| nter mediate Cryptology: Specialized Protocols

| ntroduction to the Tutorial

Navigation

Navigating through the tutorial is easy:
e Use the Next and Previous buttons to move forwardoaciward through the
tutorial.
e Use the Menu button to return to the tutorradnu.
¢ If you'd like to tell us what you think, use the Feedbawatton.
¢ If you need help with the tutorial, use the Hbigton.

Who isthistutorial for?

The tutorial in front of you builds on the foundation provitlgdBM developerWorks'
series of two introductory tutorials general cryptology conceptdsers of this
tutorial will not necessarily need to have taken those introductory tutorialthdyut
should be familiar with general concepts in cryptology, aschWhat is a symmetric
encryption algorithm? An asymmeteacryption algorithm? What is cryptanalysis?
What is an attack? Whare Alice and Bob? What is a message? A hash? A ciphert
What iskeylength, and why is it important? If you feel comfortadotswering those
guestions, you should have no problem following tihisrial. If the answers to those
guestions seem unclear, takguack look at our introductory cryptology tutorials by
this sameauthor.This first section includes a few reminders about impodantepts.

In general, this tutorial is aimed at programmers who woulddikamiliarize
themselves with cryptology, its techniquespiigthematical and conceptual basis, ar
its lingo. Most users ofthis tutorial will have encountered various descriptions of
cryptographic systems, and general claims about the secuirigegurity of particular
software and systems, but without entirehderstanding the background of these
descriptions and claimédditionally, many users of this tutorial will be programmer:
andsystems analysts whose employers have plans to develop or implement
cryptographic systems and protocols (perhaps assigningblightions to the very
people who will benefit from this tutorial).

What doesthistutorial cover?

This intermediate tutorial will introduce user to a varietpmftocols that are useful fc
accomplishing specific and specializegks.Algorithms as such will not be covered
here, but will jusbe treated as building blocks for larger protockts. example, a
protocol discussed might, as a general assumption, state sonti&thldgsume E() is
a strong symmetric encryption algorithm wiidylength of 256-bits.It is up to tutorial
users to know what ineans to be such an algorithm; and it is up to protocol
implementorgo actually choose an appropriate algorithmic building blbickvever,
the Resources section provides information on a numhksmefon building blocks, s
that might prove a good place to start.

The number of things one can accomplish in cryptogramioitocols is quite
astonishing! We expect users of this tutoridbéosurprised that some of the things v
discuss are possible at dlhe author certainly was when he first encountered man

them. Moreover, thisfairly brief tutorial will not be able to address every protocol and
goal cryptologists have developed. If something is not covered here, do not assume that
means its goal cannot be accomplished cryptographically. Probably it just means the
tutorial author did not include it (either because of limits of space or limits of his
knowledge). Then again, there are certain goals that are easy to state--and that one
finds being discussed and requested repeatedly in discussion forums--that simply bang
up against mathematical impossibility. The difference is not always obvious. Y ou might
need to think about the issues at some length, and ask questions of folks with some
experience.

Contact

David Mertz isawriter, a programmer, and a teacher, who always endeavors to
improve his communication to readers (and tutorial takers). He welcomes any
comments, please direct them to <mertz@gnosis.cx>.

Background and Reminders

Protocols and Algorithms

One particular introductory notion introduced in the earlier tutorialsis worth
emphasizing again before we get underway. It isimportant to make the distinction
between protocols and algorithms.

A protocol is aspecification of the complete set of stepsinvolved in carrying out a
cryptographic activity, including explicit specification of how to proceed in every
contingency. An agorithm is the much narrower procedure involved in transforming
some digital datainto some other digital data. Cryptographic protocolsinevitably
involve using one or more cryptographic algorithms, but security (and other
cryptographic goals) isa product of atotal protocol.

Clearly, using an strong and appropriate algorithm is an important el ement of creating a
strong protocol, but it is not sufficient by itself. The first sections of this tutorial will
mostly address how cryptographic algorithms work; the later sections will take alook at
the use of some algorithmsin actual protocols, particularly protocols combining
multiple algorithms to accomplish complex goals.

Block Ciphersand Stream Ciphers

Encryption algorithms can be divided into block ciphers and stream ciphers. Stream
ciphers are able to take plaintext input one bit (or one byte) at atime, and output a
corresponding ciphertext bit (byte) right away. The manner in which abit (byte) is
encrypted will depend both upon the key used and upon the previous plaintext stream
encrypted leading up to this bit (byte).

In contrast to stream ciphers, block ciphers require an entire block of input plaintext
before they can perform any encryption (typically blocks are 64-bits or more). In
addition, given an identical input plaintext block, and an identical key, ablock cipher
will product the same ciphertext no matter wherein an input stream it is encountered.

Although stream ciphers have some advantages where immediate responses are
required, for example on a socket, the large majority of widely-used modern encryption

alg'orithrhs are block cipherm this futorial, \7vhene'ver’sym}netric encryption alééritr
arediscussed generically, the user should assume the tutaeétiisng to block
ciphers.

Some impossiblehings

Many of the things cryptography cannot accomplish are gintple to understand, bt
nonetheless repeatedly prompt wishfuhking by people getting started with
cryptology.In some casesendors and "inventors" promise algorithms and protocc
thatexhibit various impossible propertigs good starting point focultivating
suspicion about impossible claims is tBaake OIlFAQ. It is worth remembering a fe'
impossible (or akeast suspicious) things before proceeding withttlirial.

Impossible things with Random Numberd

Random numbers are important to a variety of cryptograppiotocols, such as
randomly generated keys and seédproblem oneuns up against in wanting randor
numbers is that it isnpossibleto generatérue random numbers frometerministic
algorithms.Instead, what algorithms get us asdled "pseudo-random numbers"--su
algorithms are calletpsuedo-random generators” (often abbreviateBRES").

The difference between pseudo-random numbers and genuine ranodoers is a
basic fact of information theonA genuine randomumber contains as muehtropy,
or information, asits bit length. Any algorithm that can be written in a computer
language cannot contain more entropy than is contained in its saotuak code
(including any contained in language libraries andikag. So there is a limit to the
number and length of randamumbers that can be generated by any given algoritht
After awhile, patterns start occurring in pseudo-random streByngathering some
real-world random seed information (e.g. thierosecond timing of a user typing a
phrase, or a bit dhformation about external changes in the internet), the entragpy
PRG can be improved, but only by the amount of the entropy-cafttre real-world
seeddata.

Impossible things with Random Numberd|

A way of makingone-time pads (OTP's) fromPRG's is something like a
philosopher's stone of beginning cryptologi€gae-time pads, tutorial users will reca
have the wonderfuysroperty of being provably and unconditionally secéslong as
genuinely random data, of the same length as the message to &hasdd,only once
an attacker has absolutely no way of deciphenihigh message (of the given length)
was encoded-urther, arattacker's failure here is not just a computational matter ¢
exceeding the MIPS of all the computers that exist (or migbubg, but rather the
mathematical fact that nothing distinguiskaesactual crack from a falskecipherment.

Of course, OTP's have the inconvenient quality of requainepf-channel exchange ¢
a great deal of key materi#@nd thekey material gets "used up" automatically as
messages are sgonlike the keys in other algorithms which can be reused over m
messages without being consumaa, se). As a consequenca,lot of beginners
develop an understandable wish to combingtbgable security of OTP's with the
finite key distributionrequirements of other systermi$ie result is, frequently, a systel
that will generate "keys" for a purported OTP system by yssegido-random
generatorsPRG's can keep generating new "kendterial indefinitely, and at a first

rv)ass, these keys appeahiwé the same statistical and stochastic broperties as tn
randomkey material.

The catch is that pseudo-random keys generagalty do not have the same deep
properties as true random kejany PRG'sare quite good, but in the end, their
entropy is as finite as theatgorithms and seeds; they always exhibit cyclic patterns
Mind you, finding these patterns might require the work of segogganalysisAnd in
the best case (such as many good str@phers), the security provided by PRG's is
guite adequate--evasomparable with other strong systerat there is no free lunch
PRG isnot really aOTP.

Provable Security

Provable security is another feature that is wishiea--and even claimed--fairly
frequently.It turns out that theractuallyare some very interesting proofs for securit
properties of some algorithmBut these proofs must be takertle precise
mathematical context they come out of, and what gneye is contingent upon all so
of assumptions and limitationBurther, most algorithms that have provable propert
like this areones developed for academic research purpbsgeneral, none dhe
algorithms in widespread use (whether public-key or symmétaiod rigorously prove
mathematical propertieBistead, what weettle for is that algorithms have stood up
well to years of effortat attack by the best cryptanalysikis is not the certainty of a
mathematical proof, but it is pretgood.

The point of the observations in this panel is that you sHoaldwith suspicion upon
vendors or amateurs who claim to haveven the security of their algorithmdost
likely they have notexcept perhaps in highly contrained and circumscribed ways.
Unlessyou are the type of expert cryptanalyst who is able to evaluateabegad
proofs (and if you are, this tutorial is way too basicyimu), take claims about provat
security with a big mound afalt.

Distributing " secret” software

From a practical standpoint, a cryptographic goal that comes$otiisao make and
distribute software that performs some actluut, that prevents users from carrying
that same action witholitaving access to the softwatésually, this type of goal relat:
to wishes to control distribution and use of mass-produoatimercial software, but
sometimes it has to do with other secuf#tgitures of theoftware.

In a general way, this goal is impossible to accomplishdetermined attacker has
access to your software, she inherentlythagpotential of determining what the
softwaredoes. If there is a key, or an encryption algorithm, buried withirsthfevare
(perhaps in obfuscated form), reverse-engineerin@lveays reveal that "secret”
key/algorithm.t may well be that its not worth an attacker&fort to find your
software'ssecret; but cryptography is not going to ever give softwareapability of
performing non-replicatablmagic.

Entropy and Compression

One more matter is worth mentioning that relates only part@aityyptology itself But
it relates enough to be worth mentioni@ne sometimes finds claims (less in the las
few years) that nevwssless compression methods have been discovered that hav

fundamentally new propertiel the starkest case, sometimeepression algorithn
is claimed to be able to compresy data sequence by some amodihtere is a
one-linereductio ad absurdum for the stark casdterate compression of each
"compressed" result; if everyting is compressible, you wind upawvithe-bit (or
zero-bit) representation for every original ds¢guenceBut weaker claims often hav
similar absurditiegontained irthem.

The reason a basic understanding of compression is importagptology is that bott
largely come down to the same concepgmtfopy and information-conterithe reasor
that not all data isompressible is, at heart, the exact same reason that PRG's ca
generate OTP'S.he redundancy, entropy, and information-contertaté is a
fundamental property of that data, and these condtradamentally what
transformations are possible updata.

Steganography and Water marking

What is Steganography?

Steganography (in Greek, "secret"+"writing") is hiding seicifermation inside
non-secret, or less secret, informatigariousmethods of steganography predate
electronic/computer cryptography bgnturiesinvisible inks, conventions for altering
public texts,code words, etd/Vhat distinguishes steganography from plain-old
encryption is that an attacker does not know with certaintythieat isany secret
message inside another messfigsomecircumstances, this can be important for
plausible deniability; irothers as a diversion of an attacker; in still others as a way
subverting a channel that an attacker has reasons todperne

It is worth giving a couple hypothetical examplesigfganography to "get" the
conceptln order to pass a secraessage, a typed letter includes a number of
deliberate "typos," thposition of the words with "typos" encodes a subset of the
numbersetween one and the number of words in the |lelieattacker doesot know
whether an intercepted letter contains a "sub-textSun-channel”--or whether it
simply has typos (as do many lettesith no hidden messagé)bviously, the recipient
must be aware dhe protocol used to encode the sub-chariehgain similarly, a
sound recording (for example, one played on the radio) has a nafrdieks and pop:
added to it that are indistinguishable freoratches on a vinyl record (in fact, they
could be produced hyaking scratches in such a vinyl record before playingfig.
exact timing of the pops encodes a message (e.g. the millisgapsadbetween
successive pops encodes a series of numi@ngeregular phono-recordings also
contain pops, an attacker does (mimediately) know whether a given song played
the radio actuallgontains a sub-textual message.

What is Water marking?

(Digital) watermarking is similar to steganography, but isreally quite the same thir
(but you might see them discusgedether)In the old fashion case, both invisible in
and arauthenticating watermark are features that appear on a shegtesfthat take
special procedures to reveh.digital dataalmost exactly the same similarity exists.
But the purpose of watermark is always to be implicitly available for revelation in
appropriate circumstances; the purpose of steganography is itsredistence from
those unaware of its method of revelatibndigital terms, a digital watermark might

something a copyrightolder puts inside a digital image to prove she is the owner.
steganographic message might be something a political dissidemtgidesa digital
image to communicate with other dissidentsefaressive government cannot prove
message was sent at adlther than just a family photdllhe techniques for concealin:
the sub-text might be similar, but the concealer's relation tttacker is almost exact
opposite.

It is worth contrasting (digital) watermarks with anottemthnique that serves a
partially similar purposgdigital) signaturesin both physical and digital forms, the
basicdifference is that a watermark is harder to remove thasignatureA digital file
with a specified format can havel@ital signatureppendend to the end of it; this is a
way for the signer to purport "I (signer) agree to/authorizectimgent/meaning of this
digital file." But it is simple to utilizehe digital file, and discard the signatubming so
removes thelaim made by the signature (scissors can do the same thingidgoed
sheet of paperA watermark is much more closely tiedviith the file, ideally one
would not be able to remove the watermaithout altering the content in an eviden
way (scissors cannot dbis in the paper case, and some watermarks are designet
photocopy in a way that makes copying evidedf)course, if yothave the option of
defining what constitutes a valid digital filermat, you can explicitly specify that it
includes a digitasignature (from a certain party, if needed); a file withasigaature
can be considered an automatically invalid file byapplication (or operatingystem).

Problemswith Watermarking

Digital watermarking is an increasingly desired, but (in aloighor's opinion) deeply
conceptually flawed, cryptographic dema@aerwhelmingly, digital watermarking is
proposed as a way to prevéat at least identify) unauthorized reproduction of digi
information.A prominent and recent example is the Recordhuoigistry Association of
America's (RIAA) Secure Digital Musiaitiative (SDMI). The idea in a digital
watermark is to scattsome bits in a digital file in such a way that the scattered bit
cannot be identified by an attacker, and therefore cannot be remmoakéred without
making the changes evident (in the case of armdagce media, such as sound, vide
and images, this amountassuring unacceptable degradation of the quality of the
source).

The problem with digital watermarking is that it wants to breakhematics and
information theoryThe trick is to keep in minderceptual-content and compressibili
The realmeaningful information in a digital file that epresents an analogource is
whatever features can be detected by a human perceiveaybe in certain cases by
machine-perceiver, but the issue is shene) Anything that cannot be perceived is
noise, notmeaningful content; not every bit in a digital representatiaanafog data is
necessarilynformation in the right senséin ideal (lossy) compression algorithm for
analog data (MP3, Ogddorbis come close for sound; JPeg comes close for image:
videocompression techniques are still subject to large improvemke&g)s every
perceptible feature of the representation, wiigearding every non-perceptible featt
While one cannot know farertain the "ideality" of a single digital representation, a:
comparative matter a smaller representation producing thepsaeptible features is
closer to this "ideal.A digital watermarkis, by definition, a non-perceptible feature
(otherwise theperceiver could simply remove ith other words, the watermagkdds
entropy to the digital encoding, while doing nothing to aeeningful information to
the representation.

SDMlI is a good illustrationn developing a music format thiatcludes copyright
identification (digital) information, the RIAAasexactly two choices at a conceptual
level. (1) They carincrease the size of music files over the size of an "ideally"
compressed format, in order to include the copyright identificaf®)rifhey can replac
some of the analoigpformation in thedigital representation with copyright informatio
(in other wordsmake the formasound worse (to a discerning ear].he exacsame
tradeoff exists for watermarks in images and other arsdagcesin practice, no
digital watermarking format has ever stagalto any serious scrutiny, and watermar
have always provecklatively easy to remove once analyzZedheory, there is an
inherent conflict between goals of maximum compression in a f@nubthe goal of a
format containing avatermark.

Digital Steganography using images

In order for steganography to find a handle in digital filegs, the format of those file:
must contain a degree nbn-predictable variatiorsteganography operates by
substitutingdesired bit values in unpatterned bit-positidfatunately, manyile
formats contain quite a bit of non-predictable variatidme most commonly used file
formats for steganography are those #ratode real-world (analog) data, such as
image and sound formatBypically, a sub-channel in an image is encoded in the "le
significant bits" of the imagé.hat is, if each image pixek®lor is encoded with a
number of bits, often 24, some of those basse the less color variation of the pixe!
than others ddSpecifically, 24-bit images usually have 8-bit values devoteddh
primary color (red, green, bludj.the image is generatedrough a real-world proces
(such as taking a photograph), gegjuence of lowest order red-bits will be largely
random to stanvith (because of finite resolution of cameras and also because of
"random" variations in the pictured thing).steganographiencoding might substitute
sub-channel values into that sequenclewest order red-bits (red variation is the le:
perceptible of th@rimary colors) The receiver reads the sub-channel back out of &
received image by stripping out everything other than the seqoélmeest order
red-bits (which are identified purely positionatly the file-formatstructure).

Digital Steganography using other formats|

Images (and sounds) are often used for digital steganogsapply because it is very
easy to identify the areas of variabilitya purely strucural wayt might be as simple ¢
knowing thatevery 24th bit in the file (after some initial offset) is a lowmster red-bit
Other file formats can be used, but often requicge semantic consideration of the f
contentsLet us look at dew examples.

Sour ce code. Programming languages have fairly stsctictural constraint3.hat is
the point of a grammar, after alven within grammatical constraints, most change:
a source codgle will result in programs that will not compile or run (e.g. yuoight be
able to change a character in a variable nameibdextual way, but most likely doir
so will break the programogic in some mannerlzven so, there are a number of are
of non-predictable variation even in source code files, the tritlatsencoding them
involves "understanding” the code in a richer wWan changing recurrent bit positior
Many programming languageffer several equivalent constructs for the same
operation; foexample, both "1=" and "<>" to express inequally.at ahigher level,
one might even automate transformations betvad#féerent (equivalent) loop structurt
(e.g.for(;;){...} andwhile(1){...}). Thepattern of choices between construc

could contain one-bit afub-channel for each 'Ioop occurrersgll, the best place to
hidea sub-channel in source code is likely to be in the comment {titisvith some
subtlety to make it look like real source camgnments; you do comment source co
right?)

Digital Steganography using other formats||

Delimited data. Data file formats are even more rigidiiyuctured than source code,
most casedelimited data is good example, but the same line of thought applies
many othedata formats (XML, however, has a lot of optional whitespace, wiuahd
make for a good sub-channeit the level ofcontent, however, data file formats have
non-predictablerariationby definition. After all, the point of actuallgending a data file
is to convey the information in it thtte recipient does not knowor example, a row
record for gperson might have a firsthame, lastname and SSN, each of whictoolu
a fairly specific wayBut the actual SSN a person has ispredictable from the other
information.A possible sub-channekists in subtly varying this data contedbwever,
a danger ofevelation exists if an attacker has independent wagsrodlating data (if
no one in your data file has the true mdtelween name and SSN, that looks
suspicious to an attackeBinding this kind of sub-channel requires a quite specific
knowledge of the data format and content beised.

Compressed ar chives are probably about the very wofstmat for trying to put a
sub-channel inThe problem is thaalmost every bit change in an archive has an eff
on many bits inthe unpacked contents, and in a way that depends on the avblailee
contentsChanging a bit or two at random is extremiédgly to produce unpacked file
that have invalid file formats (gust corrupt archives)his is easy for an attacker to
notice.About the only place a few bits of sub-text might be located takigg
advantage of the error-correcting codes (ECC) some arfdrivats useOne could
introduce an occassional "error"anchives of the type the ECC's would correct upc
unpacking Onetrick would be to make sure that archives with sub-texts dithancd
too many more errors than archives without sub-texts (whidmns introducing
random "errors" to all transmitted archivesaditacker mighintercept).

Natural language text. Natural language is extemdhge-form, and apparently an
excellent format to embedsab-channel inNormal texts contain all sorts of spacing
variations, word-choices, types, and other "random" featBrgghen, a too-obvious
sub-channel encoding strategy is easyetect.Sure people make typos, but not in
uniformly in everythird word. Too much pattern in the "random" variations is dasy
machine scan, or a human reader, to identify as a profmaiieext.

Cryptanalysis of Digital Steganography |

How good a sub-channel encoding strategy is is simply a mattexoivell it prevent
an attacker from proving the existence ofgbb-channelOf course, another desirabl
feature of a sub-channislthe ability to embed more, rather than less, bandwidth in
Sometimes a couple bits of sub-text are sufficient for a purpasenost of the time
you would like to be able to send margensive messagddnfortunately, the goals o
bandwidth andnvisibility tend to pull in opposite directions; more fiddling witls
makes detection more likely apdsier.

Your first assumption in designing a sub-channel encoding sbeuldat an attacker i
at least as able to identify non-predictaldeiation as you aréo not try to hide the

message smply by assurlning an attacker will not know where to look for it. The key in
maintaining the invisibility of a sub-channel is making sure that the distribution and
pattern of sub-channel bits closely matches those in atypical file of the same format.

In many cases, the expected distribution of pre-encoded sub-channelswill be uniform
and stochastic, but not always. Y ou have to look at whether there is a bias towards 1
(or 0) in the pre-encoded sub-channel dot (the bits or variations you have identified as
encoding sites); but you also have to look at whether there is afrequency shift between
the start and end of afile and/or whether cyclicalities exist in bit frequencies of
pre-encoded sub-channels. A good first step is to extract alarge number of pre-encoded
sub-channels, and seeif thisdatais compressible (if so, it isnot purely stochastic and
uniform, and you need to look more closely at the patterns).

Cryptanalysis of Digital Steganographyll

Pure plaintext messages are absolutely terrible candidates for sub-channel encoding. A
bit pattern that works out to the ASCII sequence "Secret meeting at 6 p.m." is a dead
giveaway (maybe literaly!). Assuming you are aiming for stochastic-looking bit
patterns, compression removes much redundancy. But watch out for compression
headers. a sub-text that begins with "PK" does not ook like random data (e.g., PKZip
header bytes). The best choice is usually to compress a plaintext first (mostly just to
save on alimited sub-channel bandwidth), then to encrypt the compressed text second.
Of course, you also have to watch out for encryption format headers, i.e. choose a
format that is headerless. If you use a symmetric key, this requires a seperate
key-negotiation out-of-channel; but use of public-key systems can avoid this need.

The absolutely most important design issue in creating steganographic sub-channelsis:
Don't use stockfiles! If you use files that to which an attacker has access to the
origina copy, asimple binary comparison of the original with the new overt message
reveals that the file has been tampered with. This applies especially to image or sound
filesthat exist in the public-domain (or generaly, in public, even if copyrighted). If you
downloaded an image from the web, so can an attacker. What you really need are
entirely origina files, and ones which you have a plausible reason for sending other than
to hide sub-channel. Home videos, for example, are bulky files with lots of sub-channel
bandwidth, that are unique. Of course, if you leak these original to an attacker, you
have destroyed your system; and the same applies if you encode different messagesto
different parties based on the same original. Treat a steganographic overt message much
like you would a one-time pad: use once and destroy! However, multiple digitizations
of the same analog original are apossibility, they will differ in much more than just the
sub-channel, so abinary comparison just shows them aswholly different files.

Two smaller issues are raised in the above. One s that the files you send need to be
plausible. Do you generally send pictures of your family to your business associates?
Maybe yes, but if not, sending them just anounces the likelihood of a sub-channel. The
prior discussion of techniques for other file types might be useful in strategizing
plausible files for normal transmission. The second issue was mentioned in an earlier
pand. If your sub-channel encoding involves atering non-predictable data, can an
attacker gain access to the same data in other non-identical files. For example, suppose
you have a strategy for altering information in transmitted flat-file records. Good
enough, so far. But can an attacker gain access to individual records by other means, or
at other times? Maybe you want to send an intersecting record-set (either with or
without a sub-channel) later on, or aready have. If the alterations are inconsistent in

individual records, thairovides a clue to a sub-channel (obviously, production dat
change®occassionally, but within sonimunds).

"Exotic" Protocols

Shared Secrets|

The general idea behirsdcr et sharing is that you mightvant to require multiple
parties to cooperate in order to decrypedain ciphertextt is not enough for one
person to have hdey, she needs some help to get at the plaintexiins out thayou
can design schemes of arbitrary complexity that specify exabtlyhas to cooperate
decrypt a particular message. For examybe, could specify a "Chinese menu”
approach, where you need two fraolumn A, three from column B, and one from
column C, to decrypt messageEven more complex dependencies are possible als
e.g. ifAlice uses her key, she needs Bob's help; if Carol users hestieegieeds Dave'
help; other combos will natork.

The simplest case of secret sharinge et splitting. Under this protocol, it requires
cooperation of all parties (two amore) to decrypt a messadéie protocol is quite
simple:

G ven a secret M of length n.

G ven N persons who will share the secret (naned P1, P2, ..., P
Cenerates randombit strings R{1}, R{2}, ..., RIN-1}, or length
Calculate S = M XOR R{1} XOR R{2} ... XOR R{N-1}.

Destroy or hide M

Gve Sto P1

Gve R{1} to P2

[...]

Gve RIN-1} to PN
The secret splitters need not even know which one receives @hatdones receive
R's.Either way, M can only be constructed ¥@R'ing back together the information
given to every persoifhisworks exactly the same way as a one-time pad, and ha
samedegreee of absolute security (it is subject to bad random nuarmsiman
weaknesses, but those contravene the explicit protocol).

Shared Secrets||

Secret splitting is simple and provably secitralso has somkmitations. If any one
party loses her portion, or becomeswilling or unable to share it, no sharer can ge
the secreiessageThe secret splitting protocol also puts total power irhioeds of
the person who originally generates the split secrettiiieunt, M belonged to that pers
also).Furthermore, there arermmber of ways by which a malicious party who eithe
genuinely knows secret share or pretends to, can find other persons' pavitbost
revealing her own and/or the messafjeof theselimitations can be avoided in other
(more complex) protocol§.he Resources section can lead tutorial users to many ¢
thesespecifics, here we will only discué®,n)-threshold schemes.

Before we look at one (m,n)-threshold scheme, it is worth makopeneral
observationThe secret shared in secret sharing scher@esd not be the ultimate
interesting contentn practical termsthe size of calculations and distributed portior
can be limited byettingC = E{K} (M for a strong symmetric-kegigorithm.C can be
revealed to everyone (even those not invoivetthie secret sharing), while K rather tf

M becomes the secret to use in a sharing scheme. Good encryption algorithms use keys
of less the 256-bits, while messages themselves might well be multiple megabytesin
size. The math in most protocolsis computationally intractible for the numbers
represented by huge files, but reasonable sized keys can act as good proxies to the
actual secret message.

Shared Secrets |11

The LaGrange Interpolation Polynomial Schemeis an easy to understand
(m,n)-threshold scheme for secret sharing. The Resources section can lead a user to
others.

Suppose you want to share a secret, M, among n people, such that any m of them will
be able to reveal the secret by cooperating.

e Generate arandom prime, p, larger than M.

e Generate n-1 random integers, R{ 1}, R{2}, ..., R{n-1}, each lessthan p.

o iléet F(x) be apolynomid in afinitefield, defined by:

F(x) = (R{1}*XAn + R{2}*x~(n-1) + ... + R{n-1}*x + M nod p
e Generate m "shadows" of F, defineg

o)
k{i} = F(x{i})
%]

where each x{i} is distinct (using successive integer valligs3,...] is a fine
choice forx's).

e Give [p, x{i}, k{i}] to each of the m secret sharers, forarresponding to the
number of each sharer (the enumeraticarlitrary).

e Destroy R{1}, R{2}, ...,R{n-1}.

e Destroy or hideM.

Given the information provided to her, each secret sharer iscabiéte out a linear
equationFor example, Linda, who wanumerated as sharer number I, can constrt
the equation:

k{1} = (1}*x{I}*n + 2} *x{I}*(n-1) + ... + C{n-1}*x{l} + M

Since these linear equations have n unknowns, C{1}...C{n-1\Nnitirequires the n
eguations with these same unknowns to solveyktem of equations, and thereby
reveal M (and also the C{i}'s, btihese are not interesting once we hisje

Because the coefficients of F were chosen randomly, havinthkass secret sharers
cooperate, even combined witifinite computing power, does not allow revelation
M. Without the n'thsharer participating, any possible M (of length less than p) iagL
consistent with the (less than n) equations asoémgy!

Key Escrow |

There may be times when it is desirable to give a secret kieyiggct access to a
secret key, to parties other than thdsectly involved in a secured communication.
Unfortunately, mosbf the times that the issue comes up is in contexts the author
undesirable and quite disturbiroviding a (maybe circumscribeldack-door to
"secure" communications to a government/police agandyor to corporate
employersCrytography is a technology thednnot be fully considered apart from its
political implications.

However, legitimate reasons foey escrow can be imaginedlso.lt may happen that
you would like certain people (maybeoperating in certain ways) to be able to acc
your securedommunications in the even you are no longer able to divulge them
yourself (or do not wish to require your effort, given certaioumstances obtain).
Two techniques are useful for key escrgoals (either singly or jointlymultiple
recipient lists andecret sharing deys.

Key Escrow |1

Tutorial users will probably be aware that most conguatsic-key encryption system
actually use symmetric "session keys'encrypt messages, and the public-keys onl
encrypt thessession keysComputational speed considerations are the maitvation
behind such split systems, but they also have dessatdeeffectsin fact, even when
using entirely symmetric-kegystems, the same sort of split systems can be ukesul.
possible to encrypt a session key for multiple recipientsneotly for oneWhile one
could send the same entire encryptesssage to multiple parties, it might be easier
simply to attachmultiple versions of the encrypted session key, and allow general
distribution.In the concrete, this might lodike:

Let E{k} be a symmetric-key encryption algorithm.
Let S be a a random session key.

Let M be a message.

Let Ka be Alice's public or symmetric key.

Let Kb be Bob's public or symmetric key.
Generate C = [E{S}(M), E{Ka}(S), E{Ka}(S))]
Make C available to both Alice and Bob.

Destroy S.

Either Alice of Bob can determine S from C. And once they hatlee$,can decrypt
M. Other parties than Alice and Bob have no accesSsor M (although @oes use E
with three keys over twmessages, so this provides a bit of extra ciphertestfack).
A nice property of C is that it is not much bigger tligKa}(M), which would be a
direct way of encrypting for Alice onlfCertainly, for megabyte messages and 128-}
keys, the extra sessitry encryption isnsignificant.

If Alice is the directly intended recipient, but Bob shouldabke to get access to M if
he needs to (and at his own discretidhis scheme gives Bob an "escrow kdyot
that matter, we coulpist send E{Ka}(S) to Bob, and forgo sending E{S}(M) to hinr
all immediately; this would make sense if he has access to Atoeed (encrypted
files), but not to her keyOne can imagine theserangements might make sense if yi
wish for an employer to be aktie access employees messages should the employx
quit (or die, orforget passwordsOf course, it leaves decryption at #raployer's
discretion (but that might be appropriate fompany-related correspondences).

Key Escrow |11

The second technique likely to be involved in key escrasedset sharing of key
material (either session keys or priviégs).Suppose that Alice does not wish to
disclose her secret kégy anyone directly, but does feel that if at least five of her tel
friends think it appropriate to decrypt her messages, that wodkkperhaps she is
worried about disposition of her seci@tentions after her death; or maybe just abo
the danger she wilbse her original private keyln government proposals, the same
structure is suggested, wherein in the presence of a warudtiile non-government
agencies would disclose shared-secret kég#tizens.The latter case is politically

Wvorrying, but thecryptographic issue is the same for badises.

Alice can use a (5,10)-threshold scheme to divide her key ah@srtgn friendsNo
one except Alice has access to the wipoieate key, but five friends can recover it b
working togethefand thereafter decrypt any messages Alice has encrypted using
key). More complex threshold schemes can also be usedriédgiugements for key
revelation are more structured than tidis was mentioned earlier, using a threshold
scheme for key escrow t®nsistent with using session keys; depending on the
requirment, itmight be a message session key rather than Alice’ long-term kayate
that gets distributed in suctsaheme.

Zero-Knowledge Proofs |

For this author, probably the most surprising thing cryptogragphyaccomplish is
zer o-knowledge proofs. The idea in @ero-knowledge proof is to prove that you ha
a certain piece dénowledge, without revealing the content of that knowledge to al
interlocuter.The purpose of a zero-knowledge proof is demonsa@tess to some
secret information withowgiving that accest someone els&or example, imagine a
conversation between Ali@ndBob:

e Alice: "l can decrypt the confidential message encrypsd."

e Bob: "l do not believe you, provg"”

¢ Alice (bad response)The key is K, and therefore, as yoan see the message

decrypts tavl."
e Bob: "Ah hah! Now | know the key and the messalge."
e Alice: "Ooops."

Alice really took a bad approach here, since she failed totkeamnfidential messag
confidential. And she even gave away the kelyile she was at it (she could have dot
slightly less badly if, foexample, the cryptographic hash of M could be verified ins
of revealing the key; but the idea is the samAghuch betteconversation for Alice to
engage ins:
e Alice: "l can decrypt the confidential message encrypsd."
e Bob: "l do not believe you, provg"”
¢ Alice (good responseLet us engage in a zero-knowledg®tocol, and | will
demonstrate my knowledge with arbitrarily high probability (but not reveal
anything abouthe message tyou)."
e Bob:"OK."
¢ Alice and Bob go through thgrotocol...

Zero-Knowledge Proofs |

Zero-knowledge proofs are generalizable to a wide rangdarfmation.In fact, it turns
out thatany mathematicalheorem with a proof can have a zero-knowledge "proof
the proof."That is, Alice can claim to have a proof of theorem T, but not teistate
it (she wants to wait for publication)lonetheless, Alicean prove that shaas proved
T without revealing the proot.his very general fact is broad enough to cover spec
cases likdactoring large numbers and the like, which are involved in many
cryptographic algorithmd& he the broadest scope exceedsttltizrial, and we will just
look at one case (others are similafarm)

Graph isomorphism is ahard problem; that is tgay, it is NP-completér in other
words still, it is one of thosgroblems that can take millions of computers millions ¢

years tasolve, even thougbonstructing a problem takes onlyrmoderate amount of
time and spaceé\ graph is a collection verticemnnected by a collection of edges.
Every edge connects exactly twertices, but not all pairs of vertices are (necessari
connectedy an edgeSome graphs afigomorphic to other graphsa/Vhat isomorphisn
means is the following:

e For isomorphic graphs G am]

e There exists a one-to-one function F sticdt:

e The domain of F is the set of verticeSGf

e The range of F is the set of verticed-bf

e If and only if [g1,92] is an edge in @(gl),F(g2)] is an edge iH.

Obviously enough, if G and H do not have the same numbartiées and edges as
each other, they are not isomorpteit assuming G and H meet this minimum
condition of "plausibleisomorphism, determining whether they really are isomorpt
basically means attempting every mapping from G onto H, and cheekgther it
creates amsomorphism.

In short-and-sweet form, what this boils down to is thabrheone tells you she has
two isomorphic graphs with enougfiousands of vertices and edges, it is because
constructed thgraphs to be isomorphic... not because she discoverebtherphism.
On the other hand, it is trivial to constrisdmorphic graphs with thousands of verti
and edgesyou coulddo it on paper without using a computer if you spent a bit of 1
on it! Next, let us see why all thisimportant.

Zero-Knowledge Proofs 11

Suppose that Peggy claims to know an isomorphism between gragptisHs In
practice this means that she constructed the gtagisslf (for large graphs), or at le¢
was provided the isomorphisny someone who didnowing this isomorphism might
be Peggy's wagf proving her identity if it has been published previously tRaggy is
the person who knows the isomorphism of G and®bviously, just showing the
isomorphism directly allows any obserterthereafter pretend he is Peggy, so that i
good.

Here is what Peggy does to prove she knowsstiraorphism:

e Peggy randomly permutes G to produce another isomorphic grépite Peggy
knows the isomorphism between G and H, @dsy for her to simultaneously finc
the isomorphism between dhdl.

e Peggy gives | t¥/ictor.

¢ Victor may ask Peggy to prowgther (a) that | and Gre isomorphicor (b) that |
and H are isomorphi®ut Victor may not ask for both proofs (if he got both, he
would have the isomorphism proof of G and H himself).

e Peggy provides the proof requestedvigtor.

So far so goodWhat has this showif a Peggy-impostedid not know the
isomorphism of G and H, the best she can dotig/tto pass off an | that is isomorph
with G (she knows G and tds does Victor), and just hope Victor doesn't ask for tl
isomorphism of H and I. Or alternately, a Peggy-imposter could fpass off an | she
constructed from H, and hope the oppodttet either way, a Peggy-imposter has a
50% chance of getting "caught" bye protocolbove.

Victor probably does not find 1/2 confidence sufficient for Peiggyrove she knows
the isomorphism, howevedfortunately, Victoican simply demand that Peggy now

~ s

generate an I', and undergo firetocol againlf she passes now, Victor can be 3/4
confidentabout Peggyif that's not good enough, do a third pass ofgiteéocol with
I", and obtain a 7/8 confidence; or a 15¢b@fidence, a 31/32 confidence, and so o
By iterating theprotocol, Peggy can prove that she knows the isomorphism for an
arbitrary confidence requirement by Victor (but always less 10886 by some tiny
amount).As many times as the protocoliterated, Victor gains no knowledge that
helps him in constructinigis own G/H isomorphism, so "zero-knowledge" is leaked
Victor.

Resour ces

Further Reading

The nearly definitive beginning book for cryptologitapics is Bruce Schneier's
Applied Cryptography (Wiley). | could not have written this tutorial without nogpy
of Schneier on my lap to make sure | got everythingrjght.

Online, a good place to start in cryptology is fGeyptographyFAQ.

To keep up on current issues and discussions, | recomsnbsdribing to the Usenet
groupsci.crypt.

A nicewebpage with both good explanations and links to a varietyygitological
topicsis provided by Joh&avard.

For topics related to compression, the author is particutamly of his ownA Data
CompressioniPrimer For background on the several topieshis tutorial that touch ol
cmpression, this is a good startingjnt.

Popular Symmetrical Algorithms

TheNational Institute oStandards andlechnologyhas recently completed selection
analgorithm for its Advanced Encryption Standard (AEB)e winnemwasRijndael
which is thereby guaranteed to become a widely used algoRimdael is both
powerful and versitile, and makes a good choicelferAES selection, and for gener:
use.

Counterpane'8lowfish has been popular for a number of yelsssuccessoffwofish
wasanother AES finalist that is likely to continue in widespread(dsspite the
selection of Rijndael as tiveinner).

The most widely used symmetrical encryption algorithm has alceostinly been
NIST's (formerly called National Bureau of StandaifdajaEncryption Standard
(DES). Although DES has develop&ey-length problems with the advancement of
computer capabilitiedriple-DES is still viable, and even single-DES is an algorithm
are likely to come across in existipgoducts.

