
if t is None:

raise StopIteration
yield t

Loop through the tokens
for t in tokeniterator():

...do something with each token...

Without this wrapper, or generally in earlier versions of Python, you should use
a while 1 loop with a break condition:

...define the lexer rules, etc...
while 1:

t = lex.token()
if t is None: # No more input

break
...do something with each token...

YACC

A PLY parsing module must do five things:

1. Import the yacc module:

import yacc

2. Get a token map from a lexer. Suppose a lexer module named mylexer.py includes
requirements 1 through 4 in the above LEX description. You would get the token
map with:

from mylexer import *

Given the special naming convention t * used for token patterns, the risk of
namespace pollution from import * is minimal.

You could also, of course, simply include the necessary lexer setup code in the
parsing module itself.

3. Define a collection of grammar rules. Grammar rules are defined in a similar
fashion to token functions. Specially named functions having a p prefix contain
one or more productions and corresponding action code. Whenever a production
contained in the docstring of a p *() function matches, the body of that function
runs.

Productions in PLY are described with a simplified EBNF notation. In particular,
no quantifiers are available in rules; only sequencing and alternation is used (the
rest must be simulated with recursion and component productions).

“TPiP” — 2006/1/30 — 15:07 — page 338 — #358i
i

i
i

i
i

i
i

338 PARSERS AND STATE MACHINES

The left side of each rule contains a single rule name. Following the rule name
is one or more spaces, a colon, and an additional one or more spaces. The right
side of a rule is everything following this. The right side of a rule can occupy one
or more lines; if alternative patterns are allowed to fulfill a rule name, each such
pattern occurs on a new line, following a pipe symbol (“|”). Within each right
side line, a production is defined by a space-separated sequence of terms—which
may be either tokens generated by the lexer or parser productions. More than
one production may be included in the same p *() function, but it is generally
more clear to limit each function to one production (you are free to create more
functions). For example:

def p_rulename(t):
’’’rulename : foo SPACE bar

| foo bar baz
| bar SPACE baz

otherrule : this that other
| this SPACE that ’’’

#...action code...

The argument to each p *() function is a YaccSlice object, which assigns each
component of the rule to an indexed position. The left side rule name is index posi-
tion 0, and each term/token on the right side is listed thereafter, left to right. The
list-like YaccSlice is sized just large enough to contain every term needed; this
might vary depending on which alternative production is fulfilled on a particular
call.

Empty productions are allowed by yacc (matching zero-width); you never need
more than one empty production in a grammar, but this empty production might
be a component of multiple higher-level productions. An empty production is
basically a way of getting around the absence of (potentiality) quantification in
PLY ; for example:

def p_empty(t):
’’’empty : ’’’
pass

def p_maybefoo(t):
’’’foo : FOOTOKEN

| empty ’’’
t[0] = t[1]

def p_maybebar(t):
’’’bar : BARTOKEN

| empty ’’’
t[0] = t[1]

If a fulfilled production is used in other productions (including itself recursively),
the action code should assign a meaningful value to index position 0. This position

“TPiP” — 2006/1/30 — 15:07 — page 339 — #359i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 339

is the value of the production. Moreover what is returned by the actual parsing
is this position 0 of the top-level production. For example:

Sum N different numbers: "1.0 + 3 + 3.14 + 17"
def p_sum(t):

’’’sum : number PLUS number’’’
^ ^ ^ ^
t[0] t[1] t[2] t[3]
t[0] = t[1] + t[3]

def p_number(t):
’’’number : BASICNUMBER

| sum ’’’
^ ^
t[0] t[1]
t[0] = float(t[1])

Create the parser and parse some strings
yacc.yacc()
print yacc.parse(’1.0’)

The example simply assigns a numeric value with every production, but it could
also assign to position 0 of the YaccSlice a list, Node object, or some other data
structure that was useful to higher-level productions.

4. To build the parser the yacc module performs a bit of namespace magic so that
you normally do not need to name the built parser. Most applications can use
just one default parser. However, if you wish to—or if you need multiple parsers
in the same application—you may bind a built parser to a name. For example:

myparser = yacc.yacc() # named parser
yacc.yacc() # default parser
r1 = myparser.parse(mytext) # set input for named parser
r0 = yacc.parse(othertext) # set input for default parser

When parsers are built, yacc will produce diagnostic messages if any errors are
encountered in the grammar.

5. Parse an input string. The lexer is implicitly called to get tokens as needed by
the grammar rules. The return value of a parsing action can be whatever thing
invocation of matched rules builds. It might be an abstract syntax tree, if a Node
object is used with each parse rule; it might be a simple list as in the smart ASCII
example; it might be a modified string based on concatenations and modifications
during parsing; or the return value could simply be None if parsing was done
wholly to trigger side effects in parse rules. In any case, what is returned is index
position 0 of the root rule’s LexToken.

“TPiP” — 2006/1/30 — 15:07 — page 340 — #360i
i

i
i

i
i

i
i

340 PARSERS AND STATE MACHINES

MORE ON PLY PARSERS

Some of the finer points of PLY parsers will not be covered in this book. The documen-
tation accompanying PLY contains some additional implementational discussion, and a
book devoted more systematically to parsing theory will address theoretical issues. But
a few aspects can at least be touched on.

Error Recovery
A PLY grammar may contain a special p error() function to catch tokens that cannot

be matched (at the current position) by any other rule. The first time p error() is
invoked, PLY enters an “error-recovery” mode. If the parser cannot process the next
three tokens successfully, a traceback is generated. You may include the production
error in other rules to catch errors that occur at specific points in the input.

To implement recovery within the p error() function, you may use the func-
tions/methods yacc.token(), yacc.restart(), and yacc.errok(). The first grabs
the next token from the lexer; if this token—or some sequence of tokens—meets some
recovery criteria, you may call yacc.restart() or yacc.errok(). The first of these,
yacc.restart(), returns the parser to its initial state—basically, only the final sub-
string of the input is used in this case (however, a separate data structure you have built
will remain as it was). Calling yacc.errok() tells the parser to stay in its last state
and just ignore any bad tokens pulled from the lexer (either via the call to p error()
itself, or via calls to yacc.token() in the body).

The Parser State Machine
When a parser is first compiled, the files parsetab.py and parser.out are generated.

The first, parsetab.py, contains more or less unreadable compact data structures that
are used by subsequent parser invocations. These structures are used even during later
invocation of the applications; timestamps and signatures are compared to determine if
the grammar has been changed. Pregenerating state tables speeds up later operations.

The file parser.out contains a fairly readable description of the actual state machine
generated by yacc . Although you cannot manually modify this state machine, exam-
ination of parser.out can help you in understanding error messages and undesirable
behavior you encounter in your grammars.

Precedence and Associativity
To resolve ambiguous grammars, you may set the variable precedence to indicate

both the precedence and the associativity of tokens. Absent an explicit indication, PLY
always shifts a new symbol rather than reduce a rule where both are allowable by some
grammar rule.

The PLY documentation gives an example of an ambiguous arithmetic expression,
such as 3 * 4 + 5. After the tokens 3, *, and 4 have been read from the token list, a
p mul() rule might allow reduction of the product. But at the same time, a p add()
rule might contain NUMBER PLUS NUMBER, which would allow a lookahead to the PLUS
token (since 4 is a NUMBER token). Moreover, the same token can have different meanings
in different contexts, such as the unary-minus and minus operators in 3 - 4 * -5.

To solve both the precedence ambiguity and the ambiguous meaning of the token
MINUS, you can declare an explicit precedence and associativity such as:

“TPiP” — 2006/1/30 — 15:07 — page 341 — #361i
i

i
i

i
i

i
i

4.3 Parser Libraries for Python 341

Declaring precedence and associativity

precedence = (
(’left’, ’PLUS’, ’MINUS’),
(’left’, ’TIMES, ’DIVIDE’),
(’right’, ’UMINUS’),

)
def p_expr_uminus(t):

’expr : MINUS expr % prec UMINUS’
t[0] = -1 * t[2]

def p_expr_minus(t):
’expr : expr MINUS expr’
t[0] = t[1] - t[3]

def p_expr_plus(t):
’expr : expr PLUS expr’
t[0] = t[1] + t[3]

“TPiP” — 2006/1/30 — 15:07 — page 342 — #362i
i

i
i

i
i

i
i

“TPiP” — 2006/1/30 — 15:07 — page 343 — #363i
i

i
i

i
i

i
i

343

Chapter 5

INTERNET TOOLS AND
TECHNIQUES

Be strict in what you send, and lenient in what you accept.
—Internet Engineering Task Force

Internet protocols in large measure are descriptions of textual formats. At the lowest
level, TCP/IP is a binary protocol, but virtually every layer run on top of TCP/IP
consists of textual messages exchanged between servers and clients. Some basic messages
govern control, handshaking, and authentication issues, but the information content of
the Internet predominantly consists of texts formatted according to two or three general
patterns.

The handshaking and control aspects of Internet protocols usually consist of short
commands—and sometimes challenges—sent during an initial conversation between a
client and server. Fortunately for Python programmers, the Python standard library
contains intermediate-level modules to support all the most popular communication
protocols: poplib, smtplib, ftplib, httplib, telnetlib, gopherlib, and imaplib. If you want
to use any of these protocols, you can simply provide required setup information, then
call module functions or classes to handle all the lower-level interaction. Unless you
want to do something exotic—such as programming a custom or less common network
protocol—there is never a need to utilize the lower-level services of the socket module.

The communication level of Internet protocols is not primarily a text processing issue.
Where text processing comes in is with parsing and production of compliant texts, to
contain the content of these protocols. Each protocol is characterized by one or a few
message types that are typically transmitted over the protocol. For example, POP3,
NNTP, IMAP4, and SMTP protocols are centrally means of transmitting texts that
conform to RFC-822, its updates, and associated RFCs. HTTP is firstly a means of
transmitting Hypertext Markup Language (HTML) messages. Following the popularity
of the World Wide Web, however, a dizzying array of other message types also travel
over HTTP: graphic and sounds formats, proprietary multimedia plug-ins, executable

“TPiP” — 2006/1/30 — 15:07 — page 344 — #364i
i

i
i

i
i

i
i

344 INTERNET TOOLS AND TECHNIQUES

byte-codes (e.g., Java or Jython), and also more textual formats like XML-RPC and
SOAP.

The most widespread text format on the Internet is almost certainly human-readable
and human-composed notes that follow RFC-822 and friends. The basic form of such a
text is a series of headers, each beginning a line and separated from a value by a colon;
after a header comes a blank line; and after that a message body. In the simplest case, a
message body is just free-form text; but MIME headers can be used to nest structured
and diverse contents within a message body. Email and (Usenet) discussion groups
follow this format. Even other protocols, like HTTP, share a top envelope structure
with RFC-822.

A strong second as Internet text formats go is HTML. And in third place after that
is XML, in various dialects. HTML, of course, is the lingua franca of the Web; XML
is a more general standard for defining custom “applications” or “dialects,” of which
HTML is (almost) one. In either case, rather than a header composed of line-oriented
fields followed by a body, HTML/XML contain hierarchically nested “tags” with each
tag indicated by surrounding angle brackets. Tags like HTML’s <body>, <cite>, and
<blockquote> will be familiar already to most readers of this book. In any case, Python
has a strong collection of tools in its standard library for parsing and producing HTML
and XML text documents. In the case of XML, some of these tools assist with specific
XML dialects, while lower-level underlying libraries treat XML sui generis. In some
cases, third-party modules fill gaps in the standard library.

Various Python Internet modules are covered in varying depth in this chapter. Every
tool that comes with the Python standard library is examined at least in summary.
Those tools that I feel are of greatest importance to application programmers (in text
processing applications) are documented in fair detail and accompanied by usage exam-
ples, warnings, and tips.

5.1 Working with Email and Newsgroups

Python provides extensive support in its standard library for working with email (and
newsgroup) messages. There are three general aspects to working with email, each
supported by one or more Python modules.

1. Communicating with network servers to actually transmit and receive messages.
The modules poplib, imaplib, smtplib, and nntplib each address the protocol con-
tained in its name. These tasks do not have a lot to do with text processing per
se, but are often important for applications that deal with email. The discussion
of each of these modules is incomplete, addressing only those methods necessary
to conduct basic transactions in the case of the first three modules/protocols.
The module nntplib is not documented here under the assumption that email is
more likely to be automatically processed than are Usenet articles. Indeed, robot
newsgroup posters are almost always frowned upon, while automated mailing is
frequently desirable (within limits).

2. Examining the contents of message folders. Various email and news clients store
messages in a variety of formats, many providing hierarchical and structured

“TPiP” — 2006/1/30 — 15:07 — page 345 — #365i
i

i
i

i
i

i
i

5.1 Working with Email and Newsgroups 345

folders. The module mailbox provides a uniform API for reading the messages
stored in all the most popular folder formats. In a way, imaplib serves an over-
lapping purpose, insofar as an IMAP4 server can also structure folders, but folder
manipulation with IMAP4 is discussed only cursorily—that topic also falls afield
of text processing. However, local mailbox folders are definitely text formats, and
mailbox makes manipulating them a lot easier.

3. The core text processing task in working with email is parsing, modifying, and cre-
ating the actual messages. RFC-822 describes a format for email messages and is
the lingua franca for Internet communication. Not every Mail User Agent (MUA)
and Mail Transport Agent (MTA) strictly conforms to the RFC-822 (and super-
set/clarification RFC-2822) standard—but they all generally try to do so. The
newer email package and the older rfc822 , rfc1822 , mimify , mimetools, MimeWriter ,
and multifile modules all deal with parsing and processing email messages.

Although existing applications are likely to use rfc822 , mimify , mimetools, MimeWriter ,
and multifile, the package email contains more up-to-date and better-designed imple-
mentations of the same capabilities. The former modules are discussed only in synopsis
while the various subpackages of email are documented in detail.

There is one aspect of working with email that all good-hearted people wish was
unnecessary. Unfortunately, in the real-world, a large percentage of email is spam,
viruses, and frauds; any application that works with collections of messages practically
demands a way to filter out the junk messages. While this topic generally falls outside
the scope of this discussion, readers might benefit from my article, “Spam Filtering
Techniques,” at:

<http://gnosis.cx/publish/programming/filtering-spam.html>

A flexible Python project for statistical analysis of message corpora, based on naive
Bayesian and related models, is SpamBayes:

<http://spambayes.sourceforge.net/>

5.1.1 Manipulating and Creating Message Texts

email � Work with email messages

Without repeating the whole of RFC-2822, it is worth mentioning the basic structure
of an email or newsgroup message. Messages may themselves be stored in larger text
files that impose larger-level structure, but here we are concerned with the structure
of a single message. An RFC-2822 message, like most Internet protocols, has a textual
format, often restricted to true 7-bit ASCII.

A message consists of a header and a body. A body in turn can contain one or more
“payloads.” In fact, MIME multipart/* type payloads can themselves contain nested
payloads, but such nesting is comparatively unusual in practice. In textual terms,
each payload in a body is divided by a simple, but fairly long, delimiter; however,

“TPiP” — 2006/1/30 — 15:07 — page 346 — #366i
i

i
i

i
i

i
i

346 INTERNET TOOLS AND TECHNIQUES

the delimiter is pseudo-random, and you need to examine the header to find it. A
given payload can either contain text or binary data using base64, quoted printable, or
another ASCII encoding (even 8-bit, which is not generally safe across the Internet).
Text payloads may either have MIME type text/* or compose the whole of a message
body (without any payload delimiter).

An RFC-2822 header consists of a series of fields. Each field name begins at the
beginning of a line and is followed by a colon and a space. The field value comes
after the field name, starting on the same line, but potentially spanning subsequence
lines. A continued field value cannot be left aligned, but must instead be indented
with at least one space or tab. There are some moderately complicated rules about
when field contents can split between lines, often dependent upon the particular type
of value a field holds. Most field names occur only once in a header (or not at all), and
in those cases their order of occurrence is not important to email or news applications.
However, a few field names—notably Received—typically occur multiple times and in a
significant order. Complicating headers further, field values can contain encoded strings
from outside the ASCII character set.

The most important element of the email package is the class
email.Message.Message , whose instances provide a data structure and conve-
nience methods suited to the generic structure of RFC-2822 messages. Various
capabilities for dealing with different parts of a message, and for parsing a whole
message into an email.Message.Message object, are contained in subpackages of
the email package. Some of the most common facilities are wrapped in convenience
functions in the top-level namespace.

A version of the email package was introduced into the standard library with Python
2.1. However, email has been independently upgraded and developed between Python
releases. At the time this chapter was written, the current release of email was 2.4.3,
and this discussion reflects that version (and those API details that the author thinks
are most likely to remain consistent in later versions). I recommend that, rather than
simply use the version accompanying your Python installation, you download the latest
version of the email package from <http://mimelib.sourceforge.net> if you intend
to use this package. The current (and expected future) version of the email package
is directly compatible with Python versions back to 2.1. See this book’s Web site,
<http://gnosis.cx/TPiP/>, for instructions on using email with Python 2.0. The
package is incompatible with versions of Python before 2.0.

CLASSES

Several children of email.Message.Message allow you to easily construct message ob-
jects with special properties and convenient initialization arguments. Each such class
is technically contained in a module named in the same way as the class rather than
directly in the email namespace, but each is very similar to the others.

email.MIMEBase.MIMEBase(maintype, subtype, **params)

Construct a message object with a Content-Type header already built. Generally
this class is used only as a parent for further subclasses, but you may use it directly

“TPiP” — 2006/1/30 — 15:07 — page 347 — #367i
i

i
i

i
i

i
i

5.1 Working with Email and Newsgroups 347

if you wish:

>>> mess = email.MIMEBase.MIMEBase(’text’,’html’,charset=’us-ascii’)
>>> print mess
From nobody Tue Nov 12 03:32:33 2002
Content-Type: text/html; charset="us-ascii"
MIME-Version: 1.0

email.MIMENonMultipart.MIMENonMultipart(maintype, subtype, **params)

Child of email.MIMEBase.MIMEBase , but raises MultipartConversionError on
calls to .attach(). Generally this class is used for further subclassing.

email.MIMEMultipart.MIMEMultipart([subtype=”mixed” [boundary,
[,*subparts [,**params]]]])

Construct a multipart message object with subtype subtype. You may optionally
specify a boundary with the argument boundary, but specifying None will cause a
unique boundary to be calculated. If you wish to populate the message with payload
object, specify them as additional arguments. Keyword arguments are taken as
parameters to the Content-Type header.

>>> from email.MIMEBase import MIMEBase
>>> from email.MIMEMultipart import MIMEMultipart
>>> mess = MIMEBase(’audio’,’midi’)
>>> combo = MIMEMultipart(’mixed’, None, mess, charset=’utf-8’)
>>> print combo
From nobody Tue Nov 12 03:50:50 2002
Content-Type: multipart/mixed; charset="utf-8";

boundary="===============5954819931142521=="
MIME-Version: 1.0

--===============5954819931142521==
Content-Type: audio/midi
MIME-Version: 1.0

--===============5954819931142521==--

email.MIMEAudio.MIMEAudio(audiodata [,subtype [,encoder [,**params]]])

Construct a single part message object that holds audio data. The audio data stream
is specified as a string in the argument audiodata. The Python standard library
module sndhdr is used to detect the signature of the audio subtype, but you may
explicitly specify the argument subtype instead. An encoder other than base64
may be specified with the encoder argument (but usually should not be). Keyword
arguments are taken as parameters to the Content-Type header.

“TPiP” — 2006/1/30 — 15:07 — page 348 — #368i
i

i
i

i
i

i
i

348 INTERNET TOOLS AND TECHNIQUES

>>> from email.MIMEAudio import MIMEAudio
>>> mess = MIMEAudio(open(’melody.midi’).read())

See Also: sndhdr 397;

email.MIMEImage.MIMEImage(imagedata [,subtype [,encoder [,**params]]])

Construct a single part message object that holds image data. The image data
is specified as a string in the argument imagedata. The Python standard library
module imghdr is used to detect the signature of the image subtype, but you may
explicitly specify the argument subtype instead. An encoder other than base64
may be specified with the encoder argument (but usually should not be). Keyword
arguments are taken as parameters to the Content-Type header.

>>> from email.MIMEImage import MIMEImage
>>> mess = MIMEImage(open(’landscape.png’).read())

See Also: imghdr 396;

email.MIMEText.MIMEText(text [,subtype [,charset]])

Construct a single part message object that holds text data. The data is specified
as a string in the argument text. A character set may be specified in the charset
argument:

>>> from email.MIMEText import MIMEText
>>> mess = MIMEText(open(’TPiP.tex’).read(),’latex’)

FUNCTIONS

email.message from file(file [, class=email.Message.Message [,strict=0]])

Return a message object based on the message text contained in the file-like object
file. This function call is exactly equivalent to:

email.Parser.Parser(_class, strict).parse(file)

See Also: email.Parser.Parser.parse() 363;

email.message from string(s [, class=email.Message.Message [,strict=0]])

Return a message object based on the message text contained in the string s. This
function call is exactly equivalent to:

email.Parser.Parser(_class, strict).parsestr(file)

See Also: email.Parser.Parser.parsestr() 363;

“TPiP” — 2006/1/30 — 15:07 — page 349 — #369i
i

i
i

i
i

i
i

5.1 Working with Email and Newsgroups 349

email.Encoders � Encoding message payloads

The module email.Encoder contains several functions to encode message bodies of single
part message objects. Each of these functions sets the Content-Transfer-Encoding
header to an appropriate value after encoding the body. The decode argument of the
.get payload() message method can be used to retrieve unencoded text bodies.

FUNCTIONS

email.Encoders.encode quopri(mess)

Encode the message body of message object mess using quoted printable encoding.
Also sets the header Content-Transfer-Encoding.

email.Encoders.encode base64(mess)

Encode the message body of message object mess using base64 encoding. Also sets
the header Content-Transfer-Encoding.

email.Encoders.encode 7or8bit(mess)

Set the Content-Transfer-Encoding to 7bit or 8bit based on the message
payload; does not modify the payload itself. If message mess already has a
Content-Transfer-Encoding header, calling this will create a second one—it is
probably best to delete the old one before calling this function.

See Also: email.Message.Message.get payload() 360; quopri 162; base64 158;

email.Errors � Exceptions for [email] package

Exceptions within the email package will raise specific errors and may be caught at the
desired level of generality. The exception hierarchy of email.Errors is shown in Figure
5.1.

� exceptions.Exception Root class for all built−in exceptions
� MessageError Base for email exceptions

� MessageParseError Base for message parsing exceptions
� BoundaryError Could not find boundary
� HeaderParseError Problem parsing the header

� MultipartConversionError Also child of exceptions.TypeError

Figure 5.1: Standard email.Errors exceptions

See Also: exceptions 44;

“TPiP” — 2006/1/30 — 15:07 — page 350 — #370i
i

i
i

i
i

i
i

350 INTERNET TOOLS AND TECHNIQUES

email.Generator � Create text representation of messages

The module email.Generator provides support for the serialization of
email.Message.Message objects. In principle, you could create other tools to
output message objects to specialized formats—for example, you might use the
fields of an email.Message.Message object to store values to an XML format
or to an RDBMS. But in practice, you almost always want to write message ob-
jects to standards-compliant RFC-2822 message texts. Several of the methods of
email.Message.Message automatically utilize email.Generator .

CLASSES

email.Generator.Generator(file [,mangle from =1 [,maxheaderlen=78]])

Construct a generator instance that writes to the file-like object file. If the argu-
ment mangle from is specified as a true value, any occurrence of a line in the body
that begins with the string From followed by a space is prepended with >. This (non-
reversible) transformation prevents BSD mailboxes from being parsed incorrectly.
The argument maxheaderlen specifies where long headers will be split into multiple
lines (if such is possible).

email.Generator.DecodedGenerator(file [,mangle from [,maxheaderlen [,fmt]]])

Construct a generator instance that writes RFC-2822 messages. This class has the
same initializers as its parent email.Generator.Generator , with the addition of
an optional argument fmt.

The class email.Generator.DecodedGenerator only writes out the contents of
text/* parts of a multipart message payload. Nontext parts are replaced with the
string fmt, which may contain keyword replacement values. For example, the default
value of fmt is:

[Non-text (%(type)s) part of message omitted, filename %(filename)s]

Any of the keywords type, maintype, subtype, filename, description, or
encoding may be used as keyword replacements in the string fmt. If any of these
values is undefined by the payload, a simple description of its unavailability is sub-
stituted.

METHODS

email.Generator.Generator.clone()
email.Generator.DecodedGenerator.clone()

Return a copy of the instance with the same options.

“TPiP” — 2006/1/30 — 15:07 — page 351 — #371i
i

i
i

i
i

i
i

5.1 Working with Email and Newsgroups 351

email.Generator.Generator.flatten(mess [,unixfrom=0])
email.Generator.DecodedGenerator.flatten(mess [,unixfrom=0])

Write an RFC-2822 serialization of message object mess to the file-like object the
instance was initialized with. If the argument unixfrom is specified as a true value,
the BSD mailbox From header is included in the serialization.

email.Generator.Generator.write(s)
email.Generator.DecodedGenerator.write(s)

Write the string s to the file-like object the instance was initialized with. This lets
a generator object itself act in a file-like manner, as an implementation convenience.

See Also: email.Message 355; mailbox 372;

email.Header � Manage headers with non-ASCII values

The module email.Charset provides fine-tuned capabilities for managing character set
conversions and maintaining a character set registry. The much higher-level interface
provided by email.Header provides all the capabilities that almost all users need in a
friendlier form.

The basic reason why you might want to use the email.Header module is because
you want to encode multinational (or at least non-US) strings in email headers. Mes-
sage bodies are somewhat more lenient than headers, but RFC-2822 headers are still
restricted to using only 7-bit ASCII to encode other character sets. The module
email.Header provides a single class and two convenience functions. The encoding of
non-ASCII characters in email headers is described in a number of RFCs, including
RFC-2045, RFC-2046, RFC-2047, and most directly RFC-2231.

CLASSES

email.Header.Header([s=”” [,charset [,maxlinelen=76 [,header name=””
[,continuation ws=” ”]]]]])

Construct an object that holds the string or Unicode string s. You may specify an
optional charset to use in encoding s; absent any argument, either us-ascii or
utf-8 will be used, as needed.

Since the encoded string is intended to be used as an email header, it may be desir-
able to wrap the string to multiple lines (depending on its length). The argument
maxlinelen specifies where the wrapping will occur; header name is the name of
the header you anticipate using the encoded string with—it is significant only for its
length. Without a specified header name, no width is set aside for the header field
itself. The argument continuation ws specified what whitespace string should be
used to indent continuation lines; it must be a combination of spaces and tabs.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 352 --- #372i
i

i
i

i
i

i
i

352 INTERNET TOOLS AND TECHNIQUES

Instances of the class email.Header.Header implement a . str () method
and therefore respond to the built-in str() function and the print com-
mand. Normally the built-in techniques are more natural, but the method
email.Header.Header.encode() performs an identical action. As an example,
let us first build a non-ASCII string:

>>> from unicodedata import lookup
>>> lquot = lookup("LEFT-POINTING DOUBLE ANGLE QUOTATION MARK")
>>> rquot = lookup("RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK")
>>> s = lquot + "Euro-style" + rquot + " quotation"
>>> s
u’\xabEuro-style\xbb quotation’
>>> print s.encode(’iso-8859-1’)
Euro-style quotation

Using the string s, let us encode it for an RFC-2822 header:

>>> from email.Header import Header
>>> print Header(s)
=?utf-8?q?=C2=ABEuro-style=C2=BB_quotation?=
>>> print Header(s,’iso-8859-1’)
=?iso-8859-1?q?=ABEuro-style=BB_quotation?=
>>> print Header(s,’utf-16’)
=?utf-16?b?/v8AqwBFAHUAcgBvAC0AcwB0AHkAbABl?=
=?utf-16?b?/v8AuwAgAHEAdQBvAHQAYQB0AGkAbwBu?=

>>> print Header(s,’us-ascii’)
=?utf-8?q?=C2=ABEuro-style=C2=BB_quotation?=

Notice that in the last case, the email.Header.Header initializer did not take
too seriously my request for an ASCII character set, since it was not adequate
to represent the string. However, the class is happy to skip the encoding strings
where they are not needed:

>>> print Header(’"US-style" quotation’)
"US-style" quotation
>>> print Header(’"US-style" quotation’,’utf-8’)
=?utf-8?q?=22US-style=22_quotation?=
>>> print Header(’"US-style" quotation’,’us-ascii’)
"US-style" quotation

METHODS

email.Header.Header.append(s [,charset])

Add the string or Unicode string s to the end of the current instance content, using
character set charset. Note that the charset of the added text need not be the
same as that of the existing content.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 353 --- #373i
i

i
i

i
i

i
i

5.1 Working with Email and Newsgroups 353

>>> subj = Header(s,’latin-1’,65)
>>> print subj
=?iso-8859-1?q?=ABEuro-style=BB_quotation?=
>>> unicodedata.name(omega), unicodedata.name(Omega)
(’GREEK SMALL LETTER OMEGA’, ’GREEK CAPITAL LETTER OMEGA’)
>>> subj.append(’, Greek: ’, ’us-ascii’)
>>> subj.append(Omega, ’utf-8’)
>>> subj.append(omega, ’utf-16’)
>>> print subj
=?iso-8859-1?q?=ABEuro-style=BB_quotation?=, Greek:
=?utf-8?b?zqk=?= =?utf-16?b?/v8DyQ==?=
>>> unicode(subj)
u’\xabEuro-style\xbb quotation, Greek: \u03a9\u03c9’

email.Header.Header.encode()
email.Header.Header. str ()

Return an ASCII string representation of the instance content.

FUNCTIONS

email.Header.decode header(header)

Return a list of pairs describing the components of the RFC-2231 string held in the
header object header. Each pair in the list contains a Python string (not Unicode)
and an encoding name.

>>> email.Header.decode_header(Header(’spam and eggs’))
[(’spam and eggs’, None)]
>>> print subj
=?iso-8859-1?q?=ABEuro-style=BB_quotation?=, Greek:
=?utf-8?b?zqk=?= =?utf-16?b?/v8DyQ==?=

>>> for tup in email.Header.decode_header(subj): print tup
...
(’\xabEuro-style\xbb quotation’, ’iso-8859-1’)
(’, Greek:’, None)
(’\xce\xa9’, ’utf-8’)
(’\xfe\xff\x03\xc9’, ’utf-16’)

These pairs may be used to construct Unicode strings using the built-in unicode()

function. However, plain ASCII strings show an encoding of None, which is not
acceptable to the unicode() function.

>>> for s,enc in email.Header.decode_header(subj):
... enc = enc or ’us-ascii’
... print ‘unicode(s, enc)‘

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 354 --- #374i
i

i
i

i
i

i
i

354 INTERNET TOOLS AND TECHNIQUES

...
u’\xabEuro-style\xbb quotation’
u’, Greek:’
u’\u03a9’
u’\u03c9’

See Also: unicode() 423; email.Header.make header() 354;

email.Header.make header(decoded seq [,maxlinelen [,header name
[,continuation ws]]])

Construct a header object from a list of pairs of the type returned by the
function email.Header.decode header() . You may also, of course, easily con-
struct the list decoded seq manually, or by other means. The three argu-
ments maxlinelen, header name, and continuation ws are the same as with the
email.Header.Header class.

>>> email.Header.make_header([(’\xce\xa9’,’utf-8’),
... (’-man’,’us-ascii’)]).encode()
’=?utf-8?b?zqk=?=-man’

See Also: email.Header.decode header() 353; email.Header.Header 351;

email.Iterators � Iterate through components of messages

The module email.Iterators provides several convenience functions to walk through
messages in ways different from email.Message.Message.get payload() or
email.Message.Message.walk() .

FUNCTIONS

email.Iterators.body line iterator(mess)

Return a generator object that iterates through each content line of the message
object mess. The entire body that would be produced by str(mess) is reached,
regardless of the content types and nesting of parts. But any MIME delimiters are
omitted from the returned lines.

>>> import email.MIMEText, email.Iterators
>>> mess1 = email.MIMEText.MIMEText(’message one’)
>>> mess2 = email.MIMEText.MIMEText(’message two’)
>>> combo = email.Message.Message()
>>> combo.set_type(’multipart/mixed’)
>>> combo.attach(mess1)

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 355 --- #375i
i

i
i

i
i

i
i

5.1 Working with Email and Newsgroups 355

>>> combo.attach(mess2)
>>> for line in email.Iterators.body_line_iterator(combo):
... print line
...
message one
message two

email.Iterators.typed subpart iterator(mess [,maintype=”text” [,subtype]])

Return a generator object that iterates through each subpart of message whose type
matches maintype. If a subtype subtype is specified, the match is further restricted
to maintype/subtype.

email.Iterators. structure(mess [,file=sys.stdout])

Write a “pretty-printed” representation of the structure of the body of message
mess. Output to the file-like object file.

>>> email.Iterators._structure(combo)
multipart/mixed

multipart/digest
image/png
text/plain

audio/mp3
text/html

See Also: email.Message.Message.get payload() 360; email.Message.Message.walk()
362;

email.Message � Class representing an email message

A message object that utilizes the email.Message module provides a large number of
syntactic conveniences and support methods for manipulating an email or news message.
The class email.Message.Message is a very good example of a customized datatype.
The built-in str() function—and therefore also the print command—cause a message
object to produce its RFC-2822 serialization.

In many ways, a message object is dictionary-like. The appropriate magic methods are
implemented in it to support keyed indexing and assignment, the built-in len() func-
tion, containment testing with the in keyword, and key deletion. Moreover, the methods
one expects to find in a Python dict are all implemented by email.Message.Message :
.has key(), .keys(), .values(), .items(), and .get(). Some usage examples are
helpful:

>>> import mailbox, email, email.Parser
>>> mbox = mailbox.PortableUnixMailbox(open(’mbox’),
... email.Parser.Parser().parse)

“TPiP” — 2006/1/30 — 15:07 — page 356 — #376i
i

i
i

i
i

i
i

356 INTERNET TOOLS AND TECHNIQUES

>>> mess = mbox.next()
>>> len(mess) # number of headers
16
>>> ’X-Status’ in mess # membership testing
1
>>> mess.has_key(’X-AGENT’) # also membership test
0
>>> mess[’x-agent’] = "Python Mail Agent"
>>> print mess[’X-AGENT’] # access by key
Python Mail Agent
>>> del mess[’X-Agent’] # delete key/val pair
>>> print mess[’X-AGENT’]
None
>>> [fld for (fld,val) in mess.items() if fld==’Received’]
[’Received’, ’Received’, ’Received’, ’Received’, ’Received’]

This is dictionary-like behavior, but only to an extent. Keys are case-insensitive
to match email header rules. Moreover, a given key may correspond to multiple
values—indexing by key will return only the first such value, but methods like .keys(),
.items(), or .get all() will return a list of all the entries. In some other ways, an
email.Message.Message object is more like a list of tuples, chiefly in guaranteeing to
retain a specific order to header fields.

A few more details of keyed indexing should be mentioned. Assigning to a keyed
field will add an additional header, rather than replace an existing one. In this respect,
the operation is more like a list.append() method. Deleting a keyed field, however,
deletes every matching header. If you want to replace a header completely, delete first,
then assign.

The special syntax defined by the email.Message.Message class is all for manipu-
lating headers. But a message object will typically also have a body with one or more
payloads. If the Content-Type header contains the value multipart/*, the body should
consist of zero or more payloads, each one itself a message object. For single part content
types (including where none is explicitly specified), the body should contain a string,
perhaps an encoded one. The message instance method .get payload(), therefore, can
return either a list of message objects or a string. Use the method .is multipart() to
determine which return type is expected.

As the epigram to this chapter suggests, you should strictly follow content typing
rules in messages you construct yourself. But in real-world situations, you are likely
to encounter messages with badly mismatched headers and bodies. Single part mes-
sages might claim to be multipart, and vice versa. Moreover, the MIME type claimed
by headers is only a loose indication of what payloads actually contain. Part of the
mismatch comes from spammers and virus writers trying to exploit the poor standards
compliance and lax security of Microsoft applications—a malicious payload can pose as
an innocuous type, and Windows will typically launch apps based on filenames instead
of MIME types. But other problems arise not out of malice, but simply out of appli-
cation and transport errors. Depending on the source of your processed messages, you
might want to be lenient about the allowable structure and headers of messages.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 357 --- #377i
i

i
i

i
i

i
i

5.1 Working with Email and Newsgroups 357

See Also: UserDict 24; UserList 28;

CLASSES

email.Message.Message()

Construct a message object. The class accepts no initialization arguments.

METHODS AND ATTRIBUTES

email.Message.Message.add header(field, value [,**params])

Add a header to the message headers. The header field is field, and its value
is value.The effect is the same as keyed assignment to the object, but you may
optionally include parameters using Python keyword arguments.

>>> import email.Message
>>> msg = email.Message.Message()
>>> msg[’Subject’] = "Report attachment"
>>> msg.add_header(’Content-Disposition’,’attachment’,
... filename=’report17.txt’)
>>> print msg
From nobody Mon Nov 11 15:11:43 2002
Subject: Report attachment
Content-Disposition: attachment; filename="report17.txt"

email.Message.Message.as string([unixfrom=0])

Serialize the message to an RFC-2822-compliant text string. If the unixfrom ar-
gument is specified with a true value, include the BSD mailbox “From ” envelope
header. Serialization with str() or print includes the “From ” envelope header.

email.Message.Message.attach(mess)

Add a payload to a message. The argument mess must specify an
email.Message.Message object. After this call, the payload of the message will be
a list of message objects (perhaps of length one, if this is the first object added).
Even though calling this method causes the method .is multipart() to return a
true value, you still need to separately set a correct multipart/* content type for
the message to serialize the object.

>>> mess = email.Message.Message()
>>> mess.is_multipart()
0
>>> mess.attach(email.Message.Message())
>>> mess.is_multipart()
1
>>> mess.get_payload()
[<email.Message.Message instance at 0x3b2ab0>]

“TPiP” — 2006/1/30 — 15:07 — page 358 — #378i
i

i
i

i
i

i
i

358 INTERNET TOOLS AND TECHNIQUES

>>> mess.get_content_type()
’text/plain’
>>> mess.set_type(’multipart/mixed’)
>>> mess.get_content_type()
’multipart/mixed’

If you wish to create a single part payload for a message object, use the method
email.Message.Message.set payload() .

See Also: email.Message.Message.set payload() 362;

email.Message.Message.del param(param [,header=”Content-Type”
[,requote=1]])

Remove the parameter param from a header. If the parameter does not exist, no
action is taken, but also no exception is raised. Usually you are interested in the
Content-Type header, but you may specify a different header argument to work
with another one. The argument requote controls whether the parameter value is
quoted (a good idea that does no harm).

>>> mess = email.Message.Message()
>>> mess.set_type(’text/plain’)
>>> mess.set_param(’charset’,’us-ascii’)
>>> print mess
From nobody Mon Nov 11 16:12:38 2002
MIME-Version: 1.0
Content-Type: text/plain; charset="us-ascii"

>>> mess.del_param(’charset’)
>>> print mess
From nobody Mon Nov 11 16:13:11 2002
MIME-Version: 1.0
content-type: text/plain

email.Message.Message.epilogue

Message bodies that contain MIME content delimiters can also have text that falls
outside the area between the first and final delimiter. Any text at the very end of
the body is stored in email.Message.Message.epilogue .

See Also: email.Message.Message.preamble 361;

email.Message.Message.get all(field [,failobj=None])

Return a list of all the headers with the field name field. If no matches exist,
return the value specified in argument failobj. In most cases, header fields occur
just once (or not at all), but a few fields such as Received typically occur multiple
times.

“TPiP” — 2006/1/30 — 15:07 — page 359 — #379i
i

i
i

i
i

i
i

5.1 Working with Email and Newsgroups 359

The default nonmatch return value of None is probably not the most useful choice.
Returning an empty list will let you use this method in both if tests and iteration
context:

>>> for rcv in mess.get_all(’Received’,[]):
... print rcv
...
About that time
A little earlier
>>> if mess.get_all(’Foo’,[]):
... print "Has Foo header(s)"

email.Message.Message.get boundary([failobj=None])

Return the MIME message boundary delimiter for the message. Return failobj if
no boundary is defined; this should always be the case if the message is not multipart.

email.Message.Message.get charsets([failobj=None])

Return a list of string descriptions of contained character sets.

email.Message.Message.get content charset([failobj=None])

Return a string description of the message character set.

email.Message.Message.get content maintype()

For message mess, equivalent to mess.get content type().split("/")[0].

email.Message.Message.get content subtype()

For message mess, equivalent to mess.get content type().split("/")[1].

email.Message.Message.get content type()

Return the MIME content type of the message object. The return string is normal-
ized to lowercase and contains both the type and subtype, separated by a /.

>>> msg_photo.get_content_type()
’image/png’
>>> msg_combo.get_content_type()
’multipart/mixed’
>>> msg_simple.get_content_type()
’text/plain’

email.Message.Message.get default type()

Return the current default type of the message. The default type will be used in
decoding payloads that are not accompanied by an explicit Content-Type header.

email.Message.Message.get filename([failobj=None])

Return the filename parameter of the Content-Disposition header. If no such
parameter exists (perhaps because no such header exists), failobj is returned in-
stead.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 360 --- #380i
i

i
i

i
i

i
i

360 INTERNET TOOLS AND TECHNIQUES

email.Message.Message.get param(param [,failobj [,header=. . . [,unquote=1]]])

Return the parameter param of the header header. By default, use the
Content-Type header. If the parameter does not exist, return failobj. If the
argument unquote is specified as a true value, the quote marks are removed from
the parameter.

>>> print mess.get_param(’charset’,unquote=1)
us-ascii
>>> print mess.get_param(’charset’,unquote=0)
"us-ascii"

See Also: email.Message.Message.set param() 362;

email.Message.Message.get params([,failobj=None [,header=. . . [,unquote=1]]])

Return all the parameters of the header header. By default, examine the
Content-Type header. If the header does not exist, return failobj instead. The
return value consists of a list of key/val pairs. The argument unquote removes extra
quotes from values.

>>> print mess.get_params(header="To")
[(’<mertz@gnosis.cx>’, ’’)]
>>> print mess.get_params(unquote=0)
[(’text/plain’, ’’), (’charset’, ’"us-ascii"’)]

email.Message.Message.get payload([i [,decode=0]])

Return the message payload. If the message method is multipart() returns true,
this method returns a list of component message objects. Otherwise, this method
returns a string with the message body. Note that if the message object was created
using email.Parser.HeaderParser , then the body is treated as single part, even
if it contains MIME delimiters.

Assuming that the message is multipart, you may specify the i argument to retrieve
only the indexed component. Specifying the i argument is equivalent to indexing on
the returned list without specifying i. If decode is specified as a true value, and the
payload is single part, the returned payload is decoded (i.e., from quoted printable
or base64).

I find that dealing with a payload that may be either a list or a text is somewhat
awkward. Frequently, you would like to simply loop over all the parts of a message
body, whether or not MIME multiparts are contained in it. A wrapper function can
provide uniformity:

“TPiP” — 2006/1/30 — 15:07 — page 361 — #381i
i

i
i

i
i

i
i

5.1 Working with Email and Newsgroups 361

write payload list.py

#!/usr/bin/env python
"Write payload list to separate files"
import email, sys
def get_payload_list(msg, decode=1):

payload = msg.get_payload(decode=decode)
if type(payload) in [type(""), type(u"")]:

return [payload]
else:

return payload
mess = email.message_from_file(sys.stdin)
for part,num in zip(get_payload_list(mess),range(1000)):

file = open(’%s.%d’ % (sys.argv[1], num), ’w’)
print >> file, part

See Also: email.Parser 363; email.Message.Message.is multipart() 361;
email.Message.Message.walk() 362;

email.Message.Message.get unixfrom()

Return the BSD mailbox “From ” envelope header, or None if none exists.

See Also: mailbox 372;

email.Message.Message.is multipart()

Return a true value if the message is multipart. Notice that the criterion for being
multipart is having multiple message objects in the payload; the Content-Type
header is not guaranteed to be multipart/* when this method returns a true value
(but if all is well, it should be).

See Also: email.Message.Message.get payload() 360;

email.Message.Message.preamble

Message bodies that contain MIME content delimiters can also have text that falls
outside the area between the first and final delimiter. Any text at the very beginning
of the body is stored in email.Message.Message.preamble .

See Also: email.Message.Message.epilogue 358;

email.Message.Message.replace header(field, value)

Replaces the first occurrence of the header with the name field with the value
value. If no matching header is found, raise KeyError.

email.Message.Message.set boundary(s)

Set the boundary parameter of the Content-Type header to s. If the message does
not have a Content-Type header, raise HeaderParserError. There is generally no
reason to create a boundary manually, since the email module creates good unique
boundaries on it own for multipart messages.

“TPiP” — 2006/1/30 — 15:07 — page 362 — #382i
i

i
i

i
i

i
i

362 INTERNET TOOLS AND TECHNIQUES

email.Message.Message.set default type(ctype)

Set the current default type of the message to ctype. The default type will be used
in decoding payloads that are not accompanied by an explicit Content-Type header.

email.Message.Message.set param(param, value [,header=”Content-Type”
[,requote=1 [,charset [,language]]]])

Set the parameter param of the header header to the value value. If the argu-
ment requote is specified as a true value, the parameter is quoted. The arguments
charset and language may be used to encode the parameter according to RFC-
2231.

email.Message.Message.set payload(payload [,charset=None])

Set the message payload to a string or to a list of message objects. This method
overwrites any existing payload the message has. For messages with single part con-
tent, you must use this method to configure the message body (or use a convenience
message subclass to construct the message in the first place).

See Also: email.Message.Message.attach() 357; email.MIMEText.MIMEText 348;
email.MIMEImage.MIMEImage 348; email.MIMEAudio.MIMEAudio 347;

email.Message.Message.set type(ctype [,header=”Content-Type” [,requote=1]])

Set the content type of the message to ctype, leaving any parameters to the header
as is. If the argument requote is specified as a true value, the parameter is quoted.
You may also specify an alternative header to write the content type to, but for the
life of me, I cannot think of any reason you would want to.

email.Message.Message.set unixfrom(s)

Set the BSD mailbox envelope header. The argument s should include the word
From and a space, usually followed by a name and a date.

See Also: mailbox 372;

email.Message.Message.walk()

Recursively traverse all message parts and subparts of the message. The returned
iterator will yield each nested message object in depth-first order.

>>> for part in mess.walk():
... print part.get_content_type()
multipart/mixed
text/html
audio/midi

See Also: email.Message.Message.get payload() 360;

“TPiP” — 2006/1/30 — 15:07 — page 363 — #383i
i

i
i

i
i

i
i

5.1 Working with Email and Newsgroups 363

email.Parser � Parse a text message into a message object

There are two parsers provided by the email.Parser module: email.Parser.Parser and
its child email.Parser.HeaderParser . For general usage, the former is preferred, but
the latter allows you to treat the body of an RFC-2822 message as an unparsed block.
Skipping the parsing of message bodies can be much faster and is also more tolerant of
improperly formatted message bodies (something one sees frequently, albeit mostly in
spam messages that lack any content value as well).

The parsing methods of both classes accept an optional headersonly argument. Spec-
ifying headersonly has a stronger effect than using the email.Parser.HeaderParser

class. If headersonly is specified in the parsing methods of either class, the message
body is skipped altogether—the message object created has an entirely empty body.
On the other hand, if email.Parser.HeaderParser is used as the parser class, but
headersonly is specified as false (the default), the body is always read as a single part
text, even if its content type is multipart/*.

CLASSES

email.Parser.Parser([class=email.Message.Message [,strict=0]])

Construct a parser instance that uses the class class as the message object con-
structor. There is normally no reason to specify a different message object type.
Specifying strict parsing with the strict option will cause exceptions to be raised
for messages that fail to conform fully to the RFC-2822 specification. In practice,
“lax” parsing is much more useful.

email.Parser.HeaderParser([class=email.Message.Message [,strict=0]])

Construct a parser instance that is the same as an instance of email.Parser.Parser
except that multipart messages are parsed as if they were single part.

METHODS

email.Parser.Parser.parse(file [,headersonly=0])
email.Parser.HeaderParser.parse(file [,headersonly=0])

Return a message object based on the message text found in the file-like object
file. If the optional argument headersonly is given a true value, the body of the
message is discarded.

email.Parser.Parser.parsestr(s [,headersonly=0])
email.Parser.HeaderParser.parsestr(s [,headersonly=0])

Return a message object based on the message text found in the string s. If the
optional argument headersonly is given a true value, the body of the message is
discarded.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 364 --- #384i
i

i
i

i
i

i
i

364 INTERNET TOOLS AND TECHNIQUES

email.Utils � Helper functions for working with messages

The module email.Utils contains a variety of convenience functions, mostly for working
with special header fields.

FUNCTIONS

email.Utils.decode rfc2231(s)

Return a decoded string for RFC-2231 encoded string s:

>>> Omega = unicodedata.lookup("GREEK CAPITAL LETTER OMEGA")
>>> print email.Utils.encode_rfc2231(Omega+’-man@gnosis.cx’)
%3A9-man%40gnosis.cx
>>> email.Utils.decode_rfc2231("utf-8’’%3A9-man%40gnosis.cx")
(’utf-8’, ’’, ’:9-man@gnosis.cx’)

email.Utils.encode rfc2231(s [,charset [,language]])

Return an RFC-2231-encoded string from the string s. A charset and language may
optionally be specified.

email.Utils.formataddr(pair)

Return a formatted address from pair (realname,addr):

>>> email.Utils.formataddr((’David Mertz’,’mertz@gnosis.cx’))
’David Mertz <mertz@gnosis.cx>’

email.Utils.formatdate([timeval [,localtime=0]])

Return an RFC-2822-formatted date based on a time value as returned by
time.localtime() . If the argument localtime is specified with a true value, use
the local timezone rather than UTC. With no options, use the current time.

>>> email.Utils.formatdate()
’Wed, 13 Nov 2002 07:08:01 -0000’

email.Utils.getaddresses(addresses)

Return a list of pairs (realname,addr) based on the list of compound addresses in
argument addresses.

>>> addrs = [’"Joe" <jdoe@nowhere.lan>’,’Jane <jroe@other.net>’]
>>> email.Utils.getaddresses(addrs)
[(’Joe’, ’jdoe@nowhere.lan’), (’Jane’, ’jroe@other.net’)]

“TPiP” — 2006/1/30 — 15:07 — page 365 — #385i
i

i
i

i
i

i
i

5.1 Working with Email and Newsgroups 365

email.Utils.make msgid([seed])

Return a unique string suitable for a Message-ID header. If the argument seed is
given, incorporate that string into the returned value; typically a seed is the sender’s
domain name or other identifying information.

>>> email.Utils.make_msgid(’gnosis’)
’<20021113071050.3861.13687.gnosis@localhost>’

email.Utils.mktime tz(tuple)

Return a timestamp based on an email.Utils.parsedate tz() style tuple.

>>> email.Utils.mktime_tz((2001, 1, 11, 14, 49, 2, 0, 0, 0, 0))
979224542.0

email.Utils.parseaddr(address)

Parse a compound address into the pair (realname,addr).

>>> email.Utils.parseaddr(’David Mertz <mertz@gnosis.cx>’)
(’David Mertz’, ’mertz@gnosis.cx’)

email.Utils.parsedate(datestr)

Return a date tuple based on an RFC-2822 date string.

>>> email.Utils.parsedate(’11 Jan 2001 14:49:02 -0000’)
(2001, 1, 11, 14, 49, 2, 0, 0, 0)

See Also: time 86;

email.Utils.parsedate tz(datestr)

Return a date tuple based on an RFC-2822 date string. Same as
email.Utils.parsedate() , but adds a tenth tuple field for offset from UTC (or
None if not determinable).

email.Utils.quote(s)

Return a string with backslashes and double quotes escaped.

>>> print email.Utils.quote(r’"MyPath" is d:\this\that’)
\"MyPath\" is d:\\this\\that

email.Utils.unquote(s)

Return a string with surrounding double quotes or angle brackets removed.

>>> print email.Utils.unquote(’<mertz@gnosis.cx>’)
mertz@gnosis.cx
>>> print email.Utils.unquote(’"us-ascii"’)
us-ascii

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 366 --- #386i
i

i
i

i
i

i
i

366 INTERNET TOOLS AND TECHNIQUES

5.1.2 Communicating with Mail Servers

imaplib � IMAP4 client

The module imaplib supports implementing custom IMAP clients. This protocol is
detailed in RFC-1730 and RFC-2060. As with the discussion of other protocol libraries,
this documentation aims only to cover the basics of communicating with an IMAP
server—many methods and functions are omitted here. In particular, of interest here is
merely being able to retrieve messages—creating new mailboxes and messages is outside
the scope of this book.

The Python Library Reference describes the POP3 protocol as obsolescent and rec-
ommends the use of IMAP4 if your server supports it. While this advice is not incorrect
technically—IMAP indeed has some advantages—in my experience, support for POP3
is far more widespread among both clients and servers than is support for IMAP4.
Obviously, your specific requirements will dictate the choice of an appropriate support
library.

Aside from using a more efficient transmission strategy (POP3 is line-by-line, IMAP4
sends whole messages), IMAP4 maintains multiple mailboxes on a server and also auto-
mates filtering messages by criteria. A typical (simple) IMAP4 client application might
look like the one below. To illustrate a few methods, this application will print all the
promising subject lines, after deleting any that look like spam. The example does not
itself retrieve regular messages, only their headers.

check imap subjects.py

#!/usr/bin/env python
import imaplib, sys
if len(sys.argv) == 4:

sys.argv.append(’INBOX’)
(host, user, passwd, mbox) = sys.argv[1:]
i = imaplib.IMAP4(host, port=143)
i.login(user, passwd)
resp = i.select(mbox)
if r[0] <> ’OK’:

sys.stderr.write("Could not select %s\n" % mbox)
sys.exit()

delete some spam messages
typ, spamlist = i.search(None, ’(SUBJECT) "URGENT"’)
i.store(’,’.join(spamlist.split()),’+FLAGS.SILENT’,’\deleted’)
i.expunge()
typ, messnums = i.search(None,’ALL’).split()
for mess in messnums:

typ, header = i.fetch(mess, ’RFC822.HEADER’)
for line in header[0].split(’\n’):

if string.upper(line[:9]) == ’SUBJECT: ’:

“TPiP” — 2006/1/30 — 15:07 — page 367 — #387i
i

i
i

i
i

i
i

5.1 Working with Email and Newsgroups 367

print line[9:]
i.close()
i.logout()

There is a bit more work to this than in the POP3 example, but you can also see some
additional capabilities. Unfortunately, much of the use of the imaplib module depends
on passing strings with flags and commands, none of which are well-documented in the
Python Library Reference or in the source to the module. A separate text on the IMAP
protocol is probably necessary for complex client development.

CLASSES

imaplib.IMAP4([host=”localhost” [port=143]])

Create an IMAP instance object to manage a host connection.

METHODS

imaplib.IMAP4.close()

Close the currently selected mailbox, and delete any messages marked for dele-
tion. The method imaplib.IMAP4.logout() is used to actually disconnect from
the server.

imaplib.IMAP4.expunge()

Permanently delete any messages marked for deletion in the currently selected mail-
box.

imaplib.IMAP4.fetch(message set, message parts)

Return a pair (typ,datalist). The first field typ is either OK or NO, indicating
the status. The second field datalist is a list of returned strings from the fetch
request. The argument message set is a comma-separated list of message numbers
to retrieve. The message parts describe the components of the messages retrieved—
header, body, date, and so on.

imaplib.IMAP4.list([dirname=”” [,pattern=”*”])

Return a (typ,datalist) tuple of all the mailboxes in directory dirname that
match the glob-style pattern pattern. datalist contains a list of string names of
mailboxes. Contrast this method with imaplib.IMAP4.search() , which returns
numbers of individual messages from the currently selected mailbox.

imaplib.IMAP4.login(user, passwd)

Connect to the IMAP server specified in the instance initialization, using the au-
thentication information given by user and passwd.

imaplib.IMAP4.logout()

Disconnect from the IMAP server specified in the instance initialization.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 368 --- #388i
i

i
i

i
i

i
i

368 INTERNET TOOLS AND TECHNIQUES

imaplib.IMAP4.search(charset, criterion1 [,criterion2 [,. . .]])

Return a (typ,messnums) tuple where messnums is a space-separated string of mes-
sage numbers of matching messages. Message criteria specified in criterion1, and
so on may either be ALL for all messages or flags indicating the fields and values to
match.

imaplib.IMAP4.select([mbox=”INBOX” [,readonly=0])

Select the current mailbox for operations such as imaplib.IMAP4.search() and
imaplib.IMAP4.expunge() . The argument mbox gives the name of the mailbox,
and readonly allows you to prevent modification to a mailbox.

See Also: email 345; poplib 368; smtplib 370;

poplib � A POP3 client class

The module poplib supports implementing custom POP3 clients. This protocol is de-
tailed in RFC-1725. As with the discussion of other protocol libraries, this documenta-
tion aims only to cover the basics of communicating with a POP3 server—some methods
or functions may be omitted here.

The Python Library Reference describes the POP3 protocol as obsolescent and rec-
ommends the use of IMAP4 if your server supports it. While this advice is not incorrect
technically—IMAP indeed has some advantages—in my experience, support for POP3
is far more widespread among both clients and servers than is support for IMAP4.
Obviously, your specific requirements will dictate the choice of an appropriate support
library.

A typical (simple) POP3 client application might look like the one below. To illustrate
a few methods, this application will print all the promising subject lines, and retrieve and
delete any that look like spam. The example does not itself retrieve regular messages,
only their headers.

new email subjects.py

#!/usr/bin/env python
import poplib, sys, string
spamlist = []
(host, user, passwd) = sys.argv[1:]
mbox = poplib.POP3(host)
mbox.user(user)
mbox.pass_(passwd)

for i in range(1, mbox.stat()[0]+1):
messages use one-based indexing
headerlines = mbox.top(i, 0)[1] # No body lines
for line in headerlines:

if string.upper(line[:9]) == ’SUBJECT: ’:

“TPiP” — 2006/1/30 — 15:07 — page 369 — #389i
i

i
i

i
i

i
i

5.1 Working with Email and Newsgroups 369

if -1 <> string.find(line,’URGENT’):
spam = string.join(mbox.retr(i)[1],’\n’)
spamlist.append(spam)
mbox.dele(i)

else:
print line[9:]

mbox.quit()
for spam in spamlist:

report_to_spamcop(spam) # assuming this func exists

CLASSES

poplib.POP3(host [,port=110])

The poplib module provides a single class that establishes a connection to a POP3
server at host host, using port port.

METHODS

poplib.POP3.apop(user, secret)

Log in to a server using APOP authentication.

poplib.POP3.dele(messnum)

Mark a message for deletion. Normally the actual deletion does not occur until you
log off with poplib.POP3.quit() , but server implementations differ.

poplib.POP3.pass (password)

Set the password to use when communicating with the POP server.

poplib.POP3.quit()

Log off from the connection to the POP server. Logging off will cause any pending
deletions to be carried out. Call this method as soon as possible after you establish
a connection to the POP server; while you are connected, the mailbox is locked
against receiving any incoming messages.

poplib.POP3.retr(messnum)

Return the message numbered messnum (using one-based indexing). The return
value is of the form (resp,linelist,octets), where linelist is a list of the
individual lines in the message. To re-create the whole message, you will need to
join these lines.

poplib.POP3.rset()

Unmark any messages marked for deletion. Since server implementations differ,
it is not good practice to mark messages using poplib.POP3.dele() unless you
are pretty confident you want to erase them. However, poplib.POP3.rset() can
usually save messages should unusual circumstances occur before the connection is
logged off.

“TPiP” — 2006/1/30 — 15:07 — page 370 — #390i
i

i
i

i
i

i
i

370 INTERNET TOOLS AND TECHNIQUES

poplib.POP3.top(messnum, lines)

Retrieve the initial lines of message messnum. The header is always included,
along with lines lines from the body. The return format is the same as with
poplib.POP3.retr() , and you will typically be interested in offset 1 of the returned
tuple.

poplib.POP3.stat()

Retrieve the status of the POP mailbox in the format (messcount,mbox size).
messcount gives you the total number of message pending; mbox size is the total
size of all pending messages.

poplib.POP3.user(username)

Set the username to use when communicating with the POP server.

See Also: email 345; smtplib 370; imaplib 366;

smtplib � SMTP/ESMTP client class

The module smtplib supports implementing custom SMTP clients. This protocol is
detailed in RFC-821 and RFC-1869. As with the discussion of other protocol libraries,
this documentation aims only to cover the basics of communicating with an SMTP
server—most methods and functions are omitted here. The modules poplib and imaplib
are used to retrieve incoming email, and the module smtplib is used to send outgoing
email.

A typical (simple) SMTP client application might look like the one below. This
example is a command-line tool that accepts as a parameters the mandatory To message
envelope header, constructs the From using environment variables, and sends whatever
text is on STDIN. The To and From are also added as RFC-822 headers in the message
header.

send email.py

#!/usr/bin/env python
import smtplib
from sys import argv, stdin
from os import getenv
host = getenv(’HOST’, ’localhost’)
if len(argv) >= 2:

to_ = argv[1]
else:

to_ = raw_input(’To: ’).strip()

“TPiP” — 2006/1/30 — 15:07 — page 371 — #391i
i

i
i

i
i

i
i

5.1 Working with Email and Newsgroups 371

if len(argv) >=3:
subject = argv[2]
body = stdin.read()

else:
subject = stdin.readline()
body = subject + stdin.read()

from_ = "%s@%s" % (getenv(’USER’, ’user’), host)
mess = ’’’From: %s\nTo: %s\n\n%s’ % (to_, from_, body)
server = smtp.SMTP(host)
server.login
server.sendmail(from_, to_, mess)
server.quit()

CLASSES

smtplib.SMTP([host=”localhost” [,port=25]])

Create an instance object that establishes a connection to an SMTP server at host
host, using port port.

METHODS

smtplib.SMTP.login(user, passwd)

Login to an SMTP server that requires authentication. Raises an error if authenti-
cation fails.

Not all—or even most—SMTP servers use password authentication. Modern servers
support direct authentication, but since not all clients support SMTP authentica-
tion, the option is often disabled. One commonly used strategy to prevent “open
relays” (servers that allow malicious/spam messages to be sent through them) is
“POP before SMTP.” In this arrangement, an IP address is authorized to use an
SMTP server for a period of time after that same address has successfully authen-
ticated with a POP3 server on the same machine. The timeout period is typically
a few minutes to hours.

smtplib.SMTP.quit()

Terminate an SMTP connection.

smtplib.SMTP.sendmail(from , to , mess [,mail options=[] [,rcpt options=[]]])

Send the message mess with From envelope from , to recipients to . The argument
to may either be a string containing a single address or a Python list of addresses.
The message should include any desired RFC-822 headers. ESMTP options may be
specified in arguments mail options and rcpt options.

See Also: email 345; poplib 368; imaplib 366;

“TPiP” — 2006/1/30 — 15:07 — page 372 — #392i
i

i
i

i
i

i
i

372 INTERNET TOOLS AND TECHNIQUES

5.1.3 Message Collections and Message Parts

mailbox � Work with mailboxes in various formats

The module mailbox provides a uniform interface to email messages stored in a variety
of popular formats. Each class in the mailbox module is initialized with a mailbox of
an appropriate format, and returns an instance with a single method .next(). This
instance method returns each consecutive message within a mailbox upon each invoca-
tion. Moreover, the .next() method is conformant with the iterator protocol in Python
2.2+, which lets you loop over messages in recent versions of Python.

By default, the messages returned by mailbox instances are objects of the class
rfc822.Mailbox . These message objects provide a number of useful methods and
attributes. However, the recommendation of this book is to use the newer email mod-
ule in place of the older rfc822 . Fortunately, you may initialize a mailbox class using
an optional message constructor. The only constraint on this constructor is that it is a
callable object that accepts a file-like object as an argument—the email module provides
two logical choices here.

>>> import mailbox, email, email.Parser
>>> mbox = mailbox.PortableUnixMailbox(open(’mbox’))
>>> mbox.next()
<rfc822.Message instance at 0x41d770>
>>> mbox = mailbox.PortableUnixMailbox(open(’mbox’),
... email.message_from_file)
>>> mbox.next()
<email.Message.Message instance at 0x5e43e0>
>>> mbox = mailbox.PortableUnixMailbox(open(’mbox’),
... email.Parser.Parser().parse)
>>> mbox.next()
<email.Message.Message instance at 0x6ee630>

In Python 2.2+ you might structure your application as:

Looping through a mailbox in 2.2+

#!/usr/bin/env python
from mailbox import PortableUnixMailbox
from email import message_from_file as mff
import sys
folder = open(sys.argv[1])
for message in PortableUnixMailbox(folder, mff):

do something with the message...
print message[’Subject’]

However, in earlier versions, this same code will raise an AttributeError for the
missing . getitem () magic method. The slightly less elegant way to write the same
application in an older Python is:

“TPiP” — 2006/1/30 — 15:07 — page 373 — #393i
i

i
i

i
i

i
i

5.1 Working with Email and Newsgroups 373

Looping through a mailbox in any version

#!/usr/bin/env python
"Subject printer, older Python and rfc822.Message objects"
import sys
from mailbox import PortableUnixMailbox
mbox = PortableUnixMailbox(open(sys.argv[1]))
while 1:

message = mbox.next()
if message is None:

break
print message.getheader(’Subject’)

CLASSES

mailbox.UnixMailbox(file [,factory=rfc822.Message])

Read a BSD-style mailbox from the file-like object file. If the optional argument
factory is specified, it must be a callable object that accepts a file-like object as its
single argument (in this case, that object is a portion of an underlying file).

A BSD-style mailbox divides messages with a blank line followed by a “Unix From ”
line. In this strict case, the “From ” line must have name and time information
on it that matches a regular expression. In most cases, you are better off using
mailbox.PortableUnixMailbox , which relaxes the requirement for recognizing the
next message in a file.

mailbox.PortableUnixMailbox(file [,factory=rfc822.Message])

The arguments to this class are the same as for mailbox.UnixMailbox . Recognition
of the messages within the mailbox file depends only on finding From followed by
a space at the beginning of a line. In practice, this is as much as you can count on
if you cannot guarantee that all mailboxes of interest will be created by a specific
application and version.

mailbox.BabylMailbox(file [,factory=rfc822.Message])

The arguments to this class are the same as for mailbox.UnixMailbox . Handles
mailbox files in Babyl format.

mailbox.MmdfMailbox(file [,factory=rfc822.Message])

The arguments to this class are the same as for mailbox.UnixMailbox . Handles
mailbox files in MMDF format.

mailbox.MHMailbox(dirname [,factory=rfc822.Message])

The MH format uses the directory structure of the underlying native filesystem
to organize mail folders. Each message is held in a separate file. The initializer
argument for mailbox.MHMailbox is a string giving the name of the directory to be
processed. The factory argument is the same as with mailbox.UnixMailbox .

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 374 --- #394i
i

i
i

i
i

i
i

374 INTERNET TOOLS AND TECHNIQUES

mailbox.Maildir(dirname [,factory=rfc822.Message])

The QMail format, like the MH format, uses the directory structure of the un-
derlying native filesystem to organize mail folders. The initializer argument for
mailbox.Maildir is a string giving the name of the directory to be processed. The
factory argument is the same as with mailbox.UnixMailbox .

See Also: email 345; poplib 368; imaplib 366; nntplib 397; smtplib 370; rfc822 397;

mimetypes � Guess the MIME type of a file

The mimetypes module maps file extensions to MIME datatypes. At its heart, the
module is a dictionary, but several convenience functions let you work with system
configuration files containing additional mappings, and also query the mapping in some
convenient ways. As well as actual MIME types, the mimetypes module tries to guess
file encodings, for example, compression wrapper.

In Python 2.2+, the mimetypes module also provides a mimetypes.MimeTypes class
that lets instances each maintain their own MIME types mapping, but the requirement
for multiple distinct mapping is rare enough not to be worth covering here.

FUNCTIONS

mimetypes.guess type(url [,strict=0])

Return a pair (typ,encoding) based on the file or Uniform Resource Locator (URL)
named by url. If the strict option is specified with a true value, only officially
specified types are considered. Otherwise, a larger number of widespread MIME
types are examined. If either type or encoding cannot be guessed, None is returned
for that value.

>>> import mimetypes
>>> mimetypes.guess_type(’x.abc.gz’)
(None, ’gzip’)
>>> mimetypes.guess_type(’x.tgz’)
(’application/x-tar’, ’gzip’)
>>> mimetypes.guess_type(’x.ps.gz’)
(’application/postscript’, ’gzip’)
>>> mimetypes.guess_type(’x.txt’)
(’text/plain’, None)
>>> mimetypes.guess_type(’a.xyz’)
(None, None)

mimetypes.guess extension(type [,strict=0])

Return a string indicating a likely extension associated with the MIME type. If
multiple file extensions are possible, one is returned (generally the one that is first
alphabetically, but this is not guaranteed). The argument strict has the same
meaning as in mimetypes.guess type() .

“TPiP” — 2006/1/30 — 15:07 — page 375 — #395i
i

i
i

i
i

i
i

5.1 Working with Email and Newsgroups 375

>>> print mimetypes.guess_extension(’application/EDI-Consent’)
None
>>> print mimetypes.guess_extension(’application/pdf’)
.pdf
>>> print mimetypes.guess_extension(’application/postscript’)
.ai

mimetypes.init([list-of-files])

Add the definitions from each filename listed in list-of-files to the MIME type
mapping. Several default files are examined even if this function is not called, but
additional configuration files may be added as needed on your system. For example,
on my MacOSX system, which uses somewhat different directories than a Linux
system, I find it useful to run:

>>> mimetypes.init([’/private/etc/httpd/mime.types.default’,
... ’/private/etc/httpd/mime.types’])

Notice that even if you are specifying only one additional configuration file, you
must enclose its name inside a list.

mimetypes.read mime types(fname)

Read the single file named fname and return a dictionary mapping extensions to
MIME types.

>>> from mimetypes import read_mime_types
>>> types = read_mime_types(’/private/etc/httpd/mime.types’)
>>> for _ in range(5): print types.popitem()
...
(’.wbxml’, ’application/vnd.wap.wbxml’)
(’.aiff’, ’audio/x-aiff’)
(’.rm’, ’audio/x-pn-realaudio’)
(’.xbm’, ’image/x-xbitmap’)
(’.avi’, ’video/x-msvideo’)

ATTRIBUTES

mimetypes.common types

Dictionary of widely used, but unofficial MIME types.

mimetypes.inited

True value if the module has been initialized.

mimetypes.encodings map

Dictionary of encodings.

“TPiP” — 2006/1/30 — 15:07 — page 376 — #396i
i

i
i

i
i

i
i

376 INTERNET TOOLS AND TECHNIQUES

mimetypes.knownfiles

List of files checked by default.

mimetypes.suffix map

Dictionary of encoding suffixes.

mimetypes.types map

Dictionary mapping extensions to MIME types.

5.2 World Wide Web Applications

5.2.1 Common Gateway Interface

cgi � Support for Common Gateway Interface scripts

The module cgi provides a number of helpful tools for creating CGI scripts. There are
two elements to CGI, basically: (1) Reading query values. (2) Writing the results back
to the requesting browser. The first of these elements is aided by the cgi module, the
second is just a matter of formatting suitable text to return. The cgi module contains
one class that is its primary interface; it also contains several utility functions that are
not documented here because their use is uncommon (and not hard to replicate and
customize for your specific needs). See the Python Library Reference for details on the
utility functions.

A CGI PRIMER

A primer on the Common Gateway Interface is in order. A CGI script is just an
application—in any programming language—that runs on a Web server. The server
software recognizes a request for a CGI application, sets up a suitable environment,
then passes control to the CGI application. By default, this is done by spawning a
new process space for the CGI application to run in, but technologies like FastCGI and
mod python perform some tricks to avoid extra process creation. These latter techniques
speed performance but change little from the point of view of the CGI application
creator.

A Python CGI script is called in exactly the same way any other URL is. The only
difference between a CGI and a static URL is that the former is marked as executable
by the Web server—conventionally, such scripts are confined to a ./cgi-bin/ subdi-
rectory (sometimes another directory name is used); Web servers generally allow you
to configure where CGI scripts may live. When a CGI script runs, it is expected to
output a Content-Type header to STDOUT, followed by a blank line, then finally some
content of the appropriate type—most often an HTML document. That is really all
there is to it.

CGI requests may utilize one of two methods: POST or GET. A POST request
sends any associated query data to the STDIN of the CGI script (the Web server sets
this up for the script). A GET request puts the query in an environment variable

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 377 --- #397i
i

i
i

i
i

i
i

5.2 World Wide Web Applications 377

called QUERY STRING. There is not a lot of difference between the two methods, but
GET requests encode their query information in a Uniform Resource Identifier (URI)
and may therefore be composed without HTML forms and saved/bookmarked. For
example, the following is an HTTP GET query to a script example discussed below:

<http://gnosis.cx/cgi-bin/simple.cgi?this=that&spam=eggs+are+good>

You do not actually need the cgi module to create CGI scripts. For example, let us
look at the script simple.cgi mentioned above:

simple.cgi

#!/usr/bin/python
import os,sys
print "Content-Type: text/html"
print
print "<html><head><title>Environment test</title></head><body><pre>"
for k,v in os.environ.items():

print k, "::",
if len(v)<=40: print v
else: print v[:37]+"..."

print "<STDIN> ::", sys.stdin.read()
print "</pre></body></html>"

I happen to have composed the above sample query by hand, but you will often call
a CGI script from another Web page. Here is one that does so:

http://gnosis.cx/simpleform.html

<html><head><title>Test simple.cgi</title></head><body>
<form action="cgi-bin/simple.cgi" method="GET" name="form">
<input type="hidden" name="this" value="that">
<input type="text" value="" name="spam" size="55" maxlength="256">
<input type="submit" value="GET">
</form>
<form action="cgi-bin/simple.cgi" method="POST" name="form">
<input type="hidden" name="this" value="that">
<input type="text" value="" name="spam" size="55" maxlength="256">
<input type="submit" value="POST">
</form>
</body></html>

It turns out that the script simple.cgi is moderately useful; it tells the requester
exactly what it has to work with. For example, the query above (which could be
generated exactly by the GET form on simpleform.html) returns a Web page that
looks like the one below (edited):

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 378 --- #398i
i

i
i

i
i

i
i

378 INTERNET TOOLS AND TECHNIQUES

DOCUMENT_ROOT :: /www/gnosis
HTTP_ACCEPT_ENCODING :: gzip, deflate, compress;q=0.9
CONTENT_TYPE :: application/x-www-form-urlencoded
SERVER_PORT :: 80
REMOTE_ADDR :: 151.203.xxx.xxx
SERVER_NAME :: www.gnosis.cx
HTTP_USER_AGENT :: Mozilla/5.0 (Macintosh; U; PPC Mac OS...
REQUEST_URI :: /cgi-bin/simple.cgi?this=that&spam=eg...
QUERY_STRING :: this=that&spam=eggs+are+good
SERVER_PROTOCOL :: HTTP/1.1
HTTP_HOST :: gnosis.cx
REQUEST_METHOD :: GET
SCRIPT_NAME :: /cgi-bin/simple.cgi
SCRIPT_FILENAME :: /www/gnosis/cgi-bin/simple.cgi
HTTP_REFERER :: http://gnosis.cx/simpleform.html
<STDIN> ::

A few environment variables have been omitted, and those available will differ be-
tween Web servers and setups. The most important variable is QUERY STRING; you
may perhaps want to make other decisions based on the requesting REMOTE ADDR,
HTTP USER AGENT, or HTTP REFERER (yes, the variable name is spelled wrong). Notice
that STDIN is empty in this case. However, using the POST form on the sample Web
page will give a slightly different response (trimmed):

CONTENT_LENGTH :: 28
REQUEST_URI :: /cgi-bin/simple.cgi
QUERY_STRING ::
REQUEST_METHOD :: POST
<STDIN> :: this=that&spam=eggs+are+good

The CONTENT LENGTH environment variable is new, QUERY STRING has become empty,
and STDIN contains the query. The rest of the omitted variables are the same.

A CGI script need not utilize any query data and need not return an HTML page. For
example, on some of my Web pages, I utilize a “Web bug”—a 1x1 transparent gif file
that reports back who “looks” at it. Web bugs have a less-honorable use by spammers
who send HTML mail and want to verify receipt covertly; but in my case, I only want
to check some additional information about visitors to a few of my own Web pages. A
Web page might contain, at bottom:

The script itself is:

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 379 --- #399i
i

i
i

i
i

i
i

5.2 World Wide Web Applications 379

visitor.cgi

#!/usr/bin/python
import os
from sys import stdout
addr = os.environ.get("REMOTE_ADDR","Unknown IP Address")
agent = os.environ.get("HTTP_USER_AGENT","No Known Browser")
fp = open(’visitor.log’,’a’)
fp.write(’%s\t%s\n’ % (addr, agent))
fp.close()
stdout.write("Content-type: image/gif\n\n")
stdout.write(’GIF89a\001\000\001\000\370\000\000\000\000\000’)
stdout.write(’\000\000\000!\371\004\001\000\000\000\000,\000’)
stdout.write(’\000\000\000\001\000\001\000\000\002\002D\001\000;’)

CLASSES

The point where the cgi module becomes useful is in automating form processing. The
class cgi.FieldStorage will determine the details of whether a POST or GET request
was made, and decode the urlencoded query into a dictionary-like object. You could
perform these checks manually, but cgi makes it much easier to do.

cgi.FieldStorage([fp=sys.stdin [,headers [,ob [,environ=os.environ
[,keep blank values=0
[,strict parsing=0]]]]]])

Construct a mapping object containing query information. You will almost always
use the default arguments and construct a standard instance. A cgi.FieldStorage

object allows you to use name indexing and also supports several custom methods.
On initialization, the object will determine all relevant details of the current CGI
invocation.

import cgi
query = cgi.FieldStorage()
eggs = query.getvalue(’eggs’,’default_eggs’)
numfields = len(query)
if query.has_key(’spam’):

spam = query[’spam’]
[...]

When you retrieve a cgi.FieldStorage value by named indexing, what you get
is not a string, but either an instance of cgi.FieldStorage objects (or maybe
cgi.MiniFieldStorage) or a list of such objects. The string query is in their
.value attribute. Since HTML forms may contain multiple fields with the same
name, multiple values might exist for a key—a list of such values is returned. The
safe way to read the actual strings in queries is to check whether a list is returned:

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 380 --- #400i
i

i
i

i
i

i
i

380 INTERNET TOOLS AND TECHNIQUES

if type(eggs) is type([]): # several eggs
for egg in eggs:

print "<dt>Egg</dt>\n<dd>", egg.value, "</dd>"
else:

print "<dt>Eggs</dt>\n<dd>", eggs.value, "</dd>"

For special circumstances you might wish to change the initialization of the instance
by specifying an optional (named) argument. The argument fp specifies the input
stream to read for POST requests. The argument headers contains a dictionary
mapping HTTP headers to values—usually consisting of {"Content-Type":...};
the type is determined from the environment if no argument is given. The argument
environ specified where the environment mapping is found. If you specify a true
value for keep blank values, a key will be included for a blank HTML form field—
mapping to an empty string. If string parsing is specified, a ValueError will be
raised if there are any flaws in the query string.

METHODS

The methods .keys(), .values(), and .has key() work as with a standard dictionary
object. The method .items(), however, is not supported.

cgi.FieldStorage.getfirst(key [,default=None])

Python 2.2+ has this method to return exactly one string corresponding to the
key key. You cannot rely on which such string value will be returned if multiple
submitting HTML form fields have the same name—but you are assured of this
method returning a string, not a list.

cgi.FieldStorage.getlist(key [,default=None])

Python 2.2+ has this method to return a list of strings whether there are one or
several matches on the key key. This allows you to loop over returned values without
worrying about whether they are a list or a single string.

>>> spam = form.getlist(’spam’)
>>> for s in spam:
... print s

cgi.FieldStorage.getvalue(key [,default=None])

Return a string or list of strings that are the value(s) corresponding to the key key.
If the argument default is specified, return the specified value in case of key miss.
In contrast to indexing by name, this method retrieves actual strings rather than
storage objects with a .value attribute.

>>> import sys, cgi, os
>>> from cStringIO import StringIO

“TPiP” — 2006/1/30 — 15:07 — page 381 — #401i
i

i
i

i
i

i
i

5.2 World Wide Web Applications 381

>>> sys.stdin = StringIO("this=that&this=other&spam=good+eggs")
>>> os.environ[’REQUEST_METHOD’] = ’POST’
>>> form = cgi.FieldStorage()
>>> form.getvalue(’this’)
[’that’, ’other’]
>>> form[’this’]
[MiniFieldStorage(’this’,’that’),MiniFieldStorage(’this’,’other’)]

ATTRIBUTES

cgi.FieldStorage.file

If the object handled is an uploaded file, this attribute gives the file handle
for the file. While you can read the entire file contents as a string from the
cgi.FieldStorage.value attribute, you may want to read it line-by-line instead.
To do this, use the .readline() or .readlines() method of the file object.

cgi.FieldStorage.filename

If the object handled is an uploaded file, this attribute contains the name of the file.
An HTML form to upload a file looks something like:

<form action="upload.cgi" method="POST"
enctype="multipart/form-data">

Name: <input name="" type="file" size="50">
<input type="submit" value="Upload">

</form>

Web browsers typically provide a point-and-click method to fill in a file-upload form.

cgi.FieldStorage.list

This attribute contains the list of mapping object within a cgi.FieldStorage ob-
ject. Typically, each object in the list is itself a cgi.MiniStorage object instead
(but this can be complicated if you upload files that themselves contain multiple
parts).

>>> form.list
[MiniFieldStorage(’this’, ’that’),
MiniFieldStorage(’this’, ’other’),
MiniFieldStorage(’spam’, ’good eggs’)]

See Also: cgi.FieldStorage.getvalue() 380;

cgi.FieldStorage.value
cgi.MiniFieldStorage.value

The string value of a storage object.

See Also: urllib 388; cgitb 382; dict 24;

“TPiP” — 2006/1/30 — 15:07 — page 382 — #402i
i

i
i

i
i

i
i

382 INTERNET TOOLS AND TECHNIQUES

cgitb � Traceback manager for CGI scripts

Python 2.2 added a useful little module for debugging CGI applications. You can
download it for earlier Python versions from <http://lfw.org/python/cgitb.py>.
A basic difficulty with developing CGI scripts is that their normal output is sent to
STDOUT, which is caught by the underlying Web server and forwarded to an invoking
Web browser. However, when a traceback occurs due to a script error, that output is
sent to STDERR (which is hard to get at in a CGI context). A more useful action is
either to log errors to server storage or display them in the client browser.

Using the cgitb module to examine CGI script errors is almost embarrassingly simple.
At the top of your CGI script, simply include the lines:

Traceback enabled CGI script

import cgitb
cgitb.enable()

If any exceptions are raised, a pretty-formatted report is produced (and possibly
logged to a name starting with @).

METHODS

cgitb.enable([display=1 [,logdir=None [context=5]]])

Turn on traceback reporting. The argument display controls whether an error
report is sent to the browser—you might not want this to happen in a production
environment, since users will have little idea what to make of such a report (and
there may be security issues in letting them see it). If logdir is specified, tracebacks
are logged into files in that directory. The argument context indicates how many
lines of code are displayed surrounding the point where an error occurred.

For earlier versions of Python, you will have to do your own error catching. A simple
approach is:

Debugging CGI script in Python

import sys
sys.stderr = sys.stdout
def main():

import cgi
...do the actual work of the CGI...
perhaps ending with:
print template % script_dictionary

print "Content-type: text/html\n\n"
main()

This approach is not bad for quick debugging; errors go back to the browser. Unfor-
tunately, though, the traceback (if one occurs) gets displayed as HTML, which means

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 383 --- #403i
i

i
i

i
i

i
i

5.2 World Wide Web Applications 383

that you need to go to “View Source” in a browser to see the original line breaks in the
traceback. With a few more lines, we can add a little extra sophistication.

Debugging/logging CGI script in Python

import sys, traceback
print "Content-type: text/html\n\n"
try: # use explicit exception handling

import my_cgi # main CGI functionality in ’my_cgi.py’
my_cgi.main()

except:
import time
errtime = ’--- ’+ time.ctime(time.time()) +’ ---\n’
errlog = open(’cgi_errlog’, ’a’)
errlog.write(errtime)
traceback.print_exc(None, errlog)
print "<html>\n<head>"
print "<title>CGI Error Encountered!</title>\n</head>"
print "<body><p>A problem was encountered running MyCGI</p>"
print "<p>Please check the server error log for details</p>"
print "</body></html>"

The second approach is quite generic as a wrapper for any real CGI functionality we
might write. Just import a different CGI module as needed, and maybe make the error
messages more detailed or friendlier.

See Also: cgi 376;

5.2.2 Parsing, Creating, and Manipulating HTML Documents

htmlentitydefs � HTML character entity references

The module htmlentitydefs provides a mapping between ISO-8859-1 characters and the
symbolic names of corresponding HTML 2.0 entity references. Not all HTML named
entities have equivalents in the ISO-8859-1 character set; in such cases, names are
mapped the HTML numeric references instead.

ATTRIBUTES

htmlentitydefs.entitydefs

A dictionary mapping symbolic names to character entities.

>>> import htmlentitydefs
>>> htmlentitydefs.entitydefs[’omega’]
’ω’

“TPiP” — 2006/1/30 — 15:07 — page 384 — #404i
i

i
i

i
i

i
i

384 INTERNET TOOLS AND TECHNIQUES

>>> htmlentitydefs.entitydefs[’uuml’]
’\xfc’

For some purposes, you might want a reverse dictionary to find the HTML entities for
ISO-8859-1 characters.

>>> from htmlentitydefs import entitydefs
>>> iso8859_1 = dict([(v,k) for k,v in entitydefs.items()])
>>> iso8859_1[’\xfc’]
’uuml’

HTMLParser � Simple HTML and XHTML parser

The module HTMLParser is an event-based framework for processing HTML files. In
contrast to htmllib, which is based on sgmllib, HTMLParser simply uses some regular
expressions to identify the parts of an HTML document—starttag, text, endtag, com-
ment, and so on. The different internal implementation, however, makes little difference
to users of the modules.

I find the module HTMLParser much more straightforward to use than htmllib, and
therefore HTMLParser is documented in detail in this book, while htmllib is not. While
htmllib more or less requires the use of the ancillary module formatter to operate, there
is no extra difficultly in letting HTMLParser make calls to a formatter object. You might
want to do this, for example, if you have an existing formatter/writer for a complex
document format.

Both HTMLParser and htmllib provide an interface that is very similar to that of SAX
or expat XML parsers. That is, a document—HTML or XML—is processed purely as
a sequence of events, with no data structure created to represent the document as a
whole. For XML documents, another processing API is the Document Object Model
(DOM), which treats the document as an in-memory hierarchical data structure.

In principle, you could use xml.sax or xml.dom to process HTML documents that con-
formed with XHTML—that is, tightened up HTML that is actually an XML application
The problem is that very little existing HTML is XHTML compliant. A syntactic issue
is that HTML does not require closing tags in many cases, where XML/XHTML re-
quires every tag to be closed. But implicit closing tags can be inferred from subsequent
opening tags (e.g., with certain names). A popular tool like tidy does an excellent job
of cleaning up HTML in this way. The more significant problem is semantic. A whole
lot of actually existing HTML is quite lax about tag matching—Web browsers that
successfully display the majority of Web pages are quite complex software projects.

For example, a snippet like that below is quite likely to occur in HTML you come
across:

<p>The IETF admonishes:
<i>Be lenient in what you accept</i>.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 385 --- #405i
i

i
i

i
i

i
i

5.2 World Wide Web Applications 385

If you know even a little HTML, you know that the author of this snippet presum-
ably wanted the whole quote in italics, the word accept in bold. But converting the
snippet into a data structure such as a DOM object is difficult to generalize. For-
tunately, HTMLParser is fairly lenient about what it will process; however, for suffi-
ciently badly formed input (or any other problem), the module will raise the exception
HTMLParser.HTMLParseError.

See Also: htmllib 285; xml.sax 405;

CLASSES

HTMLParser.HTMLParser()

The HTMLParser module contains the single class HTMLParser.HTMLParser . The
class itself is fairly useless, since it does not actually do anything when it encounters
any event. Utilizing HTMLParser.HTMLParser() is a matter of subclassing it and
providing methods to handle the events you are interested in.

If it is important to keep track of the structural position of the current event within
the document, you will need to maintain a data structure with this information.
If you are certain that the document you are processing is well-formed XHTML, a
stack suffices. For example:

HTMLParser stack.py

#!/usr/bin/env python
import HTMLParser
html = """<html><head><title>Advice</title></head><body>
<p>The IETF admonishes:

<i>Be strict in what you send.</i></p>
</body></html>
"""
tagstack = []
class ShowStructure(HTMLParser.HTMLParser):

def handle_starttag(self, tag, attrs): tagstack.append(tag)
def handle_endtag(self, tag): tagstack.pop()
def handle_data(self, data):

if data.strip():
for tag in tagstack: sys.stdout.write(’/’+tag)
sys.stdout.write(’ >> %s\n’ % data[:40].strip())

ShowStructure().feed(html)

Running this optimistic parser produces:

% ./HTMLParser_stack.py

“TPiP” — 2006/1/30 — 15:07 — page 386 — #406i
i

i
i

i
i

i
i

386 INTERNET TOOLS AND TECHNIQUES

/html/head/title >> Advice
/html/body/p >> The
/html/body/p/a >> IETF admonishes:
/html/body/p/a/i >> Be strict in what you
/html/body/p/a/i/b >> send
/html/body/p/a/i >> .

You could, of course, use this context information however you wished when pro-
cessing a particular bit of content (or when you process the tags themselves).

A more pessimistic approach is to maintain a “fuzzy” tagstack. We can define a
new object that will remove the most recent starttag corresponding to an endtag
and will also prevent <p> and <blockquote> tags from nesting if no corresponding
endtag is found. You could do more along this line for a production application, but
a class like TagStack makes a good start:

class TagStack:
def __init__(self, lst=[]): self.lst = lst
def __getitem__(self, pos): return self.lst[pos]
def append(self, tag):

Remove every paragraph-level tag if this is one
if tag.lower() in (’p’,’blockquote’):

self.lst = [t for t in self.lst
if t not in (’p’,’blockquote’)]

self.lst.append(tag)
def pop(self, tag):

"Pop" by tag from nearest pos, not only last item
self.lst.reverse()
try:

pos = self.lst.index(tag)
except ValueError:

raise HTMLParser.HTMLParseError, "Tag not on stack"
del self.lst[pos]
self.lst.reverse()

tagstack = TagStack()

This more lenient stack structure suffices to parse badly formatted HTML like the
example given in the module discussion.

METHODS AND ATTRIBUTES

HTMLParser.HTMLParser.close()

Close all buffered data, and treat any current data as if an EOF was encountered.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 387 --- #407i
i

i
i

i
i

i
i

5.2 World Wide Web Applications 387

HTMLParser.HTMLParser.feed(data)

Send some additional HTML data to the parser instance from the string in the
argument data. You may feed the instance with whatever size chunks of data you
wish, and each will be processed, maintaining the previous state.

HTMLParser.HTMLParser.getpos()

Return the current line number and offset. Generally called within a .handle *()
method to report or analyze the state of the processing of the HTML text.

HTMLParser.HTMLParser.handle charref(name)

Method called when a character reference is encountered, such as ϋ. Char-
acter references may be interspersed with element text, much as with entity
references. You can construct a Unicode character from a character refer-
ence, and you may want to pass the Unicode (or raw character reference) to
HTMLParser.HTMLParser.handle data() .

class CharacterData(HTMLParser.HTMLParser):
def handle_charref(self, name):

import unicodedata
char = unicodedata.name(unichr(int(name)))
self.handle_data(char)

[...other methods...]

HTMLParser.HTMLParser.handle comment(data)

Method called when a comment is encountered. HTML comments begin with <!---
and end with --->. The argument data contains the contents of the comment.

HTMLParser.HTMLParser.handle data(data)

Method called when content data is encountered. All the text between tags is
contained in the argument data, but if character or entity references are interspersed
with text, the respective handler methods will be called in an interspersed fashion.

HTMLParser.HTMLParser.handle decl(data)

Method called when a declaration is encountered. HTML declarations with <!
and end with >. The argument data contains the contents of the comment.
Syntactically, comments look like a type of declaration, but are handled by the
HTMLParser.HTMLParser.handle comment() method.

HTMLParser.HTMLParser.handle endtag(tag)

Method called when an endtag is encountered. The argument tag contains the tag
name (without brackets).

HTMLParser.HTMLParser.handle entityref(name)

Method called when an entity reference is encountered, such as &. When entity
references occur in the middle of an element text, calls to this method are inter-
spersed with calls to HTMLParser.HTMLParser.handle data() . In many cases, you
will want to call the latter method with decoded entities; for example:

“TPiP” — 2006/1/30 — 15:07 — page 388 — #408i
i

i
i

i
i

i
i

388 INTERNET TOOLS AND TECHNIQUES

class EntityData(HTMLParser.HTMLParser):
def handle_entityref(self, name):

import htmlentitydefs
self.handle_data(htmlentitydefs.entitydefs[name])

[...other methods...]

HTMLParser.HTMLParser.handle pi(data)

Method called when a processing instruction (PI) is encountered. PIs begin with <?
and end with ?>. They are less common in HTML than in XML, but are allowed.
The argument data contains the contents of the PI.

HTMLParser.HTMLParser.handle startendtag(tag, attrs)

Method called when an XHTML-style empty tag is encountered, such as:

The arguments tag and attrs are identical to those passed to
HTMLParser.HTMLParser.handle starttag() .

HTMLParser.HTMLParser.handle starttag(tag, attrs)

Method called when a starttag is encountered. The argument tag contains the tag
name (without brackets), and the argument attrs contains the tag attributes as a
list of pairs, such as [(‘‘href’’,"http://ietf.org")].

HTMLParser.HTMLParser.lasttag

The last tag—start or end—that was encountered. Generally maintaining some sort
of stack structure like those discussed is more useful. But this attribute is available
automatically. You should treat it as read-only.

HTMLParser.HTMLParser.reset()

Restore the instance to its initial state, lose any unprocessed data (for example,
content within unclosed tags).

5.2.3 Accessing Internet Resources

urllib � Open an arbitrary URL

The module urllib provides convenient, high-level access to resources on the Internet.
While urllib lets you connect to a variety of protocols, to manage low-level details of
connections—especially issues of complex authentication—you should use the module
urllib2 instead. However, urllib does provide hooks for HTTP basic authentication.

The interface to urllib objects is file-like. You can substitute an object represent-
ing a URL connection for almost any function or class that expects to work with a
read-only file. All of the World Wide Web, File Transfer Protocol (FTP) directories,

“TPiP” — 2006/1/30 — 15:07 — page 389 — #409i
i

i
i

i
i

i
i

5.2 World Wide Web Applications 389

and gopherspace can be treated, almost transparently, as if it were part of your local
filesystem.

Although the module provides two classes that can be utilized or subclassed for more
fine-tuned control, generally in practice the function urllib.urlopen() is the only
interface you need to the urllib module.

FUNCTIONS

urllib.urlopen(url [,data])

Return a file-like object that connects to the Uniform Resource Locator (URL)
resource named in url. This resource may be an HTTP, FTP, Gopher, or local
file. The optional argument data can be specified to make a POST request to
an HTTP URL. This data is a urlencoded string, which may be created by the
urllib.urlencode() method. If no postdata is specified with an HTTP URL,
the GET method is used.

Depending on the type of resource specified, a slightly different class is
used to construct the instance, but each provides the methods: .read(),
.readline(), .readlines(), .fileno(), .close(), .info(), and .geturl() (but
not .xreadlines(), .seek(), or .tell()).

Most of the provided methods are shared by file objects, and each provides the
same interface—arguments and return values—as actual file objects. The method
.geturl() simply contains the URL that the object connects to, usually the same
string as the url argument.

The method .info() returns mimetools.Message object. While the mimetools
module is not documented in detail in this book, this object is generally similar to
an email.Message.Message object—specifically, it responds to both the built-in
str() function and dictionary-like indexing:

>>> u = urllib.urlopen(’urlopen.py’)
>>> print ‘u.info()‘
<mimetools.Message instance at 0x62f800>
>>> print u.info()
Content-Type: text/x-python
Content-Length: 577
Last-modified: Fri, 10 Aug 2001 06:03:04 GMT

>>> u.info().keys()
[’last-modified’, ’content-length’, ’content-type’]
>>> u.info()[’content-type’]
’text/x-python’

See Also: urllib.urlretrieve() 390; urllib.urlencode() 390;

“TPiP” — 2006/1/30 — 15:07 — page 390 — #410i
i

i
i

i
i

i
i

390 INTERNET TOOLS AND TECHNIQUES

urllib.urlretrieve(url [,fname [,reporthook [,data]]])

Save the resources named in the argument url to a local file. If the optional argu-
ment fname is specified, that filename will be used; otherwise, a unique temporary
filename is generated. The optional argument data may contain a urlencoded string
to pass to an HTTP POST request, as with urllib.urlopen() .

The optional argument reporthook may be used to specify a callback function, typ-
ically to implement a progress meter for downloads. The function reporthook()
will be called repeatedly with the arguments bl transferred, bl size, and
file size. Even remote files smaller than the block size will typically call
reporthook() a few times, but for larger files, file size will approximately equal
bl transferred*bl size.

The return value of urllib.urlretrieve() is a pair (fname,info). The returned
fname is the name of the created file—the same as the fname argument if it was
specified. The info return value is a mimetools.Message object, like that returned
by the .info() method of a urllib.urlopen object.

See Also: urllib.urlopen() 389; urllib.urlencode() 390;

urllib.quote(s [,safe=”/”])

Return a string with special characters escaped. Exclude any characters in the string
safe for being quoted.

>>> urllib.quote(’/~username/special&odd!’)
’/%7Eusername/special%26odd%21’

urllib.quote plus(s [,safe=”/”])

Same as urllib.quote() , but encode spaces as + also.

urllib.unquote(s)

Return an unquoted string. Inverse operation of urllib.quote() .

urllib.unquote plus(s)

Return an unquoted string. Inverse operation of urllib.quote plus() .

urllib.urlencode(query)

Return a urlencoded query for an HTTP POST or GET request. The argument
query may be either a dictionary-like object or a sequence of pairs. If pairs are
used, their order is preserved in the generated query.

>>> query = urllib.urlencode([(’hl’,’en’),
... (’q’,’Text Processing in Python’)])
>>> print query
hl=en&q=Text+Processing+in+Python
>>> u = urllib.urlopen(’http://google.com/search?’+query)

“TPiP” — 2006/1/30 — 15:07 — page 391 — #411i
i

i
i

i
i

i
i

5.2 World Wide Web Applications 391

Notice, however, that at least as of the moment of this writing, Google will refuse
to return results on this request because a Python shell is not a recognized browser
(Google provides a SOAP interface that is more lenient, however). You could, but
should not, create a custom urllib class that spoofed an accepted browser.

CLASSES

You can change the behavior of the basic urllib.urlopen() and
urllib.urlretrieve() functions by substituting your own class into the mod-
ule namespace. Generally this is the best way to use urllib classes:

import urllib
class MyOpener(urllib.FancyURLopener):

pass
urllib._urlopener = MyOpener()
u = urllib.urlopen("http://some.url") # uses custom class

urllib.URLopener([proxies [,**x509]])

Base class for reading URLs. Generally you should subclass from the class
urllib.FancyURLopener unless you need to implement a nonstandard protocol
from scratch.

The argument proxies may be specified with a mapping if you need to connect
to resources through a proxy. The keyword arguments may be used to configure
HTTPS authentication; specifically, you should give named arguments key file
and cert file in this case.

import urllib
proxies = {’http’:’http://192.168.1.1’,’ftp’:’ftp://192.168.256.1’}
urllib._urlopener = urllib.URLopener(proxies, key_file=’mykey’,

cert_file=’mycert’)

urllib.FancyURLopener([proxies [,**x509]])

The optional initialization arguments are the same as for urllib.URLopener , unless
you subclass further to use other arguments. This class knows how to handle 301
and 302 HTTP redirect codes, as well as 401 authentication requests. The class
urllib.FancyURLopener is the one actually used by the urllib module, but you
may subclass it to add custom capabilities.

METHODS AND ATTRIBUTES

urllib.URLFancyopener.get user passwd(host, realm)

Return the pair (user,passwd) to use for authentication. The default implemen-
tation calls the method .prompt user passwd() in turn. In a subclass you might
want to either provide a GUI login interface or obtain authentication information
from some other source, such as a database.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 392 --- #412i
i

i
i

i
i

i
i

392 INTERNET TOOLS AND TECHNIQUES

urllib.URLopener.open(url [,data])
urllib.URLFancyopener.open(url [,data])

Open the URL url, optionally using HTTP POST query data.

See Also: urllib.urlopen() 389;

urllib.URLopener.open unknown(url [,data])
urllib.URLFancyopener.open unknown(url [,data])

If the scheme is not recognized, the .open() method passes the request to this
method. You can implement error reporting or fallback behavior here.

urllib.URLFancyopener.prompt user passwd(host, realm)

Prompt for the authentication pair (user,passwd) at the terminal. You may over-
ride this to prompt within a GUI. If the authentication is not obtained interactively,
but by other means, directly overriding .get user passwd() is more logical.

urllib.URLopener.retrieve(url [,fname [,reporthook [,data]]])
urllib.URLFancyopener.retrieve(url [,fname [,reporthook [,data]]])

Copies the URL url to the local file named fname. Callback to the progress function
reporthook if specified. Use the optional HTTP POST query data in data.

See Also: urllib.urlretrieve() 390;

urllib.URLopener.version
urllib.URFancyLopener.version

The User Agent string reported to a server is contained in this attribute. By default
it is urllib/###, where the urllib version number is used rather than ###.

urlparse � Parse Uniform Resource Locators

The module urlparse supports just one fairly simple task, but one that is just complicated
enough for quick implementations to get wrong. URLs describe a number of aspects of
resources on the Internet: access protocol, network location, path, parameters, query,
and fragment. Using urlparse, you can break out and combine these components to
manipulate or generate URLs. The format of URLs is based on RFC-1738, RFC-1808,
and RFC-2396.

Notice that the urlparse module does not parse the components of the net-
work location, but merely returns them as a field. For example, the URL
ftp://guest:gnosis@192.168.1.102:21//tmp/MAIL.MSG is a valid identifier on my
local network (at least at the moment this is written). Tools like Mozilla and wget are
happy to retrieve this file. Parsing this fairly complicated URL with urlparse gives us:

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 393 --- #413i
i

i
i

i
i

i
i

5.2 World Wide Web Applications 393

>>> import urlparse
>>> url = ’ftp://guest:gnosis@192.168.1.102:21//tmp/MAIL.MSG’
>>> urlparse.urlparse(url)
(’ftp’, ’guest:gnosis@192.168.1.102:21’, ’//tmp/MAIL.MSG’,
’’, ’’, ’’)

While this information is not incorrect, this network location itself contains multiple
fields; all but the host are optional. The actual structure of a network location, using
square bracket nesting to indicate optional components, is:

[user[:password]@]host[:port]

The following mini-module will let you further parse these fields:

location parse.py

#!/usr/bin/env python
def location_parse(netloc):

"Return tuple (user, passwd, host, port) for netloc"
if ’@’ not in netloc:

netloc = ’:@’ + netloc
login, net = netloc.split(’@’)
if ’:’ not in login:

login += ’:’
user, passwd = login.split(’:’)
if ’:’ not in net:

net += ’:’
host, port = net.split(’:’)
return (user, passwd, host, port)

#-- specify network location on command-line
if __name__==’__main__’:

import sys
print location_parse(sys.argv[1])

FUNCTIONS

urlparse.urlparse(url [,def scheme=”” [,fragments=1]])

Return a tuple consisting of six components of the URL url, (scheme, netloc,
path, params, query, fragment). A URL is assumed to follow the pattern
scheme://netloc/path;params?query#fragment. If a default scheme def scheme
is specified, that string will be returned in case no scheme is encoded in the URL
itself. If fragments is set to a false value, any fragments will not be split from other
fields.

>>> from urlparse import urlparse

“TPiP” — 2006/1/30 — 15:07 — page 394 — #414i
i

i
i

i
i

i
i

394 INTERNET TOOLS AND TECHNIQUES

>>> urlparse(’gnosis.cx/path/sub/file.html#sect’, ’http’, 1)
(’http’, ’’, ’gnosis.cx/path/sub/file.html’, ’’, ’’, ’sect’)
>>> urlparse(’gnosis.cx/path/sub/file.html#sect’, ’http’, 0)
(’http’, ’’, ’gnosis.cx/path/sub/file.html#sect’, ’’, ’’, ’’)
>>> urlparse(’http://gnosis.cx/path/file.cgi?key=val#sect’,
... ’gopher’, 1)
(’http’, ’gnosis.cx’, ’/path/file.cgi’, ’’, ’key=val’, ’sect’)
>>> urlparse(’http://gnosis.cx/path/file.cgi?key=val#sect’,
... ’gopher’, 0)
(’http’, ’gnosis.cx’, ’/path/file.cgi’, ’’, ’key=val#sect’, ’’)

urlparse.urlunparse(tup)

Construct a URL from a tuple containing the fields returned by
urlparse.urlparse() . The returned URL has canonical form (redundancy
eliminated) so urlparse.urlparse() and urlparse.urlunparse() are not
precisely inverse operations; however, the composed urlunparse(urlparse(s))
should be idempotent.

urlparse.urljoin(base, file)

Return a URL that has the same base path as base but has the file component
file. For example:

>>> from urlparse import urljoin
>>> urljoin(’http://somewhere.lan/path/file.html’,
... ’sub/other.html’)
’http://somewhere.lan/path/sub/other.html’

In Python 2.2+ the functions urlparse.urlsplit() and urlparse.urlunsplit() are
available. These differ from urlparse.urlparse() and urlparse.urlunparse() in
returning a 5-tuple that does not split out params from path.

5.3 Synopses of Other Internet Modules

There are a variety of Internet-related modules in the standard library that will not be
covered here in their specific usage. In the first place, there are two general aspects to
writing Internet applications. The first aspect is the parsing, processing, and generation
of messages that conform to various protocol requirements. These tasks are solidly
inside the realm of text processing and should be covered in this book. The second
aspect, however, are the issues of actually sending a message “over the wire”: choosing
ports and network protocols, handshaking, validation, and so on. While these tasks are
important, they are outside the scope of this book. The synopses below will point you
towards appropriate modules, though; the standard documentation, Python interactive
help, or other texts can help with the details.

A second issue comes up also, moreover. As Internet standards—usually canonical-
ized in RFCs—have evolved, and as Python libraries have become more versatile and

“TPiP” — 2006/1/30 — 15:07 — page 395 — #415i
i

i
i

i
i

i
i

5.3 Synopses of Other Internet Modules 395

robust, some newer modules have superceded older ones. In a similar way, for example,
the re module replaced the older regex module. In the interests of backwards compat-
ibility, Python has not dropped any Internet modules from its standard distributions.
Nonetheless, the email module represents the current “best practice” for most tasks
related to email and newsgroup message handling. The modules mimify , mimetools,
MimeWriter , multifile, and rfc822 are likely to be utilized in existing code, but for new
applications, it is better to use the capabilities in email in their stead.

As well as standard library modules, a few third-party tools deserve special mention
(at the bottom of this section). A large number of Python developers have created tools
for various Internet-related tasks, but a small number of projects have reached a high
degree of sophistication and a widespread usage.

5.3.1 Standard Internet-Related Tools

asyncore

Asynchronous socket service clients and servers.

Cookie

Manage Web browser cookies. Cookies are a common mechanism for managing state
in Web-based applications. RFC-2109 and RFC-2068 describe the encoding used
for cookies, but in practice MSIE is not very standards compliant, so the parsing is
relaxed in the Cookie module.

See Also: cgi 376; httplib 396;

email.Charset

Work with character set encodings at a fine-tuned level. Other modules within the
email package utilize this module to provide higher-level interfaces. If you need to
dig deeply into character set conversions, you might want to use this module directly.

See Also: email 345; email.Header 351; unicode 423; codecs 189;

ftplib

Support for implementing custom File Transfer Protocol (FTP) clients. This proto-
col is detailed in RFC-959. For a full FTP application, ftplib provides a very good
starting point; for the simple capability to retrieve publicly accessible files over FTP,
urllib.urlopen() is more direct.

See Also: urllib 388; urllib2 398;

gopherlib

Gopher protocol client interface. As much as I am still personally fond of the gopher
protocol, it is used so rarely that it is not worth documenting here.

“TPiP” — 2006/1/30 — 15:07 — page 396 — #416i
i

i
i

i
i

i
i

396 INTERNET TOOLS AND TECHNIQUES

httplib

Support for implementing custom Web clients. Higher-level access to the HTTP
and HTTPS protocols than using raw sockets on ports 80 or 443, but lower-level,
and more communications oriented, than using the higher-level urllib to access Web
resources in a file-like way.

See Also: urllib 388; socket 397;

ic, icopen

Internet access configuration (Macintosh).

icopen

Internet Config replacement for open() (Macintosh).

imghdr

Recognize image file formats based on their first few bytes.

mailcap

Examine the mailcap file on Unix-like systems. The files /etc/mailcap,
/usr/etc/mailcap, /usr/local/etc/mailcap, and $HOME/.mailcap are typically
used to configure MIME capabilities in client applications like mail readers and Web
browsers (but less so now than a few years ago). See RFC-1524.

mhlib

Interface to MH mailboxes. The MH format consists of a directory structure that
mirrors the folder organization of messages. Each message is contained in its own file.
While the MH format is in many ways better, the Unix mailbox format seems to be
more widely used. Basic access to a single folder in an MH hierarchy can be achieved
with the mailbox.MHMailbox class, which satisfies most working requirements.

See Also: mailbox 372; email 345;

mimetools

Various tools used by MIME-reading or MIME-writing programs.

MimeWriter

Generic MIME writer.

mimify

Mimification and unmimification of mail messages.

netrc

Examine the netrc file on Unix-like systems. The file $HOME/.netrc is typically
used to configure FTP clients.

See Also: ftplib 395; urllib 388;

“TPiP” — 2006/1/30 — 15:07 — page 397 — #417i
i

i
i

i
i

i
i

5.3 Synopses of Other Internet Modules 397

nntplib

Support for Network News Transfer Protocol (NNTP) client applications. This
protocol is defined in RFC-977. Although Usenet has a different distribution system
from email, the message format of NNTP messages still follows the format defined
in RFC-822. In particular, the email package, or the rfc822 module, are useful for
creating and modifying news messages.

See Also: email 345; rfc822 397;

nsremote

Wrapper around Netscape OSA modules (Macintosh).

rfc822

RFC-822 message manipulation class. The email package is intended to supercede
rfc822 , and it is better to use email for new application development.

See Also: email 345; poplib 368; mailbox 372; smtplib 370;

select

Wait on I/O completion, such as sockets.

sndhdr

Recognize sound file formats based on their first few bytes.

socket

Low-level interface to BSD sockets. Used to communicate with IP addresses at the
level underneath protocols like HTTP, FTP, POP3, Telnet, and so on.

See Also: ftplib 395; gopherlib 395; httplib 396; imaplib 366; nntplib 397; poplib
368; smtplib 370; telnetlib 397;

SocketServer

Asynchronous I/O on sockets. Under Unix, pipes can also be monitored with select.
socket supports SSL in recent Python versions.

telnetlib

Support for implementing custom telnet clients. This protocol is detailed in RFC-
854. While possibly useful for intranet applications, Telnet is an entirely unsecured
protocol and should not really be used on the Internet. Secure Shell (SSH) is an
encrypted protocol that otherwise is generally similar in capability to Telnet. There
is no support for SSH in the Python standard library, but third-party options exist,
such as pyssh. At worst, you can script an SSH client using a tool like the third-party
pyexpect.

“TPiP” — 2006/1/30 — 15:07 — page 398 — #418i
i

i
i

i
i

i
i

398 INTERNET TOOLS AND TECHNIQUES

urllib2

An enhanced version of the urllib module that adds specialized classes for a variety of
protocols. The main focus of urllib2 is the handling of authentication and encryption
methods.

See Also: urllib 388;

Webbrowser

Remote-control interfaces to some browsers.

5.3.2 Third-Party Internet-Related Tools

There are many very fine Internet-related tools that this book cannot discuss, but to
which no slight is intended. A good index to such tools is the relevant page at the Vaults
of Parnassus:

<http://py.vaults.ca/apyllo.py/812237977>

Quixote

In brief, Quixote is a templating system for HTML delivery. More so than sys-
tems like PHP, ASP, and JSP to an extent, Quixote puts an emphasis on Web
application structure more than page appearance. The home page for Quixote is
<http://www.mems-exchange.org/software/quixote/>

Twisted

To describe Twisted , it is probably best simply to quote from Twisted Matrix Lab-
oratories’ Web site <http://www.twistedmatrix.com/>:

Twisted is a framework, written in Python, for writing networked ap-
plications. It includes implementations of a number of commonly used
network services such as a Web server, an IRC chat server, a mail server,
a relational database interface and an object broker. Developers can build
applications using all of these services as well as custom services that they
write themselves. Twisted also includes a user authentication system that
controls access to services and provides services with user context infor-
mation to implement their own security models.

While Twisted overlaps significantly in purpose with Zope, Twisted is generally
lower-level and more modular (which has both pros and cons). Some protocols
supported by Twisted—usually both server and client—and implemented in pure
Python are SSH; FTP; HTTP; NNTP; SOCKSv4; SMTP; IRC; Telnet; POP3;
AOL’s instant messaging TOC; OSCAR, used by AOL-IM as well as ICQ; DNS;
MouseMan; finger; Echo, discard, chargen, and friends; Twisted Perspective Broker,
a remote object protocol; and XML-RPC.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 399 --- #419i
i

i
i

i
i

i
i

5.4 Understanding XML 399

Zope

Zope is a sophisticated, powerful, and just plain complicated Web application server.
It incorporates everything from dynamic page generation, to database interfaces, to
Web-based administration, to back-end scripting in several styles and languages.
While the learning curve is steep, experienced Zope developers can develop and
manage Web applications more easily, reliably, and faster than users of pretty much
any other technology.

The home page for Zope is <http://zope.org/>.

5.4 Understanding XML

Extensible Markup Language (XML) is a text format increasingly used for a wide variety
of storage and transport requirements. Parsing and processing XML is an important
element of many text processing applications. This section discusses the most common
techniques for dealing with XML in Python. While XML held an initial promise of
simplifying the exchange of complex and hierarchically organized data, it has itself
grown into a standard of considerable complexity. This book will not cover most of the
API details of XML tools; an excellent book dedicated to that subject is:

Python & XML, Christopher A. Jones & Fred L. Drake, Jr., O’Reilly 2002.
ISBN: 0-596-00128-2.

The XML format is sufficiently rich to represent any structured data, some forms more
straightforwardly than others. A task that XML is quite natural at is in representing
marked-up text—documentation, books, articles, and the like—as is its parent SGML.
But XML is probably used more often to represent data than texts—record sets, OOP
data containers, and so on. In many of these cases, the fit is more awkward and requires
extra verbosity. XML itself is more like a metalanguage than a language—there are a
set of syntax constraints that any XML document must obey, but typically particular
APIs and document formats are defined as XML dialects. That is, a dialect consists of
a particular set of tags that are used within a type of document, along with rules for
when and where to use those tags. What I refer to as an XML dialect is also sometimes
more formally called “an application of XML.”

THE DATA MODEL

At base, XML has two ways to represent data. Attributes in XML tags map names
to values. Both names and values are Unicode strings (as are XML documents as a
whole), but values frequently encode other basic datatypes, especially when specified in
W3C XML Schemas. Attribute names are mildly restricted by the special characters
used for XML markup; attribute values can encode any strings once a few characters
are properly escaped. XML attribute values are whitespace normalized when parsed,
but whitespace can itself also be escaped. A bare example is:

“TPiP” — 2006/1/30 — 15:07 — page 400 — #420i
i

i
i

i
i

i
i

400 INTERNET TOOLS AND TECHNIQUES

>>> from xml.dom import minidom
>>> x = ’’’<x a="b" d="e f g" num="38" />’’’
>>> d = minidom.parseString(x)
>>> d.firstChild.attributes.items()
[(u’a’, u’b’), (u’num’, u’38’), (u’d’, u’e f g’)]

As with a Python dictionary, no order is defined for the list of key/value attributes
of one tag.

The second way XML represents data is by nesting tags inside other tags. In this
context, a tag together with a corresponding “close tag” is called an element, and it
may contain an ordered sequence of subelements. The subelements themselves may also
contain nested subelements. A general term for any part of an XML document, whether
an element, an attribute, or one of the special parts discussed below, is a “node.” A
simple example of an element that contains some subelements is:

>>> x = ’’’<?xml version="1.0" encoding="UTF-8"?>
... <root>
... <a>Some data
... <b data="more data" />
... <c data="a list">
... <d>item 1</d>
... <d>item 2</d>
... </c>
... </root>’’’
>>> d = minidom.parseString(x)
>>> d.normalize()
>>> for node in d.documentElement.childNodes:
... print node
...
<DOM Text node "

">
<DOM Element: a at 7033280>
<DOM Text node "

">
<DOM Element: b at 7051088>
<DOM Text node "

">
<DOM Element: c at 7053696>
<DOM Text node "
">
>>> d.documentElement.childNodes[3].attributes.items()
[(u’data’, u’more data’)]

There are several things to notice about the Python session above.

1. The “document element,” named root in the example, contains three ordered
subelement nodes, named a, b, and c.

“TPiP” — 2006/1/30 — 15:07 — page 401 — #421i
i

i
i

i
i

i
i

5.4 Understanding XML 401

2. Whitespace is preserved within elements. Therefore the spaces and newlines that
come between the subelements make up several text nodes. Text and subele-
ments can intermix, each potentially meaningful. Spacing in XML documents is
significant, but it is nonetheless also often used for visual clarity (as above).

3. The example contains an XML declaration, <?xml...?>, which is optional but
generally included.

4. Any given element may contain attributes and subelements and text data.

OTHER XML FEATURES

Besides regular elements and text nodes, XML documents can contain several kinds of
“special” nodes. Comments are common and useful, especially in documents intended
to be hand edited at some point (or even potentially). Processing instructions may
indicate how a document is to be handled. Document type declarations may indicate
expected validity rules for where elements and attributes may occur. A special type of
node called CDATA lets you embed mini-XML documents or other special codes inside
of other XML documents, while leaving markup untouched. Examples of each of these
forms look like:

<?xml version="1.0" ?>
<!DOCTYPE root SYSTEM "sometype.dtd">
<root>
<!-- This is a comment -->
This is text data inside the <root> element
<![CDATA[Embedded (not well-formed) XML:

<this><that> >>string<< </that>]]>
</root>

XML documents may be either “well-formed” or “valid.” The first characteriza-
tion simply indicates that a document obeys the proper syntactic rules for XML doc-
uments in general: All tags are either self-closed or followed by a matching endtag;
reserved characters are escaped; tags are properly hierarchically nested; and so on. Of
course, particular documents can also fail to be well-formed—but in that case they are
not XML documents sensu stricto, but merely fragments or near-XML. A formal de-
scription of well-formed XML can be found at <http://www.w3.org/TR/REC-xml> and
<http://www.w3.org/TR/xml11/>.

Beyond well-formedness, some XML documents are also valid. Validity means
that a document matches a further grammatical specification given in a Docu-
ment Type Definition (DTD), or in an XML Schema. The most popular style of
XML Schema is the W3C XML Schema specification, found in formal detail at
<http://www.w3.org/TR/xmlschema-0/> and in linked documents. There are com-
peting schema specifications, however—one popular alternative is RELAX NG, which
is documented at <http://www.oasis-open.org/committees/relax-ng/>.

The grammatical specifications indicated by DTDs are strictly structural. For ex-
ample, you can specify that certain subelements must occur within an element, with

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 402 --- #422i
i

i
i

i
i

i
i

402 INTERNET TOOLS AND TECHNIQUES

a certain cardinality and order. Or, certain attributes may or must occur with a cer-
tain tag. As a simple case, the following DTD is one that the prior example of nested
subelements would conform to. There are an infinite number of DTDs that the sample
could match, but each one describes a slightly different range of valid XML documents:

<!ELEMENT root ((a|OTHER-A)?, b, c*)>
<!ELEMENT a (#PCDATA)>
<!ELEMENT b EMPTY>
<!ATTLIST b data CDATA #REQUIRED

NOT-THERE (this|that) #IMPLIED>
<!ELEMENT c (d+)>
<!ATTLIST c data CDATA #IMPLIED>
<!ELEMENT d (#PCDATA)>

The W3C recommendation on the XML standard also formally specifies DTD rules.
A few features of the above DTD example can be noted here. The element OTHER-A
and the attribute NOT-THERE are permitted by this DTD, but were not utilized in the
previous sample XML document. The quantifications ?, *, and +; the alternation |;
and the comma sequence operator have similar meaning as in regular expressions and
BNF grammars. Attributes may be required or optional as well and may contain any
of several specific value types; for example, the data attribute must contain any string,
while the NOT-THERE attribute may contain this or that only.

Schemas go farther than DTDs, in a way. Beyond merely specifying that elements
or attributes must contain strings describing particular datatypes, such as numbers or
dates, schemas allow more flexible quantification of subelement occurrences. For exam-
ple, the following W3C XML Schema might describe an XML document for purchases:

<xsd:element name="item">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="USPrice" type="xsd:decimal"/>
<xsd:element name="shipDate" type="xsd:date"

minOccurs="0" maxOccurs=3 />
</xsd:sequence>
<xsd:attribute name="partNum" type="SKU"/>

</xsd:complexType>
</xsd:element>
<!-- Stock Keeping Unit, a code for identifying products -->
<xsd:simpleType name="SKU">

<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>

</xsd:restriction>
</xsd:simpleType>

An XML document that is valid under this schema is:

<item partNum="123-XQ">

“TPiP” — 2006/1/30 — 15:07 — page 403 — #423i
i

i
i

i
i

i
i

5.4 Understanding XML 403

<USPrice>21.95</USPrice>
<shipDate>2002-11-26</shipDate>

</item>

Formal specifications of schema languages can be found at the above-mentioned URLs;
this example is meant simply to illustrate the types of capabilities they have.

In order to check the validity of an XML document to a DTD or schema, you need
to use a validating parser. Some stand-alone tools perform validation, generally with
diagnostic messages in cases of invalidity. As well, certain libraries and modules support
validation within larger applications. As a rule, however, most Python XML parsers
are nonvalidating and check only for well-formedness.

Quite a number of technologies have been built on top of XML, many endorsed and
specified by W3C, OASIS, or other standards groups. One in particular that you should
be aware of is XSLT. There are a number of thick books available that discuss XSLT,
so the matter is too complex to document here. But in shortest characterization, XSLT
is a declarative programming language whose syntax is itself an XML application. An
XML document is processed using a set of rules in an XSLT stylesheet, to produce a
new output, often a different XML document. The elements in an XSLT stylesheet each
describe a pattern that might occur in a source document and contain an output block
that will be produced if that pattern is encountered. That is the simple characterization,
anyway; in the details, “patterns” can have loops, recursions, calculations, and so on. I
find XSLT to be more complicated than genuinely powerful and would rarely choose the
technology for my own purposes, but you are fairly likely to encounter existing XSLT
processes if you work with existing XML applications.

5.4.1 Python Standard Library XML Modules

There are two principle APIs for accessing and manipulating XML documents that are
in widespread use: DOM and SAX. Both are supported in the Python standard library,
and these two APIs make up the bulk of Python’s XML support. Both of these APIs
are programming language neutral, and using them in other languages is substantially
similar to using them in Python.

The Document Object Model (DOM) represents an XML document as a tree of nodes.
Nodes may be of several types—a document type declaration, processing instructions,
comments, elements, and attribute maps—but whatever the type, they are arranged in
a strictly nested hierarchy. Typically, nodes have children attached to them; of course,
some nodes are leaf nodes without children. The DOM allows you to perform a variety
of actions on nodes: delete nodes, add nodes, find sibling nodes, find nodes by tag
name, and other actions. The DOM itself does not specify anything about how an
XML document is transformed (parsed) into a DOM representation, nor about how a
DOM can be serialized to an XML document. In practice, however, all DOM libraries—
including xml.dom—incorporate these capabilities. Formal specification of DOM can be
found at:

<http://www.w3.org/DOM/>

“TPiP” — 2006/1/30 — 15:07 — page 404 — #424i
i

i
i

i
i

i
i

404 INTERNET TOOLS AND TECHNIQUES

and:

<http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/>

The Simple API for XML (SAX) is an event-based API for XML documents. Unlike
DOM, which envisions XML as a rooted tree of nodes, SAX sees XML as a sequence
of events occurring linearly in a file, text, or other stream. SAX is a very minimal
interface, both in the sense of telling you very little inherently about the structure of an
XML documents, and also in the sense of being extremely memory friendly. SAX itself
is forgetful in the sense that once a tag or content is processed, it is no longer in memory
(unless you manually save it in a data structure). However, SAX does maintain a basic
stack of tags to assure well-formedness of parsed documents. The module xml.sax raises
exceptions in case of problems in well-formedness; you may define your own custom
error handlers for these. Formal specification of SAX can be found at:

<http://www.saxproject.org/>

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦

xml.dom

The module xml.dom is a Python implementation of most of the W3C Document
Object Model, Level 2. As much as possible, its API follows the DOM standard,
but a few Python conveniences are added as well. A brief example of usage is below:

>>> from xml.dom import minidom
>>> dom = minidom.parse(’address.xml’)
>>> addrs = dom.getElementsByTagName(’address’)
>>> print addrs[1].toxml()
<address city="New York" number="344" state="NY" street="118 St."/>
>>> jobs = dom.getElementsByTagName(’job-info’)
>>> for key, val in jobs[3].attributes.items():
... print key,’=’,val
...
employee-type = Part-Time
is-manager = no
job-description = Hacker

See Also: gnosis.xml.objectify 409;

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 405 --- #425i
i

i
i

i
i

i
i

5.4 Understanding XML 405

xml.dom.minidom

The module xml.dom.minidom is a lightweight DOM implementation built on top
of SAX. You may pass in a custom SAX parser object when you parse an XML
document; by default, xml.dom.minidom uses the fast, nonvalidating xml.parser.expat
parser.

xml.dom.pulldom

The module xml.dom.pulldom is a DOM implementation that conserves memory
by only building the portions of a DOM tree that are requested by calls to ac-
cessor methods. In some cases, this approach can be considerably faster than
building an entire tree with xml.dom.minidom or another DOM parser; however,
the xml.dom.pulldom remains somewhat underdocumented and experimental at the
time of this writing.

xml.parsers.expat

Interface to the expat nonvalidating XML parser. Both the xml.sax and the
xml.dom.minidom modules utilize the services of the fast expat parser, whose func-
tionality lives mostly in a C library. You can use xml.parser.expat directly if you
wish, but since the interface uses the same general event-driven style of the stan-
dard xml.sax , there is usually no reason to.

xml.sax

The package xml.sax implements the Simple API for XML. By default, xml.sax
relies on the underlying xml.parser.expat parser, but any parser supporting a set of
interface methods may be used instead. In particular, the validating parser xmlproc
is included in the PyXML package.

When you create a SAX application, your main task is to create one or more call-
back handlers that will process events generated during SAX parsing. The most
important handler is a ContentHandler, but you may also define a DTDHandler,
EntityResolver, or ErrorHandler. Generally you will specialize the base handlers
in xml.sax.handler for your own applications. After defining and registering desired
handlers, you simply call the .parse() method of the parser that you registered
handlers with. Or alternately, for incremental processing, you can use the feed()
method.

A simple example illustrates usage. The application below reads in an XML file
and writes an equivalent, but not necessarily identical, document to STDOUT. The
output can be used as a canonical form of the document:

“TPiP” — 2006/1/30 — 15:07 — page 406 — #426i
i

i
i

i
i

i
i

406 INTERNET TOOLS AND TECHNIQUES

xmlcat.py

#!/usr/bin/env python
import sys
from xml.sax import handler, make_parser
from xml.sax.saxutils import escape

class ContentGenerator(handler.ContentHandler):
def __init__(self, out=sys.stdout):

handler.ContentHandler.__init__(self)
self._out = out

def startDocument(self):
xml_decl = ’<?xml version="1.0" encoding="iso-8859-1"?>\n’
self._out.write(xml_decl)

def endDocument(self):
sys.stderr.write("Bye bye!\n")

def startElement(self, name, attrs):
self._out.write(’<’ + name)
name_val = attrs.items()
name_val.sort() # canonicalize attributes
for (name, value) in name_val:

self._out.write(’ %s="%s"’ % (name, escape(value)))
self._out.write(’>’)

def endElement(self, name):
self._out.write(’</%s>’ % name)

def characters(self, content):
self._out.write(escape(content))

def ignorableWhitespace(self, content):
self._out.write(content)

def processingInstruction(self, target, data):
self._out.write(’<?%s %s?>’ % (target, data))

if __name__==’__main__’:
parser = make_parser()
parser.setContentHandler(ContentGenerator())
parser.parse(sys.argv[1])

xml.sax.handler

The module xml.sax.handler defines classes ContentHandler, DTDHandler,
EntityResolver, and ErrorHandler that are normally used as parent classes of
custom SAX handlers.

xml.sax.saxutils

The module xml.sax.saxutils contains utility functions for working with SAX events.
Several functions allow escaping and munging special characters.

“TPiP” — 2006/1/30 — 15:07 — page 407 — #427i
i

i
i

i
i

i
i

5.4 Understanding XML 407

xml.sax.xmlreader

The module xml.sax.xmlreader provides a framework for creating new SAX parsers
that will be usable by the xml.sax module. Any new parser that follows a set of API
conventions can be plugged in to the xml.sax.make parser() class factory.

xmllib

Deprecated module for XML parsing. Use xml.sax or other XML tools in Python
2.0+.

xmlrpclib
SimpleXMLRPCServer

XML-RPC is an XML-based protocol for remote procedure calls, usually layered over
HTTP. For the most part, the XML aspect is hidden from view. You simply use the
module xmlrpclib to call remote methods and the module SimpleXMLRPCServer to
implement your own server that supports such method calls. For example:

>>> import xmlrpclib
>>> betty = xmlrpclib.Server("http://betty.userland.com")
>>> print betty.examples.getStateName(41)
South Dakota

The XML-RPC format itself is a bit verbose, even as XML goes. But it is simple
and allows you to pass argument values to a remote method:

>>> import xmlrpclib
>>> print xmlrpclib.dumps((xmlrpclib.True,37,(11.2,’spam’)))
<params>
<param>
<value><boolean>1</boolean></value>
</param>
<param>
<value><int>37</int></value>
</param>
<param>
<value><array><data>
<value><double>11.199999999999999</double></value>
<value><string>spam</string></value>
</data></array></value>
</param>
</params>

See Also: gnosis.xml.pickle 410;

“TPiP” — 2006/1/30 — 15:07 — page 408 — #428i
i

i
i

i
i

i
i

408 INTERNET TOOLS AND TECHNIQUES

5.4.2 Third-Party XML-Related Tools

A number of projects extend the XML capabilities in the Python standard library. I
am the principle author of several XML-related modules that are distributed with the
gnosis package. Information on the current release can be found at:

<http://gnosis.cx/download/Gnosis Utils.ANNOUNCE>

The package itself can be downloaded as a distutils package tarball from:

<http://gnosis.cx/download/Gnosis Utils-current.tar.gz>

The Python XML-SIG (special interest group) produces a package of XML tools known
as PyXML. The work of this group is incorporated into the Python standard library
with new Python releases—not every PyXML tool, however, makes it into the stan-
dard library. At any given moment, the most sophisticated—and often experimental—
capabilities can be found by downloading the latest PyXML package. Be aware that
installing the latest PyXML overrides the default Python XML support and may break
other tools or applications.

<http://pyxml.sourceforge.net/>

Fourthought, Inc. produces the 4Suite package, which contains a number of XML tools.
Fourthought releases 4Suite as free software, and many of its capabilities are incorpo-
rated into the PyXML project (albeit at a varying time delay); however, Fourthought
is a for-profit company that also offers customization and technical support for 4Suite.
The community page for 4Suite is:

<http://4suite.org/index.xhtml>

The Fourthought company Web site is:

<http://fourthought.com/>

Two other modules are discussed briefly below. Neither of these are XML tools per
se. However, both PYX and yaml fill many of the same requirements as XML does,
while being easier to manipulate with text processing techniques, easier to read, and
easier to edit by hand. There is a contrast between these two formats, however. PYX
is semantically identical to XML, merely using a different syntax. YAML, on the other
hand, has a quite different semantics from XML—I present it here because in many of
the concrete applications where developers might instinctively turn to XML (which has
a lot of “buzz”), YAML is a better choice.

The home page for PYX is:

<http://pyxie.sourceforge.net/>

I have written an article explaining PYX in more detail than in this book at:

<http://gnosis.cx/publish/programming/xml matters 17.html>

“TPiP” — 2006/1/30 — 15:07 — page 409 — #429i
i

i
i

i
i

i
i

5.4 Understanding XML 409

The home page for YAML is:

<http://yaml.org>

I have written an article contrasting the utility and semantics of YAML and XML at:

<http://gnosis.cx/publish/programming/xml matters 23.html>

◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦ · · ◦

gnosis.xml.indexer

The module gnosis.xml.indexer builds on the full-text indexing program presented
as an example in Chapter 2 (and contained in the gnosis package as gnosis.indexer).
Instead of file contents, gnosis.xml.indexer creates indices of (large) XML documents.
This allows for a kind of “reverse XPath” search. That is, where a tool like 4xpath,
in the 4Suite package, lets you see the contents of an XML node specified by XPath,
gnosis.xml.indexer identifies the XPaths to the point where a word or words occur.
This module may be used either in a larger application or as a command-line tool;
for example:

% indexer symmetric
./crypto1.xml::/section[2]/panel[8]/title
./crypto1.xml::/section[2]/panel[8]/body/text_column/code_listing
./crypto1.xml::/section[2]/panel[7]/title
./crypto2.xml::/section[4]/panel[6]/body/text_column/p[1]
4 matched wordlist: [’symmetric’]
Processed in 0.100 seconds (SlicedZPickleIndexer)

% indexer "-filter=*::/*/title" symmetric
./crypto1.xml::/section[2]/panel[8]/title
./crypto1.xml::/section[2]/panel[7]/title
2 matched wordlist: [’symmetric’]
Processed in 0.080 seconds (SlicedZPickleIndexer)

Indexed searches, as the example shows, are very fast. I have written an article with
more details on this module:

<http://gnosis.cx/publish/programming/xml matters 10.html>

gnosis.xml.objectify

The module gnosis.xml.objectify transforms arbitrary XML documents into Python
objects that have a “native” feel to them. Where XML is used to encode a data
structure, I believe that using gnosis.xml.objectify is the quickest and simplest way
to utilize that data in a Python application.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 410 --- #430i
i

i
i

i
i

i
i

410 INTERNET TOOLS AND TECHNIQUES

The Document Object Model defines an OOP model for working with XML, across
programming languages. But while DOM is nominally object-oriented, its access
methods are distinctly un-Pythonic. For example, here is a typical “drill down” to
a DOM value (skipping whitespace text nodes for some indices, which is far from
obvious):

>>> from xml.dom import minidom
>>> dom_obj = minidom.parse(’address.xml’)
>>> dom_obj.normalize()
>>> print dom_obj.documentElement.childNodes[1].childNodes[3]\
... .attributes.get(’city’).value
Los Angeles

In contrast, gnosis.xml.objectify feels like you are using Python:

>>> from gnosis.xml.objectify import XML_Objectify
>>> xml_obj = XML_Objectify(’address.xml’)
>>> py_obj = xml_obj.make_instance()
>>> py_obj.person[2].address.city
u’Los Angeles’

gnosis.xml.pickle

The module gnosis.xml.pickle lets you serialize arbitrary Python objects to an XML
format. In most respects, the purpose is the same as for the pickle module, but
an XML target is useful for certain purposes. You may process the data in an
xml pickle using standard XML parsers, XSLT processors, XML editors, validation
utilities, and other tools.

In several respects, gnosis.xml.pickle offers finer-grained control than the standard
pickle module does. You can control security permissions accurately; you can cus-
tomize the representation of object types within an XML file; you can substitute
compatible classes during the pickle/unpickle cycle; and several other “guru-level”
manipulations are possible. However, in basic usage, gnosis.xml.pickle is fully API
compatible with pickle. An example illustrates both the usage and the format:

>>> class Container: pass
...
>>> inst = Container()
>>> dct = {1.7:2.5, (’t’,’u’,’p’):’tuple’}
>>> inst.this, inst.num, inst.dct = ’that’, 38, dct
>>> import gnosis.xml.pickle
>>> print gnosis.xml.pickle.dumps(inst)
<?xml version="1.0"?>
<!DOCTYPE PyObject SYSTEM "PyObjects.dtd">

“TPiP” — 2006/1/30 — 15:07 — page 411 — #431i
i

i
i

i
i

i
i

5.4 Understanding XML 411

<PyObject module="__main__" class="Container" id="5999664">
<attr name="this" type="string" value="that" />
<attr name="dct" type="dict" id="6008464" >

<entry>
<key type="tuple" id="5973680" >

<item type="string" value="t" />
<item type="string" value="u" />
<item type="string" value="p" />

</key>
<val type="string" value="tuple" />

</entry>
<entry>

<key type="numeric" value="1.7" />
<val type="numeric" value="2.5" />

</entry>
</attr>
<attr name="num" type="numeric" value="38" />
</PyObject>

See Also: pickle 93; cPickle 93; yaml 415; pprint 94;

gnosis.xml.validity

The module gnosis.xml.validity allows you to define Python container classes that
restrict their containment according to XML validity constraints. Such validity-
enforcing classes always produce string representations that are valid XML doc-
uments, not merely well-formed ones. When you attempt to add an item to a
gnosis.xml.validity container object that is not permissible, a descriptive exception
is raised. Constraints, as with DTDs, may specify quantification, subelement types,
and sequence.

For example, suppose you wish to create documents that conform with a “disserta-
tion” Document Type Definition:

dissertation.dtd

<!ELEMENT dissertation (dedication?, chapter+, appendix*)>
<!ELEMENT dedication (#PCDATA)>
<!ELEMENT chapter (title, paragraph+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT paragraph (#PCDATA | figure | table)+>
<!ELEMENT figure EMPTY>
<!ELEMENT table EMPTY>
<!ELEMENT appendix (#PCDATA)>

“TPiP” — 2006/1/30 — 15:07 — page 412 — #432i
i

i
i

i
i

i
i

412 INTERNET TOOLS AND TECHNIQUES

You can use gnosis.xml.validity to assure your application produced only conformant
XML documents. First, you create a Python version of the DTD:

dissertation.py

from gnosis.xml.validity import *
class appendix(PCDATA): pass
class table(EMPTY): pass
class figure(EMPTY): pass
class _mixedpara(Or): _disjoins = (PCDATA, figure, table)
class paragraph(Some): _type = _mixedpara
class title(PCDATA): pass
class _paras(Some): _type = paragraph
class chapter(Seq): _order = (title, _paras)
class dedication(PCDATA): pass
class _apps(Any): _type = appendix
class _chaps(Some): _type = chapter
class _dedi(Maybe): _type = dedication
class dissertation(Seq): _order = (_dedi, _chaps, _apps)

Next, import your Python validity constraints, and use them in an application:

>>> from dissertation import *
>>> chap1 = LiftSeq(chapter,(’About Validity’,’It is a good thing’))
>>> paras_ch1 = chap1[1]
>>> paras_ch1 += [paragraph(’OOP can enforce it’)]
>>> print chap1
<chapter><title>About Validity</title>
<paragraph>It is a good thing</paragraph>
<paragraph>OOP can enforce it</paragraph>
</chapter>

If you attempt an action that violates constraints, you get a relevant exception; for
example:

>>> try:
.. paras_ch1.append(dedication("To my advisor"))
.. except ValidityError, x:
... print x
Items in _paras must be of type <class ’dissertation.paragraph’>
(not <class ’dissertation.dedication’>)

“TPiP” — 2006/1/30 — 15:07 — page 413 — #433i
i

i
i

i
i

i
i

5.4 Understanding XML 413

PyXML

The PyXML package contains a number of capabilities in advance of those in the
Python standard library. PyXML was at version 0.8.1 at the time this was written,
and as the number indicates, it remains an in-progress/beta project. Moreover, as
of this writing, the last released version of Python was 2.2.2, with 2.3 in preliminary
stages. When you read this, PyXML will probably be at a later number and have
new features, and some of the current features will have been incorporated into the
standard library. Exactly what is where is a moving target.

Some of the significant features currently available in PyXML but not in the standard
library are listed below. You may install PyXML on any Python 2.0+ installation,
and it will override the existing XML support.

• A validating XML parser written in Python called xmlproc . Being a pure Python
program rather than a C extension, xmlproc is slower than xml.sax (which uses the
underlying expat parser).

• A SAX extension called xml.sax.writers that will reserialize SAX events to either
XML or other formats.

• A fully compliant DOM Level 2 implementation called 4DOM, borrowed from
4Suite.

• Support for canonicalization. That is, two XML documents can be semantically
identical even though they are not byte-wise identical. You have freedom in choice
of quotes, attribute orders, character entities, and some spacing that change noth-
ing about the meaning of the document. Two canonicalized XML documents are
semantically identical if and only if they are byte-wise identical.

• XPath and XSLT support, with implementations written in pure Python. There
are faster XSLT implementations around, however, that call C extensions.

• A DOM implementation, called xml.dom.pulldom, that supports lazy instantiation
of nodes has been incorporated into recent versions of the standard library. For older
Python versions, this is available in PyXML.

• A module with several options for serializing Python objects to XML. This capa-
bility is comparable to gnosis.xml.pickle, but I like the tool I created better in several
ways.

“TPiP” — 2006/1/30 — 15:07 — page 414 — #434i
i

i
i

i
i

i
i

414 INTERNET TOOLS AND TECHNIQUES

PYX

PYX is both a document format and a Python module to support working with that
format. As well as the Python module, tools written in C are available to transform
documents between XML and PYX format.

The idea behind PYX is to eliminate the need for complex parsing tools like xml.sax .
Each node in an XML document is represented, in the PYX format on a separate
line, using a prefix character to indicate the node type. Most of XML semantics
is preserved, with the exception of document type declarations, comments, and
namespaces. These features could be incorporated into an updated PYX format, in
principle.

Documents in the PYX format are easily processed using traditional line-oriented
text processing tools like sed, grep, awk, sort, wc, and the like. Python applications
that use a basic FILE.readline() loop are equally able to process PYX nodes, one
per line. This makes it much easier to use familiar text processing programming
styles with PYX than it is with XML. A brief example illustrates the PYX format:

% cat test.xml
<?xml version="1.0"?>
<?xml-stylesheet href="test.css" type="text/css"?>
<Spam flavor="pork">

<Eggs>Some text about eggs.</Eggs>
<MoreSpam>Ode to Spam (spam="smoked-pork")</MoreSpam>

</Spam>
% ./xmln test.xml
?xml-stylesheet href="test.css" type="text/css"
(Spam
Aflavor pork
-\n
(Eggs
-Some text about eggs.
)Eggs
-\n
(MoreSpam
-Ode to Spam (spam="smoked-pork")
)MoreSpam
-\n
)Spam

4Suite

The tools in 4Suite focus on the use of XML documents for knowledge management.
The server element of the 4Suite software is useful for working with catalogs of XML
documents, searching them, transforming them, and so on. The base 4Suite tools
address a variety of XML technologies. In some cases 4Suite implements standards

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 415 --- #435i
i

i
i

i
i

i
i

5.4 Understanding XML 415

and technologies not found in the Python standard library or in PyXML, while in
other cases 4Suite provides more advanced implementations.

Among the XML technologies implemented in 4Suite are DOM, RDF, XSLT, XIn-
clude, XPointer, XLink and XPath, and SOAP. Among these, of particular note is
4xslt for performing XSLT transformations. 4xpath lets you find XML nodes using
concise and powerful XPath descriptions of how to reach them. 4rdf deals with
“meta-data” that documents use to identify their semantic characteristics.

I detail 4Suite technologies in a bit more detail in an article at:

<http://gnosis.cx/publish/programming/xml matters 15.html>

yaml

The native data structures of object-oriented programming languages are not
straightforward to represent in XML. While XML is in principle powerful enough
to represent any compound data, the only inherent mapping in XML is within
attributes—but that only maps strings to strings. Moreover, even when a suitable
XML format is found for a given data structure, the XML is quite verbose and
difficult to scan visually, or especially to edit manually.

The YAML format is designed to match the structure of datatypes prevalent in
scripting languages: Python, Perl, Ruby, and Java all have support libraries at
the time of this writing. Moreover, the YAML format is extremely concise and
unobtrusive—in fact, the acronym cutely stands for “YAML Ain’t Markup Lan-
guage.” In many ways, YAML can act as a better pretty-printer than pprint, while
simultaneously working as a format that can be used for configuration files or to
exchange data between different programming languages.

There is no fully general and clean way, however, to convert between YAML and
XML. You can use the yaml module to read YAML data files, then use the gno-
sis.xml.pickle module to read and write to one particular XML format. But when
XML data starts out in other XML dialects than gnosis.xml.pickle, there are ambi-
guities about the best Python native and YAML representations of the same data.
On the plus side—and this can be a very big plus—there is essentially a straight-
forward and one-to-one correspondence between Python data structures and YAML
representations.

In the YAML example below, refer back to the same Python instance serialized
using gnosis.xml.pickle and pprint in their respective discussions. As with gno-
sis.xml.pickle—but in this case unlike pprint—the serialization can be read back
in to re-create an identical object (or to create a different object after editing the
text, by hand or by application).

“TPiP” — 2006/1/30 — 15:07 — page 416 — #436i
i

i
i

i
i

i
i

416 INTERNET TOOLS AND TECHNIQUES

>>> class Container: pass
...
>>> inst = Container()
>>> dct = {1.7:2.5, (’t’,’u’,’p’):’tuple’}
>>> inst.this, inst.num, inst.dct = ’that’, 38, dct
>>> import yaml
>>> print yaml.dump(inst)
--- !!__main__.Container
dct:

1.7: 2.5
?

- t
- u
- p

: tuple
num: 38
this: that

See Also: pprint 94; gnosis.xml.pickle 410;

“TPiP” — 2006/1/30 — 15:07 — page 417 — #437i
i

i
i

i
i

i
i

417

Appendix A

A Selective and
Impressionistic Short Review
of Python

A reader who is coming to Python for the first time would be well served reading Guido
van Rossum’s Python Tutorial, which can be downloaded from <http://python.org/>,
or picking up one of the several excellent books devoted to teaching Python to novices.
As indicated in the Preface, the audience of this book is a bit different.

The above said, some readers of this book might use Python only infrequently, or not
have used Python for a while, or may be sufficiently versed in numerous other program-
ming languages, that a quick review on Python constructs suffices for understanding.
This appendix will briefly mention each major element of the Python language itself, but
will not address any libraries (even standard and ubiquitous ones that may be discussed
in the main chapters). Not all fine points of syntax and semantics will be covered here,
either. This review, however, should suffice for a reader to understand all the examples
in this book.

Even readers who are familiar with Python might enjoy skimming this review. The
focus and spin of this summary are a bit different from most introductions. I believe
that the way I categorize and explain a number of language features can provide a
moderately novel—but equally accurate—perspective on the Python language. Ideally,
a Python programmer will come away from this review with a few new insights on the
familiar constructs she uses every day. This appendix does not shy away from using
some abstract terms from computer science—if a particular term is not familiar to you,
you will not lose much by skipping over the sentence it occurs in; some of these terms
are explained briefly in the Glossary.

“TPiP” — 2006/1/30 — 15:07 — page 418 — #438i
i

i
i

i
i

i
i

418 A Selective and Impressionistic Short Review of Python

A.1 What Kind of Language Is Python?

Python is a byte-code compiled programming language that supports multiple program-
ming paradigms. Python is sometimes called an interpreted and/or scripting language
because no separate compilation step is required to run a Python program; in more
precise terms, Python uses a virtual machine (much like Java or Smalltalk) to run
machine-abstracted instructions. In most situations a byte-code compiled version of
an application is cached to speed future runs, but wherever necessary compilation is
performed “behind the scenes.”

In the broadest terms, Python is an imperative programming language, rather than a
declarative (functional or logical) one. Python is dynamically and strongly typed, with
very late binding compared to most languages. In addition, Python is an object-oriented
language with strong introspective facilities, and one that generally relies on conventions
rather than enforcement mechanisms to control access and visibility of names. Despite
its object-oriented core, much of the syntax of Python is designed to allow a convenient
procedural style that masks the underlying OOP mechanisms. Although Python allows
basic functional programming (FP) techniques, side effects are the norm, evaluation
is always strict, and no compiler optimization is performed for tail recursion (nor on
almost any other construct).

Python has a small set of reserved words, delimits blocks and structure based on
indentation only, has a fairly rich collection of built-in data structures, and is gener-
ally both terse and readable compared to other programming languages. Much of the
strength of Python lies in its standard library and in a flexible system of importable
modules and packages.

A.2 Namespaces and Bindings

The central concept in Python programming is that of a namespace. Each context
(i.e., scope) in a Python program has available to it a hierarchically organized collection
of namespaces; each namespace contains a set of names, and each name is bound to
an object. In older versions of Python, namespaces were arranged according to the
“three-scope rule” (builtin/global/local), but Python version 2.1 and later add lexically
nested scoping. In most cases you do not need to worry about this subtlety, and scoping
works the way you would expect (the special cases that prompted the addition of lexical
scoping are mostly ones with nested functions and/or classes).

There are quite a few ways of binding a name to an object within the current name-
space/scope and/or within some other scope. These various ways are listed below.

A.2.1 Assignment and Dereferencing

A Python statement like x=37 or y="foo" does a few things. If an object—e.g., 37
or "foo"—does not exist, Python creates one. If such an object does exist, Python
locates it. Next, the name x or y is added to the current namespace, if it does not
exist already, and that name is bound to the corresponding object. If a name already

“TPiP” — 2006/1/30 — 15:07 — page 419 — #439i
i

i
i

i
i

i
i

A.2 Namespaces and Bindings 419

exists in the current namespace, it is re-bound. Multiple names, perhaps in multiple
scopes/namespaces, can be bound to the same object.

A simple assignment statement binds a name into the current namespace, unless that
name has been declared as global. A name declared as global is bound to the global
(module-level) namespace instead. A qualified name used on the left of an assignment
statement binds a name into a specified namespace—either to the attributes of an object,
or to the namespace of a module/package; for example:

>>> x = "foo" # bind ’x’ in global namespace
>>> def myfunc(): # bind ’myfunc’ in global namespace
... global x, y # specify namespace for ’x’, ’y’
... x = 1 # rebind global ’x’ to 1 object
... y = 2 # create global name ’y’ and 2 object
... z = 3 # create local name ’z’ and 3 object
...
>>> import package.module # bind name ’package.module’
>>> package.module.w = 4 # bind ’w’ in namespace package.module
>>> from mymod import obj # bind object ’obj’ to global namespace
>>> obj.attr = 5 # bind name ’attr’ to object ’obj’

Whenever a (possibly qualified) name occurs on the right side of an assignment, or
on a line by itself, the name is dereferenced to the object itself. If a name has not been
bound inside some accessible scope, it cannot be dereferenced; attempting to do so raises
a NameError exception. If the name is followed by left and right parentheses (possibly
with comma-separated expressions between them), the object is invoked/called after it is
dereferenced. Exactly what happens upon invocation can be controlled and overridden
for Python objects; but in general, invoking a function or method runs some code, and
invoking a class creates an instance. For example:

>>> pkg.subpkg.func() # invoke a function from a namespace
>>> x = y # deref ’y’ and bind same object to ’x’

A.2.2 Function and Class Definitions

Declaring a function or a class is simply the preferred way of describing an object and
binding it to a name. But the def and class declarations are “deep down” just types
of assignments. In the case of functions, the lambda operator can also be used on the
right of an assignment to bind an “anonymous” function to a name. There is no equally
direct technique for classes, but their declaration is still similar in effect:

>>> add1 = lambda x,y: x+y # bind ’add1’ to function in global ns
>>> def add2(x, y): # bind ’add2’ to function in global ns
... return x+y
...
>>> class Klass: # bind ’Klass’ to class object
... def meth1(self): # bind ’meth1’ to method in ’Klass’ ns
... return ’Myself’

“TPiP” — 2006/1/30 — 15:07 — page 420 — #440i
i

i
i

i
i

i
i

420 A Selective and Impressionistic Short Review of Python

A.2.3 import Statements

Importing, or importing from, a module or a package adds or modifies bindings in the
current namespace. The import statement has two forms, each with a bit different
effect.

Statements of the forms

>>> import modname
>>> import pkg.subpkg.modname
>>> import pkg.modname as othername

add a new module object to the current namespace. These module objects themselves
define namespaces that you can bind values in or utilize objects within.

Statements of the forms

>>> from modname import foo
>>> from pkg.subpkg.modname import foo as bar

instead add the names foo or bar to the current namespace. In any of these forms of
import, any statements in the imported module are executed—the difference between
the forms is simply the effect upon namespaces.

There is one more special form of the import statement; for example:

>>> from modname import *

The asterisk in this form is not a generalized glob or regular expression pattern, it is a
special syntactic form. “Import star” imports every name in a module namespace into
the current namespace (except those named with a leading underscore, which can still
be explicitly imported if needed). Use of this form is somewhat discouraged because
it risks adding names to the current namespace that you do not explicitly request and
that may rebind existing names.

A.2.4 for Statements

Although for is a looping construct, the way it works is by binding successive elements
of an iterable object to a name (in the current namespace). The following constructs
are (almost) equivalent:

>>> for x in somelist: # repeated binding with ’for’
... print x
...
>>> ndx = 0 # rebinds ’ndx’ if it was defined
>>> while 1: # repeated binding in ’while’
... x = somelist[ndx]
... print x
... ndx = ndx+1
... if ndx >= len(somelist):
... del ndx
... break

“TPiP” — 2006/1/30 — 15:07 — page 421 — #441i
i

i
i

i
i

i
i

A.3 Datatypes 421

A.2.5 except Statements

The except statement can optionally bind a name to an exception argument:

>>> try:
... raise "ThisError", "some message"
... except "ThisError", x: # Bind ’x’ to exception argument
... print x
...
some message

A.3 Datatypes

Python has a rich collection of basic datatypes. All of Python’s collection types allow
you to hold heterogeneous elements inside them, including other collection types (with
minor limitations). It is straightforward, therefore, to build complex data structures in
Python.

Unlike many languages, Python datatypes come in two varieties: mutable and im-
mutable. All of the atomic datatypes are immutable, as is the collection type tuple.
The collections list and dict are mutable, as are class instances. The mutability of
a datatype is simply a question of whether objects of that type can be changed “in
place”—an immutable object can only be created and destroyed, but never altered dur-
ing its existence. One upshot of this distinction is that immutable objects may act as
dictionary keys, but mutable objects may not. Another upshot is that when you want a
data structure—especially a large one—that will be modified frequently during program
operation, you should choose a mutable datatype (usually a list).

Most of the time, if you want to convert values between different Python datatypes,
an explicit conversion/encoding call is required, but numeric types contain promotion
rules to allow numeric expressions over a mixture of types. The built-in datatypes are
listed below with discussions of each. The built-in function type() can be used to check
the datatype of an object.

A.3.1 Simple Types

bool

Python 2.3+ supports a Boolean datatype with the possible values True and False.
In earlier versions of Python, these values are typically called 1 and 0; even in
Python 2.3+, the Boolean values behave like numbers in numeric contexts. Some
earlier micro-releases of Python (e.g., 2.2.1) include the names True and False, but
not the Boolean datatype.

int

A signed integer in the range indicated by the register size of the interpreter’s
CPU/OS platform. For most current platforms, integers range from (2**31)-
1 to negative (2**31)-1. You can find the size on your platform by examining

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 422 --- #442i
i

i
i

i
i

i
i

422 A Selective and Impressionistic Short Review of Python

sys.maxint . Integers are the bottom numeric type in terms of promotions; nothing
gets promoted to an integer, but integers are sometimes promoted to other numeric
types. A float, long, or string may be explicitly converted to an int using the int()

function.

See Also: int 18;

long

An (almost) unlimited size integral number. A long literal is indicated by an integer
followed by an l or L (e.g., 34L, 9876543210l). In Python 2.2+, operations on ints
that overflow sys.maxint are automatically promoted to longs. An int, float, or
string may be explicitly converted to a long using the long() function.

float

An IEEE754 floating point number. A literal floating point number is distinguished
from an int or long by containing a decimal point and/or exponent notation (e.g.,
1.0, 1e3, 37., .453e-12). A numeric expression that involves both int/long types
and float types promotes all component types to floats before performing the com-
putation. An int, long, or string may be explicitly converted to a float using the
float() function.

See Also: float 19;

complex

An object containing two floats, representing real and imaginary components of a
number. A numeric expression that involves both int/long/float types and complex
types promotes all component types to complex before performing the computation.
There is no way to spell a literal complex in Python, but an addition such as 1.1+2j
is the usual way of computing a complex value. A j or J following a float or int
literal indicates an imaginary number. An int, long, or string may be explicitly
converted to a complex using the complex() function. If two float/int arguments
are passed to complex() , the second is the imaginary component of the constructed
number (e.g., complex(1.1,2)).

string

An immutable sequence of 8-bit character values. Unlike in many programming
languages, there is no “character” type in Python, merely strings that happen to
have length one. String objects have a variety of methods to modify strings, but
such methods always return a new string object rather than modify the initial object
itself. The built-in chr() function will return a length-one string whose ordinal value
is the passed integer. The str() function will return a string representation of a
passed in object. For example:

>>> ord(’a’)
97

“TPiP” — 2006/1/30 — 15:07 — page 423 — #443i
i

i
i

i
i

i
i

A.3 Datatypes 423

>>> chr(97)
’a’
>>> str(97)
’97’

See Also: string 129;

unicode

An immutable sequence of Unicode characters. There is no datatype for a single
Unicode character, but Unicode strings of length-one contain a single character.
Unicode strings contain a similar collection of methods to string objects, and like
the latter, Unicode methods return new Unicode objects rather than modify the
initial object. See Chapter 2 and Appendix C for additional discussion, of Unicode.

A.3.2 String Interpolation

Literal strings and Unicode strings may contain embedded format codes. When a string
contains format codes, values may be interpolated into the string using the % operator
and a tuple or dictionary giving the values to substitute in.

Strings that contain format codes may follow either of two patterns. The simpler
pattern uses format codes with the syntax %[flags][len[.precision]]<type>. Inter-
polating a string with format codes on this pattern requires % combination with a tuple
of matching length and content datatypes. If only one value is being interpolated, you
may give the bare item rather than a tuple of length one. For example:

>>> "float %3.1f, int %+d, hex %06x" % (1.234, 1234, 1234)
’float 1.2, int +1234, hex 0004d2’
>>> ’%e’ % 1234
’1.234000e+03’
>>> ’%e’ % (1234,)
’1.234000e+03’

The (slightly) more complex pattern for format codes embeds a name within the
format code, which is then used as a string key to an interpolation dictionary. The syntax
of this pattern is %(key)[flags][len[.precision]]<type>. Interpolating a string
with this style of format codes requires % combination with a dictionary that contains
all the named keys, and whose corresponding values contain acceptable datatypes. For
example:

>>> dct = {’ratio’:1.234, ’count’:1234, ’offset’:1234}
>>> "float %(ratio)3.1f, int %(count)+d, hex %(offset)06x" % dct
’float 1.2, int +1234, hex 0004d2’

You may not mix tuple interpolation and dictionary interpolation within the same
string.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 424 --- #444i
i

i
i

i
i

i
i

424 A Selective and Impressionistic Short Review of Python

I mentioned that datatypes must match format codes. Different format codes accept
a different range of datatypes, but the rules are almost always what you would expect.
Generally, numeric data will be promoted or demoted as necessary, but strings and
complex types cannot be used for numbers.

One useful style of using dictionary interpolation is against the global and/or local
namespace dictionary. Regular bound names defined in scope can be interpolated into
strings.

>>> s = "float %(ratio)3.1f, int %(count)+d, hex %(offset)06x"
>>> ratio = 1.234
>>> count = 1234
>>> offset = 1234
>>> s % globals()
’float 1.2, int +1234, hex 0004d2’

If you want to look for names across scope, you can create an ad hoc dictionary with
both local and global names:

>>> vardct = {}
>>> vardct.update(globals())
>>> vardct.update(locals())
>>> interpolated = somestring % vardct

The flags for format codes consist of the following:

0 Pad to length with leading zeros
- Align the value to the left within its length
_ (space) Pad to length with leading spaces
+ Explicitly indicate the sign of positive values

When a length is included, it specifies the minimum length of the interpolated for-
matting. Numbers that will not fit within a length simply occupy more bytes than
specified. When a precision is included, the length of those digits to the right of the
decimal are included in the total length:

>>> ’[%f]’ % 1.234
’[1.234000]’
>>> ’[%5f]’ % 1.234
’[1.234000]’
>>> ’[%.1f]’ % 1.234
’[1.2]’
>>> ’[%5.1f]’ % 1.234
’[1.2]’
>>> ’[%05.1f]’ % 1.234
’[001.2]’

The formatting types consist of the following:

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 425 --- #445i
i

i
i

i
i

i
i

A.3 Datatypes 425

d Signed integer decimal
i Signed integer decimal
o Unsigned octal
u Unsigned decimal
x Lowercase unsigned hexadecimal
X Uppercase unsigned hexadecimal
e Lowercase exponential format floating point
E Uppercase exponential format floating point
f Floating point decimal format
g Floating point: exponential format if -4 < exp < precision
G Uppercase version of ’g’
c Single character: integer for chr(i) or length-one string
r Converts any Python object using repr()
s Converts any Python object using str()
% The ’%’ character, e.g.: ’%%%d’ % (1) --> ’%1’

One more special format code style allows the use of a * in place of a length. In this
case, the interpolated tuple must contain an extra element for the formatted length of
each format code, preceding the value to format. For example:

>>> "%0*d # %0*.2f" % (4, 123, 4, 1.23)
’0123 # 1.23’
>>> "%0*d # %0*.2f" % (6, 123, 6, 1.23)
’000123 # 001.23’

A.3.3 Printing

The least-sophisticated form of textual output in Python is writing to open files. In
particular, the STDOUT and STDERR streams can be accessed using the pseudo-files
sys.stdout and sys.stderr . Writing to these is just like writing to any other file; for
example:

>>> import sys
>>> try:
... # some fragile action
... sys.stdout.write(’result of action\n’)
... except:
... sys.stderr.write(’could not complete action\n’)
...
result of action

You cannot seek within STDOUT or STDERR—generally you should consider these
as pure sequential outputs.

Writing to STDOUT and STDERR is fairly inflexible, and most of the time the
print statement accomplishes the same purpose more flexibly. In particular, methods
like sys.stdout.write() only accept a single string as an argument, while print can

“TPiP” — 2006/1/30 — 15:07 — page 426 — #446i
i

i
i

i
i

i
i

426 A Selective and Impressionistic Short Review of Python

handle any number of arguments of any type. Each argument is coerced to a string
using the equivalent of repr(obj). For example:

>>> print "Pi: %.3f" % 3.1415, 27+11, {3:4,1:2}, (1,2,3)
Pi: 3.142 38 {1: 2, 3: 4} (1, 2, 3)

Each argument to the print statement is evaluated before it is printed, just as when
an argument is passed to a function. As a consequence, the canonical representation of
an object is printed, rather than the exact form passed as an argument. In my example,
the dictionary prints in a different order than it was defined in, and the spacing of the
list and dictionary is slightly different. String interpolation is also performed and is a
very common means of defining an output format precisely.

There are a few things to watch for with the print statement. A space is printed
between each argument to the statement. If you want to print several objects without
a separating space, you will need to use string concatenation or string interpolation to
get the right result. For example:

>>> numerator, denominator = 3, 7
>>> print repr(numerator)+"/"+repr(denominator)
3/7
>>> print "%d/%d" % (numerator, denominator)
3/7

By default, a print statement adds a linefeed to the end of its output. You may
eliminate the linefeed by adding a trailing comma to the statement, but you still wind
up with a space added to the end:

>>> letlist = (’a’,’B’,’Z’,’r’,’w’)
>>> for c in letlist: print c, # inserts spaces
...
a B Z r w

Assuming these spaces are unwanted, you must either use sys.stdout.write() or
otherwise calculate the space-free string you want:

>>> for c in letlist+(’\n’,): # no spaces
... sys.stdout.write(c)
...
aBZrw
>>> print ’’.join(letlist)
aBZrw

There is a special form of the print statement that redirects its output somewhere
other than STDOUT. The print statement itself can be followed by two greater-than
signs, then a writable file-like object, then a comma, then the remainder of the (printed)
arguments. For example:

“TPiP” — 2006/1/30 — 15:07 — page 427 — #447i
i

i
i

i
i

i
i

A.3 Datatypes 427

>>> print >> open(’test’,’w’), "Pi: %.3f" % 3.1415, 27+11
>>> open(’test’).read()
’Pi: 3.142 38\n’

Some Python programmers (including your author) consider this special form overly
“noisy,” but it is occassionally useful for quick configuration of output destinations.

If you want a function that would do the same thing as a print statement, the
following one does so, but without any facility to eliminate the trailing linefeed or
redirect output:

def print_func(*args):
import sys
sys.stdout.write(’ ’.join(map(repr,args))+’\n’)

Readers could enhance this to add the missing capabilities, but using print as a
statement is the clearest approach, generally.

See Also: sys.stderr 50; sys.stdout 51;

A.3.4 Container Types

tuple

An immutable sequence of (heterogeneous) objects. Being immutable, the member-
ship and length of a tuple cannot be modified after creation. However, tuple elements
and subsequences can be accessed by subscripting and slicing, and new tuples can
be constructed from such elements and slices. Tuples are similar to “records” in
some other programming languages.

The constructor syntax for a tuple is commas between listed items; in many contexts,
parentheses around a constructed list are required to disambiguate a tuple for other
constructs such as function arguments, but it is the commas not the parentheses
that construct a tuple. Some examples:

>>> tup = ’spam’,’eggs’,’bacon’,’sausage’
>>> newtup = tup[1:3] + (1,2,3) + (tup[3],)
>>> newtup
(’eggs’, ’bacon’, 1, 2, 3, ’sausage’)

The function tuple() may also be used to construct a tuple from another sequence
type (either a list or custom sequence type).

See Also: tuple 28;

list

A mutable sequence of objects. Like a tuple, list elements can be accessed by
subscripting and slicing; unlike a tuple, list methods and index and slice assignments
can modify the length and membership of a list object.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 428 --- #448i
i

i
i

i
i

i
i

428 A Selective and Impressionistic Short Review of Python

The constructor syntax for a list is surrounding square braces. An empty list may be
constructed with no objects between the braces; a length-one list can contain simply
an object name; longer lists separate each element object with commas. Indexing
and slices, of course, also use square braces, but the syntactic contexts are different
in the Python grammar (and common sense usually points out the difference). Some
examples:

>>> lst = [’spam’, (1,2,3), ’eggs’, 3.1415]
>>> lst[:2]
[’spam’, (1, 2, 3)]

The function list() may also be used to construct a list from another sequence
type (either a tuple or custom sequence type).

See Also: list 28;

dict

A mutable mapping between immutable keys and object values. At most one entry
in a dict exists for a given key; adding the same key to a dictionary a second time
overrides the previous entry (much as with binding a name in a namespace). Dicts
are unordered, and entries are accessed either by key as index; by creating lists
of contained objects using the methods .keys(), .values(), and .items(); or—
in recent Python versions—with the .popitem() method. All the dict methods
generate contained objects in an unspecified order.

The constructor syntax for a dict is surrounding curly brackets. An empty dict may
be constructed with no objects between the brackets. Each key/value pair entered
into a dict is separated by a colon, and successive pairs are separated by commas.
For example:

>>> dct = {1:2, 3.14:(1+2j), ’spam’:’eggs’}
>>> dct[’spam’]
’eggs’
>>> dct[’a’] = ’b’ # add item to dict
>>> dct.items()
[(’a’, ’b’), (1, 2), (’spam’, ’eggs’), (3.14, (1+2j))]
>>> dct.popitem()
(’a’, ’b’)
>>> dct
{1: 2, ’spam’: ’eggs’, 3.14: (1+2j)}

In Python 2.2+, the function dict() may also be used to construct a dict from a
sequence of pairs or from a custom mapping type. For example:

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 429 --- #449i
i

i
i

i
i

i
i

A.3 Datatypes 429

>>> d1 = dict([(’a’,’b’), (1,2), (’spam’,’eggs’)])
>>> d1
{’a’: ’b’, 1: 2, ’spam’: ’eggs’}
>>> d2 = dict(zip([1,2,3],[’a’,’b’,’c’]))
>>> d2
{1: ’a’, 2: ’b’, 3: ’c’}

See Also: dict 24;

sets.Set

Python 2.3+ includes a standard module that implements a set datatype. For earlier
Python versions, a number of developers have created third-party implementations
of sets. If you have at least Python 2.2, you can download and use the sets module
from <http://tinyurl.com/2d31> (or browse the Python CVS)—you will need to
add the definition True,False=1,0 to your local version, though.

A set is an unordered collection of hashable objects. Unlike a list, no object can occur
in a set more than once; a set resembles a dict that has only keys but no values. Sets
utilize bitwise and Boolean syntax to perform basic set-theoretic operations; a subset
test does not have a special syntactic form, instead using the .issubset() and
.issuperset() methods. You may also loop through set members in an unspecified
order. Some examples illustrate the type:

>>> from sets import Set
>>> x = Set([1,2,3])
>>> y = Set((3,4,4,6,6,2)) # init with any seq
>>> print x, ’//’, y # make sure dups removed
Set([1, 2, 3]) // Set([2, 3, 4, 6])
>>> print x | y # union of sets
Set([1, 2, 3, 4, 6])
>>> print x & y # intersection of sets
Set([2, 3])
>>> print y-x # difference of sets
Set([4, 6])
>>> print x ^ y # symmetric difference
Set([1, 4, 6])

You can also check membership and iterate over set members:

>>> 4 in y # membership check
1
>>> x.issubset(y) # subset check
0
>>> for i in y:

“TPiP” — 2006/1/30 — 15:07 — page 430 — #450i
i

i
i

i
i

i
i

430 A Selective and Impressionistic Short Review of Python

... print i+10,

...
12 13 14 16
>>> from operator import add
>>> plus_ten = Set(map(add, y, [10]*len(y)))
>>> plus_ten
Set([16, 12, 13, 14])

sets.Set also supports in-place modification of sets; sets.ImmutableSet , natu-
rally, does not allow modification.

>>> x = Set([1,2,3])
>>> x |= Set([4,5,6])
>>> x
Set([1, 2, 3, 4, 5, 6])
>>> x &= Set([4,5,6])
>>> x
Set([4, 5, 6])
>>> x ^= Set([4,5])
>>> x
Set([6])

A.3.5 Compound Types

class instance

A class instance defines a namespace, but this namespace’s main purpose is usually
to act as a data container (but a container that also knows how to perform actions;
i.e., has methods). A class instance (or any namespace) acts very much like a dict
in terms of creating a mapping between names and values. Attributes of a class
instance may be set or modified using standard qualified names and may also be
set within class methods by qualifying with the namespace of the first (implicit)
method argument, conventionally called self. For example:

>>> class Klass:
... def setfoo(self, val):
... self.foo = val
...
>>> obj = Klass()
>>> obj.bar = ’BAR’
>>> obj.setfoo([’this’,’that’,’other’])
>>> obj.bar, obj.foo
(’BAR’, [’this’, ’that’, ’other’])
>>> obj.__dict__
{’foo’: [’this’, ’that’, ’other’], ’bar’: ’BAR’}

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 431 --- #451i
i

i
i

i
i

i
i

A.3 Datatypes 431

Instance attributes often dereference to other class instances, thereby allowing
hierarchically organized namespace quantification to indicate a data structure.
Moreover, a number of “magic” methods named with leading and trailing double-
underscores provide optional syntactic conveniences for working with instance data.
The most common of these magic methods is . init (), which initializes an in-
stance (often utilizing arguments). For example:

>>> class Klass2:
... def __init__(self, *args, **kw):
... self.listargs = args
... for key, val in kw.items():
... setattr(self, key, val)
...
>>> obj = Klass2(1, 2, 3, foo=’FOO’, bar=Klass2(baz=’BAZ’))
>>> obj.bar.blam = ’BLAM’
>>> obj.listargs, obj.foo, obj.bar.baz, obj.bar.blam
((1, 2, 3), ’FOO’, ’BAZ’, ’BLAM’)

There are quite a few additional “magic” methods that Python classes may de-
fine. Many of these methods let class instances behave more like basic datatypes
(while still maintaining special class behaviors). For example, the . str ()
and . repr () methods control the string representation of an instance; the
. getitem () and . setitem () methods allow indexed access to instance
data (either dict-like named indices, or list-like numbered indices); methods like
. add (), . mul (), . pow (), and . abs () allow instances to behave in
number-like ways. The Python Reference Manual discusses magic methods in
detail.

In Python 2.2 and above, you can also let instances behave more like basic datatypes
by inheriting classes from these built-in types. For example, suppose you need a
datatype whose “shape” contains both a mutable sequence of elements and a .foo
attribute. Two ways to define this datatype are:

>>> class FooList(list): # works only in Python 2.2+
... def __init__(self, lst=[], foo=None):
... list.__init__(self, lst)
... self.foo = foo
...
>>> foolist = FooList([1,2,3], ’FOO’)
>>> foolist[1], foolist.foo
(2, ’FOO’)
>>> class OldFooList: # works in older Pythons
... def __init__(self, lst=[], foo=None):
... self._lst, self.foo = lst, foo
... def append(self, item):

“TPiP” — 2006/1/30 — 15:07 — page 432 — #452i
i

i
i

i
i

i
i

432 A Selective and Impressionistic Short Review of Python

... self._lst.append(item)

... def __getitem__(self, item):

... return self._lst[item]

... def __setitem__(self, item, val):

... self._lst[item] = val

... def __delitem__(self, item):

... del self._lst[item]

...
>>> foolst2 = OldFooList([1,2,3], ’FOO’)
>>> foolst2[1], foolst2.foo
(2, ’FOO’)

If you need more complex datatypes than the basic types, or even than an instance
whose class has magic methods, often these can be constructed by using instances
whose attributes are bound in link-like fashion to other instances. Such bindings can
be constructed according to various topologies, including circular ones (such as for
modeling graphs). As a simple example, you can construct a binary tree in Python
using the following node class:

>>> class Node:
... def __init__(self, left=None, value=None, right=None):
... self.left, self.value, self.right = left, value, right
... def __repr__(self):
... return self.value
...
>>> tree = Node(Node(value="Left Leaf"),
... "Tree Root",
... Node(left=Node(value="RightLeft Leaf"),
... right=Node(value="RightRight Leaf")))
>>> tree,tree.left,tree.left.left,tree.right.left,tree.right.right
(Tree Root, Left Leaf, None, RightLeft Leaf, RightRight Leaf)

In practice, you would probably bind intermediate nodes to names, in order to allow
easy pruning and rearrangement.

See Also: int 18; float 19; list 28; string 129; tuple 28; UserDict 24; UserList 28;
UserString 33;

A.4 Flow Control

Depending on how you count it, Python has about a half-dozen flow control mechanisms,
which is much simpler than most programming languages. Fortunately, Python’s col-
lection of mechanisms is well chosen, with a high—but not obsessively high—degree of
orthogonality between them.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 433 --- #453i
i

i
i

i
i

i
i

A.4 Flow Control 433

From the point of view of this appendix, exception handling is mostly one of Python’s
flow control techniques. In a language like Java, an application is probably considered
“happy” if it does not throw any exceptions at all, but Python programmers find excep-
tions less “exceptional”—a perfectly good design might exit a block of code only when
an exception is raised.

Two additional aspects of the Python language are not usually introduced in terms
of flow control, but nonetheless amount to such when considered abstractly. Both
functional programming style operations on lists and Boolean shortcutting are, at the
heart, flow control constructs.

A.4.1 if/then/else Statements

Choice between alternate code paths is generally performed with the if statement and
its optional elif and else components. An if block is followed by zero or more elif
blocks; at the end of the compound statement, zero or one else blocks occur. An
if statement is followed by a Boolean expression and a colon. Each elif is likewise
followed by a Boolean expression and colon. The else statement, if it occurs, has no
Boolean expression after it, just a colon. Each statement introduces a block containing
one or more statements (indented on the following lines or on the same line, after the
colon).

Every expression in Python has a Boolean value, including every bare object name
or literal. Any empty container (list, dict, tuple) is considered false; an empty string or
Unicode string is false; the number 0 (of any numeric type) is false. As well, an instance
whose class defines a . nonzero () or . len () method is false if these methods
return a false value. Without these special methods, every instance is true. Much of the
time, Boolean expressions consist of comparisons between objects, where comparisons
actually evaluate to the canonical objects “0” or “1”. Comparisons are <, >, ==, >=, <=,
<>, !=, is, is not, in, and not in. Sometimes the unary operator not precedes such
an expression.

Only one block in an “if/elif/else” compound statement is executed during any pass—
if multiple conditions hold, the first one that evaluates as true is followed. For example:

>>> if 2+2 <= 4:
... print "Happy math"
...
Happy math
>>> x = 3
>>> if x > 4: print "More than 4"
... elif x > 3: print "More than 3"
... elif x > 2: print "More than 2"
... else: print "2 or less"
...
More than 2
>>> if isinstance(2, int):
... print "2 is an int" # 2.2+ test
... else:

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 434 --- #454i
i

i
i

i
i

i
i

434 A Selective and Impressionistic Short Review of Python

... print "2 is not an int"

Python has no “switch” statement to compare one value with multiple candidate
matches. Occasionally, the repetition of an expression being compared on multiple
elif lines looks awkward. A “trick” in such a case is to use a dict as a pseudo-switch.
The following are equivalent, for example:

>>> if var.upper() == ’ONE’: val = 1
... elif var.upper() == ’TWO’: val = 2
... elif var.upper() == ’THREE’: val = 3
... elif var.upper() == ’FOUR’: val = 4
... else: val = 0
...
>>> switch = {’ONE’:1, ’TWO’:2, ’THREE’:3, ’FOUR’:4}
>>> val = switch.get(var.upper(), 0)

A.4.2 Boolean Shortcutting

The Boolean operators or and and are “lazy.” That is, an expression containing or
or and evaluates only as far as it needs to determine the overall value. Specifically,
if the first disjoin of an or is true, the value of that disjoin becomes the value of the
expression, without evaluating the rest; if the first conjoin of an and is false, its value
likewise becomes the value of the whole expression.

Shortcutting is formally sufficient for switching and is sometimes more readable and
concise than “if/elif/else” blocks. For example:

>>> if this: # ’if’ compound statement
... result = this
... elif that:
... result = that
... else:
... result = 0
...
>>> result = this or that or 0 # boolean shortcutting

Compound shortcutting is also possible, but not necessarily easy to read; for example:

>>> (cond1 and func1()) or (cond2 and func2()) or func3()

A.4.3 for/continue/break Statements

The for statement loops over the elements of a sequence. In Python 2.2+, looping
utilizes an iterator object (which may not have a predetermined length)—but standard
sequences like lists, tuples, and strings are automatically transformed to iterators in for
statements. In earlier Python versions, a few special functions like xreadlines() and
xrange() also act as iterators.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 435 --- #455i
i

i
i

i
i

i
i

A.4 Flow Control 435

Each time a for statement loops, a sequence/iterator element is bound to the loop
variable. The loop variable may be a tuple with named items, thereby creating bindings
for multiple names in each loop. For example:

>>> for x,y,z in [(1,2,3),(4,5,6),(7,8,9)]: print x, y, z, ’*’,
...
1 2 3 * 4 5 6 * 7 8 9 *

A particularly common idiom for operating on each item in a dictionary is:

>>> for key,val in dct.items():
... print key, val, ’*’,
...
1 2 * 3 4 * 5 6 *

When you wish to loop through a block a certain number of times, a common idiom
is to use the range() or xrange() built-in functions to create ad hoc sequences of the
needed length. For example:

>>> for _ in range(10):
... print "X", # ’_’ is not used in body
...
X X X X X X X X X X

However, if you find yourself binding over a range just to repeat a block, this often
indicates that you have not properly understood the loop. Usually repetition is a way
of operating on a collection of related things that could instead be explicitly bound in
the loop, not just a need to do exactly the same thing multiple times.

If the continue statement occurs in a for loop, the next loop iteration proceeds
without executing later lines in the block. If the break statement occurs in a for loop,
control passes past the loop without executing later lines (except the finally block if
the break occurs in a try).

A.4.4 map(), filter(), reduce(), and List Comprehensions

Much like the for statement, the built-in functions map() , filter() , and reduce()

perform actions based on a sequence of items. Unlike a for loop, these functions
explicitly return a value resulting from this application to each item. Each of these three
functional programming style functions accepts a function object as a first argument
and sequence(s) as a subsequent argument(s).

The map() function returns a list of items of the same length as the input sequence,
where each item in the result is a “transformation” of one item in the input. Where
you explicitly want such transformed items, use of map() is often both more concise
and clearer than an equivalent for loop; for example:

>>> nums = (1,2,3,4)
>>> str_nums = []

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 436 --- #456i
i

i
i

i
i

i
i

436 A Selective and Impressionistic Short Review of Python

>>> for n in nums:
... str_nums.append(str(n))
...
>>> str_nums
[’1’, ’2’, ’3’, ’4’]
>>> str_nums = map(str, nums)
>>> str_nums
[’1’, ’2’, ’3’, ’4’]

If the function argument of map() accepts (or can accept) multiple arguments, multi-
ple sequences can be given as later arguments. If such multiple sequences are of different
lengths, the shorter ones are padded with None values. The special value None may be
given as the function argument, producing a sequence of tuples of elements from the
argument sequences.

>>> nums = (1,2,3,4)
>>> def add(x, y):
... if x is None: x=0
... if y is None: y=0
... return x+y
...
>>> map(add, nums, [5,5,5])
[6, 7, 8, 4]
>>> map(None, (1,2,3,4), [5,5,5])
[(1, 5), (2, 5), (3, 5), (4, None)]

The filter() function returns a list of those items in the input sequence that satisfy
a condition given by the function argument. The function argument must accept one
parameter, and its return value is interpreted as a Boolean (in the usual manner). For
example:

>>> nums = (1,2,3,4)
>>> odds = filter(lambda n: n%2, nums)
>>> odds
(1, 3)

Both map() and filter() can use function arguments that have side effects, thereby
making it possible—but not usually desirable—to replace every for loop with a map()

or filter() function. For example:

>>> for x in seq:
... # bunch of actions
... pass
...
>>> def actions(x):
... # same bunch of actions
... return 0

“TPiP” — 2006/1/30 — 15:07 — page 437 — #457i
i

i
i

i
i

i
i

A.4 Flow Control 437

...
>>> filter(actions, seq)
[]

Some epicycles are needed for the scoping of block variables and for break and
continue statements. But as a general picture, it is worth being aware of the formal
equivalence between these very different-seeming techniques.

The reduce() function takes as a function argument a function with two parame-
ters. In addition to a sequence second argument, reduce() optionally accepts a third
argument as an initializer. For each item in the input sequence, reduce() combines
the previous aggregate result with the item, until the sequence is exhausted. While
reduce()—like map() and filter()—has a loop-like effect of operating on every item
in a sequence, its main purpose is to create some sort of aggregation, tally, or selection
across indefinitely many items. For example:

>>> from operator import add
>>> sum = lambda seq: reduce(add, seq)
>>> sum([4,5,23,12])
44
>>> def tastes_better(x, y):
... # some complex comparison of x, y
... # either return x, or return y
... # ...
...
>>> foods = [spam, eggs, bacon, toast]
>>> favorite = reduce(tastes_better, foods)

List comprehensions (listcomps) are a syntactic form that was introduced with Python
2.0. It is easiest to think of list comprehensions as a sort of cross between for loops and
the map() or filter() functions. That is, like the functions, listcomps are expressions
that produce lists of items, based on “input” sequences. But listcomps also use the
keywords for and if that are familiar from statements. Moreover, it is typically much
easier to read a compound list comprehension expression than it is to read corresponding
nested map() and filter() functions.

For example, consider the following small problem: You have a list of numbers and
a string of characters; you would like to construct a list of all pairs that consist of a
number from the list and a character from the string, but only if the ASCII ordinal is
larger than the number. In traditional imperative style, you might write:

>>> bigord_pairs = []
>>> for n in (95,100,105):
... for c in ’aei’:
... if ord(c) > n:
... bigord_pairs.append((n,c))
...
>>> bigord_pairs
[(95, ’a’), (95, ’e’), (95, ’i’), (100, ’e’), (100, ’i’)]

“TPiP” — 2006/1/30 — 15:07 — page 438 — #458i
i

i
i

i
i

i
i

438 A Selective and Impressionistic Short Review of Python

In a functional programming style you might write the nearly unreadable:

>>> dupelms=lambda lst,n: reduce(lambda s,t:s+t,
... map(lambda l,n=n: [l]*n, lst))
>>> combine=lambda xs,ys: map(None,xs*len(ys), dupelms(ys,len(xs)))
>>> bigord_pairs=lambda ns,cs: filter(lambda (n,c):ord(c)>n,
... combine(ns,cs))
>>> bigord_pairs((95,100,105),’aei’)
[(95, ’a’), (95, ’e’), (100, ’e’), (95, ’i’), (100, ’i’)]

In defense of this FP approach, it has not only accomplished the task at hand, but
also provided the general combinatorial function combine() along the way. But the
code is still rather obfuscated.

List comprehensions let you write something that is both concise and clear:

>>> [(n,c) for n in (95,100,105) for c in ’aei’ if ord(c)>n]
[(95, ’a’), (95, ’e’), (95, ’i’), (100, ’e’), (100, ’i’)]

As long as you have listcomps available, you hardly need a general combine() function,
since it just amounts to repeating the for clause in a listcomp.

Slightly more formally, a list comprehension consists of the following: (1) Surrounding
square brackets (like a list constructor, which it is). (2) An expression that usually, but
not by requirement, contains some names that get bound in the for clauses. (3) One
or more for clauses that bind a name repeatedly (just like a for loop). (4) Zero or
more if clauses that limit the results. Generally, but not by requirement, the if clauses
contain some names that were bound by the for clauses.

List comprehensions may nest inside each other freely. Sometimes a for clause in a
listcomp loops over a list that is defined by another listcomp; once in a while a nested
listcomp is even used inside a listcomp’s expression or if clauses. However, it is almost
as easy to produce difficult-to-read code by excessively nesting listcomps as it is by
nesting map() and filter() functions. Use caution and common sense about such
nesting.

It is worth noting that list comprehensions are not as referentially transparent as
functional programming style calls. Specifically, any names bound in for clauses remain
bound in the enclosing scope (or global if the name is so declared). These side effects
put a minor extra burden on you to choose distinctive or throwaway names for use in
listcomps.

A.4.5 while/else/continue/break Statements

The while statement loops over a block as long as the expression after the while
remains true. If an else block is used within a compound while statement, as soon
as the expression becomes false, the else block is executed. The else block is chosen
even if the while expression is initially false.

If the continue statement occurs in a while loop, the next loop iteration proceeds
without executing later lines in the block. If the break statement occurs in a while

“TPiP” — 2006/1/30 — 15:07 — page 439 — #459i
i

i
i

i
i

i
i

A.4 Flow Control 439

loop, control passes past the loop without executing later lines (except the finally
block if the break occurs in a try). If a break occurs in a while block, the else block
is not executed.

If a while statement’s expression is to go from being true to being false, typically
some name in the expression will be re-bound within the while block. At times an
expression will depend on an external condition, such as a file handle or a socket, or it
may involve a call to a function whose Boolean value changes over invocations. However,
probably the most common Python idiom for while statements is to rely on a break
to terminate a block. Some examples:

>>> command = ’’
>>> while command != ’exit’:
... command = raw_input(’Command > ’)
... # if/elif block to dispatch on various commands
...
Command > someaction
Command > exit
>>> while socket.ready():
... socket.getdata() # do something with the socket
... else:
... socket.close() # cleanup (e.g. close socket)
...
>>> while 1:
... command = raw_input(’Command > ’)
... if command == ’exit’: break
... # elif’s for other commands
...
Command > someaction
Command > exit

A.4.6 Functions, Simple Generators, and the yield Statement

Both functions and object methods allow a kind of nonlocality in terms of program
flow, but one that is quite restrictive. A function or method is called from another
context, enters at its top, executes any statements encountered, then returns to the
calling context as soon as a return statement is reached (or the function body ends).
The invocation of a function or method is basically a strictly linear nonlocal flow.

Python 2.2 introduced a flow control construct, called generators, that enables a new
style of nonlocal branching. If a function or method body contains the statement yield,
then it becomes a generator function, and invoking the function returns a generator
iterator instead of a simple value. A generator iterator is an object that has a .next()
method that returns values. Any instance object can have a .next() method, but a
generator iterator’s method is special in having “resumable execution.”

In a standard function, once a return statement is encountered, the Python inter-
preter discards all information about the function’s flow state and local name bindings.
The returned value might contain some information about local values, but the flow

“TPiP” — 2006/1/30 — 15:07 — page 440 — #460i
i

i
i

i
i

i
i

440 A Selective and Impressionistic Short Review of Python

state is always gone. A generator iterator, in contrast, “remembers” the entire flow
state, and all local bindings, between each invocation of its .next() method. A value is
returned to a calling context each place a yield statement is encountered in the gener-
ator function body, but the calling context (or any context with access to the generator
iterator) is able to jump back to the flow point where this last yield occurred.

In the abstract, generators seem complex, but in practice they prove quite simple.
For example:

>>> from __future__ import generators # not needed in 2.3+
>>> def generator_func():
... for n in [1,2]:
... yield n
... print "Two yields in for loop"
... yield 3
...
>>> generator_iter = generator_func()
>>> generator_iter.next()
1
>>> generator_iter.next()
2
>>> generator_iter.next()
Two yields in for loop
3
>>> generator_iter.next()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
StopIteration

The object generator iter in the example can be bound in different scopes, and
passed to and returned from functions, just like any other object. Any context invok-
ing generator iter.next() jumps back into the last flow point where the generator
function body yielded.

In a sense, a generator iterator allows you to perform jumps similar to the “GOTO”
statements of some (older) languages, but still retains the advantages of structured
programming. The most common usage for generators, however, is simpler than this.
Most of the time, generators are used as “iterators” in a loop context; for example:

>>> for n in generator_func():
... print n
...
1
2
Two yields in for loop
3

In recent Python versions, the StopIteration exception is used to signal the end of a
for loop. The generator iterator’s .next() method is implicitly called as many times as

“TPiP” — 2006/1/30 — 15:07 — page 441 — #461i
i

i
i

i
i

i
i

A.4 Flow Control 441

possible by the for statement. The name indicated in the for statement is repeatedly
re-bound to the values the yield statement(s) return.

A.4.7 Raising and Catching Exceptions

Python uses exceptions quite broadly and probably more naturally than any other pro-
gramming language. In fact there are certain flow control constructs that are awkward
to express by means other than raising and catching exceptions.

There are two general purposes for exceptions in Python. On the one hand, Python
actions can be invalid or disallowed in various ways. You are not allowed to divide
by zero; you cannot open (for reading) a filename that does not exist; some functions
require arguments of specific types; you cannot use an unbound name on the right side
of an assignment; and so on. The exceptions raised by these types of occurrences have
names of the form [A-Z].*Error. Catching error exceptions is often a useful way to
recover from a problem condition and restore an application to a “happy” state. Even
if such error exceptions are not caught in an application, their occurrence provides
debugging clues since they appear in tracebacks.

The second purpose for exceptions is for circumstances a programmer wishes to flag
as “exceptional.” But understand “exceptional” in a weak sense—not as something that
indicates a programming or computer error, but simply as something unusual or “not
the norm.” For example, Python 2.2+ iterators raise a StopIteration exception when
no more items can be generated. Most such implied sequences are not infinite length,
however; it is merely the case that they contain a (large) number of items, and they run
out only once at the end. It’s not “the norm” for an iterator to run out of items, but it
is often expected that this will happen eventually.

In a sense, raising an exception can be similar to executing a break statement—both
cause control flow to leave a block. For example, compare:

>>> n = 0
>>> while 1:
... n = n+1
... if n > 10: break
...
>>> print n
11
>>> n = 0
>>> try:
... while 1:
... n = n+1
... if n > 10: raise "ExitLoop"
... except:
... print n
...
11

In two closely related ways, exceptions behave differently than do break statements.
In the first place, exceptions could be described as having “dynamic scope,” which in

“TPiP” — 2006/1/30 — 15:07 — page 442 — #462i
i

i
i

i
i

i
i

442 A Selective and Impressionistic Short Review of Python

most contexts is considered a sin akin to “GOTO,” but here is quite useful. That
is, you never know at compile time exactly where an exception might get caught (if
not anywhere else, it is caught by the Python interpreter). It might be caught in the
exception’s block, or a containing block, and so on; or it might be in the local function,
or something that called it, or something that called the caller, and so on. An exception
is a fact that winds its way through execution contexts until it finds a place to settle.
The upward propagation of exceptions is quite opposite to the downward propagation
of lexically scoped bindings (or even to the earlier “three-scope rule”).

The corollary of exceptions’ dynamic scope is that, unlike break, they can be used
to exit gracefully from deeply nested loops. The “Zen of Python” offers a caveat here:
“Flat is better than nested.” And indeed it is so, if you find yourself nesting loops too
deeply, you should probably refactor (e.g., break loops into utility functions). But if
you are nesting just deeply enough, dynamically scoped exceptions are just the thing
for you. Consider the following small problem: A “Fermat triple” is here defined as
a triple of integers (i,j,k) such that “i**2 + j**2 == k**2”. Suppose that you wish
to determine if any Fermat triples exist with all three integers inside a given numeric
range. An obvious (but entirely nonoptimal) solution is:

>>> def fermat_triple(beg, end):
... class EndLoop(Exception): pass
... range_ = range(beg, end)
... try:
... for i in range_:
... for j in range_:
... for k in range_:
... if i**2 + j**2 == k**2:
... raise EndLoop, (i,j,k)
... except EndLoop, triple:
... # do something with ’triple’
... return i,j,k
...
>>> fermat_triple(1,10)
(3, 4, 5)
>>> fermat_triple(120,150)
>>> fermat_triple(100,150)
(100, 105, 145)

By raising the EndLoop exception in the middle of the nested loops, it is possible to
catch it again outside of all the loops. A simple break in the inner loop would only
break out of the most deeply nested block, which is pointless. One might devise some
system for setting a “satisfied” flag and testing for this at every level, but the exception
approach is much simpler. Since the except block does not actually do anything extra
with the triple, it could have just been returned inside the loops; but in the general
case, other actions can be required before a return.

It is not uncommon to want to leave nested loops when something has “gone wrong”
in the sense of an “*Error” exception. Sometimes you might only be in a position to

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 443 --- #463i
i

i
i

i
i

i
i

A.4 Flow Control 443

discover a problem condition within nested blocks, but recovery still makes better sense
outside the nesting. Some typical examples are problems in I/O, calculation overflows,
missing dictionary keys or list indices, and so on. Moreover, it is useful to assign except
statements to the calling position that really needs to handle the problems, then write
support functions as if nothing can go wrong. For example:

>>> try:
... result = complex_file_operation(filename)
... except IOError:
... print "Cannot open file", filename

The function complex file operation() should not be burdened with trying to fig-
ure out what to do if a bad filename is given to it—there is really nothing to be done
in that context. Instead, such support functions can simply propagate their exceptions
upwards, until some caller takes responsibility for the problem.

The try statement has two forms. The try/except/else form is more commonly
used, but the try/finally form is useful for “cleanup handlers.”

In the first form, a try block must be followed by one or more except blocks. Each
except may specify an exception or tuple of exceptions to catch; the last except block
may omit an exception (tuple), in which case it catches every exception that is not
caught by an earlier except block. After the except blocks, you may optionally specify
an else block. The else block is run only if no exception occurred in the try block.
For example:

>>> def except_test(n):
... try: x = 1/n
... except IOError: print "IO Error"
... except ZeroDivisionError: print "Zero Division"
... except: print "Some Other Error"
... else: print "All is Happy"
...
>>> except_test(1)
All is Happy
>>> except_test(0)
Zero Division
>>> except_test(’x’)
Some Other Error

An except test will match either the exception actually listed or any descendent of
that exception. It tends to make sense, therefore, in defining your own exceptions to
inherit from related ones in the exceptions module. For example:

>>> class MyException(IOError): pass
>>> try:
... raise MyException
... except IOError:
... print "got it"

“TPiP” — 2006/1/30 — 15:07 — page 444 — #464i
i

i
i

i
i

i
i

444 A Selective and Impressionistic Short Review of Python

...
got it

In the try/finally form of the try statement, the finally statement acts as general
cleanup code. If no exception occurs in the try block, the finally block runs, and that
is that. If an exception was raised in the try block, the finally block still runs, but
the original exception is re-raised at the end of the block. However, if a return or break
statement is executed in a finally block—or if a new exception is raised in the block
(including with the raise statement)—the finally block never reaches its end, and
the original exception disappears.

A finally statement acts as a cleanup block even when its corresponding try block
contains a return, break, or continue statement. That is, even though a try block
might not run all the way through, finally is still entered to clean up whatever the
try did accomplish. A typical use of this compound statement opens a file or other
external resource at the very start of the try block, then performs several actions that
may or may not succeed in the rest of the block; the finally is responsible for making
sure the file gets closed, whether or not all the actions on it prove possible.

The try/finally form is never strictly needed since a bare raise statement will re-
raise the last exception. It is possible, therefore, to have an except block end with the
raise statement to propagate an error upward after taking some action. However, when
a cleanup action is desired whether or not exceptions were encountered, the try/finally
form can save a few lines and express your intent more clearly. For example:

>>> def finally_test(x):
... try:
... y = 1/x
... if x > 10:
... return x
... finally:
... print "Cleaning up..."
... return y
...
>>> finally_test(0)
Cleaning up...
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "<stdin>", line 3, in finally_test

ZeroDivisionError: integer division or modulo by zero
>>> finally_test(3)
Cleaning up...
0
>>> finally_test(100)
Cleaning up...
100

“TPiP” — 2006/1/30 — 15:07 — page 445 — #465i
i

i
i

i
i

i
i

A.4 Flow Control 445

A.4.8 Data as Code

Unlike in languages in the Lisp family, it is usually not a good idea to create Python
programs that execute data values. It is possible, however, to create and run Python
strings during program runtime using several built-in functions. The modules code,
codeop, imp, and new provide additional capabilities in this direction. In fact, the
Python interactive shell itself is an example of a program that dynamically reads strings
as user input, then executes them. So clearly, this approach is occasionally useful.

Other than in providing an interactive environment for advanced users (who them-
selves know Python), a possible use for the “data as code” model is with applications
that themselves generate Python code, either to run later or to communicate with
another application. At a simple level, it is not difficult to write compilable Python
programs based on templatized functionality; for this to be useful, of course, you would
want a program to contain some customization that was determinable only at runtime.

eval(s [,globals=globals() [,locals=locals()]])

Evaluate the expression in string s and return the result of that evaluation. You
may specify optional arguments globals and locals to specify the namespaces
to use for name lookup. By default, use the regular global and local namespace
dictionaries. Note that only an expression can be evaluated, not a statement suite.

Most of the time when a (novice) programmer thinks of using eval() it is to com-
pute some value—often numeric—based on data encoded in texts. For example,
suppose that a line in a report file contains a list of dollar amounts, and you would
like the sum of these numbers. A naive approach to the problem uses eval() :

>>> line = "$47 $33 $51 $76"
>>> eval("+".join([d.replace(’$’,’’) for d in line.split()]))
207

While this approach is generally slow, that is not an important problem. A more
significant issue is that eval() runs code that is not known until runtime; potentially
line could contain Python code that causes harm to the system it runs on or
merely causes an application to malfunction. Imagine that instead of a dollar figure,
your data file contained os.rmdir("/"). A better approach is to use the safe type
coercion functions int() , float() , and so on.

>>> nums = [int(d.replace(’$’,’’)) for d in line.split()]
>>> from operator import add
>>> reduce(add, nums)
207

exec

The exec statement is a more powerful sibling of the eval() function. Any valid
Python code may be run if passed to the exec statement. The format of the exec

statement allows optional namespace specification, as with eval() :

“TPiP” — 2006/1/30 — 15:07 — page 446 — #466i
i

i
i

i
i

i
i

446 A Selective and Impressionistic Short Review of Python

exec code [in globals [,locals]]

For example:

>>> s = "for i in range(10):\n print i,\n"
>>> exec s in globals(), locals()
0 1 2 3 4 5 6 7 8 9

The argument code may be either a string, a code object, or an open file object.
As with eval() , the security dangers and speed penalties of exec usually outweigh
any convenience provided. However, where code is clearly under application control,
there are occasionally uses for this statement.

import (s [,globals=globals() [,locals=locals() [,fromlist]]])

Import the module named s, using namespace dictionaries globals and locals.
The argument fromlist may be omitted, but if specified as a nonempty list of
strings—e.g., [""]—the fully qualified subpackage will be imported. For normal
cases, the import statement is the way you import modules, but in the special
circumstance that the value of s is not determined until runtime, use import () .

>>> op = __import__(’os.path’,globals(),locals(),[’’])
>>> op.basename(’/this/that/other’)
’other’

input([prompt])

Equivalent to eval(raw input(prompt)), along with all the dangers associated with
eval() generally. Best practice is to always use raw input() , but you might see
input() in existing programs.

raw input([prompt])

Return a string from user input at the terminal. Used to obtain values interactive
in console-based applications.

>>> s = raw_input(’Last Name: ’)
Last Name: Mertz
>>> s
’Mertz’

A.5 Functional Programming

This section largely recapitulates briefer descriptions elsewhere in this appendix, but
a common unfamiliarity with functional programming merits a longer discussion. Ad-
ditional material on functional programming in Python—mostly of a somewhat exotic
nature—can be found in articles at:

“TPiP” — 2006/1/30 — 15:07 — page 447 — #467i
i

i
i

i
i

i
i

A.5 Functional Programming 447

<http://gnosis.cx/publish/programming/charming python 13.html>

<http://gnosis.cx/publish/programming/charming python 16.html>

<http://gnosis.cx/publish/programming/charming python 19.html>

It is hard to find any consensus about exactly what functional programming is, among
either its proponents or detractors. It is not really entirely clear to what extent FP
is a feature of languages, and to what extent a feature of programming styles. Since
this is a book about Python, we can leave aside discussions of predominantly functional
languages like Lisp, Scheme, Haskell, ML, Ocaml, Clean, Mercury, Erlang, and so on;
we can focus on what makes a Python program more or less functional.

Programs that lean towards functional programming, within Python’s multiple
paradigms, tend to have many of the following features:

1. Functions are treated as first-class objects that are passed as arguments to other
functions and methods, and returned as values from same.

2. Solutions are expressed more in terms of what is to be computed than in terms of
how the computation is performed.

3. Side effects, especially rebinding names repeatedly, are minimized. Functions are
referentially transparent (see Glossary).

4. Expressions are emphasized over statements; in particular, expressions often de-
scribe how a result collection is related to a prior collection—most especially list
objects.

5. The following Python constructs are used prevalently: the built-in functions
map() , filter() , reduce() , apply() , zip() , and enumerate() ; extended
call syntax; the lambda operator; list comprehensions; and switches expressed
as Boolean operators.

Many experienced Python programmers consider FP constructs to be as much of a wart
as a feature. The main drawback of a functional programming style (in Python, or
elsewhere) is that it is easy to write unmaintainable or obfuscated programming code
using it. Too many map() , reduce() , and filter() functions nested inside each other
lose all the self-evidence of Python’s simple statement and indentation style. Adding
unnamed lambda functions into the mix makes matters that much worse. The discussion
in Chapter 1 of higher-order functions gives some examples.

A.5.1 Emphasizing Expressions Using lambda

The lambda operator is used to construct an “anonymous” function. In contrast to
the more common def declaration, a function created with lambda can only contain a
single expression as a result, not a sequence of statements, nested blocks, and so on.
There are inelegant ways to emulate statements within a lambda , but generally you
should think of lambda as a less-powerful cousin of def declarations.

“TPiP” — 2006/1/30 — 15:07 — page 448 — #468i
i

i
i

i
i

i
i

448 A Selective and Impressionistic Short Review of Python

Not all Python programmers are happy with the lambda operator. There is certainly
a benefit in readability to giving a function a descriptive name. For example, the second
style below is clearly more readable than the first:

>>> from math import sqrt
>>> print map(lambda (a,b): sqrt(a**2+b**2),((3,4),(7,11),(35,8)))
[5.0, 13.038404810405298, 35.902646142032481]
>>> sides = ((3,4),(7,11),(35,8))
>>> def hypotenuse(ab):
... a,b = ab
... return sqrt(a**2+b**2)
...
>>> print map(hypotenuse, sides)
[5.0, 13.038404810405298, 35.902646142032481]

By declaring a named function hypotenuse(), the intention of the calculation be-
comes much more clear. Once in a while, though, a function used in map() or in a
callback (e.g., in Tkinter , xml.sax , or mx.TextTools) really is such a one-shot thing that
a name only adds noise.

However, you may notice in this book that I fairly commonly use the lambda operator
to define a name. For example, you might see something like:

>>> hypotenuse = lambda (a,b): sqrt(a**2+b**2)

This usage is mostly for documentation. A side matter is that a few characters are
saved in assigning an anonymous function to a name, versus a def binding. But concision
is not particularly important. This function definition form documents explicitly that
I do not expect any side effects—like changes to globals and data structures—within
the hypotenuse() function. While the def form is also side effect free, that fact is not
advertised; you have to look through the (brief) code to establish it. Strictly speaking,
there are ways—like calling setattr()—to introduce side effects within a lambda , but
as a convention, I avoid doing so, as should you.

Moreover, a second documentary goal is served by a lambda assignment like the one
above. Whenever this form occurs, it is possible to literally substitute the right-hand
expression anywhere the left-hand name occurs (you need to add extra surrounding
parentheses usually, however). By using this form, I am emphasizing that the name is
simply a short-hand for the defined expression. For example:

>>> hypotenuse = lambda a,b: sqrt(a**2+b**2)
>>> (lambda a,b: sqrt(a**2+b**2))(3,4), hypotenuse(3,4)
(5.0, 5.0)

Bindings with def, in general, lack substitutability.

A.5.2 Special List Functions

Python has two built-in functions that are strictly operations on sequences, but that
are frequently useful in conjunction with the “function-plus-list” built-in functions.

“TPiP” — 2006/1/30 — 15:07 — page 449 — #469i
i

i
i

i
i

i
i

A.5 Functional Programming 449

zip(seq1 [,seq2 [,. . .]])

The zip() function, in Python 2.0+, combines multiple sequences into one sequence
of tuples. Think of the teeth of a zipper for an image and the source of the name.

The function zip() is almost the same as map(None,...), but zip() truncates
when it reaches the end of the shortest sequence. For example:

>>> map(None, (1,2,3,4), [5,5,5])
[(1, 5), (2, 5), (3, 5), (4, None)]
>>> zip((1,2,3,4), [5,5,5])
[(1, 5), (2, 5), (3, 5)]

Especially in combination with apply() , extended call syntax, or simply tuple un-
packing, zip() is useful for operating over multiple related sequences at once; for
example:

>>> lefts, tops = (3, 7, 35), (4, 11, 8)
>>> map(hypotenuse, zip(lefts, tops))
[5.0, 13.038404810405298, 35.902646142032481]

A little quirk of zip() is that it is almost its own inverse. A little use of extended
call syntax is needed for inversion, though. The expression zip(*zip(*seq)) is
idempotent (as an exercise, play with variations). Consider:

>>> sides = [(3, 4), (7, 11), (35, 8)]
>>> zip(*zip(*sides))
[(3, 4), (7, 11), (35, 8)]

enumerate(collection)

Python 2.3 adds the enumerate() built-in function for working with a sequence
and its index positions at the same time. Basically, enumerate(seq) is equivalent
to zip(range(len(seq)),seq), but enumerate() is a lazy iterator that need not
construct the entire list to loop over. A typical usage is:

>>> items = [’a’,’b’]
>>> i = 0 # old-style explicit increment
>>> for thing in items:
... print ’index’,i,’contains’,thing
... i += 1
index 0 contains a
index 1 contains b
>>> for i,thing in enumerate(items):
... print ’index’,i,’contains’,thing
...
index 0 contains a
index 1 contains b

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 450 --- #470i
i

i
i

i
i

i
i

450 A Selective and Impressionistic Short Review of Python

A.5.3 List-Application Functions as Flow Control

I believe that text processing is one of the areas of Python programming where judicious
use of functional programming techniques can greatly aid both clarity and conciseness.
A strength of FP style—specifically the Python built-in functions map() , filter() , and
reduce()—is that they are not merely about functions, but also about sequences. In
text processing contexts, most loops are ways of iterating over chunks of text, frequently
over lines. When you wish to do something to a sequence of similar items, FP style
allows the code to focus on the action (and its object) instead of on side issues of loop
constructs and transient variables.

In part, a map() , filter() , or reduce() call is a kind of flow control. Just as a
for loop is an instruction to perform an action a number of times, so are these list-
application functions. For example:

for x in range(100):
sys.stdout.write(str(x))

and:

filter(sys.stdout.write, map(str, range(100)))

are just two different ways of calling the str() function 100 times (and the
sys.stdout.write() method with each result). The two differences are that the FP
style does not bother rebinding a name for each iteration, and that each call to a list-
application function returns a value—a list for map() and filter() , potentially any
sort of value for reduce() . Functions/methods like sys.stdout.write that are called
wholly for their side effects almost always return None; by using filter() rather than
map() around these, you avoid constructing a throwaway list—or rather you construct
just an empty list.

A.5.4 Extended Call Syntax and apply()

To call a function in a dynamic way, it is sometimes useful to build collections of ar-
guments in data structures prior to the call. Unpacking a sequence containing several
positional arguments is awkward, and unpacking a dictionary of keyword arguments
simply cannot be done with the Python 1.5.2 standard call syntax. For example, con-
sider the salutation() function:

>>> def salutation(title,first,last,use_title=1,prefix=’Dear’):
... print prefix,
... if use_title: print title,
... print ’%s %s,’ % (first, last)
...
>>> salutation(’Dr.’,’David’,’Mertz’,prefix=’To:’)
To: Dr. David Mertz,

Suppose you read names and prefix strings from a text file or database and wish to
call salutation() with arguments determined at runtime. You might use:

“TPiP” — 2006/1/30 — 15:07 — page 451 — #471i
i

i
i

i
i

i
i

A.5 Functional Programming 451

>>> rec = get_next_db_record()
>>> opts = calculate_options(rec)
>>> salutation(rec[0], rec[1], rec[2],
... use_title=opts.get(’use_title’,1),
... prefix=opts.get(’prefix’,’Dear’))

This call can be performed more concisely as:

>>> salutation(*rec, **opts)

Or as:

>>> apply(salutation, rec, opts)

The calls func(*args,**keywds) and apply(func,args,keywds) are equivalent.
The argument args must be a sequence of the same length as the argument list for
func. The (optional) argument keywds is a dictionary that may or may not contain
keys matching keyword arguments (if not, it has no effect).

In most cases, the extended call syntax is more readable, since the call closely resem-
bles the declaration syntax of generic positional and keyword arguments. But in a few
cases—particularly in higher-order functions—the older apply() built-in function is
still useful. For example, suppose that you have an application that will either perform
an action immediately or defer it for later, depending on some condition. You might
program this application as:

defer_list = []
if some_runtime_condition():

doIt = apply
else:

doIt = lambda *x: defer_list.append(x)
#...do stuff like read records and options...
doIt(operation, args, keywds)
#...do more stuff...
#...carry out deferred actions...
map(lambda (f,args,kw): f(*args,**kw), defer_list)

Since apply() is itself a first-class function rather than a syntactic form, you can
pass it around—or in the example, bind it to a name.

“TPiP” — 2006/1/30 — 15:07 — page 452 — #472i
i

i
i

i
i

i
i

“TPiP” — 2006/1/30 — 15:07 — page 453 — #473i
i

i
i

i
i

i
i

453

Appendix B

A DATA COMPRESSION
PRIMER

B.1 Introduction

See Section 2.2.5 for details on compression capabilities included in the Python standard
library. This appendix is intended to provide readers who are unfamiliar with data
compression a basic background on its techniques and theory. The final section of this
appendix provides a practical example—accompanied by some demonstration code—of
a Huffman-inspired custom encoding.

Data compression is widely used in a variety of programming contexts. All popular
operating systems and programming languages have numerous tools and libraries for
dealing with data compression of various sorts. The right choice of compression tools
and libraries for a particular application depends on the characteristics of the data and
application in question: streaming versus file; expected patterns and regularities in the
data; relative importance of CPU usage, memory usage, channel demands, and storage
requirements; and other factors.

Just what is data compression, anyway? The short answer is that data compression
removes redundancy from data; in information-theoretic terms, compression increases
the entropy of the compressed text. But those statements are essentially just true by
definition. Redundancy can come in a lot of different forms. Repeated bit sequences
(11111111) are one type. Repeated byte sequences are another (XXXXXXXX). But more
often redundancies tend to come on a larger scale, either regularities of the data set
taken as a whole, or sequences of varying lengths that are relatively common. Basically,
what data compression aims at is finding algorithmic transformations of data represen-
tations that will produce more compact representations given “typical” data sets. If
this description seems a bit complex to unpack, read on to find some more practical
illustrations.

“TPiP” — 2006/1/30 — 15:07 — page 454 — #474i
i

i
i

i
i

i
i

454 A DATA COMPRESSION PRIMER

B.2 Lossless and Lossy Compression

There are actually two fundamentally different “styles” of data compression: lossless
and lossy. This appendix is generally about lossless compression techniques, but the
reader would be served to understand the distinction first. Lossless compression involves
a transformation of the representation of a data set such that it is possible to reproduce
exactly the original data set by performing a decompression transformation. Lossy
compression is a representation that allows you to reproduce something “pretty much
like” the original data set. As a plus for the lossy techniques, they can frequently
produce far more compact data representations than lossless compression techniques
can. Most often lossy compression techniques are used for images, sound files, and
video. Lossy compression may be appropriate in these areas insofar as human observers
do not perceive the literal bit-pattern of a digital image/sound, but rather more general
“gestalt” features of the underlying image/sound.

From the point of view of “normal” data, lossy compression is not an option. We do
not want a program that does “about the same” thing as the one we wrote. We do
not want a database that contains “about the same” kind of information as what we
put into it. At least not for most purposes (and I know of few practical uses of lossy
compression outside of what are already approximate mimetic representations of the
real world, likes images and sounds).

B.3 A Data Set Example

For purposes of this appendix, let us start with a specific hypothetical data represen-
tation. Here is an easy-to-understand example. In the town of Greenfield, MA, the
telephone prefixes are 772-, 773-, and 774-. (For non-USA readers: In the USA, lo-
cal telephone numbers are seven digits and are conventionally represented in the form
###-####; prefixes are assigned in geographic blocks.) Suppose also that the first
prefix is the mostly widely assigned of the three. The suffix portions might be any other
digits, in fairly equal distribution. The data set we are interested in is “the list of all the
telephone numbers currently in active use.” One can imagine various reasons why this
might be interesting for programmatic purposes, but we need not specify that herein.

Initially, the data set we are interested in comes in a particular data representation: a
multicolumn report (perhaps generated as output of some query or compilation process).
The first few lines of this report might look like:

===
772-7628 772-8601 772-0113 773-3429 774-9833
773-4319 774-3920 772-0893 772-9934 773-8923
773-1134 772-4930 772-9390 774-9992 772-2314
[...]

“TPiP” — 2006/1/30 — 15:07 — page 455 — #475i
i

i
i

i
i

i
i

B.4 Whitespace Compression 455

B.4 Whitespace Compression

Whitespace compression can be characterized most generally as “removing what we are
not interested in.” Even though this technique is technically a lossy-compression tech-
nique, it is still useful for many types of data representations we find in the real world.
For example, even though HTML is far more readable in a text editor if indentation
and vertical spacing is added, none of this “whitespace” should make any difference to
how the HTML document is rendered by a Web browser. If you happen to know that
an HTML document is destined only for a Web browser (or for a robot/spider), then
it might be a good idea to take out all the whitespace to make it transmit faster and
occupy less space in storage. What we remove in whitespace compression never really
had any functional purpose to start with.

In the case of our example in this article, it is possible to remove quite a bit from
the described report. The row of “=” across the top adds nothing functional, nor do
the “-” within numbers, nor the spaces between them. These are all useful for a person
reading the original report, but do not matter once we think of it as data. What we
remove is not precisely whitespace in traditional terms, but the intent is the same.

Whitespace compression is extremely “cheap” to perform. It is just a matter of
reading a stream of data and excluding a few specific values from the output stream.
In many cases, no “decompression” step is involved at all. But even where we would
wish to re-create something close to the original somewhere down the data stream, it
should require little in terms of CPU or memory. What we reproduce may or may
not be exactly what we started with, depending on just what rules and constraints
were involved in the original. An HTML page typed by a human in a text editor will
probably have spacing that is idiosyncratic. Then again, automated tools often produce
“reasonable” indentation and spacing of HTML. In the case of the rigid report format
in our example, there is no reason that the original representation could not be precisely
produced by a “decompressing formatter” down the data stream.

B.5 Run-Length Encoding

Run-length encoding (RLE) is the simplest widely used lossless-compression technique.
Like whitespace compression, it is “cheap”—especially to decode. The idea behind it is
that many data representations consist largely of strings of repeated bytes. Our example
report is one such data representation. It begins with a string of repeated “=”, and
has strings of spaces scattered through it. Rather than represent each character with
its own byte, RLE will (sometimes or always) have an iteration count followed by the
character to be repeated.

If repeated bytes are predominant within the expected data representation, it might
be adequate and efficient to always have the algorithm specify one or more bytes of
iteration count, followed by one character. However, if one-length character strings
occur, these strings will require two (or more) bytes to encode them; that is, 00000001
01011000 might be the output bit stream required for just one ASCII “X” of the input
stream. Then again, a hundred “X” in a row would be output as 01100100 01011000,
which is quite good.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 456 --- #476i
i

i
i

i
i

i
i

456 A DATA COMPRESSION PRIMER

What is frequently done in RLE variants is to selectively use bytes to indicate iterator
counts and otherwise just have bytes represent themselves. At least one byte-value has
to be reserved to do this, but that can be escaped in the output, if needed. For example,
in our example telephone-number report, we know that everything in the input stream is
plain ASCII characters. Specifically, they all have bit one of their ASCII value as 0. We
could use this first ASCII bit to indicate that an iterator count was being represented
rather than representing a regular character. The next seven bits of the iterator byte
could be used for the iterator count, and the next byte could represent the character to
be repeated. So, for example, we could represent the string “YXXXXXXXX” as:

"Y" Iter(8) "X"
01001111 10001000 01011000

This example does not show how to escape iterator byte-values, nor does it allow
iteration of more than 127 occurrences of a character. Variations on RLE deal with
issues such as these, if needed.

B.6 Huffman Encoding

Huffman encoding looks at the symbol table of a whole data set. The compression
is achieved by finding the “weights” of each symbol in the data set. Some symbols
occur more frequently than others, so Huffman encoding suggests that the frequent
symbols need not be encoded using as many bits as the less-frequent symbols. There are
variations on Huffman-style encoding, but the original (and frequent) variation involves
looking for the most common symbol and encoding it using just one bit, say 1. If you
encounter a 0, you know you’re on the way to encoding a longer variable length symbol.

Let’s imagine we apply Huffman encoding to our local phone-book example (assume
we have already whitespace-compressed the report). We might get:

Encoding Symbol
1 7
010 2
011 3
00000 4
00001 5
00010 6
00011 8
00100 9
00101 0
00111 1

Our initial symbol set of digits could already be straightforwardly encoded (with no-
compression) as 4-bit sequences (nibbles). The Huffman encoding given will use up to
5-bits for the worst-case symbols, which is obviously worse than the nibble encoding.
However, our best case will use only 1 bit, and we know that our best case is also the
most frequent case, by having scanned the data set. So we might encode a particular
phone number like:

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 457 --- #477i
i

i
i

i
i

i
i

B.7 Lempel-Ziv Compression 457

772 7628 --> 1 1 010 1 00010 010 00011

The nibble encoding would take 28-bits to represent a phone number; in this particular
case, our encoding takes 19-bits. I introduced spaces into the example above for clarity;
you can see that they are not necessary to unpack the encoding, since the encoding
table will determine whether we have reached the end of an encoded symbol (but you
have to keep track of your place in the bits).

Huffman encoding is still fairly cheap to decode, cycle-wise. But it requires a table
lookup, so it cannot be quite as cheap as RLE, however. The encoding side of Huffman
is fairly expensive, though; the whole data set has to be scanned and a frequency table
built up. In some cases a “shortcut” is appropriate with Huffman coding. Standard
Huffman coding applies to a particular data set being encoded, with the set-specific
symbol table prepended to the output data stream. However, if the whole type of
data encoded—not just the single data set—has the same regularities, we can opt for
a global Huffman table. If we have such a global Huffman table, we can hard-code the
lookups into our executables, which makes both compression and decompression quite
a bit cheaper (except for the initial global sampling and hard-coding). For example, if
we know our data set would be English-language prose, letter-frequency tables are well
known and quite consistent across data sets.

B.7 Lempel-Ziv Compression

Probably the most significant lossless-compression technique is Lempel-Ziv. What is
explained here is LZ78, but LZ77 and other variants work in a similar fashion. The
idea in LZ78 is to encode a streaming byte sequence using a dynamic table. At the
start of compressing a bit stream, the LZ table is filled with the actual symbol set,
along with some blank slots. Various size tables are used, but for our (whitespace-
compressed) telephone number example above, let’s suppose that we use a 32-entry
table (this should be OK for our example, although much too small for most other
types of data). First thing, we fill the first ten slots with our alphabet (digits). As
new bytes come in, we first output an existing entry that grabs the longest sequence
possible, then fill the next available slot with the N+1 length sequence. In the worst
case, we are using 5-bits instead of 4-bits for a single symbol, but we’ll wind up getting
to use 5-bits for multiple symbols in a lot of cases. For example, the machine might do
this (a table slot is noted with square brackets):

7 --> Lookup: 7 found --> nothing to add --> keep looking
7 --> Lookup: 77 not found --> add ’77’ to [11] --> output [7]=00111
2 --> Lookup: 72 not found --> add ’72’ to [12] --> output [7]=00111
7 --> Lookup: 27 not found --> add ’27’ to [13] --> output [2]=00010
6 --> Lookup: 76 not found --> add ’76’ to [14] --> output [7]=00111
2 --> Lookup: 62 not found --> add ’62’ to [15] --> output [6]=00110
8 --> Lookup: 28 not found --> add ’28’ to [16] --> output [2]=00010

So far, we’ve got nothing out of it, but let’s continue with the next phone number:

“TPiP” — 2006/1/30 — 15:07 — page 458 — #478i
i

i
i

i
i

i
i

458 A DATA COMPRESSION PRIMER

7 --> Lookup: 87 not found --> add ’87’ to [17] --> output [8]=00100
7 --> Lookup: 77 found --> nothing to add --> keep looking
2 --> Lookup: 772 not found --> add ’772’ to [18] --> output [11]=01011
8 --> Lookup: 28 found --> nothing to add --> keep looking
6 --> Lookup: 286 not found --> add ’286’ to [19] --> output [16]=10000
...

The steps should suffice to see the pattern. We have not achieved any net compression
yet, but notice that we’ve already managed to use slot 11 and slot 16, thereby getting
two symbols with one output in each case. We’ve also accumulated the very useful byte
sequence 772 in slot 18, which would prove useful later in the stream.

What LZ78 does is fill up one symbol table with (hopefully) helpful entries, then write
it, clear it, and start a new one. In this regard, 32 entries is still probably too small
a symbol table, since that will get cleared before a lot of reuse of 772 and the like is
achieved. But the small symbol table is easy to illustrate.

In typical data sets, Lempel-Ziv variants achieve much better compression rates than
Huffman or RLE. On the other hand, Lempel-Ziv variants are very pricey cycle-wise
and can use large tables in memory. Most real-life compression tools and libraries use
a combination of Lempel-Ziv and Huffman techniques.

B.8 Solving the Right Problem

Just as choosing the right algorithm can often create orders-of-magnitude improvements
over even heavily optimized wrong algorithms, choosing the right data representation
is often even more important than compression methods (which are always a sort of
post hoc optimization of desired features). The simple data set example used in this
appendix is a perfect case where reconceptualizing the problem would actually be a
much better approach than using any of the compression techniques illustrated.

Think again about what our data represents. It is not a very general collection of
data, and the rigid a priori constraints allow us to reformulate our whole problem. What
we have is a maximum of 30,000 telephone numbers (7720000 through 7749999), some
of which are active, and others of which are not. We do not have a “duty,” as it were,
to produce a full representation of each telephone number that is active, but simply to
indicate the binary fact that it is active. Thinking of the problem this way, we can
simply allocate 30,000 bits of memory and storage, and have each bit say “yes” or “no”
to the presence of one telephone number. The ordering of the bits in the bit-array can
be simple ascending order from the lowest to the highest telephone number in the range.

This bit-array solution is the best in almost every respect. It allocates exactly 3750
bytes to represent the data set; the various compression techniques will use a varying
amount of storage depending both on the number of telephone numbers in the set and
the efficiency of the compression. But if 10,000 of the 30,000 possible telephone numbers
are active, and even a very efficient compression technique requires several bytes per
telephone number, then the bit-array is an order-of-magnitude better. In terms of
CPU demands, the bit-array is not only better than any of the discussed compression
methods, it is also quite likely to be better than the naive noncompression method

“TPiP” — 2006/1/30 — 15:07 — page 459 — #479i
i

i
i

i
i

i
i

B.9 A Custom Text Compressor 459

of listing all the numbers as strings. Stepping through a bit-array and incrementing a
“current-telephone-number” counter can be done quite efficiently and mostly within the
on-chip cache of a modern CPU.

The lesson to be learned from this very simple example is certainly not that every
problem has some magic shortcut (like this one does). A lot of problems genuinely
require significant memory, bandwidth, storage, and CPU resources, and in many of
those cases compression techniques can help ease—or shift—those burdens. But a more
moderate lesson could be suggested: Before compression techniques are employed, it is a
good idea to make sure that one’s starting conceptualization of the data representation
is a good one.

B.9 A Custom Text Compressor

Most styles of compression require a decompression pass before one is able to do some-
thing useful with a source document. Many (de)compressors can operate as a stream,
producing only the needed bytes of a compressed or decompressed stream in sequence.
In some cases, formats even insert recovery or bookkeeping bytes that allow streams to
begin within documents (rather than from the very beginning). Programmatic wrappers
can make compressed documents or strings look like plaintext ones at the appropriate
API layer. Nonetheless, even streaming decompressors require a computational over-
head to get at the plaintext content of a compressed document.

An excellent example of a streaming (de)compressor with an API wrapper is
gzip.GzipFile() . Although not entirely transparent, you can compress and decom-
press documents without any explicit call to a (de)compression function using this wrap-
per. gzip.GzipFile() provides a file-like interface, but it is also easy to operate on a
purely in-memory file using the support of cStringIO.StringIO() . For example:

>>> from gzip import GzipFile
>>> from cStringIO import StringIO
>>> sio = StringIO()
>>> writer = GzipFile(None, ’wb’, 9, sio)
>>> writer.write(’Mary had a little lamb\n’)
>>> writer.write(’its fleece as white as snow\n’)
>>> writer.close()
>>> sio.getvalue()[:20]
’\x1f\x8b\x08\x00k\xc1\x9c<\x02\xff’
>>> reader = GzipFile(None, ’rb’, 9, StringIO(sio.getvalue()))
>>> reader.read()[:20]
’Mary had a little la’
>>> reader.seek(30)
>>> reader.read()
’ece as white as snow\n’

One thing this example shows is that the underlying compressed string is more or less
gibberish. Although the file-like API hides the details from an application programmer,

“TPiP” — 2006/1/30 — 15:07 — page 460 — #480i
i

i
i

i
i

i
i

460 A DATA COMPRESSION PRIMER

the decompression process is also stateful in its dependence on a symbol table built from
the byte sequence in the compressed text. You cannot expect to make sense of a few
bytes in the middle of the compressed text without a knowledge of the prior context.

A different approach to compression can have significant advantages in operating on
natural-language textual sources. A group of researchers in Brazil and Chile have exam-
ined techniques for “word-based Huffman compression.” The general strategy of these
researchers is to treat whole words as the symbol set for a Huffman table, rather than
merely naive byte values. In natural languages, a limited number of (various length,
multibyte) words occur with a high frequency, and savings result if such words are repre-
sented with shorter byte sequences. In general, such reduced representation is common
to all compression techniques, but word-based Huffman takes the additional step of
retaining byte boundaries (and uses fixed symbol mapping, as with other Huffman vari-
ants).

A special quality of word-based Huffman compressed text is that it need not undergo
decompression to be searched. This quality makes it convenient to store textual doc-
uments in compressed form, without incurring the requirement to decompress them
before they are useful. Instead, if one is searching for words directly contained in the
symbol table, one can merely precompress the search terms, then use standard search-
ing algorithms. Such a search can be either against an in-memory string or against a
file-like source; in general a search against a precompressed target will be faster than
one against an uncompressed text. In code, one would use snippets similar to:

small_text = word_Huffman_compress(big_text)
search_term = "Foobar"
coded_term = word_Huffman_compress(search_term)
offset = small_text.find(coded_term)
coded_context = small_text[offset-10:offset+10+len(search_term)]
plain_context = word_Huffman_expand(coded_context)

A sophisticated implementation of word-based Huffman compression can obtain better
compression sizes than does zlib . For simplicity, the module below sacrifices optimal
compression to the goal of clarity and brevity of code. A fleshed-out implementation
could add a number of features.

The presented module word huffman uses a fixed number of bytes to encode each word
in the symbol table. This number of bytes can be selected to be 1, 2, or 3 (thereby limit-
ing the table to a generous 2 million entries). The module also separates the generation
of a symbol table from the actual compression/decompression. The module can be used
in a context where various documents get encoded using the same symbol table—the
table presumably generated based on a set of canonical documents. In this situation,
the computational requirement of symbol table generation can happen just once, and
the symbol table itself need not be transmitted along with each compressed document.
Of course, nothing prevents you from treating the document being processed currently
as said canonical statistical word source (thereby somewhat improving compression).

In the algorithm utilized by word huffman, only high-bit bytes are utilized in the
symbol table. The lower 128 ASCII characters represent themselves as literals. Any

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 461 --- #481i
i

i
i

i
i

i
i

B.9 A Custom Text Compressor 461

ASCII character sequence that is not in the symbol table is represented as itself—
including any short words that would not benefit from encoding. Any high-bit characters
that occur in the original source text are escaped by being preceded by an 0xFF byte.
As a result, high-bit characters are encoded using two bytes; this technique is clearly
only useful for encoding (mostly) textual files, not binary files. Moreover, only character
values 0x80-0xFE are used by the symbol table (0xFF always signals a literal high-bit
character in the encoding).

The word huffman algorithm is not entirely stateless in the sense that not every sub-
sequence in a compressed text can be expanded without additional context. But very
little context is required. Any low-bit character always literally represents itself. A
high-bit character, however, might be either an escaped literal, a first byte of a symbol
table entry, or a non-first byte of a symbol table entry. In the worst case, where a
3-byte symbol table is used, it is necessary to look back two bytes from an arbitrary
position in the text to determine the full context. Normally, only one byte lookback
is necessary. In any case, words in the symbol table are separated from each other in
the uncompressed text by nonalpha low-bit characters (usually whitespace), so parsing
compressed entries is straightforward.

word huffman.py

wordchars = ’-_ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz’

def normalize_text(txt):
"Convert non-word characters to spaces"
trans = [’ ’] * 256
for c in wordchars: trans[ord(c)] = c
return txt.translate(’’.join(trans))

def build_histogram(txt, hist={}):
"Incrementally build a histogram table from text source(s)"
for word in txt.split():

hist[word] = hist.get(word, 0)+1
return hist

def optimal_Nbyte(hist, entrylen=2):
"Build optimal word list for nominal symbol table byte-length"
slots = 127**entrylen
words = []
for word, count in hist.items():

gain = count * (len(word)-entrylen)
if gain > 0: words.append((gain, word))

words.sort()
words.reverse()
return [w[1] for w in words[:slots]]

def tables_from_words(words):

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 462 --- #482i
i

i
i

i
i

i
i

462 A DATA COMPRESSION PRIMER

"Create symbol tables for compression and expansion"
Determine ACTUAL best symbol table byte length
if len(words) < 128: entrylen = 1
elif len(words) <= 16129: entrylen = 2
else: entrylen = 3 # assume < ~2M distinct words
comp_table = {}
Escape hibit characters
for hibit_char in map(chr, range(128,256)):

comp_table[hibit_char] = chr(255)+hibit_char
Literal low-bit characters
for lowbit_char in map(chr, range(128)):

comp_table[lowbit_char] = lowbit_char
Add word entries
for word, index in zip(words, range(len(words))):

comp_table[word] = symbol(index, entrylen)
Reverse dictionary for expansion table
exp_table = {}
for key, val in comp_table.items():

exp_table[val] = key
return (comp_table, exp_table, entrylen)

def symbol(index, entrylen):
"Determine actual symbol from word sequence and symbol length"
if entrylen == 1:

return chr(128+index)
if entrylen == 2:

byte1, byte2 = divmod(index, 128)
return chr(128+byte1)+chr(128+byte2)

if entrylen == 3:
byte1, rem = divmod(index, 16129)
byte2, byte3 = divmod(rem, 128)
return chr(128+byte1)+chr(128+byte2)+chr(128+byte3)

raise ValueError, "symbol byte len must be 1 <= S <=3: "+‘entrylen‘

def word_Huffman_compress(text, comp_table):
"Compress text based on word-to-symbol table"
comp_text = []
maybe_entry = []
for c in text+chr(0): # force flush of final word

if c in wordchars:
maybe_entry.append(c)

else:
word = ’’.join(maybe_entry)
comp_text.append(comp_table.get(word, word))
maybe_entry = []
comp_text.append(comp_table[c])

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 463 --- #483i
i

i
i

i
i

i
i

B.9 A Custom Text Compressor 463

return ’’.join(comp_text[:-1])

def word_Huffman_expand(text, exp_table, entrylen):
"Expand text based on symbol-to-word table"
exp_text = []
offset = 0
end = len(text)
while offset < end:

c = text[offset]
if ord(c) == 255: # escaped highbit character

exp_text.append(text[offset+1])
offset += 2

elif ord(c) >= 128: # symbol table entry
symbol = text[offset:offset+entrylen]
exp_text.append(exp_table[symbol])
offset += entrylen

else:
exp_text.append(c)
offset += 1

return ’’.join(exp_text)

def Huffman_find(pat, comp_text, comp_table):
"Find a (plaintext) substring in compressed text"
comp_pat = word_Huffman_compress(pat, comp_table)
return comp_text.find(comp_pat)

if __name__==’__main__’:
import sys, glob
big_text = []
for fpat in sys.argv[1:]:

for fname in glob.glob(fpat):
big_text.append(open(fname).read())

big_text = ’’.join(big_text)
hist = build_histogram(normalize_text(big_text))
for entrylen in (1, 2, 3):

comp_words = optimal_Nbyte(hist, entrylen)
comp_table, exp_table, entrylen_ = tables_from_words(comp_words)
comp_text = word_Huffman_compress(big_text, comp_table)
exp_text = word_Huffman_expand(comp_text, exp_table, entrylen_)
print "Nominal/actual symbol length (entries): %i/%i (%i)" % \

(entrylen, entrylen_, len(comp_words))
print "Compression ratio: %i%%" % \

((100*len(comp_text))/len(big_text))
if big_text == exp_text:

print "*** Compression/expansion cycle successful!\n"
else:

“TPiP” — 2006/1/30 — 15:07 — page 464 — #484i
i

i
i

i
i

i
i

464 A DATA COMPRESSION PRIMER

print "*** Failure in compression/expansion cycle!\n"
Just for fun, here’s a search against compressed text
pos = Huffman_find(’Foobar’, comp_text, comp_table)

The word huffman module, while simple and fairly short, is still likely to be useful—and
it lays the basis for a fleshed-out variant. The compression obtained by the algorithm
above is a comparatively modest 50-60 percent of the size of the original text (in informal
tests). But given that locality of decompression of subsegments is both possible and
cheap, there is nearly no disadvantage to this transformation for stored documents.
Word searches become quicker basically in direct proportion to the length reduction.

One likely improvement would be to add run-length compression of whitespace (or
generally of nonalpha characters); doing so would lose none of the direct searchability
that this algorithm is designed around, and in typical electronic natural-language texts
would result in significant additional compression. Moreover, a pleasant side effect of the
word huffman transformation is that transformed documents become more compressible
under Lempel-Ziv-based techniques (i.e., cumulatively). In other words, there is benefit
in precompressing documents with word-huffman if you intend to later compress them
with gzip, zip, or similar tools.

More aggressive improvements might be obtained by allowing variable byte-length
symbol table entries and/or by claiming some additional low-bit control codes for the
symbol table (and escaping literals in the original text). You can experiment with
such variations, and your results might vary somewhat depending upon the details of
application-specific canonical texts.

Search capabilities might also be generalized—but this would require considerably
greater effort. In the referenced research article below, the authors show how to gener-
alize to direct regular-expression searching against word-based Huffman encoded texts.
The word huffman implementation allows certain straightforward transformations of reg-
ular expressions (where literal words occur within them) for searching against com-
pressed documents, but a number of caveats and restrictions apply. Overcoming most
such limitations would involve digging into Python’s underlying regular expression en-
gine, but it is possible in principle.

B.10 References

A good place to turn for additional theoretical and practical information on compression
is at the <comp.compression> FAQ:

<http://www.faqs.org/faqs/compression-faq/>

A research article on word-based Huffman encoding inspired my simple example of
word-based compression. The article “Fast and Flexible Word Searching on Compressed
Text,” by Edleno Silva de Moura, Gonzalo Navarro, Nivio Ziviani, and Ricardo Baeza-
Yates, can be found at:

<http://citeseer.nj.nec.com/silvademoura00fast.html>

“TPiP” — 2006/1/30 — 15:07 — page 465 — #485i
i

i
i

i
i

i
i

465

Appendix C

UNDERSTANDING
UNICODE

C.1 Some Background on Characters

Before we see what Unicode is, it makes sense to step back slightly to think about
just what it means to store “characters” in digital files. Anyone who uses a tool like
a text editor usually just thinks of what they are doing as entering some characters—
numbers, letters, punctuation, and so on. But behind the scene a little bit more is going
on. “Characters” that are stored on digital media must be stored as sequences of ones
and zeros, and some encoding and decoding must happen to make these ones and zeros
into characters we see on a screen or type in with a keyboard.

Sometime around the 1960s, a few decisions were made about just what ones and
zeros (bits) would represent characters. One important choice that most modern com-
puter users give no thought to was the decision to use 8-bit bytes on nearly all computer
platforms. In other words, bytes have 256 possible values. Within these 8-bit bytes,
a consensus was reached to represent one character in each byte. So at that point,
computers needed a particular encoding of characters into byte values; there were 256
“slots” available, but just which character would go in each slot? The most popular
encoding developed was Bob Bemers’ American Standard Code for Information Inter-
change (ASCII), which is now specified in exciting standards like ISO-14962-1997 and
ANSI-X3.4-1986(R1997). But other options, like IBM’s mainframe EBCDIC, linger on,
even now.

ASCII itself is of somewhat limited extent. Only the values of the lower-order 7-bits of
each byte might contain ASCII-encoded characters. The top 7-bits worth of positions
(128 of them) are “reserved” for other uses (back to this). So, for example, a byte
that contains “01000001” might be an ASCII encoding of the letter “A”, but a byte
containing “11000001” cannot be an ASCII encoding of anything. Of course, a given
byte may or may not actually represent a character; if it is part of a text file, it probably

“TPiP” — 2006/1/30 — 15:07 — page 466 — #486i
i

i
i

i
i

i
i

466 UNDERSTANDING UNICODE

does, but if it is part of object code, a compressed archive, or other binary data, ASCII
decoding is misleading. It depends on context.

The reserved top 7-bits in common 8-bit bytes have been used for a number of things
in a character-encoding context. On traditional textual terminals (and printers, etc.) it
has been common to allow switching between codepages on terminals to allow display
of a variety of national-language characters (and special characters like box-drawing
borders), depending on the needs of a user. In the world of Internet communications,
something very similar to the codepage system exists with the various ISO-8859-* en-
codings. What all these systems do is assign a set of characters to the 128 slots that
ASCII reserves for other uses. These might be accented Roman characters (used in
many Western European languages) or they might be non-Roman character sets like
Greek, Cyrillic, Hebrew, or Arabic (or in the future, Thai and Hindi). By using the
right codepage, 8-bit bytes can be made quite suitable for encoding reasonable sized
(phonetic) alphabets.

Codepages and ISO-8859-* encodings, however, have some definite limitations. For
one thing, a terminal can only display one codepage at a given time, and a document
with an ISO-8859-* encoding can only contain one character set. Documents that need
to contain text in multiple languages are not possible to represent by these encodings.
A second issue is equally important: Many ideographic and pictographic character sets
have far more than 128 or 256 characters in them (the former is all we would have in the
codepage system, the latter if we used the whole byte and discarded the ASCII part).
It is simply not possible to encode languages like Chinese, Japanese, and Korean in
8-bit bytes. Systems like ISO-2022-JP-1 and codepage 943 allow larger character sets to
be represented using two or more bytes for each character. But even when using these
language-specific multibyte encodings, the problem of mixing languages is still present.

C.2 What Is Unicode?

Unicode solves the problems of previous character-encoding schemes by providing a
unique code number for every character needed, worldwide and across languages. Over
time, more characters are being added, but the allocation of available ranges for future
uses has already been planned out, so room exists for new characters. In Unicode-
encoded documents, no ambiguity exists about how a given character should display
(for example, should byte value 0x89 appear as e-umlaut, as in codepage 850, or as the
per-mil mark, as in codepage 1004?). Furthermore, by giving each character its own
code, there is no problem or ambiguity in creating multilingual documents that utilize
multiple character sets at the same time. Or rather, these documents actually utilize
the single (very large) character set of Unicode itself.

Unicode is managed by the Unicode Consortium (see Resources), a nonprofit group
with corporate, institutional, and individual members. Originally, Unicode was planned
as a 16-bit specification. However, this original plan failed to leave enough room for
national variations on related (but distinct) ideographs across East Asian languages
(Chinese, Japanese, and Korean), nor for specialized alphabets used in mathematics
and the scholarship of historical languages.

“TPiP” — 2006/1/30 — 15:07 — page 467 — #487i
i

i
i

i
i

i
i

C.3 Encodings 467

As a result, the code space of Unicode is currently 32-bits (and anticipated to remain
fairly sparsely populated, given the 4 billion allowed characters).

C.3 Encodings

A full 32-bits of encoding space leaves plenty of room for every character we might want
to represent, but it has its own problems. If we need to use 4 bytes for every character we
want to encode, that makes for rather verbose files (or strings, or streams). Furthermore,
these verbose files are likely to cause a variety of problems for legacy tools. As a
solution to this, Unicode is itself often encoded using “Unicode Transformation Formats”
(abbreviated as UTF-*). The encodings UTF-8 and UTF-16 use rather clever techniques
to encode characters in a variable number of bytes, but with the most common situation
being the use of just the number of bits indicated in the encoding name. In addition,
the use of specific byte value ranges in multibyte characters is designed in such a way
as to be friendly to existing tools. UTF-32 is also an available encoding, one that simply
uses all four bytes in a fixed-width encoding.

The design of UTF-8 is such that US-ASCII characters are simply encoded as them-
selves. For example, the English letter “e” is encoded as the single byte 0x65 in both
ASCII and in UTF-8. However, the non-English “e-umlaut” diacritic, which is Uni-
code character 0x00EB, is encoded with the two bytes 0xC3 0xAB. In contrast, the
UTF-16 representation of every character is always at least 2 bytes (and sometimes 4
bytes). UTF-16 has the rather straightforward representations of the letters “e” and
“e-umlaut” as 0x65 0x00 and 0xEB 0x00, respectively. So where does the odd value
for the e-umlaut in UTF-8 come from? Here is the trick: No multibyte encoded UTF-8
character is allowed to be in the 7-bit range used by ASCII, to avoid confusion. So the
UTF-8 scheme uses some bit shifting and encodes every Unicode character using up to
6 bytes. But the byte values allowed in each position are arranged in such a manner as
not to allow confusion of byte positions (for example, if you read a file nonsequentially).

Let’s look at another example, just to see it laid out. Here is a simple text string
encoded in several ways. The view presented is similar to what you would see in a
hex-mode file viewer. This way, it is easy to see both a likely on-screen character rep-
resentation (on a legacy, non-Unicode terminal) and a representation of the underlying
hexadecimal values each byte contains:

Hex view of several character string encodings

------------------- Encoding = us-ascii ---------------------------
55 6E 69 63 6F 64 65 20 20 20 20 20 20 20 20 20 | Unicode
------------------- Encoding = utf-8 ------------------------------
55 6E 69 63 6F 64 65 20 20 20 20 20 20 20 20 20 | Unicode
------------------- Encoding = utf-16 -----------------------------
FF FE 55 00 6E 00 69 00 63 00 6F 00 64 00 65 00 | U n i c o d e

“TPiP” — 2006/1/30 — 15:07 — page 468 — #488i
i

i
i

i
i

i
i

468 UNDERSTANDING UNICODE

C.4 Declarations

We have seen how Unicode characters are actually encoded, at least briefly, but how do
applications know to use a particular decoding procedure when Unicode is encountered?
How applications are alerted to a Unicode encoding depends upon the type of data
stream in question.

Normal text files do not have any special header information attached to them to
explicitly specify type. However, some operating systems (like MacOS, OS/2, and
BeOS—Windows and Linux only in a more limited sense) have mechanisms to attach
extended attributes to files; increasingly, MIME header information is stored in such
extended attributes. If this happens to be the case, it is possible to store MIME header
information such as:

Content-Type: text/plain; charset=UTF-8

Nonetheless, having MIME headers attached to files is not a safe, generic assumption.
Fortunately, the actual byte sequences in Unicode files provide a tip to applications.
A Unicode-aware application, absent contrary indication, is supposed to assume that a
given file is encoded with UTF-8. A non-Unicode-aware application reading the same
file will find a file that contains a mixture of ASCII characters and high-bit characters
(for multibyte UTF-8 encodings). All the ASCII-range bytes will have the same values
as if they were ASCII encoded. If any multibyte UTF-8 sequences were used, those will
appear as non-ASCII bytes and should be treated as noncharacter data by the legacy
application. This may result in nonprocessing of those extended characters, but that
is pretty much the best we could expect from a legacy application (that, by definition,
does not know how to deal with the extended characters).

For UTF-16 encoded files, a special convention is followed for the first two bytes of the
file. One of the sequences 0xFF 0xFE or 0xFE 0xFF acts as small headers to the file.
The choice of which header specifies the endianness of a platform’s bytes (most common
platforms are little-endian and will use 0xFF 0xFE). It was decided that the collision risk
of a legacy file beginning with these bytes was small and therefore these could be used
as a reliable indicator for UTF-16 encoding. Within a UTF-16 encoded text file, plain
ASCII characters will appear every other byte, interspersed with 0x00 (null) bytes. Of
course, extended characters will produce non-null bytes and in some cases double-word
(4 byte) representations. But a legacy tool that ignores embedded nulls will wind up
doing the right thing with UTF-16 encoded files, even without knowing about Unicode.

Many communications protocols—and more recent document specifications—allow
for explicit encoding specification. For example, an HTTP daemon application (a Web
server) can return a header such as the following to provide explicit instructions to a
client:

HTTP/1.1 200 OK
Content-Type: text/html; charset:UTF-8;

Similarly, an NNTP, SMTP/POP3 message can carry a similar Content-Type:
header field that makes explicit the encoding to follow (most likely as text/plain
rather than text/html, however; or at least we can hope).

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 469 --- #489i
i

i
i

i
i

i
i

C.5 Finding Codepoints 469

HTML and XML documents can contain tags and declarations to make Unicode
encoding explicit. An HTML document can provide a hint in a META tag, like:

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=UTF-8">

However, a META tag should properly take lower precedence than an HTTP header, in
a situation where both are part of the communication (but for a local HTML file, such
an HTTP header does not exist).

In XML, the actual document declaration should indicate the Unicode encoding, as
in:

<?xml version="1.0" encoding="UTF-8"?>

Other formats and protocols may provide explicit encoding specification by similar
means.

C.5 Finding Codepoints

Each Unicode character is identified by a unique codepoint. You can find information
on character codepoints on official Unicode Web sites, but a quick way to look at visual
forms of characters is by generating an HTML page with charts of Unicode characters.
The script below does this:

mk unicode chart.py

Create an HTML chart of Unicode characters by codepoint
import sys
head = ’<html><head><title>Unicode Code Points</title>\n’ +\

’<META HTTP-EQUIV="Content-Type" ’ +\
’CONTENT="text/html; charset=UTF-8">\n’ +\

’</head><body>\n<h1>Unicode Code Points</h1>’
foot = ’</body></html>’
fp = sys.stdout
fp.write(head)
num_blocks = 32 # Up to 256 in theory, but IE5.5 is flaky
for block in range(0,256*num_blocks,256):

fp.write(’\n\n<h2>Range %5d-%5d</h2>’ % (block,block+256))
start = unichr(block).encode(’utf-16’)
fp.write(’\n<pre> ’)
for col in range(16): fp.write(str(col).ljust(3))
fp.write(’</pre>’)
for offset in range(0,256,16):

fp.write(’\n<pre>’)
fp.write(’+’+str(offset).rjust(3)+’ ’)
line = ’ ’.join([unichr(n+block+offset) for n in range(16)])
fp.write(line.encode(’UTF-8’))

“TPiP” — 2006/1/30 — 15:07 — page 470 — #490i
i

i
i

i
i

i
i

470 UNDERSTANDING UNICODE

fp.write(’</pre>’)
fp.write(foot)
fp.close()

Exactly what you see when looking at the generated HTML page depends on just what
Web browser and OS platform the page is viewed on—as well as on installed fonts and
other factors. Generally, any character that cannot be rendered on the current browser
will appear as some sort of square, dot, or question mark. Anything that is rendered is
generally accurate. Once a character is visually identified, further information can be
generated with the unicodedata module:

>>> import unicodedata
>>> unicodedata.name(unichr(1488))
’HEBREW LETTER ALEF’
>>> unicodedata.category(unichr(1488))
’Lo’
>>> unicodedata.bidirectional(unichr(1488))
’R’

A variant here would be to include the information provided by unicodedata within
a generated HTML chart, although such a listing would be far more verbose than the
example above.

C.6 Resources

More-or-less definitive information on all matters Unicode can be found at:

<http://www.unicode.org/>

The Unicode Consortium:

<http://www.unicode.org/unicode/consortium/consort.html>

Unicode Technical Report #17—Character Encoding Model:

<http://www.unicode.org/unicode/reports/tr17/>

A brief history of ASCII:

<http://www.bobbemer.com/ASCII.HTM>

“TPiP” — 2006/1/30 — 15:07 — page 471 — #491i
i

i
i

i
i

i
i

471

Appendix D

A STATE MACHINE FOR
ADDING MARKUP TO
TEXT

This book was written entirely in plaintext editors, using a set of conventions I call
“smart ASCII.” In spirit and appearance, smart ASCII resembles the informal markup
that has developed on email and Usenet. In fact, I have used an evolving version of
the format for a number of years to produce articles, tutorials, and other documents.
The book required a few additional conventions in the earlier smart ASCII format, but
only a few. It was a toolchain that made almost all the individual typographic and
layout decisions. Of course, that toolchain only came to exist through many hours of
programming and debugging by me and by other developers.

The printed version of this book used tools I wrote in Python to assemble the chapters,
frontmatter, and endmatter, and then to add LATEX markup codes to the text. A
moderate number of custom LATEX macros are included in that markup. From there,
the work of other people lets me convert LATEX source into the PDF format Addison-
Wesley can convert into printed copies.

For information on the smart ASCII format, see the discussions of it in several places
in this book, chiefly in Chapter 4. You may also download the ASCII text of this book
from its Web site at <http://gnosis.cx/TPiP/>, along with a semiformal documen-
tation of the conventions used. Readers might also be interested in a format called
“reStructuredText,” which is similar in spirit, but both somewhat “heavier” and more
formally specified. reStructuredText has a semiofficial status in the Python community
since it is now included in the DocUtils package; for information see:

<http://docutils.sourceforge.net/rst.html>

In this appendix, I include the full source code for an application that can convert the
original text of this book into an HTML document. I believe that this application is
a good demonstration of the design and structure of a realistic text processing tool.

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 472 --- #492i
i

i
i

i
i

i
i

472 A STATE MACHINE FOR ADDING MARKUP TO TEXT

In general structure, book2html.py uses a line-oriented state machine to categorize
lines into appropriate document elements. Under this approach, the “meaning” of a
particular line is, in part, determined by the context of the lines that came immediately
before it. After making decisions on how to categorize each line with a combination of
a state machine and a collection of regular expression patterns, the blocks of document
elements are processed into HTML output. In principle, it would not be difficult to
substitute a different output format; the steps involved are modular.

The Web site for this book has a collection of utilities similar to the one presented.
Over time, I have adapted the skeleton to deal with variations in input and output
formats, but there is overlap between all of them. Using this utility is simply a matter
of typing something like:

% book2html.py "Text Processing in Python" < TPiP.txt > TPiP.html

The title is optional, and you may pipe STDIN and STDOUT as usual. Since the
target is HTML, I decided it would be nice to colorize source code samples. That
capability is in a support module:

colorize.py

#!/usr/bin/python
import keyword, token, tokenize, sys
from cStringIO import StringIO

PLAIN = ’%s’
BOLD = ’%s’
CBOLD = ’%s’
_KEYWORD = token.NT_OFFSET+1
_TEXT = token.NT_OFFSET+2
COLORS = { token.NUMBER: ’black’,

token.OP: ’darkblue’,
token.STRING: ’green’,
tokenize.COMMENT: ’darkred’,
token.NAME: None,
token.ERRORTOKEN: ’red’,
_KEYWORD: ’blue’,
_TEXT: ’black’ }

class ParsePython:
"Colorize python source"
def __init__(self, raw):

self.inp = StringIO(raw.expandtabs(4).strip())
def toHTML(self):

"Parse and send the colored source"
raw = self.inp.getvalue()
self.out = StringIO()

“TPiP” — 2006/1/30 — 15:07 — page 473 — #493i
i

i
i

i
i

i
i

473

self.lines = [0,0] # store line offsets in self.lines
self.lines += [i+1 for i in range(len(raw)) if raw[i]==’\n’]
self.lines += [len(raw)]
self.pos = 0
try:

tokenize.tokenize(self.inp.readline, self)
return self.out.getvalue()

except tokenize.TokenError, ex:
msg,ln = ex[0],ex[1][0]
sys.stderr.write("ERROR: %s %s\n" %

(msg, raw[self.lines[ln]:]))
return raw

def __call__(self,toktype,toktext,(srow,scol),(erow,ecol),line):
"Token handler"
calculate new positions
oldpos = self.pos
newpos = self.lines[srow] + scol
self.pos = newpos + len(toktext)
if toktype in [token.NEWLINE, tokenize.NL]: # handle newlns

self.out.write(’\n’)
return

if newpos > oldpos: # send the orig whitspce, if needed
self.out.write(self.inp.getvalue()[oldpos:newpos])

if toktype in [token.INDENT, token.DEDENT]:
self.pos = newpos # skip indenting tokens
return

if token.LPAR <= toktype and toktype <= token.OP:
toktype = token.OP # map token type to a color group

elif toktype == token.NAME and keyword.iskeyword(toktext):
toktype = _KEYWORD

color = COLORS.get(toktype, COLORS[_TEXT])
if toktext: # send text

txt = Detag(toktext)
if color is None: txt = PLAIN % txt
elif color==’black’: txt = BOLD % txt
else: txt = CBOLD % (color,txt)
self.out.write(txt)

Detag = lambda s: \
s.replace(’&’,’&’).replace(’<’,’<’).replace(’>’,’>’)

if __name__==’__main__’:
parsed = ParsePython(sys.stdin.read())
print ’<pre>’
print parsed.toHTML()
print ’</pre>’

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 474 --- #494i
i

i
i

i
i

i
i

474 A STATE MACHINE FOR ADDING MARKUP TO TEXT

The module colorize contains its own self-test code and is perfectly usable as a utility
on its own. The main module consists of:

book2html.py

#!/usr/bin/python
"""Convert ASCII book source files for HTML presentation"

Usage: python book2html.py [title] < source.txt > target.html
"""
__author__=["David Mertz (mertz@gnosis.cx)",]
__version__="November 2002"

from __future__ import generators
import sys, re, string, time
from colorize import ParsePython
from cgi import escape

#-- Define some HTML boilerplate
html_open =\
"""<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
<head>
<title>%s</title>
<style>

.code-sample {background-color:#EEEEEE; text-align:left;
width:90%%; margin-left:auto; margin-right:auto;}

.module {color : darkblue}

.libfunc {color : darkgreen}
</style>
</head>
<body>
"""
html_title = "Automatically Generated HTML"
html_close = "</body></html>"
code_block = \
"""<table class="code-sample"><tr><td><h4>%s</h4></td></tr>
<tr><td><pre>%s</pre></td></tr>
</table>"""
#-- End of boilerplate

#-- State constants
for s in ("BLANK CHAPTER SECTION SUBSECT SUBSUB MODLINE "

"MODNAME PYSHELL CODESAMP NUMLIST BODY QUOTE "
"SUBBODY TERM DEF RULE VERTSPC").split():

exec "%s = ’%s’" % (s,s)

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 475 --- #495i
i

i
i

i
i

i
i

475

markup = {CHAPTER:’h1’, SECTION:’h2’, SUBSECT:’h3’, SUBSUB:’h4’,
BODY:’p’, QUOTE:’blockquote’, NUMLIST:’blockquote’,
DEF:’blockquote’}

divs = {RULE:’hr’, VERTSPC:’br’}

class Regexen:
def __init__(self):

blank line is empty, spaces/dashes only, or proc instruct
self.blank = re.compile("^[-]*$|^ THIS IS [A-Z]+$")
self.chapter = re.compile("^(CHAPTER|APPENDIX|FRONTMATTER)")
self.section = re.compile("^SECTION")
self.subsect = re.compile("^ (TOPIC|PROBLEM|EXERCISE)")
self.subsub = re.compile("^ [A-Z 0-9-]+:$") # chk befr body
self.modline = re.compile("^ =+$")
self.pyshell = re.compile("^ +>>>")
self.codesamp = re.compile("^ +#[*]?[-=]+ .+ [-=]+#")
self.numlist = re.compile("^ \d+[.] ") # chk befr body
self.body = re.compile("^ \S") # 2 spc indent
self.quote = re.compile("^ ?\S") # 4-5 spc indnt
self.subbody = re.compile("^ +") # 6+ spc indent
self.rule = re.compile("^ (-*-|!!!)$")
self.vertspc = re.compile("^ \+\+\+$")

def Make_Blocks(fpin=sys.stdin, r=Regexen()):
#-- Initialize the globals
global state, blocks, laststate
state, laststate = BLANK, BLANK
blocks = [[BLANK]]
#-- Break the file into relevant chunks
for line in fpin.xreadlines():

line = line.rstrip() # Normalize line endings
#-- for "one-line states" just act (no accumulation)
if r.blank.match(line):

if inState(PYSHELL): newState(laststate)
else: blocks[-1].append("")

elif r.rule.match(line): newState(RULE)
elif r.vertspc.match(line): newState(VERTSPC)
elif r.chapter.match(line): newState(CHAPTER)
elif r.section.match(line): newState(SECTION)
elif r.subsect.match(line): newState(SUBSECT)
elif r.subsub.match(line): newState(SUBSUB)
elif r.modline.match(line): newState(MODLINE)
elif r.numlist.match(line): newState(NUMLIST)
elif r.pyshell.match(line):

if not inState(PYSHELL): newState(PYSHELL)
elif r.codesamp.match(line): newState(CODESAMP)

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 476 --- #496i
i

i
i

i
i

i
i

476 A STATE MACHINE FOR ADDING MARKUP TO TEXT

#-- now the multi-line states that are self-defining
elif r.body.match(line):

if not inState(BODY): newState(BODY)
elif r.quote.match(line):

if inState(MODLINE): newState(MODNAME)
elif r.blank.match(line): newState(BLANK)
elif not inState(QUOTE): newState(QUOTE)

#-- now the "multi-line states" which eat further lines
elif inState(MODLINE, PYSHELL, CODESAMP, NUMLIST, DEF):

"stay in this state until we get a blank line"
"...or other one-line prior type, but shouldn’t happen"

elif r.subbody.match(line):
"Sub-body is tricky: it might belong with several states:"
"PYSHELL, CODESAMP, NUMLIST, or as a def after BODY"
if inState(BODY): newState(DEF)
elif inState(BLANK):

if laststate==DEF: pass
elif inState(DEF, CODESAMP, PYSHELL, NUMLIST, MODNAME):

pass
else:

raise ValueError, \
"unexpected input block state: %s\n%s" %(state,line)

if inState(MODLINE, RULE, VERTSPC): pass
elif r.blank.match(line): pass
else: blocks[-1].append(line)

return LookBack(blocks)

def LookBack(blocks):
types = [f[0] for f in blocks]
for i in range(len(types)-1):

this, next = types[i:i+2]
if (this,next)==(BODY,DEF):

blocks[i][0] = TERM
return blocks

def newState(name):
global state, laststate, blocks
if name not in (BLANK, MODLINE):

blocks.append([name])
laststate = state
state = name

def inState(*names):
return state in names

def Process_Blocks(blocks, fpout=sys.stdout, title=html_title):

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 477 --- #497i
i

i
i

i
i

i
i

477

fpout.write(html_open % title)
for block in blocks: # Massage each block as needed

typ, lines = block[0], block[1:]
tag = markup.get(typ, None)
div = divs.get(typ, None)
if tag is not None:

map(fpout.write, wrap_html(lines, tag))
elif div is not None:

fpout.write(’<%s />\n’ % div)
elif typ in (PYSHELL, CODESAMP):

fpout.write(fixcode(’\n’.join(lines),style=typ))
elif typ in (MODNAME,):

mod = ’<hr/><h3 class="module">%s</h3>’%’\n’.join(lines)
fpout.write(mod)

elif typ in (TERM,):
terms = ’
\n’.join(lines)
fpout.write(’<h4 class="libfunc">%s</h4>\n’ % terms)

else:
sys.stderr.write(typ+’\n’)

fpout.write(html_close)

#-- Functions for start of block-type state
def wrap_html(lines, tag):

txt = ’\n’.join(lines)
for para in txt.split(’\n\n’):

if para: yield ’<%s>%s</%s>\n’ %\
(tag,URLify(Typography(escape(para))),tag)

def fixcode(block, style=CODESAMP):
block = LeftMargin(block) # Move to left
Pull out title if available
title = ’Code Sample’
if style==CODESAMP:

re_title = re.compile(’^#*?\-+ (.+) \-+#$’, re.M)
if_title = re_title.match(block)
if if_title:

title = if_title.group(1)
block = re_title.sub(’’, block) # take title out of code

Decide if it is Python code
firstline = block[:block.find(’\n’)]
if re.search(r’\.py_?|[Pp]ython|>>>’, title+firstline):

Has .py, py_, Python/python, or >>> on first line/title
block = ParsePython(block.rstrip()).toHTML()
return code_block % (Typography(title), block)

elif the-will-and-the-way-is-there-to-format-language-X: ...
else:

‘‘TPiP’’ --- 2006/1/30 --- 15:07 --- page 478 --- #498i
i

i
i

i
i

i
i

478 A STATE MACHINE FOR ADDING MARKUP TO TEXT

return code_block % (Typography(title), escape(block).strip())

def LeftMargin(txt):
"Remove as many leading spaces as possible from whole block"
for l in range(12,-1,-1):

re_lead = ’(?sm)’+’ ’*l+’\S’
if re.match(re_lead, txt): break

txt = re.sub(’(?sm)^’+’ ’*l, ’’, txt)
return txt

def URLify(txt):
Conv special IMG URL’s: Alt Text: http://site.org/img.png}
(don’t actually try quite as hard to validate URL though)
txt = re.sub(’(?sm){(.*?):\s*(http://.*)}’,

’’, txt)
Convert regular URL’s
txt = re.sub(’(?:[^="])((?:http|ftp|file)://(?:[^ \n\r<\)]+))(\s)’,

’\\1\\2’, txt)
return txt

def Typography(txt):
rc = re.compile # cut down line length
MS = re.M | re.S
[module] names
r = rc(r"""([\(\s’/">]|^)\[(.*?)\]([<\s\.\),:;’"?!/-])""", MS)
txt = r.sub(’\\1<i class="module">\\2</i>\\3’,txt)
strongly emphasize words
r = rc(r"""([\(\s’/"]|^)*(.*?)*([\s\.\),:;’"?!/-])""", MS)
txt = r.sub(’\\1\\2\\3’, txt)
-emphasize- words
r = rc(r"""([\(\s’/"]|^)-(.+?)-([\s\.\),:;’"?!/])""", MS)
txt = r.sub(’\\1\\2\\3’, txt)
Book Title citations
r = rc(r"""([\(\s’/"]|^)_(.*?)_([\s\.\),:;’"?!/-])""", MS)
txt = r.sub(’\\1<cite>\\2</cite>\\3’, txt)
’Function()’ names
r = rc(r"""([\(\s/"]|^)’(.*?)’([\s\.\),:;"?!/-])""", MS)
txt = r.sub("\\1<code>\\2</code>\\3", txt)
‘library.func()‘ names
r = rc(r"""([\(\s/"]|^)‘(.*?)‘([\s\.\),:;"?!/-])""", MS)
txt = r.sub(’\\1<i class="libfunc">\\2</i>\\3’, txt)
return txt

if __name__ == ’__main__’:
blocks = Make_Blocks()
if len(sys.argv) > 1:

“TPiP” — 2006/1/30 — 15:07 — page 479 — #499i
i

i
i

i
i

i
i

479

Process_Blocks(blocks, title=sys.argv[1])
else:

Process_Blocks(blocks)

“TPiP” — 2006/1/30 — 15:07 — page 480 — #500i
i

i
i

i
i

i
i

“TPiP” — 2006/1/30 — 15:07 — page 481 — #501i
i

i
i

i
i

i
i

481

Appendix E

GLOSSARY

Asymmetrical Encryption:

Encryption using a pair of keys—the first encrypts a message that the second de-
crypts. In the most common protocol, the decryption key is kept secret but the
encryption key may be widely revealed. For example, you might publish your
encryption—or “public”—key, which lets anyone encrypt a message that only you
can decrypt. The person who first creates the message, of course, has initial access
to it, but any third-party without the decryption—or “private”—key cannot access
the message. See Section 2.2.4 for a discussion of cryptographic capabilities.

Big-O Notation, Complexity:

Big-O notation is a way of describing the governing asymptotic complexity of an
algorithm. Often such complexity is described using a capital “O” with an expression
on “n” following in parentheses. Textbooks often use a bold letter or a special
typeface for the “O”. The “O” is originally associated with “order” of complexity.

The insight behind big-O notation is that many problems require a calculation time
that can be expressed as a formula involving the size of the data set or domain
at issue. For the most important complexity orders, constant startup times and
even speed multipliers are overpowered by the underlying complexity. For example,
suppose that you have an algorithm that takes 100 seconds to initialize some data
structures and 10*(Nˆ2) seconds to perform the main calculation. If you have N=4
objects, the total runtime will be 260 seconds; saving that 100 seconds initialization
might seem worthwhile, if possible. However, if you also need to deal with N=10
objects, you are looking at 1,100 seconds in total, and the initialization is a minor
component. Moreover, you might think it significant to go from 10*(Nˆ2) seconds
to only 2*(Nˆ2) seconds—say, by using a faster CPU or programming language.
Once you consider the 100,100 seconds it will take to calculate for N=100, even the
multiplier is not all that important. In particular if you had a better algorithm that
took, for example, 50*N seconds (bigger multiplier), you would be a lot better off
only needing 50,000 seconds.

“TPiP” — 2006/1/30 — 15:07 — page 482 — #502i
i

i
i

i
i

i
i

482 GLOSSARY

In noting complexity orders, constants and multipliers are conventionally omitted,
leaving only the dominant factor. Compexities one often sees are:

O(1) constant
O(log(n)) logarithmic
O((log(n))^c) polylogarithmic
O(n) linear
O(n*log(n)) frequent in sorts and other problems
O(n^2) quadratic
O(n^c) polynomial
O(c^n) exponential (super-polynomial)

Birthday Paradox:

The name “birthday paradox” comes from the fact—surprising to many people—
that in a room with just 23 people there is a 50 percent chance of two of them
sharing a birthday. A naive hunch is often that, since there are 365 days, it should
instead take something like 180 people to reach this likelihood.

In a broader sense the probability of collision of two events, where N outcomes are
possible, reaches 50 percent when approximately sqrt(N) items are collected. This
is a concern when you want hashes, random selections, and the like to consist of
only distinct values.

Cryptographic Hash:

A hash with a strong enough noncollision property that a tamperer cannot produce
a false message yielding the same hash as does an authentic message. See Section
2.2.4 for a discussion of cryptographic capabilities.

Cyclic Redundancy Check (CRC32):

See Hash. Based on mod 2 polynomial operations, CRC32 produces a 32-bit “fin-
gerprint” of a set of data.

Digital Signatures:

A means of proving the authenticity of a message. As with asymmetric encryption,
digital signatures involve two keys. The signing key is kept secret, but a published
validation key can be used to show that the owner of the signing key used it to
authenticate a message. See Section 2.2.4 for a discussion of cryptographic capabil-
ities.

Hash:

A short value that is used as a “fingerprint” of a larger collection of data. It should
be unlikely that two data sets will yield the same hash value. Hashes can be used
to check for data errors, by comparing data to an indicated hash value (mismatch
suggests data error). Some hashes have sufficient noncollision properties to be used
cryptographically.

“TPiP” — 2006/1/30 — 15:07 — page 483 — #503i
i

i
i

i
i

i
i

483

Idempotent Function:

The property that applying a function to its return value returns an identical value.
That is, if and only if F is idempotent then F(x)==F(F(x)), for every x. In a nod
to Chaos Theory, we can observe that if some function defined by finite repetitions
of composition with F is idempotent, then F has an attractor—that is, if G is
idempotent for G=lambda x:F(F(F((x)...))). This interesting fact is completely
unnecessary to understand the rest of this book.

Immutable:

Literally, “cannot be changed.” Some data collection objects—notably tuples and
strings, in Python—consist of a set of items, and the membership cannot change
over the life of the object. In contrast, mutable objects like lists and dictionaries
can continue to be the same object, while changing their membership. Since you
generally access objects in Python via names (and index positions), it is sometimes
easy to confuse the mere name—which can be used at different times to point to
different objects—with the underlying objects. For example, a pattern with tuples
like the one below is common:

>>> tup = (1,2,3)
>>> id(tup)
248684
>>> tup = tup+(4,5,6)
>>> tup
(1, 2, 3, 4, 5, 6)
>>> id(tup)
912076

Even though the name tup is re-bound during the run, the identity of the bound
object changes. Moreover, creating a tuple with the same objects later produces the
same identity:

>>> tup2 = (1,2,3)
>>> id(tup2)
248684

Immutable objects are particularly useful as dictionary keys, since they will con-
tinue to hash the same way over program run. However, “hashability” is a stricter
constraint than immutability—it is necessary that every member of an immutable
object itself be (recursively) immutable in order to be hashable.

Mutable:

Literally, “can be changed.” Data collection objects like lists, dictionaries, and
arrays from the array module are mutable. The identity of these objects stays
the same, even as their membership changes. Mutable objects are not (usually)

“TPiP” — 2006/1/30 — 15:07 — page 484 — #504i
i

i
i

i
i

i
i

484 GLOSSARY

suitable as dictionary keys, however. Conceptually, lists are often used to hold
records of a data collection, where tuples are used to hold fields within a record.
The insight underlying this distinction is that if a record contained different field
data, it would not be the same record. But individual self-identical records can be
added or subtracted from a collection, depending on outside events and purposes.

Public-key Encryption:

See Assymmetrical Encryption.

Referential Transparency:

The property of a function or block construct such that it will produce the same
value every time it is called with the same arguments. Mathematical functions are
referentially transparent, by definition, but functions whose results depend on global
state, external context, or local mutable values are referentially opaque.

Shared-key Encryption:

See Symmetrical Encryption.

Structured Text Database:

A text file that is used to encode multiple records of data, each record composed of
the same fields. Records and fields are also often called rows and columns, respec-
tively. A structured text database might be any textual format that contains little
or no explicit markup; the most common variants are delimited files and fixed-width
files, both widely used on mainframes and elsewhere. Most of the time, structured
text databases are line oriented, with one conceptual record per line; but at times,
devices like indentation are used to indicate dependent subrecords.

Symmetrical Encryption:

Encryption using a single “key” that must be shared between parties. See Section
2.2.4 for a discussion of cryptographic capabilities.

“TPiP” — 2006/1/30 — 15:07 — page 485 — #505i
i

i
i

i
i

i
i

485

Appendix F

INDEX

