
Distributing Computing
Cooperative Computing with Mobile Agents
Boudewijn Rempt <boud@valdyas.org>
David Mertz, Ph.D. <mertz@gnosis.cx>
July 2002

Like a number of technologies, agents have suffered the burden of too much good press.
In the business press, one sometimes encounters an ebullient vision of future software
agents that can handle your personal affairs for you--everything from shopping for you,
to fixing your computer, to planning your schedule. Despite the sci-fi appeal of such
clever programs, that is not what agents actually do (at least not now). Instead, agents are
really just a strategy and some protocols for distributing computer resources (CPU cycles,
disk space, database connections, user I/O, etc)--much like other technologies this
column has touched on, albeit with a somewhat different emphasis. For this installment,
David Mertz has invited Boudewijn Rempt to share his expertise in agents, gleaned as a
developer for Tryllian's Agent Developer Kit.

About This Series
In the ebbing paradigm of stand-alone personal computing, a user's workstation comprises a
collection of resources that are needed to run an application: disk storage for programs and data;
a CPU; volatile memory; a video display monitor; a keyboard and pointing device; perhaps
peripheral I/O devices like printers, scanners, sound systems, modems, game inputs, and so on.
Even since the 1980s, it has been common for such personal computers to also have network
capabilities, but a network card has largely been just another sort of I/O device in the
"traditional" paradigm.

"Distributed computing" is a buzz-phrase that has something to do with providing more diverse
relationships between computing resources and actual computers. Different resources can enter
into different sorts of relationships. The protocols and programs that distribute what were
basically hardware resources of PC applications make up only part of the distributed computing
picture. At a more abstract level some much more interesting things can be distributed: data;
information; program logic; objects. In the end, however, what is ultimately shared between
distributed computers are sets of responsibilities. One computer promises another that under
certain circumstances it will send some bits that meet certain specifications over a channel.
These promises or contracts are rarely firstly about particular configurations of hardware, but are
almost always about satisfying functional requirements of the recipients.

This column examines the requirements and responsibilities of computers, in practical scenarios.
Each installment will discuss specific technologies as ways of getting groups of computers to do
what is mutually asked of them.

Introduction to Agents
For the last decade a buzz has surrounded the advent of ubiquitous mobile agents. These smart
software components would travel from computer to computer, autonomously performing useful
work for their masters. This idea has an understandable fascination to it, but actual agent
applications have been rather less impressive. The so-called agents in a product like Tivoli, for
example, fall short of popular imagination--they are neither intelligent nor autonomous, and not
very mobile either. The fault here is not with existing software applications, but with
misconceptions about what software can really do (at least currently). A better way to
understand agent software is as simply another strategy for distributing computing resources, not
so much different in kind from technologies this column has discussed previously.

You can develop real agent-based software today, and there are already good reasons to do so.
We expect that over time, more applications of mobile agents will arise. There are numerous
projects that have created agent development toolkits, and even a few companies. Co-author
Boudewijn Rempt works for one of those: Tryllian, and it is the Tryllian toolkit that he has
worked on for the past three years that we shall use for the examples in this article. You can
download the toolkit from <http://develop.tryllian.com>. Non-commercial use is free.

A piece of software can be called an agent if it can perform a task with a measure of
independence and intelligence. A mobile agent must be able to travel from one system to
another, taking with it all its data. In terms of mobility--but not really intelligence--the
InsecureAgent example that was presented in this column's second installment on Python Remote
Objects (Pyro) is a good example. Pyro is software for distributing objects rather than agents,
but the distinction is drawn in shades of gray. In the Pyro InsecureAgent system, the server
contained a callable .runtask() method that accepted an object as an argument, and called
the .run() method of the passed object. It is not hard to imagine this arrangement extended
such that every node on a network of machines ran such an InsecureAgent server--nor would it
be at all difficult to program such an arrangement in Pyro.

The problem with a simplistic extension of our earlier InsecureAgent example is that it unsafe to
allow foreign code to run on your computers. The difference between an agent and a virus is
small; and Pyro provides only basic hooks for validation of remote code, not a fine-grained
system. Mobile code needs to be executed in a safe environment--an agent runtime environment.

Under a proper design, whenever an agent wants to execute a certain action, the runtime
environment checks whether that action is allowed. For example, if an agent is too resource
intensive, then the environment will reschedule it with a different priority. Tryllian's ADK uses
the Java virtual machine as the basic sandbox, and extends the existing Java security mechanism
with custom classloaders, security policies and a restrictive scheduler. Narval uses Python's
facilities to achieve a similar result.

As a rule, agents are quite autonomous, and all cooperation between agents is achieved using
asynchronous messaging. Thereby, agents are very loosely coupled. This offers great advantages

when upgrading a component, for instance. If a certain computation intensive task is distributed
over agents, it is easy to add more agents if more performance is needed. If a certain host is
getting too crowded, agents can move to other hosts on their own initiative, and continue
cooperating with their peers on the other host.

Agent applications, especially those that allow self-directed relocation of agents, can be fine-
grained and location transparent. The most common term for applications like these is a swarm.
Grasshopper, an agent system that appears no longer to be under active development, was
designed for this kind of application. Links to a number of Agent Construction Kits can be
found at: <http://www.ece.arizona.edu/~rinda/compareagents.html>

Adding Intelligence
A later installment of this column plans to look at the Narval (Network Assistant Reasoning with
a Validating Agent Language) project, but it is worth pointing to the project here. Narval is less
dedicated to the security and sandbox issues that Tryllian's ADK address, and more concerned
with the reasoning aspects of an agent. If agents are to become significantly more common, both
elements will need to be refined and developed.

In our opinion, Narval's documentation somewhat overstates its purpose--a claim is made that it
is a system that allows non-technical users to quickly configure personal assistants that will
achieve goals on behalf of their users. We agree that Narval allows creation of such
assistants/agents, but author David Mertz (who is--in all modestly--rather technically educated,
as users go), fully expects to spend a good number of hours in research and development before
he can produce any useful agents with Narval.

Caveats aside, programming Narval is quite different from traditional programming styles.
Aside from a graphic interface for development--shared by some IDEs in traditional languages,
like Visual Basic or Delphi--Narval also requires a different way of thinking. Instead of writing
single line commands and calls in a language, one assembles steps into recipes. Steps are
themselves fairly high-level collections of programmatic action, but so might be calls to library
functions. The intelligence in Narval comes out of the way steps are arranged to form recipes.
One step can lead to multiple others, and a step can depend upon others either as a requirement
or an option. Exactly what information needs to be determined where, and what step can
proceed under what circumstances, is not something a Narval developer explicitly programs.
Instead, she simply connects some graphical lines to show the inputs and outputs of various steps
(Narval comes with a large standard collection of steps/actions). Dependencies and sequences
are resolved and performed by the underlying Narval system.

A nice example of Narval's use is discussed in Nicolas Chauvat's article, How the French Linux
Gazette is Built. Chauvat had at one time manually coordinated translation and publication of
the mentioned journal, then decided to get an agent to do much of the work for him. His Narval
application contains a number of rules that relate when articles are available, who has
volunteered to perform translation or editing, when deadlines have passed, the past timeliness of

contributors, when to actually publish a translation, and a variety of other issues. Basically, all
of these tasks are matters of sending and receiving emails, and uploading, moving, and archiving
various files. A lot of busy work, but work requiring judgements and knowledge along the way.
One could program such a system in a traditional programming language, but Narval allows a
developer like Chauvat to do less programming, and instead simply specify the rules to an
intelligent agent. And it works.

Applying Agents
A traditional example of an agent application is a personal assistant that crawls a network of
agent runtime environments in order to perform a specific task for its owner. Such an assistant
agent might retrieve and match information, or convey sensitive information to another machine.
Communication between runtime environments can be--at least with Tryllian's ADK--secure:
authenticated and encrypted.

Taking advantage of a security model like that in Tryllian's ADK, agents can be constructed that
will not deliver their payload unless they are properly accessed. Despite the author's misgivings
about the diminution of fair use traditions, such controlled access can--and will--be applied in
digital rights management.

Agent Platforms
A platform that executes many--possibly tens of thousands--agents on a host is, to all intents and
purposes, a special kind of operating system. Running another operating system--i.e. an agent
environment--on top of your regular operating system generally requires substantial hardware
resources. These requirements are, we believe, a significant reason why existing, agent
applications have not caught on yet, despite their potential utility. A personal assistant that takes
over your whole computer is too intrusive for comfort.

Any distributed application is more useful if it can access many platforms; agent environments
are no exception to that rule. Most agent environments, including Tryllian's ADK, are written in
Java. But much exciting work is being done with Python too: Narval was mentioned, Rover is
another. In a Python context, Stackless Python lets you run a huge number of agents, because
microthreads are so lightweight that it is possible to give every executing agent one or more
(micro)threads--this approach is potentially more versatile than Java's threading (or than standard
Python threading too). Although we do not know of any system that has implemented it, the
suggestions that co-author David Mertz makes for using Python 2.2+ generators to implement
weightless threads might provide another approach in standard Python to support sufficient
threading for large agent environments.

Without microthreads, a platform that wants to be able to host a decent numbers of agents--as in
tens of thousands--needs to implement its own scheduler. It is clearly impossible with the current
state of hardware to run that many full-blown threads, even on a multi-processor machine. Our
experience is that five hundred full-thread agents per processor are an approximate limit,
regardless which OS platform is chosen on currently available IA32 architectures.

If agent environments are to run on every platform needed, the agents themselves cannot usually
be coded in just any language. Usually, the choice of programming languages must be the
language the runtime environment is written in. If that language is Java, then it is possible to
create agents written in JVM-targeting languages like Jython or NetRexx. In such a case, either
each supported platform needs to have the relevant byte-code compiler/library installed, or the
agents have to lug the runtime jars with them when traveling to another environment. If
Microsoft's .NET environment/virtual-machine becomes sufficiently rich, agent platforms
targeted to .NET will probably emerge (thereby supporting whatever platforms .NET supports).
Presumably, such a hypothetical agent environment would allow programming agents in any
language with a .NET version. For now, however, Java/JVM and Python appear to be the most
widely targeted languages/environments for agent development.

Tasks and Messages
How you should go about creating agents and deploying them is very dependent upon your
choice of environment. Below, we use Tryllian's ADK. This kit bases agent libraries around the
two concepts of tasks and messages. The latter is common; the former is unique to the ADK.

Let us begin with the concept of messages. A standards body, FIPA (Foundation for Intelligent
Physical Agents), exists, that regulates the way agents should talk to each other. In theory, agents
from different environment should be able to exchange messages using this standard. In reality,
this does not work. Agents send and receive messages; when they receive messages, they are
allowed to execute code in reaction to that message, for instance to answer it:

Excerpt from ReceiveGreetingTask.java
public class ReceiveGreetingTask
 extends ReactiveTask
 implements MessageHandler {
 private DefaultMessageFilter greetingFilter;
 public ReceiveGreetingTask() {

 // Create filter for messages of type
 // (inform :content(example-message, ...))
 greetingFilter = new DefaultMessageFilter();
 greetingFilter.setPerformative(Performatives.INFORM);
 greetingFilter.setSubject("greeting");
 }
...
public void handleMessage(IncomingMessage message) {
 if (isGreetingMessage(message)) {

 // Get greeting text

 String greeting = extractGreeting(message);
 // Print text
 System.out.println("[Receiving Agent] Message received from "
 + extractSenderName(message));
 System.out.println("[Receiving Agent] It says: '"
 + greeting + "'");
 System.out.flush();
 }
 }

Agents cannot share objects with each other. Even when agents reside in the same runtime
environment, all communication between agents is done with messages. Communication
between environments is handled by JXTA.

Tasks are an abstraction at an even higher level than class in object-oriented programming. A
task is something the agent wants to perform, for instance finding out what environments are
available to him. Agents can group and order tasks, creating a high-level flow diagram. The
ADK developer can use a GUI tool to do this:

The Visual Agent Designer

But it is equally easy for a code-oriented developer to create her own tasks and put them in order,
for instance in this example of an iterator:

Excerpt from IteratorAgent.java
TaskScheduler scheduler = new TaskScheduler();
scheduler.addTask(init, iterator);
scheduler.addTask(iterator, logwriter, done);
scheduler.addTask(logwriter, iterator, null);
scheduler.addTask(done);

addTask(scheduler);

An ADK Example
To follow this example, it is best to download the ADK and install it. Agents don't live in a
vacuum. With the ADK it's possible to directly access web services like UDDI. In the following
example, we create an agent that consults an UDDI directory.

Tryllian has created a number of tasks that help with the use of UDDI. These need to be
imported, of course:

import tryllian.webservices.registry.UDDIWhitePagesSearchTask;
import tryllian.webservices.registry.UDDIYellowPagesSearchTask;
import tryllian.webservices.registry.UDDIRetrieveWebServicesTask;
import tryllian.webservices.registry.UDDIRetrieveAccessPointTask;

The agent will be transient; meaning that it won't be stored in a datastorage between invocations
of the runtime:

public class TestUDDITaskAgent
 extends tryllian.afc.agent.Agent
 implements tryllian.are.TransientAgent {

Creating an agent is not rocket science:
/** Agent class constructor. */
public TestUDDITaskAgent(){
 super();
}

The first task is started, when the runtime environment starts the agent:
/** Mandatory test method */
public void agentStarted() {
 Task test = new InnerTest();
 System.out.println("\n TestUDDITaskAgent started.");
 addTask(test);
}

Using UDDI requires the use of several special tasks, combined is the InnerTest task, which
implements the TaskListener interface:

/**
 * A task that the TestUDDITaskAgent performs.
 */

public class InnerTest extends DefaultTask implements TaskListener {
 private UDDIWhitePagesSearchTask whiteuddiTask
 = new UDDIWhitePagesSearchTask();
 private UDDIYellowPagesSearchTask yellowuddiTask
 = new UDDIYellowPagesSearchTask();
 private UDDIRetrieveWebServicesTask retrieveServicesTask
 = new UDDIRetrieveWebServicesTask();
 private UDDIRetrieveAccessPointTask accesspointTask
 = new UDDIRetrieveAccessPointTask();

Every task has a taskStarted method. This method is called when the runtime environment
schedules the task for execution. We start a whiteuddiTask to perform the actual search:

/**
 * Sets parameters and adds the UDDIWhitePagesSearchTask.
 */
public void taskStarted() {
 // test something here
 System.out.println();
 System.out.println("\n Starting White Pages Search.");
 whiteuddiTask.setNameSearched(BUSINESS_NAME);
 whiteuddiTask.setUDDIInquiryURL(UDDI_LOCATION);
 whiteuddiTask.addTaskListener(this);
 this.addTask(whiteuddiTask);
}

When the subtask is finished, taskEnded is called. Here, we handle the results in various
complicated ways, and then succeed. You can see from this example that you can start new
subtasks from taskEnded; and if we give the InnerTest task as the taskListener for those
subTasks, this taskEnded will be called again when a new subtask ends.

/**
 * After the UDDIWhitePagesSearchTask is finished,
 * schedules the rest of UDDI tasks.
 */
public void taskEnded(TaskEvent e) {
 // Handle UDDIWhiteSearchTask results
 if (e.getSource() == whiteuddiTask) {
 // expect at least one result (because we added it manually -
 // hopefully it stays there for ever)
 List blist =
 whiteuddiTask.getBusinessesInfosKeys(
 whiteuddiTask.getBusinessInfos());
 boolean hasResult = blist.size() > 0;
 if (hasResult) {
 System.out.println(
 "[WhitePagesSearch]: »+
 »the keylist of found business entities: ");
 for (int i=0; i<blist.size();i++) {
 System.err.println(blist.get(i));
 }
 BusinessInfo firstbusiness =
 whiteuddiTask.getFirstBusinessInfo();
 System.err.println("[WhitePagesSearch]: »+
 »the first business found: "+
 firstbusiness.getNameString());
 // check if we found the correct business.
 if (!REGISTERED_BUSINESSNAME.equals(
 firstbusiness.getNameString())) {

 System.err.println("WARNING: found business name»+
 »is different than expected.");
 System.err.println(
 "Expected: "+REGISTERED_BUSINESSNAME);
 }
 // store the key for the later test(s)
 REGISTERED_BUSINESS_KEY = firstbusiness.getBusinessKey();

 // Continue with a test of the Yellow Search task.
 // init the yellowservice task
 this.yellowuddiTask.setUDDIInquiryURL(
 "http://www3.ibm.com/services/uddi/testregistry/inquiryapi");
 // set the category to search for. These are examples of
 // searching for certaisn categores of businesses
 //task.addCategoryNAISC("513000");
 //task.addCategoryUNSPSCv7_3("78.10.15.01.00");

 // search for a company located in NL,
 // using the ISO standards
 // http://www.uddi.org/taxonomies/iso3166-1999-utf8.txt
 this.yellowuddiTask.addCategoryISO3166("NL");
 this.yellowuddiTask.addTaskListener(this);
 this.addTask(this.yellowuddiTask);
 System.err.println("\n Starting Yellow Pages Search.");
 } else {
 System.err.println(
 "Could not find any businesses matching "+
 BUSINESS_NAME+" at "+UDDI_LOCATION);
 }
 }
 // Handle UDDIYellowSearchTask results
 if (e.getSource() == this.yellowuddiTask) {
 // expect at least one result, that is why we use a category
 // that should never be empty.
 List blist =
 this.yellowuddiTask.
 getBusinessesInfosKeys(
 this.yellowuddiTask.getBusinessInfos());
 boolean hasResult = blist.size() > 0;

 if (hasResult) {
 BusinessInfo firstbusiness =
 this.yellowuddiTask.getFirstBusinessInfo();
 System.err.println(
 "[Yellow Pages Search]: the first business found: "
 +firstbusiness.getNameString());

 System.err.println(
 "[Yellow Pages Search]: business keys list found: ");
 System.err.println(blist.toString());

 // This test looks of a service from a known business
 // and service. The business key has been found before
 // using white search task.
 retrieveServicesTask.addTaskListener(this);
 retrieveServicesTask.setBusinessInfoKey(
 REGISTERED_BUSINESS_KEY
);
 retrieveServicesTask.setUDDIInquiryURL(UDDI_LOCATION);
 retrieveServicesTask.addServiceNameToSearchKeys(

 REGISTERED_SERVICENAME);

 System.err.println(
 "\n Starting the UDDIRetrieveWebServicesTask.");
 System.err.println(
 "[RetrieveWebServices]: Looking for a service named: "
 + REGISTERED_SERVICENAME);
 System.err.println("belonging to a business named " +
 REGISTERED_BUSINESSNAME);
 System.err.println("In case this test fails, first check"+
 "whether mentioned entries still exist on the UDDI»+
 » server at "+UDDI_LOCATION);
 this.addTask(retrieveServicesTask);
 }
 }
 // Handle the UDDIRetrieveWebServicesTask
 if (e.getSource() == retrieveServicesTask) {
 ServiceInfos sinfos =
 retrieveServicesTask.getServiceInfoList();
 int servicelistsize = 0 ;

 if (sinfos!=null){
 servicelistsize =
 sinfos.getServiceInfoVector().size();
 }
 if (servicelistsize<=0) {
 System.err.println(
 "[RetrieveWebServices]: could not find»+
 » services for the given business.");
 }
 ServiceInfo serviceinfo =
 retrieveServicesTask.getFirstServiceInfo();
 if (serviceinfo!=null) {
 System.err.println(
 "[RetrieveWebServices]: found a service with name : \n"
 +serviceinfo.getNameString());

 System.err.println("[RetrieveWebServices]: UDDI »+
 »Business key of the business is:\n"+
 serviceinfo.getBusinessKey());
 System.err.println("[RetrieveWebServices]: UDDI »+
 »Service key of the service is:\n"+
 serviceinfo.getServiceKey());

 // start a Access point Retrieval task.
 this.accesspointTask.addTaskListener(this);
 // add service info key of accesspoint to find
 this.accesspointTask.setServiceInfoKey(
 serviceinfo.getServiceKey()
);

 this.accesspointTask.setUDDIInquiryURL(UDDI_LOCATION);
 this.addTask(accesspointTask);
 System.err.println(
 "\n Starting UDDIRetrieveAccessPointTask.");
 } else {
 System.err.println(
 "[RetrieveWebServices]: could not find any "+
 " ServiceInfo for the given business");
 }

 }
 if (e.getSource() == this.accesspointTask) {
 ServiceDetail sDetail =
 this.accesspointTask.getServiceDetail();
 if (sDetail==null){
 System.err.println(
 "[RetrieveAccessPoint]: did not get a "+
 "ServiceDetail for key" +
 accesspointTask.getServiceInfo().
 getServiceKey());
 return;
 }
 System.err.println(
 "[RetrieveAccessPoint]: Business Services Vector is");
 Iterator i = sDetail.getBusinessServiceVector().iterator();

 while (i.hasNext()){
 BusinessService item =(BusinessService) i.next();
 System.err.println(item.getDefaultNameString());
 }
 BusinessService firstService =
 this.accesspointTask.getFirstBusinessService();
 if (firstService !=null){
 System.err.println(
 "[RetrieveAccessPoint]: first Business Service name - " +
 firstService.getDefaultNameString());
 System.err.println(
 "[RetrieveAccessPoint]: first Business Service "+
 "description - "+
 firstService.getDefaultDescriptionString());
 };
 AccessPoint accesspoint =
 this.accesspointTask.getFirstAccessPoint();
 if (accesspoint!=null) {
 System.err.println(
 "[RetrieveAccessPoint]: accespoint URL "+
 this.accesspointTask.
 getFirstAccessPointURLString());
 System.err.println(
 "[RetrieveAccessPoint]: accespoint type " +
 accesspoint.getURLType());
 } else {
 System.err.println(
 "[RetrieveAccessPoint]: found no accesspoint.");
 }

 // all tests performed, end this task by succeeding.
 succeed();
 }// if
 }
}
}

Agents in the real world
Creating an application with agents can be much easier than coding everything manually,
because agents are very high level components. For instance, Global ID's has used Tryllian's
ADK to create a distributed application that ties together databases from many sources. This

application first discovers database hosts, then remotely installs an agent environment. Queries
over multiple databases are executed by a traveling agent.

Telefuture, a Dutch telephone applications company, has created a dating application. Every
hopeful teenager, who uses this application, receives his or her own agent, and those agents try to
make a match for their owners. The agents themselves are controlled using SMS messaging. This
brings us back to where we started: agents as personal assistants.

