

Gordon Bell observed:

The cheapest, fastest and most reliable
components of a computer system are those
that aren't there.

This has a parallel in data structures:

The fastest, most parsimonious, and best
performing data structure is one which is
never concretized. A promise to create data
when–or if–it is needed is often easy to
make.

PyCon 2010: Maximize your program’s laziness David Mertz

Gordon Bell observed:

The cheapest, fastest and most reliable
components of a computer system are those
that aren't there.

This has a parallel in data structures:

The fastest, most parsimonious, and best
performing data structure is one which is
never concretized. A promise to create data
when–or if–it is needed is often easy to
make.

PyCon 2010: Maximize your program’s laziness David Mertz

The addition of iterators and generators to Python
during the 2.x series, and their more systematic
use in 3.x, provides an easy way to work with lazy
computation.

Using these facilities well can improve program
performance, often their big-O complexity.

Complex lazy data structures may require special
design in order to encapsulate more complex
promises than one can make with list-like
iterators.

PyCon 2010: Maximize your program’s laziness David Mertz

The addition of iterators and generators to Python
during the 2.x series, and their more systematic
use in 3.x, provides an easy way to work with lazy
computation.

Using these facilities well can improve program
performance, often their big-O complexity.

Complex lazy data structures may require special
design in order to encapsulate more complex
promises than one can make with list-like
iterators.

PyCon 2010: Maximize your program’s laziness David Mertz

The addition of iterators and generators to Python
during the 2.x series, and their more systematic
use in 3.x, provides an easy way to work with lazy
computation.

Using these facilities well can improve program
performance, often their big-O complexity.

Complex lazy data structures may require special
design in order to encapsulate more complex
promises than one can make with list-like
iterators.

PyCon 2010: Maximize your program’s laziness David Mertz

PyCon 2010: Maximize your program’s laziness David Mertz

Review of laziness
Examples from Functional Programming Languages

Generic any language laziness

Iterators and the itertools module

Generators and generator expressions

Memoization and the weakref module

Laziness in a directed acyclic graph

Miscellaneous exoterica

(but not necessarily in the order listed)

Laziness in a really lazy language (Haskell)
module Bounce where

 bounce :: Int -> Int

 bounce n = (n*379 + 522) `mod` 100000

 bseq :: Int -> [Int]

 bseq init = bounce init : map bounce (bseq init)

Bounce> take 8 (bseq 1)

[901,42001,18901,64001,56901,66001,14901,48001]

Bounce> bseq 1 !! 750

50901

PyCon 2010: Maximize your program’s laziness David Mertz

(imagine Bounce as a really crude stand-in for, e.g. cipher-block chaining)

Laziness by declaration of promises (Scheme)

> (define (bounce n) (modulo (+ (* n 379) 522) 100000))

> (define (bseq n) (let ((next (bounce n)))

 (cons next (delay (bseq next)))))

> (display (car (bseq 1)))

901

> (display (cdr (bseq 1)))

#<promise:Bounce:4:53>

> (display (force (cdr (bseq 1))))

(42001 . #<promise:Bounce:4:53>)

PyCon 2010: Maximize your program’s laziness David Mertz

PyCon 2010: Maximize your program’s laziness David Mertz

Iterators and Generators (remember 2001?)

Iterators and generators are “sequence-like”
Potentially infinite length
Only need to concretize one element at a time
Hence cannot slice or index (but wait a few slides)

An iterator is an object that has the methods
.next() and .__iter__(). That's all!

A generator is a powerful type of iterator:
a resumable function!

Not quite a continuation, but more than a closure

PyCon 2010: Maximize your program’s laziness David Mertz

Iterators and Generators: An iterator example
class Iterator(object):

 def __init__(self, init=1, stop=None):

 self.n, self.stop = init, stop

 def next(self):

 if self.n == self.stop:

 raise StopIteration

 self.n = (self.n*379 + 522) % 100000

 return self.n

 def __iter__(self):

 return self

(remember that this is our crude stand-in for something expensive)

PyCon 2010: Maximize your program’s laziness David Mertz

Iterators and Generators: A generator example
def generator(init=1, stop=None):

 n = init

 while n != stop:

 n = (n*379 + 522) % 100000

 yield n

>>> for n in generator(): # for n in Iterator():

... if not something_about(n):

... break

... do_stuff(n) # return n w/ side effect

PyCon 2010: Maximize your program’s laziness David Mertz

Iterators and Generators: itertools module 1
>>> while n in generator():

... if not something_about(n): break

... do_stuff(n) # return n w/ side effect

>>> from itertools import *

>>> ready = imap(do_stuff, takewhile(

... something_about, generator()))

>>> ready

<itertools.imap object at 0x19af890>

>>> list(ready) # for n in ready: print n,

[901, 42001, 18901, 64001, 56901, 66001, 14901, 48001]

PyCon 2010: Maximize your program’s laziness David Mertz

Iterators and Generators: itertools module 2

>>> from itertools import *

>>> slice50_55 = islice(generator(), 50, 55)

>>> slice50_55

<itertools.islice object at 0x19a3ab0>

>>> list(slice50_55)

[50901, 92001, 68901, 14001, 6901]

>>> list(slice50_55)

[]

>>> g = generator(); list(islice(g, 3))

(what do we expect g to do if we keep islice()'ing it?)

PyCon 2010: Maximize your program’s laziness David Mertz

Iterators and Generators: generator expressions

Cannot use listcomp on infinite generator

E.g. [n**2 for n in generator() if n%3] blows up!

>>> not_div3 = (n**2 for n in generator() if n % 3)

>>> not_div3

<generator object <genexpr> at 0x21bab70>

>>> from itertools import *

>>> list(islice(not_div3, 3, 6))

[2704104001L, 2199703801L, 5776152001L]

PyCon 2010: Maximize your program’s laziness David Mertz

Things to avoid doing
(… at this particular moment):

Expensive computations

Concretize large data sets

Time consuming background operations
Database queries
Retrieving network resources
Waiting for external events

(but the last one is the topic of some different presentation)

PyCon 2010: Maximize your program’s laziness David Mertz

A minimal class for delaying expensive actions 1

class Promise(object):

 def __init__(self, func, *args, **kws):

 self.func = func

 self.args = args

 self.kws = kws

 def __call__(self):

 if not hasattr(self, 'val'):

 self.val = self.func(*self.args,**self.kws)

 return self.val

PyCon 2010: Maximize your program’s laziness David Mertz

A minimal class for delaying expensive actions 2
>>> from promises import *

>>> p = Promise(slow_random)

>>> p

<promises.Promise object at 0x18ebb10>

>>> p.val

AttributeError: 'Promise' object has no attribute 'val'

>>> p() # Eventually get the result

370754137

>>> p() # Immediately get the result

370754137

PyCon 2010: Maximize your program’s laziness David Mertz

A slightly friendlier class for making promises

class Promise2(Promise):

 def forget(self):

 del self.val

 def __repr__(self):

 return repr(self())

 def __iter__(self):

 return iter(self())

 #...Some more magic methods could help too

(now we can concretize with print val or for x in val)

PyCon 2010: Maximize your program’s laziness David Mertz

Seamless promises inside data structures
class LazyDict(dict):

 def __getitem__(self, key):

 val = dict.__getitem__(self, key)

 if isinstance(val, Promise):

 val = val()

 return val

>>> ld = LazyDict(p=Promise(slow_random), n=99)

>>> print ld, ld['p']

{'p':<Promise object at 0x195f190>, 'n':99} 189636259

PyCon 2010: Maximize your program’s laziness David Mertz

Making promises forgetfully to save memory 1

import weakref

class WeakPromise(Promise):

 def __call__(self):

 if not hasattr(self, 'val'):

 val = self.func(*self.args, **self.kws)

 try: self.val = weakref.ref(val)

 except TypeError:

 self.val = val

 return self.val()

(notice weakref can only reference object, not int, str, etc.)

PyCon 2010: Maximize your program’s laziness David Mertz

Making promises forgetfully to save memory 2

>>> wp = WeakPromise(module.func, arg1, arg2)

>>> result = wp()

>>> print result

<module.SomeObj object at 0x1979670>

>>> print wp()

<module.SomeObj object at 0x1979670>

>>> del result

>>> print wp()

None

(if we want WeakPromise fulfilled anew, del wp.val)

PyCon 2010: Maximize your program’s laziness David Mertz

Trading memory for computation (memoization)
def memoize(fn):

 class Cached(object):

 def __init__(self, fn):

 self.fn, self.cache = fn, dict()

 def __call__(self, *args, **kws):

 key = (repr(args), repr(kws))

 self.cache[key] = self.cache.get(key) \
 or self.fn(*args, **kws)

 return self.cache[key]

 return Cached(fn)

(the twin of a Promise; compute right away, but only once)

PyCon 2010: Maximize your program’s laziness David Mertz

Promises in a directed acyclic graph. Each node
has a value that is expensive to calculate
and that depends on its parents.

(A node holds a Promise, and pointers to parents and children)

A

B

E

D

C
F

G

>>> create_graph('A->C; A->E; B->C; ...')

Promised

Invalidated

Concretized

Invalidated

PyCon 2010: Maximize your program’s laziness David Mertz

Promises in a directed acyclic graph. When a
node is queried, its ancestors must be
concretized.

A

B

E

D

C
F

G

>>> query_value('G')

(A Promise is fulfilled by gaining a val attribute)

Promised

Invalidated

Concretized

Invalidated

PyCon 2010: Maximize your program’s laziness David Mertz

Promises in a directed acyclic graph. Changing
the value of a node invalidates its
descendants.

A

B

E

D

C
F

G

>>> set_value('C')

(An invalid Promise might simply delete its val attribute)

G

E

Promised

Invalidated

Concretized

Invalidated

PyCon 2010: Maximize your program’s laziness David Mertz

Promises in a directed acyclic graph. Changing
the shape of a graph might
invalidate nodes.

A

B

E

D

C
F

G

>>> disconnect('C->E'); connect('E->F; C->D')

(Notice that D was unfulfilled, hence has no value to invalidate)

E

G

F Promised

Invalidated

Concretized

Invalidated

PyCon 2010: Maximize your program’s laziness David Mertz

Promises in a directed acyclic graph. Queries
fulfill anew the previously invalidated
promises of ancestors.

A

B

E

D

C
F

G

>>> query_value('F')

G

Promised

Invalidated

Concretized

Invalidated

Promised

Invalidated

Concretized

Invalidated

PyCon 2010: Maximize your program’s laziness David Mertz

Wrap-up / Questions?
Review of laziness

Examples from Functional Programming
Languages

Generic any language laziness

Iterators and the itertools module
Generators and generator expressions
Memoization and the weakref module
Laziness in a directed acyclic graph

